
Statistically Certified Approximate Logic Synthesis
Gai Liu and Zhiru Zhang

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{gl387, zhiruz}@cornell.edu

Abstract
Approximate logic synthesis generates inexact implementa-
tions of logic functions in exchange for better design quali-
ties such as area, timing and power consumption. However,
the error behavior of the approximate circuits (e.g., error rate
or error magnitude) depends heavily on the specific synthe-
sis technique as well as the input vectors, hindering end users
from confidently adopting approximate designs. In this paper,
we propose a statistically certified approximate logic synthe-
sis framework using techniques from stochastic optimization,
and integrate it into a state-of-the-art parallelized technology
mapper. During the synthesis process, our framework con-
tinuously monitors the quality of the generated designs us-
ing statistical testing, leading to approximate designs that ad-
here to user-specified error constraints with a high confidence
level. Experimental results demonstrate up to 10x area and
timing improvements over the exact counterparts with an av-
erage of 0.2% deviation from the exact outputs.

1. Introduction
Approximate computing is an emerging design paradigm
aiming to improve the quality of result (QoR) such as area,
timing and power consumption at the cost of carefully-
controlled errors [6]. Representative application domains in-
clude data mining and machine learning, where infrequent
errors at the outputs do not significantly degrade user expe-
rience, and image/signal processing, where errors of small
magnitude are not perceivable by the end users [4, 13].

This work focuses on approximate logic synthesis, a key
step to automating the process of creating approximate cir-
cuits based on an exact logic function. Existing approaches
of approximate logic synthesis usually simplifies a logic net-
work in a technology-independent manner by removing logic
gates or connections between gates, subject to constraints on
error rate and/or error magnitude [9, 10, 12].

We use Figure 1 as an example to illustrate a typical
approximate logic synthesis flow and its drawbacks. Given
an initial design as shown in Figure 1 with an error rate
constraint of 10%, one possible simplification that an existing
synthesis algorithm would make is to remove gate g2. This
move decreases both the gate count and output level of the
logic network by one, but generates incorrect results for two
input patterns a = 0/1, b = 0, c = 1, d = 1 (out of the
16 input combinations in total). The synthesis engine then
samples N number of input vectors uniformly and simulates
the circuit with these input vectors to estimate the error rate,
where N is small relative to the total number of possible
input combinations. If none of the sampled input vectors leads

to the two erroneous outputs1, the synthesis engine would
incorrectly conclude that the generated design satisfies the
10% error rate constraint.

a b c d

g1 g2

g3

g4

a b c d

f

g1

g3

g4

f

f = ab + bcd f = ab + cd

Figure 1. An example illustrating the drawback of exist-
ing approximate synthesis techniques using sample statis-
tic approach — The approximate synthesis algorithm re-
moves gate g2, reducing the gate count and output level both
by one. However, this approximation does not reduce the area
or depth of the final netlist after mapping to 3-input LUTs (as
highlighted with dashes).

In addition to inaccurate characterization of the error be-
havior, the current approach may also fail to improve the ac-
tual quality of results of the circuit after technology mapping.
With the example in Figure 1, neither the area nor the tim-
ing is improved after the approximation. We attribute such
unfavorable outcome to three major drawbacks of the con-
ventional approximate logic synthesis techniques:

Disconnect from downstream flow While existing approaches
are effective in simplifying the gate-level logic network, they
usually do not take into account the impact of logic simpli-
fication on the QoR after mapping to a specific technology
library, such as lookup tables (LUTs) for FPGAs.

Misrepresentation of realistic input distributions Realistic
datasets rarely follow uniform distribution. Using test vectors
drawn from uniform distribution can lead to incorrect conclu-
sions on error metrics. In addition, synthesis techniques that
explicitly rely on this assumption of input distribution will
not work for other types of input distributions.

Lack of statistical rigorousness Using random samples to
measure the error metrics of an approximate design is inher-
ently a statistical process. In the language of statistical infer-
ence, existing methods of equating sampled error behavior
with the true error behavior fail to distinguish the difference
between sample and population statistics. For example, al-
though the sample mean of a design’s error magnitude corre-
lates with its population mean, they are in general not equal
to each other due to statistical noise. Capturing such noise

1 Under uniform sampling, the likelihood of observing such an event is
(14/16)N , which is significant for small values of N .

through the lens of statistical testing is crucial in assuring a
high-confidence evaluation of the error metrics.

To overcome these obstacles, we propose a statistically
certified approximate logic synthesis (SCALS) framework,
which extends PIMap [8], a state-of-the-art logic synthesis
and mapping framework to generate approximate designs.
Following the techniques in PIMap, SCALS couples logic
simplification with technology mapping to iteratively sim-
plify the circuit. During the synthesis process, SCALS contin-
uously monitors the quality of the intermediate design points
using the technique of statistical testing, leading to a final
approximate circuit that adheres to user-specified error con-
straints.

Our primary technical contributions are as follows:
• We are the first to apply statistical testing techniques

to approximate logic synthesis to generate approximate
designs with user-specified statistical guarantees.
• We propose a generic approximate logic synthesis frame-

work that can effectively handle various input distribu-
tions, error metrics and technology targets.
• We show that our approach achieves better QoR than

existing synthesis techniques for both ASIC and FPGA
targets while providing statistical guarantees on the error
metrics.
The rest of the paper is organized as follows: Section 2

reviews the related work; Section 3 describes the key tech-
niques of our approach; Section 4 presents the experimental
results, followed by conclusions in Section 5.

2. Related Work
We first summarize the existing research directions on ap-
proximate logic synthesis, followed by describing a logic
synthesis and technology mapping framework that our work
builds on.

2.1 Prior Arts on Approximate Logic Synthesis
We review a subset of representative work on approximate
logic synthesis. One line of research uses formal methods
to enforce that the outputs of an approximate circuit satisfy
the error requirement for all input patterns. Venkataramani,
et al. [15] propose SALSA, which is an approximate logic
synthesis framework based on approximation don’t cares
to simplify circuits using traditional don’t care based opti-
mization techniques. Miao, et al. [9] formulate approximate
two-level logic synthesis under error magnitude constraint
as the Boolean relation minimization problem, and devise
an efficient heuristic algorithm for iteratively refining the
magnitude-constrained solution to arrive at a solution also
satisfying the error rate constraint. This work is extended
by [10] to handle multi-level logic networks. Chandrasekha-
ran et al. [3] present an automatic synthesis approach using
and-inverter graphs (AIGs) based rewriting. The proposed
method selects cuts in the AIG that are on the critical paths
and replace them with constant zeros. The error behavior of
the synthesized circuit is verified using satisfiability solver.
Compared to a sampling-based approach, the aforementioned
approaches enforce strong restrictions on the simplifications

that can be made on the circuit, thus limiting the area and tim-
ing improvement of the generated circuit. In addition, these
approaches often incur significant runtime overhead due to
extensive use of satisfiability solvers.

Another line of research evaluates the error behavior of
an approximate circuit using random input samples. Shin, et
al. [12] propose techniques for synthesizing approximate two-
level circuits by selectively complementing the output values
of the minterms to reduce the number of literals in the SOP
representation. Venkataramani, et al. [14] describe approxi-
mation techniques by identifying signal pairs in the circuit
that assume the same value with high probability, and substi-
tute one for the other. Wu, et al. [17] propose techniques for
approximate logic synthesis under error rate constraint, which
iteratively removes literals from the logic expression of se-
lected nodes in a Boolean network. They further extend their
techniques for mapping to FPGAs by removing wires in the
LUT network and changing the functionality of LUTs [18].

2.2 Logic Synthesis and Technology Mapping
Framework for Synthesizing Exact Designs

Our work builds on a recently proposed cross-stage logic syn-
thesis framework named PIMap [8]. It is a logic synthesis and
technology mapping framework for generating exact designs
targeting FPGAs, which couples logic transformations and
technology mapping under an iterative improvement frame-
work to minimize the circuit area for LUT-based FPGAs. The
core of PIMap is an iterative area minimization framework
that repeats three major steps: (1) proposing logic transfor-
mation moves, (2) evaluating the quality of the move through
technology mapping, and (3) determining whether to accept
the proposed move. Such an iterative cross-stage synthesis
framework is useful for addressing the three major draw-
backs of the conventional approximate logic synthesis tech-
niques discussed in Section 1. PIMap makes use of a col-
lection of logic transformation moves such as balancing and
logic rewriting. At each iteration, PIMap randomly selects
one logic transformation, and applies it to the logic network.
It then maps the transformed logic network to LUTs, mea-
sures the quality of proposed transformation, and uses the
Markov Chain Monte Carlo method [5] to probabilistically
determine whether to accept the proposed move. To reduce
runtime overhead, PIMap automatically extracts a number of
non-overlapping sub-netlists from a mapped netlist, and opti-
mize them in parallel through multithreading.

3. SCALS Techniques
We first describe the approximate logic synthesis problem.
We then introduce our proposed techniques on generating
approximate logic and hypothesis testing of the error metrics.

3.1 Problem Formulation
We study the problem of synthesizing approximate designs
with user-specified error constraints under a given probability
distribution for the input values. Specifically, given a combi-
national logic network composed of technology-independent

logic gates2, SCALS minimizes the area and/or delay of the
generated design after mapping to a specific technology li-
brary for either LUT-based FPGAs or ASIC standard cells.

For error constraints, we focus on two representative er-
ror metrics, error rate and mean relative error magnitude,
although our framework is generic enough to handle other
types of error metrics. Error rate (ER) is defined as the prob-
ability that the approximate circuit generates incorrect out-
puts when the input test vectors are drawn randomly from
a specific input distribution. Mean relative error magnitude
(MREM) measures the population mean of the error magni-
tude relative to the exact output3. SCALS makes use of the
input distribution for measuring the error metrics as well as
guiding the synthesis process. The input distribution can be
specified in two different ways. The user can supply a known
probability distribution for the input vectors based on profil-
ing results of the realistic datasets. Alternatively, when the
input distribution is not known a priori, SCALS directly draw
samples from the design-specific input vectors to measure the
error metrics. Together with the error constraint, the user also
provides SCALS with a statistical confidence level to specify
the required level of statistical significance during hypothesis
testing [16].

3.2 Overall Flow
SCALS extends the PIMap flow (Section 2.2) to approximate
logic synthesis. Figure 2 shows the overall flow of SCALS,
where the modifications to PIMap and additional steps in
SCALS are highlighted. Starting with an initial gate-level
logic network, we first map it to the targeted technology. The
mapped netlist is then partitioned into a set of sub-netlists,
each of which contains a predefined number of standard cell
components (when mapping to standard cell library) or LUTs
(when mapping to FPGA technology). These extracted sub-
netlists are then independently optimized in parallel using the
iterative logic optimization routine (Section 3.3).

The optimized sub-netlists are recombined and evaluated
using statistical hypothesis testing (Section 3.4). If the new
netlist satisfies the error requirement, SCALS accepts and
uses it for the next trial. Otherwise, SCALS discards the cur-
rent design point and proceeds to the next trial using the out-
put from the previous trial. We note that SCALS is unlikely
to get stuck at an infeasible design point for consecutive tri-
als due to two sources of randomness. Firstly, the sub-netlist
extraction algorithm uses random seeds to generate different
sets of sub-netlists in different trials, uncovering various net-
work structures for optimization. Secondly, the iterative logic
optimization routine randomizes the selection of transforma-
tion moves as well as the logic gate to be simplified, which
effectively explores a wider range of potential simplifications
than a fixed sequence of logic transformations.

2 Our approach can be generalized to handle sequential circuit by optimizing
the combinational blocks between register boundaries individually.
3 The maximum error magnitude (MEM) is another commonly used error
metric. Approximate logic synthesis under an MEM constraint can be for-
mulated as a Boolean relation problem and solved using SAT solvers [9].
While our framework can integrate SAT solvers to handle MEM constraints,
we focus our experiments on statistical error metrics in this work.

3.3 Iterative Logic Optimization
SCALS uses a collection of logic transformation moves de-
noted as the set T = E ∪ A. For each logic transformation
move i in T , we associate it with a probability pi. During each
iteration of the iterative logic optimization step, we select one
logic transformation i from T with probability pi.

Exact transforms E is the set of logic transformations that
do not alter the functionality of the input design. The set
of exact logic transformations contain three commonly used
moves, i.e., E = {balance, rewrite, refactor}. These
transformations either balance the logic depths of difference
paths in the logic network, or reduce the gate count in the
network by logic rewriting [11].

Approximate transforms A is the set of logic transforma-
tions that simplify the logic network but may generate in-
correct outputs. In SCALS, this set includes three types of
moves, i.e., A = {reduce, flip, add}. Figure 3 illustrates
the effects of the three approximate logic transformations.
The reduce transformation randomly selects one logic gate
in the logic network and removes a randomly-selected fanin
of the logic gate. If the selected logic gate has only one fanin
before removal, then the logic gate itself will be removed,
with its fanin node directly connected to the fanouts of the
original logic gate. Similar to reduce, the flip transforma-
tion randomly selects one logic gate in the logic network and
inverts one of its randomly-selected fanins. Finally, the add

transformation adds a two-input logic gate with randomly-
selected functionality to the logic work, where its two fanin
nodes and one fanout node are randomly selected from the
existing nodes in the logic network.

We choose to use a stochastic approach to simplify the
logic circuit instead of fixed heuristics mainly for two rea-
sons. First, a stochastic approach provides a unified frame-
work towards logic simplification that can handle various in-
put vectors, error metrics and technology targets. Second, ran-
dom perturbations of the logic network can explore various
promising design points over a large number of iterations.

Evaluating and accepting a transformation After apply-
ing the selected logic transformation to the logic network,
SCALS immediately maps the logic network to the targeted
technology and measures the area, denoted as Aream. If an
approximate logic transformation is applied, SCALS also es-
timates the impact of the approximation on the primary out-
puts through logic simulation. Note that SCALS does not per-
form hypothesis testing per iteration to reduce runtime over-
head. Instead, SCALS conducts hypothesis testing after each
trial.

Since the iterative logic optimization routine operates on
extracted sub-netlists, it is important to be able to estimate
error behaviors at the primary outputs based on the local out-
puts of the sub-netlists. We use the following procedure to
achieve this goal. Using input vectors drawn from the user-
specified input distribution, SCALS first simulates the entire
design to obtain a set of test vectors for the nodes serving as
the inputs to the sub-netlists. These test vectors will then be
used to simulate all sub-netlists in parallel, and generate lo-

Initial logic
network

Mapped netlist

Sub-netlists
Sub-netlistsMapped sub-

netlists

Sub-netlists
Sub-netlistslogic sub-

networks

Optimized,
mapped netlist

Final mapped
netlist

Sub-netlists
Sub-netlists

Optimized,
mapped

sub-netlists

Decompose

Iterative logic
optimization

Recombine
sub-netlists

Technology mapper

Sub-netlist
extraction

Sub-netlist
extraction

Reached max
number of trials

One trial

Evaluate quality of
proposed move

Accept
current move?

No

Update netlist
with current move

Initial
logic network

End of
loop?

No
Propose logic transformation

move

Optimized,
mapped netlist

Yes

Evaluate error of
proposed move

No
functionality

change

Functionality
change

YesHypothesis testing of
error metric

Mapped netlist
from current trial

Mapped netlist
from previous trial

Within error boundExceed error
bound

Formulate
hypothesis

Collect sample
results

Evaluate
significance

Figure 2. Overall flow of SCALS.

reduce flip add

Figure 3. Illustration of approximate transformations.

cal outputs for each sub-netlist. Afterwards, we go through
the transitive fanins of each PO Oi. If any of these transitive
fanins is an output of an extracted sub-netlist Si, and Si gen-
erates inexact result during simulation of the sub-netlist, then
we conservatively infer that Oi is inexact. We then use this
information to calculate the error metrics (EM) such as ER
and MREM at the primary outputs. We note that this is a con-
servative estimation forOi due to the possible scenario where
the error at Si is not observable at Oi given the specific test
pattern. Nonetheless, this error estimation scheme provides a
quick way of inferring global error behavior from sub-netlists
without the need of simulating the entire design every itera-
tion.

After obtaining the post-mapping area Aream and the er-
ror metric EM , SCALS calculates a quality metric of the
current transformation as a weighted sum of Aream and
EM , i.e., Qcurr = α · Aream + β · EM . Qcurr is then
compared with the quality metric from the previous itera-
tion (i.e., Qprev). Specifically, we use the Markov Chain
Monte Carlo (MCMC) method to probabilistically determine
whether to accept the proposed move [5]. In particular, we
employ the Metropolis-Hastings algorithm for calculating the
acceptance probability [7]. The Metropolis-Hastings algo-
rithm dictates that if the quality of the current move is better
than the previous one, we accept the current move uncondi-
tionally. Otherwise, we accept the move with a probability

of e−γ(Qcurr/Qprev), which decreases exponentially as Qcurr
increases.

3.4 Hypothesis Testing of Error Constraint
At the end of each trial, SCALS evaluates the error metric of
the generated approximate design using statistical hypothe-
sis testing [16]. Given an error metric EM and the constraint
EM ≤ C, we formulate the null hypothesis H0 : EM > C
and the alternative hypothesis H1 : EM ≤ C. To show
that the error metric stays within the constraint, the null hy-
pothesis needs to be rejected under a user-specified confi-
dence level CL. After selecting an appropriate test statistic
for the error metric, SCALS generates N number of sam-
ples by simulating the approximate design using input vectors
drawn from the corresponding input distribution. Using the
test statistic and the observed samples, we evaluate the proba-
bility (P-value) of observing the output samples assuming the
null hypothesis holds true. Finally, SCALS makes conclusion
on the null/alternative hypotheses based on the test outcome.

Testing error rate constraint SCALS uses the binomial
test [16] to examine the error rate of an approximate design.
Given a hypothesis that an approximate design has an error
rate of p under certain input distribution, SCALS first sam-
ples N outputs from the circuit using independently-drawn
input vectors and compare them with the expected correct
outputs. We denote the observed number of incorrect outputs
as n. If the null hypothesis is true, then the number of in-
correct outputs in the N output samples should follow the
binomial distribution, i.e., n ∼ B(N, p). Using the binomial
test, SCALS evaluates the P-value of the observed event, and
determines the outcome of the test by comparing the P-value
and CL.

For the scenario in Figure 1 with N = 4 and n = 0,
the P-value of this event (observing four consecutive correct
outputs given an error rate of 10%) is 0.94 = 65.6%, which

is above the significance level 1 − CL = 5%. Consequently,
the test fails to reject the null hypothesis. That is, there is
no sufficient evidence to conclude that the error rate of the
approximate design is below 10%.

Testing mean relative error magnitude constraint In sta-
tistical inference, a T-test [16] is used for testing the pop-
ulation mean with unknown variance. Given a total of N
samples with a sample mean X̄ , a sample standard devi-
ation S and the population mean µ to be tested, the test
statistic T = X̄−µ

S/
√
N

follows the T-distribution [16], i.e.,

T (t) ∼ Γ(v+1
2)√

vπΓ(v
2)

(1 + t2

v)−
v+1
2 , where Γ is the gamma func-

tion, and v is the number of degrees of freedom (v = N − 1).
SCALS uses the T-test for testing a mean relative error magni-
tude constraint. Similar to testing the error rate, SCALS first
samples the relative error magnitude using N input vectors
drawn from the user-supplied input distribution. SCALS then
calculates the P-value using the test statistic and the observed
samples. Based on the calculated P-value and CL, SCALS
either accepts or rejects the null hypothesis.

Extension to other error metrics While SCALS focuses on
error rate constraint and mean relative error magnitude con-
straint, we can extend SCALS to handle other types of error
constraint by drawing the connection between the specific er-
ror metric and its corresponding test statistic. For example,
another interesting test is on whether a given approximate de-
sign generates unbiased outputs under certain input distribu-
tion. Unbiased designs are particularly useful for applications
where an approximate module is used repeatedly because the
errors could potentially cancel each other out. Such a test can
be formulated as testing whether the population mean of the
error magnitude is equal to zero, which can be carried out us-
ing the T-test as detailed above. In scenarios where we are
interested in constraining the variance of the error, we can
use χ2 test [16] to examine whether an error metric satisfies
a constraint on the population variance.

4. Experimental Results
We implement the SCALS techniques in C as extensions to
the ABC logic synthesis framework [2]. We target mapping
to both ASIC standard cell library and FPGA LUTs using a
combination of the EPFL combinational benchmark suite [1]
and the MCNC benchmark suite [19]. For ASIC targets, we
map to the MCNC generic standard cell library [19]. For FP-
GAs, we target 4-input or 6-input LUTs. Of course, our ap-
proach also supports mapping to other standard cell libraries
and LUT architectures. We report the synthesis results un-
der four representative input distributions including uniform,
Gaussian, exponential, and bimodal distributions. For each
design, SCALS runs for 20 trials, and each trial contains
100 iterations of the iterative logic optimization routine. We
choose α = 0.05 and β = 0.95 when calculating the quality
metric as detailed in Section 3.3. We assign equal probabil-
ities for selecting each of the six transformation moves in T
as discussed in Section 3. Each hypothesis testing step uses
a sample size of 10000 test vectors to determine the valid-
ity of the hypotheses. We partition the original design to up

to 16 sub-netlists, where each sub-netlist contains up to 100
LUTs. We run our experiments on eight machines, each with
a quad-core Xeon CPU operating at 2.7GHz.

We demonstrate the effectiveness of SCALS from three
aspects. We first show that SCALS significantly improves
the area and delay of the designs over their exact counter-
parts, where we compare against the best-known 6-LUT map-
ping results from the EPFL benchmark suite. Secondly, we
show that when compared to the representative state-of-the-
art techniques [17, 18], our approach achieves better QoR un-
der the same error constraints for both ASIC and FPGA tar-
gets, while providing additional statistical guarantees that the
existing approaches do not offer. Finally, we present the case
study of an approximate FIR filter that achieves significant
QoR improvements under error magnitude constraint.

4.1 Arithmetic Circuit under Relative Error Magnitude
Constraint

Table 1 shows the area and depth comparisons with the ex-
act counterparts for the arithmetic benchmarks in the EPFL
benchmark suite [1] under mean relative error magnitude con-
straint for various input distributions. The baseline designs
are the best-known 6-LUT mapping results according to the
EPFL records [1]. As an example to demonstrate the effec-
tiveness of SCALS, we enforce a mean relative error mag-
nitude constraint of 1

29 (≈ 0.2%). That is, the magnitude of
the output from the approximate designs cannot exceed 0.2%
of the correct output value on average. SCALS also works
well with other values of the error magnitude constraint. All
designs pass hypothesis testing on error magnitude given a
confidence level of 0.95.

We observe that some designs (e.g., hyp, sqrt, and
square) are highly error tolerate, requiring only 10% to 15%
of the area of the original designs to meet the error constraint.
We also observe significant depth reduction for the major-
ity of the designs due to the simplified logic structure in the
approximate designs. SCALS achieves similar QoRs regard-
less of the different input distributions, showing that SCALS
flexibly adapts to the input characteristics and generate high-
quality designs for various types of input distributions.

4.2 Random-Control Circuit under Error Rate
Constraint

Table 2 shows the area and depth reduction of the EPFL
random-control designs targeting 6-input LUTs under vari-
ous input distributions. In this experiment, we require that the
error rates of the generated designs do not exceed 1% with a
confidence level of 0.95. The baseline designs are again the
best-known mapping results from the EPFL records [1]. Sim-
ilar to the results of arithmetic designs, the QoR improvement
of the approximate designs is design specific.

Noticeably, for design priority, a 128-to-7 priority en-
coder, SCALS achieves almost 10x reduction in both area and
depth. This is because SCALS is able to generate a highly
efficient design by exploiting the logic structure of a prior-
ity encoder. Specifically, since the higher order inputs are
prioritized over the lower order inputs, the errors related to
the lower order inputs will often be masked and become un-

Table 1. Area and depth reduction for arithmetic circuit under mean relative error magnitude constraint with various
input distributions on EPFL benchmarks — Exact = Exact designs from the EPFL benchmark record; SCALS = Approxi-
mate designs synthesized using our method; Size = Area of the circuit measured as the number of 6-input LUTs; Dpt = Depth
of the circuit in terms of 6-input LUTs; Ratio = The ratio of size of depth of SCALS over Exact. The average error magnitude
is constrained to be within 1

29 (≈ 0.2%) of the correct output value. Numbers in bracket indicate the size/depth ratio over the
corresponding exact design. All designs pass hypothesis testing with a confidence level of 0.95.

Exact SCALS
Uniform Gaussian Exponential Bimodal

Designs Size Dpt Size Dpt Size Dpt Size Dpt Size Dpt
adder 192 64 137 (0.71) 10 (0.16) 139 (0.72) 12 (0.19) 129 (0.67) 14 (0.22) 142 (0.74) 9 (0.14)
shifter 512 4 461 (0.90) 4 (1.00) 478 (0.93) 4 (1.00) 487 (0.95) 4 (1.00) 452 (0.88) 4 (1.00)
divisor 3268 1208 3232 (0.99) 1068 (0.88) 3122 (0.96) 842 (0.70) 1580 (0.48) 268 (0.22) 2651 (0.81) 699 (0.58)

hyp 40406 4532 3662 (0.09) 142 (0.03) 4201 (0.10) 152 (0.03) 4115 (0.10) 134 (0.03) 4028 (0.10) 133 (0.03)
log2 6574 119 6401 (0.97) 108 (0.91) 6529 (0.99) 118 (0.99) 6564 (1.00) 118 (0.99) 6485 (0.99) 117 (0.98)
max 523 189 184 (0.35) 19 (0.10) 180 (0.34) 16 (0.08) 130 (0.25) 3 (0.02) 158 (0.30) 22 (0.12)
mult 4923 90 1337 (0.27) 36 (0.40) 1959 (0.40) 45 (0.50) 1043 (0.21) 35 (0.39) 1057 (0.21) 25 (0.28)
sine 1229 55 1219 (0.99) 54 (0.98) 1218 (0.99) 54 (0.98) 1196 (0.97) 54 (0.98) 1205 (0.98) 55 (1.00)
sqrt 3077 1106 338 (0.11) 112 (0.10) 236 (0.08) 77 (0.07) 344 (0.11) 114 (0.10) 352 (0.11) 108 (0.10)

square 3246 74 490 (0.15) 19 (0.26) 867 (0.27) 27 (0.36) 771 (0.24) 20 (0.27) 2909 (0.90) 39 (0.53)

Table 2. Area and depth reduction for random-control circuit under error rate constraint with various input distri-
butions on EPFL benchmarks— Exact = Exact designs from the EPFL benchmark record; SCALS = Approximate designs
synthesized using our method; Size = Area of the circuit measured as the number of 6-input LUTs; Dpt = Depth of the circuit
in terms of 6-input LUTs; Ratio = The ratio of size of depth of SCALS over Exact. The error rate is constrained to be within
1%. Numbers in bracket indicate the size/depth ratio over the corresponding exact design. All designs pass hypothesis testing
with a confidence level of 0.95.

Exact SCALS
Uniform Gaussian Exponential Bimodal

Designs Size Dpt Size Dpt Size Dpt Size Dpt Size Dpt
arbiter 409 23 251 (0.61) 13 (0.57) 170 (0.42) 7 (0.30) 159 (0.39) 6 (0.26) 153 (0.37) 5 (0.22)
alu ctrl 27 2 27 (1.00) 2 (1.00) 26 (0.96) 2 (1.00) 26 (0.96) 2 (1.00) 26 (0.96) 2 (1.00)
cavlc 101 6 100 (0.99) 5 (0.83) 99 (0.98) 6 (1.00) 100 (0.99) 5 (0.83) 99 (0.98) 6 (1.00)

decoder 270 2 270 (1.00) 2 (1.00) 270 (1.00) 2 (1.00) 270 (1.00) 2 (1.00) 270 (1.00) 2 (1.00)
i2c controller 227 7 205 (0.90) 6 (0.86) 209 (0.92) 7 (1.00) 168 (0.74) 4 (0.57) 168 (0.74) 4 (0.57)

Int2float 28 6 26 (0.93) 6 (1.00) 25 (0.89) 6 (1.00) 26 (0.93) 4 (0.67) 23 (0.82) 4 (0.67)
mem ctrl 2354 22 2086 (0.89) 15 (0.68) 1895 (0.81) 14 (0.64) 1316 (0.56) 11 (0.50) 1468 (0.62) 8 (0.36)
priority 110 26 12 (0.11) 3 (0.12) 13 (0.12) 2 (0.08) 11 (0.10) 3 (0.12) 54 (0.49) 21 (0.81)
router 52 6 31 (0.60) 2 (0.33) 31 (0.60) 2 (0.33) 35 (0.67) 4 (0.67) 32 (0.62) 2 (0.33)
voter 1301 17 1299 (1.00) 17 (1.00) 1298 (1.00) 17 (1.00) 1299 (1.00) 17 (1.00) 1299 (1.00) 17 (1.00)

observable at the output. Consequently, SCALS utilizes this
logic structure to largely simplify the logic for the lower or-
der inputs without incurring significant errors at the output.
On the other hand, designs such as alu ctrl that have sim-
ple internal logic, SCALS can not simplify its logic at all.
The original design of alu ctrl only needs 27 LUTs to im-
plement the 26-output function, meaning that almost every
LUT directly generates one output. Consequently, any sim-
plifications of the logic network will likely lead to errors at
the primary outputs, leaving little room for approximation.

4.3 Comparison with Existing Work Targeting ASICs
We compare our approach with the single-selection algo-
rithm in [17], which represents the state-of-the-art approx-
imate logic synthesis method for ASICs. Since the single-
selection algorithm focuses on area reduction after technol-
ogy mapping, we mainly compare the post-mapping area re-
sults of the generated approximate designs. In this experi-
ment, we use seven MCNC benchmarks that are also used
in [17].4. We set the error rate constraint to 1% in Table 3.

4 The single-selection algorithm [17] reports area results for 12 benchmarks
in total. However, we are only able to obtain seven of the benchmarks since
the other five benchmarks are not publicly available.

The baseline designs in Table 3 are the initial exact designs
generated from ABC [2].

Compared to the single-selection algorithm, our approach
achieves higher area reduction across all benchmarks, with
an average improvement of 37% over the baseline designs,
while [17] achieves an average improvement of 17%. When
directly comparing with the single-selection algorithm, our
approach reduces the area by 24% on average across the
seven benchmarks considered here. We observe similar area
improvements for other values of error rates. For example, at
5% error rate, the designs generated from our approach are
10% smaller on average than the designs from [17]. While
the approach in [17] does not report the delay numbers of
the generated designs, we observe that our approach achieves
smaller delay than the baseline designs, mainly due to the
simplified logic structure in the approximate designs. The
runtime of our approach is in general on the same order of
the approach in [17], and the average runtime across the seven
benchmarks is smaller than that of the approach in [17].

4.4 Comparison with Existing Work Targeting FPGAs
Table 4 shows the area reduction when compared with a state-
of-the-art FPGA approximate logic synthesis algorithm [18]

Table 3. Comparison with a state-of-the-art approximate logic synthesis method for ASIC targeting area minimiza-
tion [17] on MCNC benchmarks — Base = Initial exact designs reported by [17]; [17] = Results of the single-selection
algorithm in [17]; SCALS = Results from our approach; Time = Runtime in seconds. Both [17] and SCALS enforce a 1% error
rate constraint. The designs generated by SCALS pass the hypothesis testing at a confidence level of 0.95. The area and delay
numbers are normalized to the area and delay of a unit size inverter, respectively.

Base Wu, et al. [17] SCALS SCALS vs. [17]
Designs Delay Area Time (s) Area Ratio vs. Base Time (s) Delay Area Ratio vs. Base Ratio vs. [17]

c880 40.4 599 93 497 0.83 507 36.7 494 0.82 0.99
c1908 60.6 1013 394 654 0.65 93 45.2 324 0.32 0.50
c2670 67.3 1434 702 935 0.65 137 35.4 748 0.52 0.80
c3540 84.5 1615 172 1554 0.96 101 54.0 1396 0.86 0.90
c5315 75.3 2432 263 2352 0.97 251 47.5 2245 0.92 0.95
c7552 159.8 2759 533 2527 0.92 476 155.7 2396 0.87 0.95
alu4 51.5 2740 1000 2433 0.89 607 45.3 1099 0.40 0.45

geomean 0.83 0.63 0.76

Table 4. Comparison with a state-of-the-art approximate logic synthesis method for FPGA targeting depth-constrained
area minimization [18] on MCNC benchmarks — Base = Exact designs generated from ABC [2]; Size = Area of the circuit
measured as the number of 4-input LUTs; Dpt = Depth of the circuit in terms of 4-input LUTs. Both approaches generate
designs with an error rate constraint of 5%. The designs generated by SCALS pass the hypothesis testing at a confidence level
of 0.95. Both approaches do not increase the depth of the baseline designs. No runtime information is provided for these set of
designs in [18].

Base Wu, et al. [18] SCALS SCALS vs. [18]
Designs Depth Size Size Ratio vs. Base Depth Size Ratio vs. Base Ratio vs. [18]

c432 10 97 79 0.81 10 55 0.57 0.70
c880 8 128 102 0.80 8 107 0.84 1.05

c1908 9 122 50 0.41 9 88 0.72 1.76
c2670 7 295 242 0.82 7 224 0.76 0.93
c3540 12 346 325 0.94 11 305 0.88 0.94
c5315 9 503 468 0.93 9 439 0.87 0.94
c7552 8 593 486 0.82 8 440 0.74 0.91
alu4 7 710 483 0.68 7 411 0.58 0.85
alu2 12 160 136 0.85 11 135 0.84 0.99

apex6 6 253 197 0.78 6 210 0.83 1.07
dalu 11 425 349 0.82 11 329 0.77 0.94

geomean 0.77 0.76 0.98

over a set of benchmarks from the MCNC benchmark suite.
The baseline designs are the exact designs generated from
ABC [2]. Following the requirement in [18], both approaches
enforce a 5% error rate constraint and require that the gen-
erated approximate designs do not increase the depth of the
baseline designs. We measure the size of the designs as the
number of 4-LUTs. SCALS generates smaller designs when
compared with [18] for eight out of the 11 designs, showing
the effectiveness of SCALS when compared with the existing
synthesis technique.

0

0.5

1

1.5

2

c880 c1908 apex6

N
o

rm
al

iz
ed

 S
iz

e Wu, et al. [18]
SCALS with hypothesis testing
SCALS w/o hypothesis testing

Figure 4. Area comparison after disabling hypothesis
testing.

We note that although SCALS and [18] both enforce a 5%
error rate constraint, it is still not an apple-to-apple compari-
son since the requirement for an approximate design to pass
the test of SCALS is stricter than that in [18]. The hypoth-
esis testing step in SCALS would potentially reject an ap-

proximate design that passes a simple sampling-based test as
in [18]. To understand the impact of applying hypothesis test-
ing on the design QoR, we look into the three designs in Ta-
ble 4 that SCALS fails to improve over [18]. Figure 4 shows
the size of the generated designs from SCALS with and with-
out the hypothesis testing step. The size of the designs are
normalized to the corresponding design generated by [18].
We observe that disabling the hypothesis testing step indeed
leads to smaller designs.

4.5 QoR vs. Confidence Level Tradeoff
Table 5. Synthesis results under different confidence lev-
els — Size = Area of the circuit measured as the number of
6-input LUTs; Dpt = Depth of the circuit in terms of 6-input
LUTs; CL = Confidence level for error rate during hypothesis
testing. The designs are generated under 1% error rate con-
straint after 10 trials.

CL = 0.90 CL = 0.95 CL = 0.99
Designs Size Dpt Size Dpt Size Dpt
arbiter 348 17 352 17 354 21

mem ctrl 2309 21 2315 21 2354 22
priority 14 2 14 4 16 4
router 32 3 33 3 34 3

Table 5 shows the impact of confidence level during hy-
pothesis testing on the area and depth of the final designs us-
ing four random-control circuits under error rate constraint.

A higher confidence level requires stronger evidence for cer-
tifying that an error constraint is honored. Consequently, a
higher confidence level will lead to more conservative designs
as shown in Table 5, which provides a tradeoff between QoR
improvement and statistical confidence of the error behavior.

4.6 Design Study: Approximate FIR Filter
We provide a design study using approximate multipliers and
adders generated using SCALS from design-specific input
vectors to construct a three-tap finite response (FIR) filter.
The FIR filter has a passband between 100 to 200Hz and a
stopband from 300 to 500Hz. To supply the input patterns
for SCALS, we use realistic input waveform that contains
two major frequency components at 100Hz and 300Hz with
Gaussian noise sampled at 1KHz. All inputs to the multipliers
and adders are 64-bit fixed-point numbers.

In Table 6, the area and delay numbers are the post-
synthesis results normalized to the area of a unit-size inverter.
The measured MREM is verified at a confidence level of 0.95.
The generated approximate FIR filter is 5x smaller and 2x
faster than the exact counterpart, while maintaining similarly
small MREM (0.012%) of its basic building blocks.

Table 6. Area and delay comparison between an exact
FIR filter and an approximate FIR filter from SCALS —
Exact = Exact designs generated using ABC’s optimization
script resyn2 and technology mapper map; SCALS = Approx-
imate designs synthesized using our method; Area = ASIC
circuit area; Delay = ASIC circuit delay; MREM = Measured
mean relative error magnitude. The area and delay numbers
are normalized to those of a unit size inverter.

Multiplier Adder FIR
Exact SCALS Exact SCALS Exact SCALS

Area 55544 12058 2476 465 171234 33607
Area ratio 1.00 0.22 1.00 0.19 1.00 0.20

Delay 215.2 104.6 204.6 32.7 226.9 112.5
Delay ratio 1.00 0.49 1.00 0.16 1.00 0.50

MREM 0.009% 0.001% 0.012%

5. Conclusions
We propose SCALS, a statistically certified approximate
logic synthesis framework based on parallelized stochas-
tic optimization. SCALS effectively handles various error
metrics, technology targets and input distributions in a uni-
fied framework, and provides statistical guarantee that the
generated designs adhere to user-specified error constraints.
SCALS generates approximate designs that are up to 10x
smaller and faster than their highly optimized exact coun-
terparts. It also achieves better design QoR across different
technology targets when compared to existing approximate
logic synthesis techniques.

6. Acknowledgements
This work was supported in part by NSF Award #1618275, a
DARPA Young Faculty Award D15AP00096, and a research
gift from Xilinx, Inc. We thank the anonymous reviewers for
their helpful feedback.

References
[1] L. Amarú, P.-E. Gaillardon, and G. De Micheli. The EPFL

Combinational Benchmark Suite. International Workshop on
Logic & Synthesis (IWLS), 2015.

[2] Berkeley Logic Synthesis and Verification Group, ABC: A
System for Sequential Synthesis and Verification, Release
60413. http://www.eecs.berkeley.edu/~alanmi/abc/.

[3] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler.
Approximation-aware Rewriting of AIGs for Error Tolerant
Applications. Int’l Conf. on Computer-Aided Design (ICCAD),
2016.

[4] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan.
Analysis and Characterization of Inherent Application Re-
silience for Approximate Computing. Design Automation Conf.
(DAC), 2013.

[5] C. J. Geyer. Practical Markov Chain Monte Carlo. Statistical
Science, pages 473–483, 1992.

[6] J. Han and M. Orshansky. Approximate Computing: An
Emerging Paradigm for Energy-Efficient Design. 2013 18th
IEEE European Test Symposium (ETS), pages 1–6, 2013.

[7] W. K. Hastings. Monte Carlo Sampling Methods using Markov
Chains and Their Applications. Biometrika, 57(1):97–109,
1970.

[8] G. Liu and Z. Zhang. A Parallelized Iterative Improvement
Approach to Area Optimization for LUT-Based Technology
Mapping. Int’l Symp. on Field-Programmable Gate Arrays
(FPGA), 2017.

[9] J. Miao, A. Gerstlauer, and M. Orshansky. Approximate
Logic Synthesis under General Error Magnitude and Frequency
Constraints. Int’l Conf. on Computer-Aided Design (ICCAD),
2013.

[10] J. Miao, A. Gerstlauer, and M. Orshansky. Multi-Level
Approximate Logic Synthesis under General Error Constraints.
Int’l Conf. on Computer-Aided Design (ICCAD), 2014.

[11] A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-Aware
AIG Rewriting a Fresh Look at Combinational Logic Synthesis.
Design Automation Conf. (DAC), 2006.

[12] D. Shin and S. K. Gupta. Approximate Logic Synthesis for
Error Tolerant Applications. Design, Automation, and Test in
Europe (DATE), 2010.

[13] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan.
AxNN: Energy-Efficient Neuromorphic Systems using Approx-
imate Computing. Int’l Symp. on Low Power Electronics and
Design (ISLPED), 2014.

[14] S. Venkataramani, K. Roy, and A. Raghunathan. Substitute-
and-Simplify: A Unified Design Paradigm for Approximate and
Quality Configurable Circuits. Design, Automation, and Test in
Europe (DATE), 2013.

[15] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and
A. Raghunathan. SALSA: Systematic Logic Synthesis of
Approximate Circuits. Design Automation Conf. (DAC), 2012.

[16] B. J. Winer, D. R. Brown, and K. M. Michels. Statistical
Principles in Experimental Design. McGraw-Hill, 1971.

[17] Y. Wu and W. Qian. An Efficient Method for Multi-Level
Approximate Logic Synthesis under Error Rate Constraint.
Design Automation Conf. (DAC), 2016.

[18] Y. Wu, C. Shen, Y. Jia, and W. Qian. Approximate Logic
Synthesis for FPGA by Wire Removal and Local Function
Change. Asia and South Pacific Design Automation Conf.
(ASP-DAC), 2017.

[19] S. Yang. Logic Synthesis and Optimization Benchmarks.
Microelectronics Center of North Carolina (MCNC), 1991.

