
Enabling Adaptive Loop Pipelining in High-Level Synthesis
Steve Dai, Gai Liu, Ritchie Zhao, Zhiru Zhang

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
Email: {hd273,gl387,rz252,zhiruz}@cornell.edu

Abstract—Loop pipelining is an important optimization in
high-level synthesis (HLS) because it allows successive loop
iterations to be overlapped during execution. While current HLS
pipelining approach achieves high performance for loops with
regular and statically analyzable program patterns, it remains
challenging to pipeline loops with irregular memory accesses,
irregular dependence patterns, and unbalanced workload. The
lack of support for dynamic program behaviors results in conser-
vatively synthesized pipelines that sacrifice performance for main-
taining presumed regularity. In this paper, we survey some of our
recent work that addresses these challenges using a coordinated
dynamic-static approach for enabling high-throughput pipelining
of irregular loops. We propose to augment the HLS pipeline
with dynamic scheduling to adapt to data-dependent behaviors,
while employing static compile-time optimizations to minimize
the hardware overhead associated with runtime optimization.
Experimental results demonstrate that our proposed techniques
can significantly improve effective pipeline throughput while
conserving hardware resources.

I. INTRODUCTION
The persistent effort to improve performance-per-watt has

led to widespread adoption of heterogeneous architectures in
which complex and specialized hardware accelerators play a
central role in delivering the next leap in performance and
energy efficiency. However, the promise of architectural het-
erogeneity comes at the expense of the agility of hardware/soft-
ware development. As the number and diversity of hardware
accelerators continue to scale alongside rapid and disruptive
architectural changes, it is becoming increasingly difficult, if
not already unsustainable, to design these accelerators with the
traditional manual register-transfer-level (RTL) methodology.
The need to wrestle with low-level RTL details prevents
designers from exploring a sufficient number of design points
necessary for identifying the appropriate tradeoff.

High-level synthesis (HLS) has emerged as a promising al-
ternative to the RTL design methodology to enable productive
modeling of hardware. HLS raises the level of input abstraction
from hardware to software by automatically transforming a
software program in C/C++/SystemC to a timed hardware
design in Verilog or VHDL. HLS allows designers to quickly
describe hardware using software languages and apply various
optimizations using hardware-specific directives provided by
the HLS tool.

Loop pipelining is one of the most important optimiza-
tions in HLS because it allows successive loop iterations to
be overlapped during execution. Loop pipelining is typically
performed by modulo scheduling, a software pipelining tech-
niques that creates a static schedule for a single loop iteration;
the same schedule can be repeated for subsequent iterations at
a constant initiation interval (II) [1]. As loops are common in
typical HLS applications, loop pipelining is a vital in enabling
high-performance yet area-efficient hardware.

The conventional HLS pipelining approach employs static
analysis to extract program behavior and is well-suited for
applications that exhibit structured computation and data ac-
cess patterns. In contrast, irregular programs are characterized
by less-regular data and computation patterns that are often

unknown until runtime, presenting fundamental challenges to
existing pipelining techniques which mainly rely on static
compile-time analysis and optimizations to exploit parallelism
and data locality. Without the means to adapt to dynamic
program behavior at runtime, HLS must pipeline irregular
programs conservatively with lower throughput to ensure cor-
rectness at the cost of performance.

In this paper, we describe our synergistic approach to
enabling adaptive loop pipelining by reviewing several of our
work in this direction [2], [3], [4], [5]. On one hand, we
augment the HLS-synthesized pipeline with run-time opti-
mizations to exploit and adapt to data-dependent behaviors.
On the other hand, we employ compile-time optimizations
to minimize the overhead introduced by more intelligent
hardware. The combination of dynamic and static optimiza-
tions promises significant improvement in performance while
keeping hardware complexity in control. Specifically, we will
describe techniques to address the following challenges in
HLS pipelining: 1) pipelining with variable memory access
latency [2], 2) pipelining with variable-bound inner loop [3],
[4], and 3) hazards-aware pipelining [5].

The rest of the paper is organized as follows: Section II
provides a more detailed motivation for the adaptive pipelining
problem; Section III illustrates techniques to address each of
the three challenges; Section IV surveys the line of related
work in dynamic HLS; Section V provides additional insights
into the problem.

II. MOTIVATION
Listing 1 demonstrates a typical loop pipelining scenario in

which the size of the workload, memory access pattern, and
dependence pattern are statically analyzable. First, this loop
nest has fixed loop bounds in Lines 1 and 2. As a result,
the total number of loop iterations and memory accesses are
known at compile-time. Second, array accesses in the loop
body in Line 3 are indexed by loop induction variables and do
not depend on any input data. The absence of data-dependent
memory accesses allows HLS to partition memory for best
throughput and optimize the order of accesses for the best
data locality. Third, the distance of the inter-iteration read-
after-write dependence in Line 3 for array A is constant.
The regular dependence pattern between A[i][j-1] and
A[i][j] dictates that HLS can parallelize across the first
dimension of array A.

1 f o r (i =0 ; i <4; i ++){
2 f o r (j =1 ; j <4; j ++){
3 # pragma p i p e l i n e
4 A[i] [j]=A[i] [j −1]∗ j ;
5 }
6 }

Listing 1. Pipelining inner loop

1 f o r (i =0 ; i <4; i ++){
2 # pragma p i p e l i n e
3 A[i] [1] =A[i] [0] ∗ 1 ;
4 A[i] [2] =A[i] [1] ∗ 2 ;
5 A[i] [3] =A[i] [2] ∗ 3 ;
6 }

Listing 2. Unrolling inner loop

As shown in Listing 1, HLS can pipeline the inner loop
of the loop nest to target one inner loop iteration per cycle.
This approach achieves parallelism across different inner loop
iterations while the outer loop iterations execute sequentially.

On the other hand, HLS can also pipeline the outer loop by
first unrolling the inner loop as shown in Listing 2. This
approach allows HLS to target one outer loop iteration per
cycle. Regardless of the loop level at which pipelining is
applied, HLS assumes fixed memory access latency to facilitate
the creation of a static schedule for hardware to be synthesized.

Unlike the program in Listing 1, however, irregular pro-
grams operate on less-regular data structures and exhibit data-
dependent workload, irregular memory access patterns, irreg-
ular data dependences, as well as difficult-to-predict memory
access latency. While significant amounts of parallelism exist
in many irregular programs, the potential data locality and
parallelism cannot be easily uncovered and exploited using
static techniques. In these cases, static pipelining must conser-
vatively assume the worst-case program behavior, resulting in
low-throughput pipelines.

1) Irregular memory access patterns: Listing 3 shows
a sparse matrix vector multiplication (SPMV) kernel and
illustrates the irregular memory access patterns in array X.
Specifically, the matrix A is stored in the compressed sparse
row format and requires an indirect array access X[Col[c]]
to read an element from vector X. Due to poor data locality,
this indirect access potentially incurs high cache miss rate.
Such variable-latency operation stalls the entire HLS pipeline
and leads to substantial performance degradation.

1 f o r (r =0 ; r<N; r ++){
2 sum = 0 ;
3 f o r (c=Row[r] ; c<Row[r + 1] ; c ++)
4 sum += A[c]∗X[Col [c]] ;
5 O[r] = sum ;
6 }

Listing 3. SPMV code

3 1 5

X[]

Col[]

0 1 2 3 4 5

2) Irregular workload patterns: Loops in an irregular pro-
gram may have uneven work distribution across different loop
iterations. In the SPMV kernel in Listing 3, the trip count of
the inner loop is the number of non-zero elements in each row
of the input sparse matrix. This trip count (i.e. workload) varies
for different iterations. Because current HLS tools allocate
hardware resources at compile time, it must target the worst-
case trip count. Irregular workloads across iterations result in
suboptimal resource utilization in the synthesized hardware.

3) Irregular dependence patterns: Irregular programs often
exhibit irregular data dependence patterns, especially in inter-
iteration dependences. Examples include (1) infrequent depen-
dences, and (2) dependences with variable iteration distance.
Listing 4 shows a dynamic programming kernel, where the
dependence distance for D varies with k at runtime.

A third example of irregular data dependence involves
updates to shared data. Listing 5 shows a histogram kernel
where each iteration updates a bin count. Different iterations
can be executed out-of-order and in parallel as long as updates
to individual elements of the H array are atomic. However, the
dependence analysis techniques in modern HLS tools typically
only handle static, affine data access patterns. The irregular
parallelism in Listing 5 will not be discovered by the tool,
resulting in low performance in the synthesized hardware.

III. ADAPTIVE PIPELINING TECHNIQUES
It is evident that irregular programs pose serious challenges

to current pipelining techniques. In this section, we describe
three complementary techniques to address different aspects of
this challenge. While differing in purpose, all three techniques

1 f o r (k =0; k<N; k ++){
2 f o r (i =0 ; i<N; i ++){
3 v a l = f (D[i] , D[i−k]) ;
4 D[i] = max (D[i] , v a l) ;
5 }
6 }

Listing 4. Dynamic programming code

D[]

0 1 2 3 4 5

D[]
0 1 2 3 4 5

k=1

k=3

1 f o r (i =0 ; i<N; i ++){
2 c = c a t e g o r y (P [i]) ;
3 H[c] + + ;
4 }

Listing 5. Histogram code

H[]

P[]

0 1 2 3 4 5

0 2 2 0 2

aim to synergistically combine dynamic and static optimiza-
tions to create high-performance yet area-efficient pipelines.
This is done by synthesizing additional hardware to dynami-
cally adapt pipeline execution to runtime-dependent program
behaviors. The overhead of the new hardware is carefully
minimized using both theoretical analysis and specialization
to the target application.

A. Multithreaded Pipelining: Pipelining with Variable Mem-
ory Access Latency

As described in Section II-1, the need to access data from
external shared memory incurs difficult-to-predict latency that
is not expected by conventional pipelining techniques. As these
techniques assume in-order execution of loop iterations and
that the schedule is executed in lockstep, the entire pipeline is
inevitably stalled until the completion of the variable-latency
operation. As shown in Figure 1, while conventional HLS can
pipeline the SPMV loop to II=1, the generated schedule can
be executed without any stall only under the ideal condition
where all data can be obtained perfectly with a fixed latency.
If an internal stall occurs due to a cache miss, the current
iteration as well as all subsequent iterations must be stalled to
wait for the data. Throughput suffers as a result of the stall.

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

thread1!
II=1! thread2!

thread3!
thread4!

(a) Normal pipeline execution

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

stall!

thread1!
II=1! thread2!

thread3!

thread4!

cache!
miss!

(b) Pipeline stall

Fig. 1. Pipeline stall due to the external memory access [2].

While reserving additional pipeline stages for each
variable-latency operation may be a viable alternative, a deeper
pipeline would come with additional hardware overhead. On
one hand, it would be difficult to predict exactly how many
stages should be added. On the other, a deeper pipeline
still enforces in-order execution, which results in sub-optimal
throughput based on our experiments. As a result, we intro-
duce out-of-order thread execution to improve performance.
Consider each iteration as a thread, the proposed multithreaded
pipelining scheme allows subsequent threads to proceed when
the current thread is blocked. More specifically, the blocked

thread releases its occupied resources by saving all live values
at the time of the suspension to a context buffer so that the
subsequent threads can continue without unnecessary stalling.
The suspended thread will be swapped back into the pipeline
once the variable-latency operation is completed.

As shown in Figure 2, a context buffer added alongside
the pipeline provides the main support for out-of-order thread
execution. The context buffer serves as a dedicated hardware
storage to store the context of suspended threads. To minimize
the overhead of the context buffer, we provide both an exact
formulation and a heuristic to devise a context-aware schedule
that minimizes the total bitwidth of all live values when a
thread is suspended. Such a schedule reduces the required size
of the context buffer and thus the hardware overhead incurred
to obtain better throughput. Based on our experimental results,
it is evident that multithreaded pipelining is able to achieve
significant improvement in throughput while incurring much
less resource overhead than deep pipelining. We refer the
reader to [2] for detailed values.

R!

VR!

R!

*!

+!

ThreadID! Context!

ThreadID! Context!

…! …!

ThreadID! Context!

Pipelined datapath Context buffer

Thread suspended

Thread resumed

Thread scheduler!!
 !
 !

!
 !
 !

!
!
 !
 !

switch!
point!

!
 !
 !

Fig. 2. Basic mechanisms of a multithreaded pipeline [2]: The pipelined
datapath is extended with context switching support; Each context buffer saves
the thread context when a thread is suspended; The thread scheduler decides
which thread will be resumed if there are multiple ready threads in the buffer.

B. ElasticFlow: Pipelining with Variable-Bound Inner Loops
As discussed in Section II-2, irregular loops nests may

incur unbalance workload due to variable inner loop bound.
To pipeline the outer loop in this case, an alternative is to first
transform the dynamic-bound inner loop into a fixed-bound
loop using the worst-case bound, if known, that can handle
any extreme cases of input data. However, this design choice
presents two major problems: 1) Unrolling the inner loop based
on worst-base bound is very inefficient in area. Many resources
replicated from unrolling will spend most of their time idle.
2) Worst-case loop bound cannot be statically determined for
many loops. The fixed-bound transformation approach cannot
be applied without endangering correctness of execution.

To address these challenges, we synthesize an irregular
loop nest into a multi-stage dataflow architecture called Elas-
ticFlow. Figure 3 demonstrates the ElasticFlow architecture
for a loop nest with two fixed-bound inner loops A and C,
and one dynamic-bound inner loop B. While each stage in
the architecture handles one of the three inner loops, we map
the stage with dynamic-bound inner loop B to an array of loop
processing units (LPUs). To adapt to the variable latency of the
different instances of the inner loop, the architecture consists of
a distributor to dynamically distribute work to and a collector
to collect results from the LPUs based on their utilization.
Each LPU contains the full datapath and control for executing
the inner loop to completion. To optimize the number of
LPUs, we employ an integer linear program (ILP) to statically

allocate LPUs under hardware area constraints to meet the
expected throughput requirement of the nested loop. As part
of the optimization, the ILP decides whether an LPU should
be instantiated such that it can be shared among different inner
loops. This decision addresses the tradeoff between incurring
more area per LPU and better work balancing.

A and C are fixed-latency pipeline stages
B is a pipeline stage for a dynamic-bound inner loop

Collector

Distributor

Loop Processing Array (LPA)

LPU1 LPU2 LPUK

…
B

A

C

<i, valA>

<i, valB>

<i, valC>

Fig. 3. ElasticFlow Architecture [3], [4] – An irregular loop nest is
transformed into a multi-stage dataflow pipeline. Each dynamic-bound inner
loop is mapped to a loop processing array (LPA), which consists of multiple
loop processing units (LPUs). The loop iteration ID (i) and live values
(valA,valB ,valC) are passed through the FIFOs between pipeline stages.

For experiments, we compare the performance and resource
usage between irregular loop nests generated by commercial
HLS tool and our ElasticFlow approach. We also vary the
number of LPUs for each benchmark to study the performance-
area tradeoff for ElasticFlow. Based on these experiments,
we observe that ElasticFlow consistently outperforms results
from the HLS tool in terms of performance. We also ob-
serve that while baseline HLS results are bottlenecked by the
dynamic-bound inner loops, increasing the number of LPUs
with ElasticFlow proportionally improves the performance of
most designs. Not surprisingly, ElasticFlow is able to achieve
better performance due to enhanced load balancing. Detailed
experimental results can be found in [3], [4].

C. Dynamic Hazard Resolution: Pipelining under Data and
Structural Hazards

As described in Section II-3, dependence information from
static compiler analysis is inexact for irregular programs. These
programs contain “may-alias” pairs that are treated as “must-
alias” by the HLS tool to ensure hazard-free execution under
all circumstances. While existing pipelining approach must
conservatively assume that these hazards always exist, they
rarely or never do in practice. Consequently, static pipelining
incurs pessimistic performance as the synthesized pipeline
stalls needlessly to avoid hazards which may be infrequent dur-
ing actual execution. From our experiments, the performance
gap is indeed significant when the hazards are infrequent.

To address the performance gap caused by infrequent
hazards, we first synthesize a speculative pipeline using con-
ventional HLS pipelining by bypassing infrequent dependence
and resource constraints. Doing so allow iterations without
hazards to execute aggressively and achieve the highest possi-
ble throughput. We then augment the HLS-synthesized pipeline
with dynamic hazard resolution unit (HRU) customized specif-
ically for the particular application to dynamically resolve any
hazards incurred by other iterations. Figure 4 illustrates the
overall architectural template for the augmented pipeline. As

shown in the figure, the HRU can be further divided into a
data hazard resolution unit (D-HRU) and a structural hazard
resolution unit (S-HRU) and can be instantiated separately
based on the types of hazards present in the program.

Application-Specific

Hazard Resolution Unit

Memory
Speculatively Scheduled

Pipeline (II=1)

skips infrequent dependence

and resource conflicts

Data

Hazard

Unit

Structural

Hazard

Unit

Fig. 4. Architectural template for the augmented pipeline [5] — HLS
synthesized pipeline with customized hazard resolution unit (HRU) consisting
of a data hazard resolution unit (D-HRU) and a structural hazard resolution
unit (S-HRU).

Figure 5 shows an example of the HRU which is statically
customized based on the specific application. As shown in
Figure 5(a), an S-HRU consists of a merge unit that arbitrates
incoming memory requests to the memory system, and a split
unit that routes any memory response from the memory system
back to the accelerator. These units provide the pipeline with
the ability to achieve higher throughput by elastically adapting
to varying demand for memory and more fully saturating the
available memory bandwidth. The S-HRU is customized based
on the number of ports required by the accelerator and the
memory system to minimize any overhead introduced.

The D-HRU enables fully speculative pipeline execution
by preventing the speculatively executed operations from cor-
rupting states. As shown in Figure 5(b), D-HRU selectively in-
cluding load queues and/or store queues to buffer speculatively
executed memory requests until they are committed to mem-
ory. In addition, it also selectively instantiates store-to-load
forwarding unit to forward not yet committed store data. While
loads and stores reside in the queue, they are checked by other
committing loads and stores to detect any mis-speculation. D-
HRU implements a squash-and-replay mechanism that is able
to cancel and replay any mis-speculated iterations.

While our experimental results demonstrate significant
speedup with hazards-aware pipelining for a number of irreg-
ular loops, the amount of speedup depends on the actual input
data pattern and available memory bandwidth. Depending on
the use case, one may achieve maximum speedup with either
only S-HRU or D-HRU. Ultimately, it is a design tradeoff
between performance gain and area. From our experience,
loops usually contain only a couple of may-alias pairs and
thus require relatively lightweight hazard resolution logic that
keeps timing and area well-contained. Furthermore, hazards of-
tentimes occur infrequently, which makes significant speedup
possible. Detailed experimental results are available in [5].

IV. RELATED WORK
Loop pipelining has been widely employed by both com-

mercial and academic HLS tools, such as Vivado HLS [6]
and LegUp [7], to improve the performance of the synthesized
RTL. It is typically enabled by modulo scheduling, a software
pipelining approach for increasing instruction-level parallelism
by interleaving multiple iterations of a loop [1]. There are
a number of work that continue to advance the frontier of
loop pipelining [8], [9], [10]. Like simple loop pipelining,
nested loop pipelining in software [11] has also been ex-
tended to hardware for accelerating hardware-synthesized loop
nests [12]. Advances in polyhedral analysis enables automatic
analysis, parallelization, streaming, and data reuse of regu-

Req

Split

Merge

Req0

Req1

Req2

Req3

Resp0

Resp1

Resp2

Resp3

Fixed-Priority
Arbiter

Select

Resp

y0

y1

y2

y3

mem

Load Unit for Port 0

Load Address
Check

Request Filter

Request Filter

Load Unit for Port 1

Store Unit for Port 3

Squash Valid Squash Iteration

Replay

Load Queue

Squash

Squash and Replay Unit

y0

Speculative Loads

Speculative Loads

y3

y1

y2

Iteration

v0

v3

v1

v2
Store Unit for Port 2

(a) S-HRU (b) D-HRU

Fig. 5. Hazard resolution units (HRUs) [5] — (a) Structural hazard
resolution unit (S-HRU). (b) Data hazard resolution unit employing speculative
squash-and-replay (D-HRU).

lar loop nests with static bounds [13], [14]. Most recently,
Lattuada and Ferrandi propose to unroll the outer loop while
vectorizing inner loop instructions to improve performance.
While this approach can be applied even if the inner loops
cannot be parallelized, the number of inner loop iterations must
not depend on the outer loop iteration [15].

There is a long line of work in increasing the effec-
tiveness of HLS pipelining techniques for irregular programs
that exhibit non-deterministic workload, unpredictable memory
access latency, and irregular dependence. Dai et al. enable
flushing for HLS pipeline to address the undesirable effects of
pipeline stalls [16]. Halstread and Najjar develop the CHAT
compiler to accelerator SPMV using a multithreaded datapath
on FPGA [17]. Liu et al. decompose irregular loop into serial
and parallel stages in which replicated datapaths are used in
the parallel stages to accelerate the main computations of
the loop [18]. Choi et al. develop the capability to generate
multithreaded parallel hardware architectures in HLS using
Pthreads and OpenMP in which threads are mapped to mul-
tiple copies of the same accelerator [19]. Kocberber et al.
propose a decoupled pipeline architecture for implementing
a reconfigurable accelerator for hash indexing [20]. Similar to
ElasticFlow, a hashing unit distributes work to a parallel array
of walker units and an output unit collects and combines the
results from the walker units.

There is also significant interest in the effective handling of
runtime hazards in HLS pipelines. Alle et al. propose runtime
memory disambiguation, which allows the synthesized pipeline
to check whether an infrequently aliasing operation is expected
to cause a hazard and stall if deemed appropriate. This work
aims to customize the memory disambiguation hardware so
that it has “good enough” accuracy with minimal hardware
footprint and critical path overhead [21]. Liu et al. propose
to generate pipelines that dynamically select among multiple
schedules during runtime. This approach enables aggressive
(fast) pipeline execution when the pipeline is known to be
hazards-free, and conservative (slow) execution when there is
a possibility of hazards [22], [23]. Josipovic et al. present
a specialized out-of-order load-store queue as an efficient
interface between accelerator and memory to enable hazards-
aware accelerator execution [24]. In general, there is a large
volume of other work related to adaptive pipelining that cannot
be enumerated due to the space limit.

V. DISCUSSIONS
It is important to emphasize that adaptive pipelining under-

lies an inherent tradeoff between performance gain achieved
and area overhead incurred. While this paper demonstrates
that static pipelining is ineffective for irregular programs
from emerging applications, static pipelining achieves state-
of-the-arts performance for regular programs common in HLS-
targeted applications. Rather than to abandon static pipelining,
we have learned to embrace static scheduling for its efficiency,
and apply adaptive pipelining as necessary to achieve the
required performance target. While we provide static optimiza-
tion techniques to minimize the overhead incurred by adaptive
pipelining, the overhead cannot be completely eliminated and
may still be substantial in many cases.

It is evident that the ideas behind our HLS adaptive
pipelining approach bear similarities to those used in CPUs and
GPUs, as the well-known advantages of these techniques apply
equally to HLS pipelines. For example, we apply multithread-
ing to switch loop iterations into and out of the HLS pipeline
to increase concurrency and hide variable memory latency.
We exploit data-level parallelism across different instances of
inner loops to synthesize an array of parallel processing units
similar to optimizations for GPUs. Furthermore, we also enable
speculation to execute memory operations before the presence
of hazards can be determined to prevent needless stalling of the
pipeline for infrequent occurrence of hazards. As for CPU and
GPU, all these techniques attempt to more fully utilize the
available resources to minimize unnecessary resource idling
that negatively impacts performance.

While our adaptive pipelining approach benefits from the
advantages of aforementioned CPU and GPU optimizations,
the application-specific nature of our techniques also holds
a unique position in alleviating the disadvantages of the
optimizations, namely the overhead in area, performance and
timing introduced by more complex hardware mechanisms.
For multithreading, we leverage static optimization to min-
imize the context width and thus the size of the context
buffer. For ElasticFlow, we perform static resource allocation
based on common-case loop bound and optimally determine
using a linear program whether processing units should be
shared among different loops. For hazards-aware pipelining,
we instantiate the minimum amount of hardware based on the
schedule distance between speculative pair of memory accesses
to achieve the lowest-complexity hardware that maintains
program correctness. By specializing the hardware overhead
incurred for adapting the HLS pipeline to runtime program
behaviors, we can achieve complexity-effective pipelining of
irregular loops.

ACKNOWLEDGMENT
We would like to acknowledge Dr. Mingxing Tan for his

contribution to the multithreading and ElasticFlow techniques
summarized in this paper, Dr. Bin Liu for his contribution
to the multithreading technique, as well as Shreesha Srinath
and Prof. Christopher Batten for their contribution to the
dynamic hazard resolution technique. This work was supported
in part by NSF XPS Award #1337240, NSF CAREER Award
#1453378, NSF CRI Award #1512937, DARPA Young Faculty
Award D15AP00096, and a research gift from Xilinx, Inc.

REFERENCES

[1] B. R. Rau, “Iterative Modulo Scheduling: an Algorithm for Software
Pipelining Loops,” Int’l Symp. on Microarchitecture (MICRO), 1994.

[2] M. Tan, B. Liu, S. Dai, and Z. Zhang, “Multithreaded Pipeline Synthesis
for Data-Parallel Kernels,” Int’l Conf. on Computer-Aided Design
(ICCAD), 2014.

[3] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang, “ElasticFlow: A
Complexity-Effective Approach for Pipelining Irregular Loop Nests,”
Int’l Conf. on Computer-Aided Design (ICCAD), 2015.

[4] G. Liu, M. Tan, S. Dai, R. Zhao, and Z. Zhang, “Architecture and
Synthesis for Area-Efficient Pipelining of Irregular Loop Nests,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2017.

[5] S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang,
“Dynamic Hazard Resolution for Pipelining Irregular Loops in High-
Level Synthesis,” Int’l Symp. on Field-Programmable Gate Arrays
(FPGA), 2017.

[6] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2011.

[7] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “LegUp: High-Level Synthesis
for FPGA-Based Processor/Accelerator Systems,” Int’l Symp. on Field-
Programmable Gate Arrays (FPGA), 2011.

[8] Z. Zhang and B. Liu, “SDC-Based Modulo Scheduling for Pipeline
Synthesis,” Int’l Conf. on Computer-Aided Design (ICCAD), 2013.

[9] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo SDC Scheduling
with Recurrence Minimization in High-Level Synthesis,” Int’l Conf. on
Field Programmable Logic and Applications (FPL), 2014.

[10] R. Zhao, M. Tan, S. Dai, and Z. Zhang, “Area-Efficient Pipelining
for FPGA-Targeted High-Level Synthesis,” Design Automation Conf.
(DAC), 2015.

[11] J. Ramanujam, “Optimal Software Pipelining of Nested Loops,” Int’l
Parallel Processing Symp. (IPPS), 1994.

[12] D. Petkov, R. Harr, and S. Amarasinghe, “Efficient Pipelining of Nested
Loops: Unroll-and-Squash,” Int’l Parallel and Distributed Processing
Symp. (IPDPS), 2001.

[13] A. Morvan, S. Derrien, and P. Quinton, “Polyhedral Bubble Insertion: A
Method to Improve Nested Loop Pipelining for High-Level Synthesis,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2013.

[14] W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong, “Improving
High Level Synthesis Optimization Opportunity through Polyhedral
Transformations,” Int’l Symp. on Field-Programmable Gate Arrays
(FPGA), 2013.

[15] M. Lattuada and F. Ferrandi, “Exploiting Vectorization in High Level
Synthesis of Nested Irregular Loops,” Journal of Systems Architecture
(JSA), 2017.

[16] S. Dai, M. Tan, K. Hao, and Z. Zhang, “Flushing-Enabled Loop
Pipelining for High-Level Synthesis,” Design Automation Conf. (DAC),
2014.

[17] R. J. Halstead and W. Najjar, “Compiled Multithreaded Data Paths on
FPGAs for Dynamic Workloads,” Intl’l Conf. on Compilers, Architec-
tures and Synthesis of Embedded Systems (CASES), 2013.

[18] F. Liu, S. Ghosh, N. P. Johnson, and D. I. August, “CGPA: Coarse-
Grained Pipelined Accelerators,” Design Automation Conf. (DAC),
2014.

[19] J. Choi, S. Brown, and J. Anderson, “From Software Threads to Parallel
Hardware in High-Level Synthesis for FPGAs,” Int’l Conf. on Field
Programmable Technology (FPT), 2013.

[20] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ran-
ganathan, “Meet the Walkers: Accelerating Index Traversals for In-
Memory Databases,” Int’l Symp. on Microarchitecture (MICRO), 2013.

[21] M. Alle, A. Morvan, and S. Derrien, “Runtime Dependency Analysis
for Loop Pipelining in High-Level Synthesis,” Design Automation Conf.
(DAC), 2013.

[22] J. Liu, S. Bayliss, and G. Constantinides, “Offline Synthesis of Online
Dependence Testing: Parametric Loop Pipelining for HLS,” IEEE Symp.
on Field Programmable Custom Computing Machines (FCCM), 2015.

[23] J. Liu, J. Wickerson, and G. Constantinides, “Loop Splitting for
Efficient Pipelining in High-Level Synthesis,” IEEE Symp. on Field
Programmable Custom Computing Machines (FCCM), 2016.

[24] L. Josipovic, P. Brisk, and P. Ienne, “An Out-of-Order Load-Store
Queue for Spatial Computing,” ACM Transactions in Embedded Com-
puting Systems (TECS), 2017.

