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Abstract— This paper presents an architecture framework to
easily design hardware accelerators that can effectively toler-
ate long and variable memory latency using prefetching and
access/execute decoupling. Hardware accelerators are becoming
increasingly popular in modern computing systems as a promis-
ing approach to achieve higher performance and energy efficiency
when technology scaling is slowing down. However, today’s high-
performance accelerators require significant manual efforts to
design, in large part due to the need to carefully orchestrate
data transfers between external memory and an accelerator.
Instead, the proposed framework utilizes automated program
analysis along with High-Level Synthesis (HLS) tools to enable
prefetching and access/execute decoupling with minimal manual
efforts. The framework adds tags to accelerator memory accesses
so that hardware prefetching can effectively preload data for
accesses with regular patterns. To handle irregular memory
accesses, the framework generates an accelerator with decoupled
access/execute architecture using program slicing. Experimental
results show that the proposed optimizations can significantly
improve performance of HLS-generated accelerators (average
speedup of 2.28x across eight accelerators) and often reduce
energy consumption (average of 15%).

I. INTRODUCTION

As the technology scaling slows down, future computing
systems will need to increasingly rely on hardware accelerators
to improve performance and energy efficiency. In fact, today’s
mobile SoCs already rely on a number of hardware acceler-
ators to perform compute-intensive tasks such as audio and
video processing, image signal processing, always-on speech
recognition, etc. We expect that this trend will continue and
future systems will contain more specialized accelerators.

This paper proposes a framework to automatically optimize
hardware accelerators and enable them to effectively hide
long, variable memory latencies of an SoC memory hierarchy
by preloading data in parallel to computations. The effective
data preloading is achieved through hardware prefetching
and design transformations to decouple memory accesses and
computations. This framework is generally applicable to stand-
alone accelerator designs that are attached to the memory bus
or the last-level cache and have their own memory access
logic. This accelerator design style is widely adopted both
in industry and the research community [1]–[6]. Applying the
framework requires minimal manual efforts when used with
high-level synthesis. While the principle of access/execute
decoupling has been explored in various contexts, to the best of

our knowledge, this paper represents the first to systematically
apply this principle to the design of stand-alone accelerators
and demonstrate how to enable decoupling automatically and
efficiently.

While the high-level approach can be applied to any ac-
celerator in general, the framework in this paper is designed
to target accelerators that are generated using a High-Level
Synthesis (HLS) tool. Design complexity represents a major
challenge in deploying accelerator-rich architecture in prac-
tice, and manually designing an accelerator in RTL for each
application is likely to be too expensive, especially given
stringent time-to-market requirements and the rapidly evolving
nature of emerging applications. High-Level Synthesis (HLS)
is one of the most promising approaches to address the design
complexity problem as it enables automatically generating
hardware accelerators from high-level descriptions, such as C
code. HLS is quickly gaining momentum, being used in both
industry designs [7] as well as hardware accelerator research
[8], [9].

Unfortunately, even with HLS, data supply from memory
often needs to be carefully coordinated with manual opti-
mizations in order to achieve high performance in hardware
accelerators. For example, today’s HLS tools assume a fixed
latency of all memory accesses, and rely on accelerator de-
signers to write explicit logic to manage the communication
between DRAM and on-chip scratchpad memory. This ap-
proach requires serious manual design efforts, and the resulting
management logic is accelerator-specific and not reusable
for other designs. Alternatively, designers can use caches to
ease communication management given locality in memory
accesses [10]. However, we found that caches are not sufficient
to provide high performance without carefully orchestrated
data supply. Unlike modern processors with expensive latency-
hiding mechanisms such as dynamic scheduling, typical accel-
erators rely on a static pipeline schedule and a cache miss stalls
the entire pipeline.

This paper aims to enable efficient data supply for HLS-
based accelerators without manual efforts necessary today. To
achieve this goal, we remove inefficiencies in today’s cache-
based accelerators in two ways. First, we use a prefetch
engine to remove cache misses for easy-to-predict memory
accesses. The prefetch engine is general and common across
accelerators. For example, we use a stride prefetcher in our ex-
periments. Second, to handle complex memory access patterns,978-1-5090-3508-3/16/$31.00 c© 2016 IEEE



we propose to decouple memory access logic of an accelerator
from the main computation pipeline. For many accelerators,
memory addresses of data that need to be accessed are often
independent of main computations and can be computed ahead
to fetch data in parallel to the main computation. In fact,
data supply in manually optimized accelerators rely on such
decoupling and preloading. In this paper, we show that this
decoupling can be done automatically using program slicing
on a high-level accelerator design.

While prefetching and access/execute decoupling have been
studied for processing cores, we found that applying them to
accelerators introduce new challenges. For prefetching, unlike
processing cores, accelerators do not provide PCs that can
be used to easily distinguish different sources of memory
accesses. In order to apply traditional prefetch algorithms, we
augment our accelerator generation process to automatically
add additional tags.

We also found that simply decoupling memory accesses
from main computations alone do not significantly improve
performance of accelerators unless independent accesses can
be overlapped. The decoupled access/execute (DAE) architec-
ture on processing cores rely on expensive out-of-order or
dataflow execution to perform multiple accesses in parallel.
For hardware accelerators with static pipelines, we show that
simple decoupling of memory accesses through dedicated
forwarding logic is sufficient to achieve good performance
with minimal overhead in most cases.

In order to evaluate the effectiveness of the proposed frame-
work, we applied prefetching and access/execute decoupling to
eight HLS-based accelerators. The experimental results show
that the proposed framework can be applied to accelerators
with minimal manual efforts and significantly improve the
performance compared to the baseline accelerator. The DAE
architecture alone improved performance by 1.89x on average
while the average speedup increased to 2.28x when prefetching
was added. The optimizations also reduce energy consumption
for many accelerators, by 15% on average.

The main contributions of this paper are:
1) A hardware architecture that systematically applies the

principle of access/execute decoupling to designing hard-
ware accelerators that achieve efficient data supply.

2) An automated approach to tag accelerator memory ac-
cesses to enable effective hardware prefetching for accel-
erators.

3) An automated framework which combines high-level
synthesis, program slicing, and an architectural template
written in a hardware generation language. The frame-
work enables generating fully synthesizable, customiz-
able, access/execute decoupled, and prefetching-enabled
accelerators with minimal manual effort.

4) Detailed evaluations of the performance and energy im-
pact of prefetching and access/execute decoupling on
hardware accelerators using a commercial ASIC flow.

The rest of the paper is organized as follows. Section II
provides an overview of the accelerator data supply prob-
lem and briefly discusses the proposed solution. Section III
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Fig. 1. System architecture.

describes prefetching as an approach to improve accelerator
data supply and a technique to enable efficient prefetching for
hardware accelerators. Section IV describes the architecture of
access/execute decoupled accelerators as well as a framework
to automatically generate them from a high-level description.
Section V discusses our evaluation methodology, experimental
setup, and evaluation results. Section VI discusses related
work, and Section VII concludes the paper.

II. OVERVIEW

A. System Architecture

Figure 1 shows the high-level system architecture that we
assume in this paper. The system is a heterogeneous SoC
that consists of general-purpose processing engines such as
processor cores and GPGPUs as well as a large number of
accelerators. We consider stand-alone accelerators that are
loosely-coupled to the cores and have their own memory
interfaces to access main memory. A processing core config-
ures and initiates an accelerator, then the accelerator performs
its computation without intervention from the core. Each
accelerator has its own compute pipeline and accesses memory
through an on-chip cache.

B. High-Level Synthesis

In this work, we target to provide efficient data supply for
accelerators that are generated using a High-Level Synthesis
(HLS) flow. Figure 2 shows a typical HLS flow that automat-
ically transforms a functional description of the accelerator
written in a high-level language such as C or C++ into an
optimized register-transfer level (RTL) description. To achieve
this, HLS tools first transform source code into control data
flow graphs (CDFG), and then perform allocation, scheduling,
and binding to generate the final RTL. HLS tools usually
pipeline the computation in order to achieve high performance.
The pipeline is generated using a static schedule, where each
operation is placed in a fixed slot determined at compile time.
This approach works well if all functional units and memory
operations have a short fixed latency. For operations with an
uncertain latency, the HLS tool has to use a best guess for
scheduling. For example, cache accesses are usually assumed
to be a hit in order to generate a compact pipeline schedule.
Then, the pipeline is stalled at run-time if an access turns out
to be a cache miss.



if (a < b) {
    g = c + d;
    h = e * f;
    x = g * h;
} else {
    ...
}
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Fig. 2. High-level synthesis flow.

for (j = begin; j < end; j++) {
#pragma HLS pipeline
Si = val[j] * vec[cols[j]];
sum = sum + Si;

}

Fig. 3. The inner loop of sparse matrix vector multiplication.

C. Impact of Memory Accesses on Accelerator Performance

We use an example to illustrate how a long memory access
latency on a cache miss can impact accelerator performance.
The code in Figure 3 shows the inner loop of a sparse matrix
vector multiplication (spmv) accelerator. Note that the access
to the vec array is an indirect memory access that has an
irregular access pattern, and is likely to miss in the cache.

An example pipeline schedule for the corresponding accel-
erator is shown in Figure 4. The pipeline has an initiation
interval (II) of one, that is, a new iteration can begin execution
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Fig. 4. Example schedule of an HLS spmv accelerator with (a) ideal memory
(b) cache that has a miss when accessing vec.

every clock cycle in the ideal case, as illustrated in Figure 4(a).
The three load operations in each iteration are to val, cols,
and vec, respectively. Figure 4(b) shows an actual pipeline
operation when accessing vec in the first iteration incurs a
cache miss. Since the schedule is static, the entire pipeline
has to stall until the miss is resolved, even though the memory
accesses of later iterations might have been hits. The stall due
to a long memory access latency can have a large impact on
the accelerator’s performance. For example, in Figure 4(b),
although only one out of four iterations has a cache miss, the
effective initiation interval for the four iterations is increased
from one to two, essentially lowering the throughput by half.
The impact can be even larger for accelerators with deeper
pipelines where one cache miss can potentially stall many
more operations than what is shown in the example.

Our experimental results on a set of HLS-based hardware
accelerators suggest that the performance loss due to long
memory accesses is significant. There exists a large perfor-
mance gap between accelerators with ideal memory (1-cycle)
and a realistic cache-based memory hierarchy. This work
aims to bridge this gap by developing techniques to auto-
matically preload data for accelerators. An ideal preloading
scheme would effectively eliminate cache misses, and allow
the pipeline to run at the full throughput possible with the
ideal memory.

D. Data Preloading Framework

There are a few challenges in developing a data preloading
scheme to enable efficient data supply for accelerators. First,
the scheme needs to accurately predict future data needs
of an accelerator so that data can be preloaded. Second,
the prediction needs to be early enough to hide memory
latency. Third, the prediction and memory accesses need to be
decoupled from computation so that accesses and computation
can happen in parallel. Fourth, all the above need to be
performed automatically with minimal manual efforts.

In this work, we use two data preloading techniques to hide
long memory accesses: (1) prefetching and (2) access/execute
decoupling. These two techniques have complementary char-
acteristics, and can both be applied with minimal manual
efforts.

Hardware prefetchers predict likely memory addresses to be
accessed in the future by observing a sequence of memory
accesses at run-time. For example, a stride prefetcher is
widely used to detect and preload streaming memory accesses
with a fixed stride. In our example, simple strided accesses
such as val[j] and cols[j] can easily be detected and
preloaded by a hardware prefetch engine. Moreover, the
prefetch engine is inherently decoupled from accelerators and
can perform multiple prefetching operations in parallel. On the
other hand, on-line prefetching often cannot accurately predict
complex memory access patterns such as the indirect accesses
(vec[cols[j]]) in our example.

For difficult-to-predict memory accesses, we use decoupled
access/execute (DAE) architecture. In this approach, we ob-
serve that program slicing techniques can be used to automat-



TABLE I
COMPARISON OF PREFETCHING AND DAE.

Binding Accuracy Timeliness

Prefetch No Good when regular Good
DAE Yes Good Depends

ically separate parts that are necessary to compute addresses
for memory accesses (access part) from the rest that performs
main computations (execute part). Then, the access part can
run ahead of the execute part to preload data. In a sense,
the DAE approach provides a perfectly accurate predictor for
future memory accesses. However, decoupling and providing
early predictions can be more difficult in the DAE architecture
compared to prefetching. In DAE, address generations must
be exact (binding) unlike prefetching whose predictions may
be incorrect (non-binding). Also, in certain cases, it may
be difficult to decouple the access and execute parts due
to dependencies. Table I summarizes the characteristics of
prefetching and DAE in terms exactness in address generation,
accuracy, and timeliness.

Our experiments show that prefetching and DAE can
complement each other. DAE enables accurate preloading
of memory addresses when possible. Prefetching provides
speculative preloading for simple access patterns when DAE
cannot generate exact addresses early enough.

III. PREFETCHING

As we mentioned in the previous section, hardware prefetch-
ers observe the memory address stream and predict the ad-
dresses that are likely to be referenced in the future. In most
cases, just looking at a global address stream is not enough
to make good predictions, as the global stream is usually
a mixture of multiple data streams with different strides as
well as irregular accesses, making it difficult to learn the
access pattern and make predictions. Thus, most hardware
prefetchers perform stream localization to separate a global
address stream into multiple local address streams that can
be learned and predicted effectively, and to exclude irreg-
ular accesses with poor predictability. Since most hardware
prefetchers are designed for general-purpose processing cores,
they often use the PC of load and store instructions as a hint for
stream localization [11], [12], with the intuition that different
streams come from different instructions in the program. In
addition, the PC is also used for other purposes such as
spatial correlation prediction [13] to improve the accuracy of
prefetching. Hardware accelerators, on the other hand, usually
do not have a PC. Thus, traditional hardware prefetchers that
rely on a PC would not be effective when used naively with
hardware accelerators.

We observe that for hardware prefetchers, the fundamental
role of a PC is to indicate which memory instruction in a
program a memory access comes from. If we replace the
PC with a unique identifier for each memory instruction, the
prefetcher would work equally well as the identifier provides
the same amount of information for stream localization. Thus,

type addr datalen

type addr datalentag

Original Memory Request Message Format

Modified Memory Request Message Format

Fig. 5. Modified memory request message format.

we propose to tag each memory access operation in a hardware
accelerator with a unique identifier that is sent to a prefetch
engine in place of the PC for each memory access. In our
implementation, we modified the memory request message
format of the accelerators to include a tag field, as shown
in Figure 5. To generate the tags, we modified the HLS
flow to add a pass that operates on the CDFG generated
by the compiler frontend. The pass traverses the CDFG,
tagging each memory operation with a unique identifier that
emulates a PC. The pseudo-code of the pass is shown in
Algorithm 1. Using the tag, features such as PC-based stream
localization would work correctly, and the hardware prefetcher
is able to effectively prefetch memory addresses of hardware
accelerators.

Algorithm 1 Generate tags for memory accesses
1: procedure GENERATETAGS
2: t← 0
3: for all basic blocks in the CDFG do
4: for all operations in the basic block do
5: if op.type = load or op.type = store then
6: op.tag ← t
7: t← t+ 4
8: end if
9: end for

10: end for
11: end procedure

IV. DECOUPLED ACCESS/EXECUTE

While hardware prefetchers are effective in prefetching
regular memory accesses, they work less well for complex
access patterns or short streams that do not trigger hardware
prefetching. The fundamental limit of hardware prefetchers
is the lack of semantic information about the computation.
Previous studies have proposed various techniques to employ
semantic information to enable more accurate prefetching for
software programs. For example, software prefetching [14] al-
lows programmers or compilers to embed prefetch instructions
into the code, which provide hints to the hardware about the
addresses to be accessed in the future. Helper thread [15] and
runahead execution [16] pre-execute a part of the program or
a specially crafted program slice to bring data into the cache.
All these techniques rely on the assumption that memory
addresses can often be computed well ahead of when the data
are needed. Decoupled access/execute (DAE) [17] materializes
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this assumption to a full extent by allowing the memory access
part, where memory addresses are computed and data accesses
are performed, to run ahead of the execute part, where data are
consumed. In a typical access/execute decoupled architecture,
the access part manages all communications with the memory
and supplies data to the execute part; the execute part does
not have a memory interface.

A key requirement for achieving performance improvements
with DAE is that the access part in the decoupled architecture
must run faster than the non-decoupled architecture, otherwise
the performance is limited by the access part. However, in
highly pipelined accelerators, this is unlikely true. Figure 6
shows an example schedule of the access part of a decoupled
spmv accelerator where the same miss occurs as in the
non-decoupled version shown in Figure 4. The miss has
the same performance impact on the access part as in the
non-decoupled version. Thus, simply dividing the accelerator
pipeline into access and execute parts is unlikely to improve
performance significantly when the access part has the same
rigid pipeline that cannot tolerate memory latencies. Allowing
the access pipeline to tolerate cache misses is a key challenge
in designing the DAE accelerator architecture.

Figure 7 shows the architecture of the proposed ac-
cess/execute decoupled accelerator, consisting of the Access
Unit, Execute Unit, Memory Units, and decoupling queues.
A visible difference from classic access/execute decoupled
architectures is the added memory units, which is a proxy
through which memory accesses are performed. Later we will
show that this is necessary for tolerating the memory latency.
The access unit generates memory addresses and request types,
and then sends them to the memory unit to be forwarded
to memory. For load operations, once responses come back,
the memory unit enqueues the data into the Load Queue
(LQ) to be read by the execute unit. For store operations,
the memory unit combines the address from the access unit
and data from the execute unit, and then sends the request
to memory. An access/execute decoupled accelerator can have
multiple memory units, which share the cache interface.

A. Access Unit

In a simple DAE accelerator implementation, the access
unit is responsible for address generation, handling memory
requests/responses, and forwarding data to the execute unit, all
in a single static schedule generated by the HLS tool. Among
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Address
Generation

Logic

Mem
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Fig. 7. Architecture of access/execute decoupled accelerators.

these tasks, address generation and sending out memory re-
quests usually have a fixed latency and thus would work well
under the static schedule. Handling memory responses and
forwarding data, however, have variable latencies depending
on when the response comes back from memory. This has
two implications. First, they cannot be executed efficiently
under the static schedule generated by HLS. Second, they may
stall address generation and sending out requests for other
independent accesses. To address this problem, we propose to
decouple memory response handling and data forwarding from
address generation and sending out requests. Specifically, we
delegate these tasks to the memory unit, which handles them
independently, decoupled from the access unit.

The result of a load operation can either be used by the exe-
cute unit for data computation or by the access unit for address
computation. In the first case, the access unit is not involved
in handling the load result. This type of load operations are
called terminal loads [18]. In the second case, however, the
access unit would need to wait for the load result and thus
its pipeline could be stalled if the load is a miss. One way
to enable the access unit to continue to perform independent
operations is to employ an out-of-order core as the access
unit, or use dataflow execution for memory accesses [19].
Though these approaches can achieve higher performance, we
choose not to employ them because we observe that the load
dependency chains in many accelerators are short. In fact, a
large portion of load operations are terminal loads. This is
because many accelerators mostly perform parallel operations,
instead of serial operations through memory such as pointer
chasing. Decoupling just terminal loads, i.e. the last node of
a load dependency chain, provides most of the benefits with a
low cost. Hence, our architecture would work reasonably well
for short memory dependency chains, and we trade off the
ability to handle long chains for low hardware complexity.

B. Memory Units

Figure 8 shows the hardware structure of the memory
unit. It mainly consists of load queue, store queue, for-
ward data queue, dependency checking logic, and memory
request/response routing logic.

The Store Address Queue (SAQ) contains store addresses
that are not yet sent to memory, either because the store data
have not been computed yet, or because it is waiting for access
to the memory interface. The Store Data Queue (SDQ) buffers
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store data from the execute unit. The head entries of SAQ and
SDQ are paired to form a store request to be sent to memory.

Each load request from the access unit contains a dest
field indicating whether the result is used by the access unit
or the execute unit. The field is kept in the corresponding
response for the request. When the memory unit receives a
load request, it checks whether there is an entry in the SAQ
matching the store address. If there is a match, the load waits
until the corresponding entry in the SDQ is valid, and data is
forwarded from the SDQ to either the Forward Data Queue
(FwdQ) or the access unit, depending on whether the load
operation is a terminal load or not. If there is no match, the
load request is sent to the memory. The load and store requests
share the memory port. Load requests are given priority over
stores to reduce load latency.

The Load Queue (LQ) contains data to be forwarded to the
execute unit. When a load response returns from memory, its
dest field is inspected to route the response data to the LQ,
the access unit, or both. Because the execute unit consumes
data from memory in a program order, the LQ entries are
reserved and maintained in the request order. For example,
responses from the memory and the Forward Data Queue
are placed in the LQ in the program order. The memory
unit supports multiple in-flight requests. If the cache returns
responses out-of-order, the LQ is used to reorder and return
them in order.

C. Execute Unit

The execute unit is generated using HLS from the execute
slice, and mainly consists of the data computation pipeline.

D. Deadlock Avoidance

There exist two possible deadlock situations in the proposed
access/execute decoupled architecture. Here we describe them
and discuss how to prevent them.

Pipelining-Induced Deadlocks: A deadlock may occur
when accelerator pipeline interacts with a store queue of
insufficient size. Suppose the execute unit pipeline has latency
L and initiation interval II , it needs to consume N = dL/IIe

inputs before producing the first output. If the store queue
size is less than N , it may fill up and block the access
pipeline. Because the execute pipeline depends on the access
pipeline for data supply, it also blocks and the accelerator
deadlocks. The deadlock occurs because pipelines generated
by most HLS tools do not support flushing by default. That
is, a blocking operation stalls the entire pipeline, not just
subsequent iterations. This restriction enables HLS tools to
generate simple pipelines without complex control logic and
buffering, but causes deadlocks in this situation.

Pipeline synthesis techniques that supports flushing [20] can
be used to avoid this deadlock, but may increase area and are
not yet available in most HLS tools. Another approach is to
ensure that size of the SAQ is larger than N = dL/IIe, so that
it would not become full before the execute pipeline produces
the first output. Often the SAQ size required for performance
reasons is already greater than N , then no additional changes
are needed in this case.

Deadlock Due to Full Load/Store Queues: A deadlock can
occur when the queues are full and form a circular dependency.
For example, a load response returns from memory when the
load queue and store queue are both full, and the memory
system cannot accept another request because it has reached
the maximum number of in-flight requests. In this situation,
the load queue cannot be drained because the execute unit is
stalled trying to write to the full store queue, which is waiting
for the memory system, which in turn is waiting for the load
queue. This creates a circular dependency, causing a deadlock.
This deadlock can be avoided by ensuring that not all queues
can become full at the same time. Specifically, we track the
number of in-flight load operations and free entries in the load
queue, and delay issuing a load if the response would cause
the load queue to become full.

E. Customization of Memory Units

The memory unit design described in Section IV-B can
be customized to fit the needs of a particular accelerator,
providing just enough resources and features but not more.
The sizes of various queue structures can be adjusted to fit
the accelerator’s memory characteristics. For example, if the
accelerator rarely performs stores, sizing down the store queue
would help save area and energy. If a certain feature is unused
by an accelerator or does not help too much, it can be removed.
For example, if an memory port is read-only, the memory
unit can be made much simpler by removing any store-related
features such as store queue and dependency checking logic.
As another example, store to load forwarding can be removed
if the accelerator does not need it.

F. Automated DAE Accelerator Generation

Figure 9 shows the high-level flow for automatically gen-
erating accelerators with access/execute decoupling. Starting
from a single source code written in a high-level language,
program slicing [21] is used to generate access and execute
slices. To generate the access slice, the algorithm backtracks
from loads and stores in the Control Data Flow Graph (CDFG)
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of an accelerator and keeps all necessary operations for com-
puting memory addresses, while removing others. To generate
the execute slice, the algorithm backtracks from stores and
finds all operations needed to compute store values. The slicing
process also performs transformations to enable decoupling.
In the access slice, stores are transformed into store_addr
operations, which only have address but not data. Terminal
loads are identified as loads that are not in the back slice
of address calculations, and are transformed into load_fwd
operations. In the execute slice, all loads and stores are
replaced with queue reads and writes.

We then synthesize the resulting access and execute slices
into Verilog RTL using HLS. We implement the memory unit
and queue structures as an architectural template written in a
hardware generation language PyMTL [22], which allows us
to easily generate these modules with configurable parameters
to enable full customization as described in Section IV-E. All
these components follow the same interface protocol so that
they can be easily composed.

The final step of the flow involves setting the parameters
and launching the hardware generation process to output the
RTL of the access/execute decoupled accelerator.

V. EVALUATION

In this section, we present the evaluation results for the
proposed data supply framework for accelerators. We first
discuss our evaluation methodology and experimental setup.
Then, we show the performance, area, and energy results.

A. Methodology

We use a vertically integrated evaluation methodology that
combines cycle-level, register-transfer-level, and gate-level
modeling.

Cycle-level modeling is used to model the performance
of the system components including caches, interconnect,
memory controller, and main memory. We use gem5 [23] for
this purpose.

TABLE II
SUMMARY OF BENCHMARKS.

Benchmark Description

bbgemm Blocked matrix multiplication
bfsbulk Breadth-first search
gemm Dense matrix multiplication
mdknn Molecular dynamics (K-nearest neighbor)

nw Needleman-Wunsch algorithm
spmvcrs Sparse matrix vector multiplication
stencil2d 2D stencil computation

viterbi Viterbi algorithm

Register-transfer-level modeling is used to accurately
model the performance of hardware accelerators. Vivado HLS
2015.2 is used to synthesize a C-based description of the
accelerators into Verilog. For DAE accelerators, RTL of the
memory unit and queue structures are generated from the
architectural template. Verilator [24] is used for RTL simu-
lation. We integrated Verilator with gem5 for co-simulation of
accelerators and system components.

High-level synthesis involves many parameters and is
known to have a large design space [8]. In our experiments,
we target high performance instead of low area when setting
the parameters. More details can be found in Section V-C.

Gate-level modeling is used to build accurate area and
energy models for the accelerators. We synthesized, placed
and routed each accelerator using Synopsys Design Compiler
and IC Compiler with the TSMC 65nm standard cell library
to obtain area numbers. Design Compiler automatically inserts
clock gating logic for all designs. Power and energy analysis
were performed using Synopsys PrimeTime PX with the
switch activity factors obtained from simulations of the place
and routed netlist.

B. Experimental Setup

We use a set of eight benchmark accelerators adapted
from MachSuite [9] in our experiments. Table II summarizes
the accelerators. For each accelerator, we implement a DAE
version as well as a baseline version for comparison. Each
accelerator has a private L1 cache connected to the DRAM
controller through the system bus. For prefetching, we use
a stride hardware prefetcher. Table III shows the detailed
experiment parameters. We compare the following schemes:

1) Baseline is the original accelerator without prefetching
or DAE.

2) Stride has the stride prefetcher enabled but not DAE. The
memory accesses are tagged to facilitate prefetching.

3) DAE is the access/execute decoupled implementation, but
without the stride prefetcher.

4) DAE+stride adds stride prefetching to DAE.

C. Baseline Validation

HLS-based accelerators have a large design space. De-
pending on the parameters used, the same accelerator can be
synthesized to have different area, performance, and power. We
use the same set of parameters when synthesizing the baseline



TABLE III
EXPERIMENT PARAMETERS.

Frequency 500MHz

DAE MemUnit 16-entry LQ, 8-entry SQ

Cache 16KB / 2-way / 32B line size / 1 cycle
latency / 4 MSHRs

Prefecher Stride prefetcher, degree=8

DRAM Single-channel 32-bit LPDDR3-1600,
6.4GB/s BW
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Fig. 10. Comparison of baseline accelerators performance with processors.

and DAE versions to exclude the possibility that the improve-
ment comes from different synthesis parameters. To ensure
that the improvement is not from poorly optimized baseline,
we apply most HLS optimizations including pipelining and
unrolling so that baseline accelerators have best performance
within the system-level constraints (such as the number of
memory ports or memory bandwidth).

To validate the performance of the baseline, we simulated
the performance of functionally equivalent software imple-
mentations of these accelerators. Figure 10 shows the per-
formance comparison between in-order, 4-wide out-of-order
processors, and the baseline accelerators. Note that mdknn and
viterbi are not included because we use custom-precision
fixed-point arithmetic in their implementations, which would
be inefficient to emulate in software on processors. On aver-
age, the performance of the baseline accelerators is around
2x of an in-order processor, and is comparable to an out-
of-order processor. These numbers are roughly in line with
previous studies on accelerators [25], [26]. The performance
of the baseline accelerators is mainly limited by the memory
bottleneck. We will show that with the proposed techniques
to enable efficient data supply, the accelerators could achieve
much higher performance.

D. Performance Results

Figure 11 compares the performance of the proposed opti-
mization schemes normalized to the baseline accelerator. Over-
all, the stride prefetcher with memory access tags improves the
performance by 45% on average over the baseline. DAE alone
achieves an average speedup of 1.89x, while DAE combined
with stride prefetching achieves a 2.28x speedup.

Comparing stride prefetching and DAE, DAE usually
achieves higher performance due to decoupling and having
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Fig. 11. Performance of the proposed schemes normalized to the baseline
accelerator.

more precise knowledge about the addresses to be accessed
next. One such case is when the access pattern is irregular,
but the addresses can be computed early. For example, mdknn
computes the force between a molecule and its N nearest
neighbors. The access pattern is highly irregular because the
addresses of the N neighbors in memory usually do not have
a pattern. However, the addresses can be computed early
because the indices of these N neighbors are known. Hence,
the access unit can send out load requests early to hide memory
latency. In contrast, the stride prefetcher is unable to predict
the addresses and thus unable to prefetch them.

DAE also has advantages when the accesses consist of
regular but short streams. One example is viterbi. The
stride prefetcher needs warm-up, thus is too late in sending
out prefetch requests. It also prefetches beyond the end of the
stream before realizing the stream has ended, wasting memory
bandwidth and causing cache pollution. In contrast, DAE has
precise information about when the stream begins and ends,
thus is able to preload data effectively.

There are some cases where prefetching is more effective
than DAE. For example, bfsbulk performs a graph traversal,
which is dominated by memory accesses with dependencies.
As a result, the access unit in the decoupled architecture is
not able to pre-calculate the addresses. Prefetching, on the
other hand, speculatively fetch data from memory without
computing the exact addresses, which improves performance
in this case because there is regularity in the access pattern
even though the addresses cannot be determined early.

It is also clear from the results that prefetching and DAE
can often complement each other, providing a higher speedup
compared to using only one of them. For example, in the inner
loop of spmvcrs (code shown in Section II-C), DAE is able
to hide the memory latency for accesses to val and vec,
but not cols. Because cols is used by the access unit to
calculate the address to vec, a cache miss for cols stalls
the access unit. However, the prefetcher can easily detect the
strided accesses to cols and prefetch it into the cache. As
a result, we observe the combined scheme with both DAE
and stride prefetching achieves the speedup of 2.85x, which is
higher than the speedups, 1.45x and 2.48x respectively, when
DAE and prefetching are applied separately.



TABLE IV
AREA AND POWER OF THE BASELINE AND DAE ACCELERATORS. THE

AREA UNIT IS µm2 . THE POWER UNIT IS mW . THE ABS COLUMN SHOWS
ABSOLUTE NUMBERS, AND THE NORM COLUMN SHOWS RESULTS

NORMALIZED TO THE BASELINE.

Bench- Base Base DAE Area DAE Power
mark Area Power Abs Norm Abs Norm

bbgemm 25,191 4.15 52,943 2.10x 8.11 1.96x
bfsbulk 11,507 1.22 14,437 1.25x 1.41 1.16x
gemm 22,127 1.87 47,305 2.14x 3.39 1.81x
mdknn 170,312 32.58 194,034 1.14x 48.40 1.49x

nw 49,094 4.54 89,396 1.82x 8.81 1.94x
spmvcrs 18,686 2.54 42,736 2.29x 4.04 1.59x
stencil2d 27,579 3.88 49,567 1.80x 7.69 1.98x

viterbi 42,963 4.78 80,982 1.88x 11.30 2.36x
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Fig. 12. Area breakdown of DAE accelerators. The baseline area is shown
for comparison.

We note that adding prefetching to DAE does not always
yield higher performance. For example, we see a slight degra-
dation in performance for viterbi when prefetching is en-
abled. This is because DAE alone can already hide most of the
memory latency, while prefetching, due to its imprecise nature,
can pollute the cache and contend for memory bandwidth.

E. Area, Power, and Energy Results

Table IV shows the area and power numbers for the baseline
and DAE accelerators. The area of DAE accelerators is larger
than the baseline by 14% (mdknn) to 129% (spmvcrs).
We note that our area and power analysis only includes the
accelerator itself but not the cache, which includes a prefetch
unit. The relative overhead will be much lower when the
cache, which exists in both the baseline and our architecture,
is included.

The area increase comes from several factors: First, the
DAE architecture adds additional queues and memory units
to accelerators. The area for the queues and memory units
are similar across accelerators given that we used the same
queue size for all benchmarks. As a result, this overhead
represents a large relative overhead for small accelerators such
as spmvcrs. For larger accelerators such as mdknn, the
area overhead for queues and memory units only represents
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Fig. 13. Power breakdown of DAE accelerators. The baseline power is shown
for comparison.

a small percentage. Later, we show that this overhead can be
reduced significantly by customizing the size of queues for
each accelerator.

Second, area overhead can come from the reduced resource
sharing between the access part and the execute part in the
DAE architecture. During the synthesis process, the HLS tool
tries to share resources between various parts of the accelerator
to reduce area. In the baseline accelerators, such optimizations
can be performed across the entire accelerator. For exam-
ple, a multiplier may be shared between memory address
computation logic and value computation logic. In the DAE
architecture, such sharing is not possible between the access
and execute units because they need to be decoupled and
synthesized separately. We note that while reduced resource
sharing increases area, it also allows more operations to be
performed in parallel and improve performance. The impact
of reduced resource sharing is lower for larger accelerators
where there are abundant opportunities for resource sharing
within the access unit or execute unit.

Figure 12 shows the breakdown of area of the DAE
accelerators compared to the baseline. The area is broken
down into access unit, execute unit, memory units (including
queues), and other components such as configuration registers,
miscellaneous control logic, buffers inserted during place and
route, etc. The results indicate that the main area overhead
comes from the memory units and queues. The combined area
of the access unit, the execute unit and other components,
which have corresponding logic in the baseline accelerator,
is only 13% higher than the area of the baseline on average,
indicating the impact of reduced resource sharing is low.

Figure 13 shows the breakdown of power consumption. The
percentage of power consumed by memory units and queues
ranges from a few percent to around 35%. For mdknn, which
is relatively large, the power consumption of memory units
and queues is only 2.2% of the total power consumption. In
addition to the added operations for memory units and queues,
the DAE architecture also has higher power consumption
compared to the baseline because it has higher activity factors.
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Fig. 14. Energy comparison.
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Fig. 15. Energy breakdown of DAE accelerators. The baseline energy is
shown for comparison. If baseline energy is higher than DAE, it is annotated
with a number on top of the bar.

DAE reduces pipeline stalls waiting for memory accesses and
allows accelerators to perform more computations per unit
time.

Figure 14 shows the energy consumed by the baseline and
DAE accelerators to complete the computation. On average,
the stride prefetcher is able to reduce energy for both the
baseline and DAE accelerators, by 17.1% and 7.6% respec-
tively. This is because the stride prefetcher is able to reduce
memory stalls, leading to shorter execution time. As a result,
the accelerators spend less time burning energy without doing
useful work.

Compared to the baseline, DAE accelerators often use less
or a comparable amount of energy even though they have
significantly higher power, which indicates that the higher
power mostly comes from doing more useful work per unit
time because of reduced pipeline stalls. In cases where DAE
accelerators use less energy, it is likely to be because the
energy spent while stalling is significant in the baseline. While
our design flow automatically inserts clock gating, it does not
completely remove static power consumption. Most of these
stalls are removed in the DAE accelerators, resulting in lower
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Fig. 16. Performance comparison when varying load queue (LQ) sizes.

energy.
Figure 15 shows the breakdown of the energy consumption.

The energy numbers are for the baseline and the DAE architec-
ture without prefetching. The percentage of energy consumed
by the memory units and queues ranges from 2.2% to 36.8%.
Again, the relative overhead is lower for large accelerators
compared to small accelerators.

F. Design Space Exploration: Queue Size

The size of queue structures in the decoupled accelerator can
impact the performance, area, and energy consumption of the
accelerator. Larger queues can provide more decoupling, thus
potentially better performance, but may also have larger area
and consume more energy. Figure 16 shows the normalized
performance of the accelerators when varying load queue sizes
from 4 entries to 64 entries. On average, larger load queues
yield higher performance, but the improvement diminishes
as the queue size increases. This indicates that as long as
the access unit runs sufficiently ahead of the execute unit,
it can provide the decoupling needed to hide the latency of
occasional cache misses.

The results also indicate that some accelerators are less
sensitive to queue sizes than others. Thus, accelerator-specific
optimization of the queue sizes can be used to reduce the area
overhead of decoupled accelerators, with minimal degradation
in performance.

Table V shows the impact of customizing queue sizes on
the area and performance of DAE accelerators. For each
accelerator, we choose a queue size that has lower area but not
significantly lower performance, and normalize the area and
performance to the configuration with constant 16-entry load
queues and 8-entry store queues across all accelerators. On
average, the customization reduces queue area and total area
by 37% and 15% respectively, while lowering performance by
only 2.3%.



TABLE V
IMPACT OF THE QUEUE SIZE CUSTOMIZATION ON AREA AND

PERFORMANCE. NUMBERS ARE NORMALIZED TO LQ16/SQ08.

Bench- Custom Total Area Queue Area Norm
mark Size Abs Norm Abs Norm Perf

bbgemm LQ04/SQ08 40,442 0.76 12,504 0.50 0.94
bfsbulk LQ02/SQ08 14,437 1.00 1,473 1.00 1.00
gemm LQ08/SQ02 33,535 0.71 11,423 0.45 0.89
mdknn LQ16/SQ04 191,183 0.99 9,441 0.77 1.00

nw LQ04/SQ08 82,449 0.92 17,594 0.72 0.97
spmvcrs LQ08/SQ02 29,788 0.70 10,582 0.45 0.97
stencil2d LQ08/SQ02 39,372 0.79 7,232 0.41 1.05

viterbi LQ08/SQ08 72,661 0.90 19,183 0.70 0.99

VI. RELATED WORK

A. Data Supply for In-Core Accelerators

Accelerators that are tightly integrated into a processor
core often rely on the processor pipeline to perform memory
accesses. A number of proposals perform memory accesses in
a decoupled fashion, following the Decoupled Access/Execute
(DAE) paradigm. DAE [17] was originally proposed for in-
order processors as a complexity-effective mechanism to ad-
dress the memory latency problem by dividing a program’s
instructions into an access stream and an execute stream
that run in a decoupled fashion and communicate through
architecturally visible queues. Later work extended DAE to
out-of-order processors and found that DAE can use two
small instruction windows to achieve the effect of a single
large instruction window, but with less complexity [27]. In
recent work, DeSC [18] explored DAE for heterogeneous
architectures and proposed to use an OoO processor core to
supply data to a hardware accelerator. MAD [19] proposed
to use dataflow to build a specialized engine that executes
memory access phases efficiently, which can also be used to
supply data to hardware accelerators. Our work differs from
previous work as we target stand-alone accelerators that are not
tightly integrated with a processor core or dedicated memory
access engine. We employ DAE as a paradigm to design
accelerators that effectively tolerate the memory latency and
thus remove the burden of hand-crafting dedicated memory
management logic from accelerator designers.

B. Memory Architecture for Standalone Accelerators

CoRAM [28] is a memory architecture for FPGA-based
accelerators. In CoRAM, designers write control threads in
a C-like language that manages the communication between
DRAM and on-chip scratchpad memories. Our work differs
from CoRAM in that we provide a framework to automatically
transform accelerators into a decoupled architecture, instead
of relying on the designer to write application-specific control
threads manually.

LEAP [10] is a compiler framework that transforms accel-
erators that use arbitrary-size scratchpads to use small caches
backed-up by a memory hierarchy. It was later extended
to handle prefetching [29] but can only use address-based
stream localization since accelerators do not have a PC. Our

work can improve LEAP by providing better latency tolerance
using access/execute decoupling, and enabling more effective
prefetching by tagging memory accesses.

CHIMPS [30], [31] is a memory architecture and com-
pilation framework for FPGA accelerators that uses many
small, distributed caches implemented using block RAMs. The
cache coherence issue is avoided by statically partitioning the
memory address space between caches. Our framework can
work with this many-cache architecture by connecting each
memory unit to a cache and use the same address partitioning
technique. This can potentially lead to better performance
utilizing higher memory bandwidth.

C. Memory Optimizations in High-Level Synthesis

Deep pipelining is an HLS technique that allocates extra
pipeline stages for memory operations in order to tolerate
memory latency. However, in cache-based accelerators, it may
lower pipeline throughput as it always targets the worst case
even though most memory accesses are cache hits.

Tan et al. proposed to synthesize multithreaded pipelines
with HLS to tolerate memory latency [32]. The approach
mainly targets loop pipelining and allocates a thread for each
iteration of a loop. Threads are switched out on a cache miss
and stored in a context buffer, and woken up to continue exe-
cution when the memory response comes back. This approach
achieves good speedup with low resource overhead, but is only
applicable to data-parallel kernels where each loop iteration is
independent.

Decoupled pipelining was first proposed as a technique to
parallelize single-threaded programs. DSWP [33] is a compiler
framework that extracts coarse-grained pipeline parallelism
from single-thread code and execute using multiple threads.
The framework analyzes the program dependence graph and
partitions the graph between threads. The threads communicate
using message passing. Later work [34] extended it to HLS
where an accelerator is transformed into multiple decoupled
pipeline stages that communicates through FIFOs. As a result,
the impact of a variable-latency memory access can be limited
to one stage. Coarse-Grained Pipelined Accelerators (CGPA)
[35] extends decoupled pipelining by using multiple workers
for pipeline stages that are parallelizable. In comparison, our
work uses DAE as the decoupling mechanism and combines
hardware prefetching with decoupling to enable more efficient
data supply for accelerators.

VII. CONCLUSION

This paper introduces an automated framework to optimize
data supply from main memory for HLS-based hardware
accelerators. Pipeline stalls due to a long memory latency
represents a significant source of performance degradation for
hardware accelerators, which often rely on static pipelines
without expensive latency-hiding techniques. Today, data sup-
ply for accelerators often need to be manually optimized
in order to achieve high performance. Instead, this paper
shows that hardware prefetching and automated access/execute
decoupling based on program slicing can be used as general



mechanisms to optimize accelerators with minimal manual
efforts. Experimental results show that the proposed DAE
architecture with prefetching can improve accelerator perfor-
mance significantly and also reduce energy consumption in
many cases.
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