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Motivation
Memory system performance is critical
Everyone thinks about their own application

But modern computer systems execute multiple applications 
concurrently/simultaneously
Context switches cause cold misses 
Simultaneous applications compete for cache space 

Caches should be managed more carefully, 
considering multiple processes

Explicit management of cache space => partitioning
Cache-aware job schedulers



Related Work
Analytical Cache Models

Thiébaut and Stone (1987)
Agarwal, Horowitz and Hennessy (1989)
Both only focus on long time quanta
Inputs are hard to obtain on-line

Cache Partitioning
Stone, Turek and Wolf (1992)

Optimal cache partitioning for very short time quanta

Our Model & Partitioning
Work for any time quantum
Inputs are easier to obtain (possible to estimate on-line)



Input
C:  Cache Size 
Schedule: job sequences with 
time quantum (TA) 
MA(x):  a miss rate as a 
function of cache size for 
Process A

Output
Overall miss-rate (OMR) for 
multi-tasking
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Our Multi-tasking Cache Model



The miss-rate of a process is a function of 
cache size alone, not time
One MR(size) per application

Curve is averaged over application lifetime
In cases of high variance

Split the application into phases
One MR(size) per phase

Generated off-line (or on-line with HW support)
No shared memory space among processes

Assumptions



Assumptions: Cont.

Fully-associative caches
Extended to set-associative caches (memo 433)
The fully-associative model works for set-
associative cache partitioning

LRU replacement policy
Time in terms of the number of memory 
references

The number of memory reference can be easily 
converted to real time in a steady-state



Independent Footprint xA
Φ(t)

Independent footprint
The amount of data for Process A at time t starting from an 
empty cache, xA

Φ(0) = 0
Assume only one process executes

Changes
If hit, xA

Φ(t+1) = xA
Φ(t)

If miss, xA
Φ(t+1) = MIN[ xA

Φ(t) + 1, C ]
If we approximate real value of xA

Φ(t) with its 
expectation:

E[xA
Φ(t+1)] = MIN[ E[xA

Φ(t)] + PA(t), C ] 
= MIN[ E[xA

Φ(t)] + MA(E[xA
Φ(t)]), C ]



Dependent Footprint xA(t)

Dependent footprint
The amount of data for Process A when multiple 
processes concurrently execute
Obtained from the given schedule and the 
independent footprint of all processes

Example
Four processes: A, B, C, D
round-robin schedule: ABCDABCD…



An infinite size cache when Process A is executed for time t
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Dependent Footprint xA(t): Cont.

Compute block sizes from 
left: A0,D-1,C-1,B-1,A-1,D-2,…

Use independent footprint

Until cache is full



An infinite size cache when Process A is executed for time t
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Dependent Footprint xA(t): Cont.

Cache Size (C)

Case 1: dormant process’ block is the LRU
xA(t) = A0+ A-1 = xA

Φ(t+TA)



An infinite size cache when Process A is executed for time t
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Dependent Footprint xA(t): Cont.

Cache Size (C)

Case 1: dormant process’ block is the LRU
xA(t) = A0+ A-1 = xA

Φ(t+TA)

Case 2: active process’ block is the LRU
xA(t) = C-(D0+C0+B0+D-1+C-1+B-1)

= C-xD
Φ(TD)-xC

Φ(TC)- xB
Φ(TB)



Computing the 
Miss Probability: PA(t)

Effective cache size 
xA(t): The amount of 
data in a cache for 
process A at time t

The probability to 
miss at time t

PA(t) = MA(xA(t))

Process A’s Data
xA(t) 

Other Process’ Data

Cache at time t

Cache Size
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Miss-rate of Process A
In a steady-state, all time 
quanta of Process A are 
identical
Time starts (t=0) at the 
beginning of a time quantum
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Estimating Miss-Rate

Overall miss-rate (OMR)
Weighted sum of each process’ miss-rate



Model Summary

Miss-rate Curve
MA(x)

OMR
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Model vs. Simulation:
2 Processes
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Model vs. Simulation:
4 Processes

Miss-rate (vpr+vortex+gcc+bzip2, 32KB)
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Cache Partitioning

Time-sharing degrades the cache performance 
significantly for some time quanta

Due to dumb allocation by LRU policy
Could be improved by explicit cache partitioning

Specifying a partition
Dedicated Area (DA)

Cache blocks that only Process A can use

Shared Area (S)
Cache blocks that any process can use while it is active



Strategy

Off-line profiling of MR(size) curves
One for each phase
Independent of other processes
Can also be obtained on-line with HW support

On-line partitioning
Partitioning decision based on the model
Modify the LRU policy to partition the cache



Optimal Cache Partition

Dedicated areas (DA) specify the initial amount 
of data for each process

xA(0) = DA

Shared (S) and dedicated (DA) areas specify 
the maximum cache space for each process 

CA = DA + S
The model can estimate the miss-rate for a 
given partition
Use a gradient based search algorithm



Simulation Results: 
Fully-Associative Caches

32-KB Fully-Associative
(bzip2+gcc+swim+mesa+vortex+vpr+twolf+iu)
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From Full to Partial Associative
Use the fully-associative model and curves to 
determine DA, S
Modify the LRU replacement policy to partition

Count the number of cache blocks for each process (XA)
Try to match XA to the allocated cache space
Replacement (Process A active)

Replace Process A’s LRU block if
Replace Process B’s LRU block if 
Replace the standard LRU block if there is no over-allocated 
process

Add a small victim cache (16 entries)

SDX AA +≥
BB DX ≥



Simulation Results:
Set-Associative Caches
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improvement in 
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for short time 
quanta



Summary

Analytical cache model
Very accurate, yet tractable
Works for any cache size and time quanta
Applicable to set-associative cache partitioning

Applications
Dynamic cache partitioning with on-line/off-line 
approximations of miss-rate curves
Various scheduling problems


