
Analytical Cache Models with
Applications to Cache Partitioning

G. Edward Suh, Srinivas
Devadas, and Larry Rudolph

LCS, MIT

Motivation
Memory system performance is critical
Everyone thinks about their own application

But modern computer systems execute multiple applications
concurrently/simultaneously
Context switches cause cold misses
Simultaneous applications compete for cache space

Caches should be managed more carefully,
considering multiple processes

Explicit management of cache space => partitioning
Cache-aware job schedulers

Related Work
Analytical Cache Models

Thiébaut and Stone (1987)
Agarwal, Horowitz and Hennessy (1989)
Both only focus on long time quanta
Inputs are hard to obtain on-line

Cache Partitioning
Stone, Turek and Wolf (1992)

Optimal cache partitioning for very short time quanta

Our Model & Partitioning
Work for any time quantum
Inputs are easier to obtain (possible to estimate on-line)

Input
C: Cache Size
Schedule: job sequences with
time quantum (TA)
MA(x): a miss rate as a
function of cache size for
Process A

Output
Overall miss-rate (OMR) for
multi-tasking

Cache Model

Overall Miss Rate

MA(x)C Schedule

Cache Size

M
is

s-
R

a t
e

M
is

s -
R

a t
e

Cache Size

M
is

s-
R

a t
e

Our Multi-tasking Cache Model

The miss-rate of a process is a function of
cache size alone, not time
One MR(size) per application

Curve is averaged over application lifetime
In cases of high variance

Split the application into phases
One MR(size) per phase

Generated off-line (or on-line with HW support)
No shared memory space among processes

Assumptions

Assumptions: Cont.

Fully-associative caches
Extended to set-associative caches (memo 433)
The fully-associative model works for set-
associative cache partitioning

LRU replacement policy
Time in terms of the number of memory
references

The number of memory reference can be easily
converted to real time in a steady-state

Independent Footprint xA
Φ(t)

Independent footprint
The amount of data for Process A at time t starting from an
empty cache, xA

Φ(0) = 0
Assume only one process executes

Changes
If hit, xA

Φ(t+1) = xA
Φ(t)

If miss, xA
Φ(t+1) = MIN[xA

Φ(t) + 1, C]
If we approximate real value of xA

Φ(t) with its
expectation:

E[xA
Φ(t+1)] = MIN[E[xA

Φ(t)] + PA(t), C]
= MIN[E[xA

Φ(t)] + MA(E[xA
Φ(t)]), C]

Dependent Footprint xA(t)

Dependent footprint
The amount of data for Process A when multiple
processes concurrently execute
Obtained from the given schedule and the
independent footprint of all processes

Example
Four processes: A, B, C, D
round-robin schedule: ABCDABCD…

An infinite size cache when Process A is executed for time t

M
R

U
 D

at
a

LR
U

 D
at

a

D-1 C-1 B-1 D-3A-1 C-2D-2 B-2 A-2 C-3A0 …

xA
Φ(t) xA

Φ(t+TA)- xA
Φ(t)

t t+TA

xA
Φ(t)

Independent Footprint of A

Time
Bl

oc
ks

Dependent Footprint xA(t): Cont.

Compute block sizes from
left: A0,D-1,C-1,B-1,A-1,D-2,…

Use independent footprint

Until cache is full

An infinite size cache when Process A is executed for time t

M
R

U
 D

at
a

LR
U

 D
at

a

D-1 C-1 B-1 D-3A-1 C-2D-2 B-2 A-2 C-3A0 …

Dependent Footprint xA(t): Cont.

Cache Size (C)

Case 1: dormant process’ block is the LRU
xA(t) = A0+ A-1 = xA

Φ(t+TA)

An infinite size cache when Process A is executed for time t

M
R

U
 D

at
a

LR
U

 D
at

a

D-1 C-1 B-1 D-3A-1 C-2D-2 B-2 A-2 C-3A0 …

Dependent Footprint xA(t): Cont.

Cache Size (C)

Case 1: dormant process’ block is the LRU
xA(t) = A0+ A-1 = xA

Φ(t+TA)

Case 2: active process’ block is the LRU
xA(t) = C-(D0+C0+B0+D-1+C-1+B-1)

= C-xD
Φ(TD)-xC

Φ(TC)- xB
Φ(TB)

Computing the
Miss Probability: PA(t)

Effective cache size
xA(t): The amount of
data in a cache for
process A at time t

The probability to
miss at time t

PA(t) = MA(xA(t))

Process A’s Data
xA(t)

Other Process’ Data

Cache at time t

Cache Size

MA(x)

PA(t)
M

is
s-

R
at

e

xA(t)

Miss-rate of Process A
In a steady-state, all time
quanta of Process A are
identical
Time starts (t=0) at the
beginning of a time quantum

∫= AT

A
A

A (t)dtP
T

mr
0

1

P
ro

ba
bi

lit
y

to
 M

is
s

Integrate

The number of misses

PA(t)

Time
TA

Estimating Miss-Rate

Overall miss-rate (OMR)
Weighted sum of each process’ miss-rate

Model Summary

Miss-rate Curve
MA(x)

OMR

IF xA
Φ(t) DF xA(t)

Miss-rate Curve
MB(x) IF xB

Φ(t) DF xB(t)

Miss-rate
mrA

Miss-rate
mrB(t)

Schedule

Schedule

∑
=

⋅
N

i
ii

sum

Tmr
T 1

1∫
AT

A
A

)dtt(xM
T 0

)(1Cache
snapshot))(()]([

)]1([

txMtxE

txE

AAA

A
ΦΦ

Φ

+=

+

Model vs. Simulation:
2 Processes

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0 20000 40000 60000 80000 100000

Time Quantum

M
is

s-
ra

te

Simulation

Model

Miss-rate (vpr+vortex, 32KB)

Model vs. Simulation:
4 Processes

Miss-rate (vpr+vortex+gcc+bzip2, 32KB)

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0 20000 40000 60000 80000 100000

Time Quantum

M
is

s-
ra

te

Simulation
Model

Cache Partitioning

Time-sharing degrades the cache performance
significantly for some time quanta

Due to dumb allocation by LRU policy
Could be improved by explicit cache partitioning

Specifying a partition
Dedicated Area (DA)

Cache blocks that only Process A can use

Shared Area (S)
Cache blocks that any process can use while it is active

Strategy

Off-line profiling of MR(size) curves
One for each phase
Independent of other processes
Can also be obtained on-line with HW support

On-line partitioning
Partitioning decision based on the model
Modify the LRU policy to partition the cache

Optimal Cache Partition

Dedicated areas (DA) specify the initial amount
of data for each process

xA(0) = DA

Shared (S) and dedicated (DA) areas specify
the maximum cache space for each process

CA = DA + S
The model can estimate the miss-rate for a
given partition
Use a gradient based search algorithm

Simulation Results:
Fully-Associative Caches

32-KB Fully-Associative
(bzip2+gcc+swim+mesa+vortex+vpr+twolf+iu)

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 10 100 1000 10000 100000 1000000

Time Quantum

M
is

s-
ra

te

LRU
Partition

25% miss-rate
improvement in
the best case
7% improvement
for short time
quanta

From Full to Partial Associative
Use the fully-associative model and curves to
determine DA, S
Modify the LRU replacement policy to partition

Count the number of cache blocks for each process (XA)
Try to match XA to the allocated cache space
Replacement (Process A active)

Replace Process A’s LRU block if
Replace Process B’s LRU block if
Replace the standard LRU block if there is no over-allocated
process

Add a small victim cache (16 entries)

SDX AA +≥
BB DX ≥

Simulation Results:
Set-Associative Caches

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 10 100 1000 10000 100000 1000000

Time Quantum

M
is

s-
ra

te

LRU
Partition

32-KB 8-way Set-Associative
(bzip2+gcc+swim+mesa+vortex+vpr+twolf+iu)

15% miss-rate
improvement in
the best case
4% improvement
for short time
quanta

Summary

Analytical cache model
Very accurate, yet tractable
Works for any cache size and time quanta
Applicable to set-associative cache partitioning

Applications
Dynamic cache partitioning with on-line/off-line
approximations of miss-rate curves
Various scheduling problems

