A New Cache Monitoring Scheme for
Memory-Aware Scheduling and Partitioning

G. Edward Suh
Srinivas Devadas
Larry Rudolph

Massachusetts Institute of Technology

HPCA-8: 1 February 5, 2002

Problem

HPCA-8: 2

Memory system performance is critical

Everyone thinks about their own application

— Tuning replacement policies
— Software/hardware prefetching

But modern computer systems execute multiple

applications concurrently/simultaneously

— Time-shared systems
e Context switches cause cold misses

— Multiprocessors systems sharing memory hierarchy

(SMP, SMT, CMP)

e Simultaneous applications compete for cache space

February 5, 2002

Solutions: Cache Partitioning &
Memory-Aware Scheduling

e (Cache Partitioning

— Explicitly manage cache space allocation amongst concurrent/
simultaneous processes

e Each process gets different benefit from more cache space
e Similar to main memory partition (e.g.. Stone 1992) in the old days

e Memory-Aware Scheduling

— Choose a set of simultaneous processes to minimize
memory/cache contention

— Schedule for SMT systems (Snavely 2000)
e Threads interact in various ways (RUU, functional units, caches, etc)
e Based on executing various schedules and profiling them

— Admission control for gang scheduling (Batat 2000)
e Based on the footprint of a job (total memory usage)

HPCA-8: 3 February 5, 2002

BUT...

e Testing many possible schedules = not viable

— The number of possible schedules increase exponentially as the
number of processes increase

— Need to decide a good schedule from individual process
characteristics > complexity increases linearly

e Footprint-based scheduling = not enough information
— Footprint of a process is often larger than the cache
— Processes may not need the entire working set in the cache

e Can we find a good schedule for cache performance?
— What information do we need for each process?

HPCA-8: 4 February 5, 2002

Information a Scheduler/Partitioner Needs

e Characterizing a process
— For scheduling and partitioning, need to know the effect of

varying cache size
e Multiple performance numbers for different cache sizes

e Ignore other effects than cache size

e Miss-rate curves; m(c) :
— Cache miss-rates as a function of cache 08
size (cache blocks)
e Assume a process is isolated
e Assume the cache is FULLY-ASSOCIATIVE

— Provides essential information for 0.2|
scheduling and partitioning .

e
o

Miss-rate

0.4}

0 50 100
Cache Space (%)

HPCA-8: 5 February 5, 2002

Using Miss-Rate Curves for Partitioning

e \What do miss-rate curves tell about cache allocation?

1

1

Process B

Process A
0.8

Cache misses
9

m,(c,) ref,+ mg(cg) refy

o
o

Miss-rate
Miss-rate

0.4}

100 0 50 100

Caghe Space (%) Cache Spac¢/ (%)

Cache Allocation

HPCA-8: 6 February 5, 2002

Finding the best allocation

e Use marginal gain; g(c) = m(c) ‘ref - m(c+1)-ref
— Gain in the number of misses by increasing the cache space

o Allocate cache blocks to each process in a greedy manner
— Guaranteed to result in the optimal partition if m(c) are convex

2500 & — Allocate a block to
2000 111 —@—Process B[] PI’OCGSS B

1000

\G@ Cache Allocation
500

0 | | £
0 1 2 3 4 A
Cache Space (Blocks)

February 5, 2002

~

Marginal Gain (Hits)
o

HPCA-8: 7

Partitioning Results

e Partition the L2 cache amongst two simultaneous
processes (spec2000 benchmarks: artand mcr)

2.5
2 _
o P = LRU
o »
- 1 m Partition
O [| |

0.25 0.5 1 2 4
L2 Size (MB)

HPCA-8: 8 Fepruary 5, 2002

Intuition for Memory-Aware Scheduling

e How to schedule 4 processes on 2 processor system
using individual miss-rate curves?

/N /N

Process A

Miss-rate

0 50
Cache Space (%)

100

Process C

Miss-rate

HPCA-8: 9

Miss-rate

1

Process B

50
Cache Space (%)

10G

Process D

Curves tend to have a knee
- The amount of cache
space where the marginal
o Waikimgliseinshessddoger than
the cache for all pl'ocesses

o Allgnaupgsexcessatt hasheicar
misdnetkrié¢hey have the entire
cache l

Schedule A and C, and B
and D together

February 5, 2002

Determining the Knee of the Curve

e Use partitioning technique

2500

L2111

N
o
o
o

1500

—&— Process A

—— Process B[]

1568

Cache Allocation

Marginal Gain (Hits)

1000 @987 \
\ \-\@
500

0

S e g

0

1 2
Cache Space (Blocks)

3

e However, now we may need multiple time slices to
schedule processes (2 time slices in our example)

e Available cache resource should be doubled

HPCA-8: 10

February 5, 2002

Scheduling Results

e Schedule 6 SPEC CPU benchmarks for 2 Processors

N

RN
(@)

Normalized Miss-rate
o
()1 —_—

o

HPCA-8: 11

@ Worst m Best 0 Scheduling Algorithm

TWIEEI

16 32 64 128
Memory Size (MB)

256

February 5, 2002

Analytical Model (ICS 01)

e Miss-rate curves (or marginal gains) alone may not be
enough for optimizing time-shared systems
— Partitioning amongst concurrent processes
— Scheduling considering the effects of context switches

e Use analytical model to predict cache-sharing effects

0.05

0.045 - — RV 32-KB 8-way Set-
—— Partition . g
0.0s | Associative
g (bzip2+gcc+swim+
@ 0.035 1 mesa+vortex+vpr+t
= 03 wolf+iu)

0.025 -

0.02

1 10 100 1000 10000 100000 1000000
Time Quantum (# of cache accesses)

HPCA-8: 12 February 5, 2002

BUT...

e Processes to execute are only known at run-time
— Users decide what applications to run
— Scheduling/Partitioning decisions should be made at run-time

e The behavior of a process changes over time
— Applications have different phases

— Miss-rates curves (and marginal gains) may change over an
execution

e (Cache configurations are different for systems
— Miss-rate curves (and marginal gains) are different for systems

 Need an on-line estimation of miss-rate curves (and
marginal gains)

HPCA-8: 13 February 5, 2002

On-Line Estimation of Marginal Gains:
Fully-Associative Caches

e Marginal gains can be directlv counted based on th
temporal ordering ¢ "™ &)
— Use one counter pe = ™ 22

blocks) and one for 5 s \4\
o1

(D

Marginal Gain

— Hit on the it MRU -
e Example: a FA cack

124

0 1
Cache Space (Blocks)

Access
Counter

Marginal-Gain
Counters

25,5
Blocks Order

HPCA-8: 14 February 5, 2002

BUT...

e Most caches are SET-ASSOCIATIVE

— Except main memory
— Usually up to 8-way associative

e Set-associative caches only maintain temporal
ordering within a set

— No global temporal ordering

e Cannot use block-by-block temporal ordering to
obtain marginal gains for fully-associative caches

HPCA-8: 15 February 5, 2002

Way-Counters

-

—e— Way-Counter

e Way-Counters
— Use the existing LRU \

— One counter per way £ o4
— Hiton the it" MRU &> | 02| ”

00477 00234 00371
) 0 2236 51‘2 7é8 1024 more

Cache Size (Blocks)

Counters @

o
[

Fully-Associative [

o
o

Miss-Rate

o
S

Counter

Associative

Cache S sets

HPCA-8: 16 February 5, 2002

Way+Set Counters

e Use more counters for more detailed information

— Mamtaln the LRU mformatlon of sets
T "™ MRU set & Increment counter(i,j)

| —— Way-Co‘unter (2-way) Access

-6~ Way+Set (8 Groups) Counters Counter
—— Way+Set (16 Groups)
—— Fully-Associative

Miss-Rate

==ttty

256 512 768 1024
Cache Size (Blocks)

I_-I_-J; =

February 5, 2002

HPCA-8: 17

Summary

e (Caches should be managed more carefully considering
the effect of space/time-sharing
— Cache Partitioning
— Memory-Aware Scheduling

e Miss-rate curves provide very relevant information for
scheduling and partitioning
— Enables us to predict the effect of varying the cache space
— Useful for any tradeoff between performance and space (power)

e On-line counters can estimate miss-rate curves at run-
time
— Use the temporal ordering of blocks to predict miss-rates for
smaller caches
— Works for both fully-associative and set-associative caches

HPCA-8: 18 February 5, 2002

	A New Cache Monitoring Scheme for Memory-Aware Scheduling and Partitioning
	Problem
	Solutions: Cache Partitioning & Memory-Aware Scheduling
	BUT¡¦
	Information a Scheduler/Partitioner Needs
	Using Miss-Rate Curves for Partitioning
	Finding the best allocation
	Partitioning Results
	Intuition for Memory-Aware Scheduling
	Determining the Knee of the Curve
	Scheduling Results
	Analytical Model (ICS`01)
	BUT¡¦
	On-Line Estimation of Marginal Gains: Fully-Associative Caches
	BUT¡¦
	Way-Counters
	Way+Set Counters
	Summary
	Partitioning Mechanism
	Scheduling: L2
	Way-Counter Implementation
	Way+Set Counter Implementation

