
HPCA-8: 1 February 5, 2002

A New Cache Monitoring Scheme for
Memory-Aware Scheduling and Partitioning

G. Edward Suh
Srinivas Devadas

Larry Rudolph

Massachusetts Institute of Technology

HPCA-8: 2 February 5, 2002

Problem

• Memory system performance is critical
• Everyone thinks about their own application

– Tuning replacement policies
– Software/hardware prefetching

• But modern computer systems execute multiple
applications concurrently/simultaneously
– Time-shared systems

• Context switches cause cold misses
– Multiprocessors systems sharing memory hierarchy

(SMP, SMT, CMP)
• Simultaneous applications compete for cache space

HPCA-8: 3 February 5, 2002

Solutions: Cache Partitioning &
Memory-Aware Scheduling

• Cache Partitioning
– Explicitly manage cache space allocation amongst concurrent/

simultaneous processes
• Each process gets different benefit from more cache space
• Similar to main memory partition (e.g.. Stone 1992) in the old days

• Memory-Aware Scheduling
– Choose a set of simultaneous processes to minimize

memory/cache contention
– Schedule for SMT systems (Snavely 2000)

• Threads interact in various ways (RUU, functional units, caches, etc)
• Based on executing various schedules and profiling them

– Admission control for gang scheduling (Batat 2000)
• Based on the footprint of a job (total memory usage)

HPCA-8: 4 February 5, 2002

BUT…

• Testing many possible schedules not viable
– The number of possible schedules increase exponentially as the

number of processes increase
– Need to decide a good schedule from individual process

characteristics complexity increases linearly

• Footprint-based scheduling not enough information
– Footprint of a process is often larger than the cache
– Processes may not need the entire working set in the cache

• Can we find a good schedule for cache performance?
– What information do we need for each process?

HPCA-8: 5 February 5, 2002

Information a Scheduler/Partitioner Needs

• Characterizing a process
– For scheduling and partitioning, need to know the effect of

varying cache size
• Multiple performance numbers for different cache sizes
• Ignore other effects than cache size

• Miss-rate curves; m(c)
– Cache miss-rates as a function of cache

size (cache blocks)
• Assume a process is isolated
• Assume the cache is FULLY-ASSOCIATIVE

– Provides essential information for
scheduling and partitioning

1000 50
0

0.2

0.4

0.6

0.8

1

Cache Space (%)

M
is

s-
ra

te

HPCA-8: 6 February 5, 2002

Using Miss-Rate Curves for Partitioning

• What do miss-rate curves tell about cache allocation?

0 50 100
0

0.2

0.4

0.6

0.8

1

Cache Space (%)

M
is

s-
ra

te

0 50 100
0

0.2

0.4

0.6

0.8

1

Cache Space (%)

M
is

s-
ra

te

Process A Process B

cA cB

Cache misses

mA(cA)·refA+ mB(cB)·refB

Cache Allocation

A B

HPCA-8: 7 February 5, 2002

Finding the best allocation

• Use marginal gain; g(c) = m(c) ·ref - m(c+1)·ref
– Gain in the number of misses by increasing the cache space

• Allocate cache blocks to each process in a greedy manner
– Guaranteed to result in the optimal partition if m(c) are convex

987

409 282 250

2111

1568

746

1040

500

1000

1500

2000

2500

0 1 2 3 4

Cache Space (Blocks)

M
ar

gi
na

l G
ai

n
(H

its
)

Process A

Process B

Cache Allocation

Initially no cache block
is allocated

Compare Marginal Gains
987 < 2111

B

Allocate a block to
Process B

Compare Marginal Gains
987 > 1568

Allocate a block to
Process B

B

Compare Marginal Gains
987 > 746

A

Allocate a block to
Process A

Compare Marginal Gains
409 < 746

B

Allocate a block to
Process B

HPCA-8: 8 February 5, 2002

Partitioning Results

0

0.5

1

1.5

2

2.5

0.25 0.5 1 2 4

L2 Size (MB)

IP
C LRU

Partition

• Partition the L2 cache amongst two simultaneous
processes (spec2000 benchmarks: art and mcf)

HPCA-8: 9 February 5, 2002

Intuition for Memory-Aware Scheduling

• How to schedule 4 processes on 2 processor system
using individual miss-rate curves?

0 50 1000

0.2

0.4

0.6

0.8

1

Cache Space (%)

M
is

s-
ra

te

0 50 1000

0.2

0.4

0.6

0.8

1

Cache Space (%)

M
is

s-
ra

te

0 50 1000

0.2

0.4

0.6

0.8

1

Cache Space (%)

M
is

s-
ra

te

1000 500

0.2

0.4

0.6

0.8

1

Cache Space (%)

M
is

s-
ra

te

Curves tend to have a knee
The amount of cache

space where the marginal
gain diminishes a lot

Group processes based on
the knees

Process A Process B

Process DProcess C

• Working set size is larger than
the cache for all processes

• All processes result in similar
miss-rate if they have the entire
cache

Schedule A and C, and B
and D together

HPCA-8: 10 February 5, 2002

Determining the Knee of the Curve

• Use partitioning technique

987

409 282 250

2111

1568

746

1040

500

1000

1500

2000

2500

0 1 2 3 4

Cache Space (Blocks)

M
ar

gi
na

l G
ai

n
(H

its
)

Process A

Process B

Cache Allocation

• However, now we may need multiple time slices to
schedule processes (2 time slices in our example)

• Available cache resource should be doubled

Cache Allocation

HPCA-8: 11 February 5, 2002

Scheduling Results

• Schedule 6 SPEC CPU benchmarks for 2 Processors

0

0.5

1

1.5

2

8 16 32 64 128 256

Memory Size (MB)

No
rm

al
iz

ed
 M

is
s-

ra
te

Worst Best Scheduling Algorithm

HPCA-8: 12 February 5, 2002

Analytical Model (ICS`01)

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 10 100 1000 10000 100000 1000000

Time Quantum (# of cache accesses)

M
is

s-
ra

te

LRU
Partition

• Miss-rate curves (or marginal gains) alone may not be
enough for optimizing time-shared systems
– Partitioning amongst concurrent processes
– Scheduling considering the effects of context switches

• Use analytical model to predict cache-sharing effects

32-KB 8-way Set-
Associative

(bzip2+gcc+swim+
mesa+vortex+vpr+t

wolf+iu)

HPCA-8: 13 February 5, 2002

BUT…

• Processes to execute are only known at run-time
– Users decide what applications to run
– Scheduling/Partitioning decisions should be made at run-time

• The behavior of a process changes over time
– Applications have different phases
– Miss-rates curves (and marginal gains) may change over an

execution

• Cache configurations are different for systems
– Miss-rate curves (and marginal gains) are different for systems

• Need an on-line estimation of miss-rate curves (and
marginal gains)

HPCA-8: 14 February 5, 2002

On-Line Estimation of Marginal Gains:
Fully-Associative Caches

2432

350912

• Marginal gains can be directly counted based on the
temporal ordering of cache blocks (LRU information)
– Use one counter per each cache block (or a group of cache

blocks) and one for counting all accesses
– Hit on the ith MRU Increment ith counter

• Example: a FA cache with 4 blocks

1 LRU
Order 0 LRU

Order 2 LRU
Order 3 LRU

Order

722 124Hit on the 3rd

MRU Cache
Block

Increment
the 3th

Counter

Access
Counter

350

2 LRU
Order 0 LRU

Order1 LRU
Order

351

2432
2433

Increment
the 1st

Counter
2433

2434

912
913 Hit on

the MRU
Cache Block

913

722

351

124
0

250

500

750

1000

0 1 2 3

Cache Space (Blocks)

M
ar

gi
na

l G
ai

n

Marginal-Gain
Counters

Cache
Blocks

HPCA-8: 15 February 5, 2002

BUT…

• Most caches are SET-ASSOCIATIVE
– Except main memory
– Usually up to 8-way associative

• Set-associative caches only maintain temporal
ordering within a set
– No global temporal ordering

• Cannot use block-by-block temporal ordering to
obtain marginal gains for fully-associative caches

HPCA-8: 16 February 5, 2002

Way-Counters

• Way-Counters
– Use the existing LRU information within a set
– One counter per way (D-way cacehs D counters)
– Hit on the ith MRU Increment ith counter

• Each way-counter represents the gain of having S more
blocks (S is the number of sets)

1
4-way

Associative
Cache

0 2 3

1 30 2

… … … … S sets

Way
Counters 4384 376 121 31

Access
Counter 5012

Hit on
the MRU

Cache Block

Increment
the 1st

Counter

4385 5013

Hit on
the 2nd MRU
Cache Block

Increment
the 2nd

Counter

1

0.123
0.0477 0.0234 0.01710

0.2

0.4

0.6

0.8

1

0 256 512 768 1024

Cache Size (Blocks)

M
is

s-
R

at
e

Way-Counter

Fully-Associative

1 0 3 2

377 50145014

HPCA-8: 17 February 5, 2002

Way+Set Counters

• Use more counters for more detailed information
– Maintain the LRU information of sets
– Hit on the ith MRU way and jth MRU set Increment counter(i,j)

1

2-way
Associative

Cache

0

0 1

1

0

0

1

… …

10

01

Counters

2132 5248377

1073 283

431 31

Access
Counter

… …

1

Group 0

Group 1

Group S’

0

8

Increment
the Counter

(0,1)

Hit on
the MRU way

the 2nd MRU group

1074

5249

1

0

Temporal Ordering
Of

Set Groups

0 256 512 768 1024
0

0.2

0.4

0.6

0.8

1

Cache Size (Blocks)

M
is

s-
R

at
e

Way-Counter (2-way)
Way+Set (8 Groups)
Way+Set (16 Groups)
Fully-Associative

HPCA-8: 18 February 5, 2002

Summary

• Caches should be managed more carefully considering
the effect of space/time-sharing
– Cache Partitioning
– Memory-Aware Scheduling

• Miss-rate curves provide very relevant information for
scheduling and partitioning
– Enables us to predict the effect of varying the cache space
– Useful for any tradeoff between performance and space (power)

• On-line counters can estimate miss-rate curves at run-
time
– Use the temporal ordering of blocks to predict miss-rates for

smaller caches
– Works for both fully-associative and set-associative caches

	A New Cache Monitoring Scheme for Memory-Aware Scheduling and Partitioning
	Problem
	Solutions: Cache Partitioning & Memory-Aware Scheduling
	BUT¡¦
	Information a Scheduler/Partitioner Needs
	Using Miss-Rate Curves for Partitioning
	Finding the best allocation
	Partitioning Results
	Intuition for Memory-Aware Scheduling
	Determining the Knee of the Curve
	Scheduling Results
	Analytical Model (ICS`01)
	BUT¡¦
	On-Line Estimation of Marginal Gains: Fully-Associative Caches
	BUT¡¦
	Way-Counters
	Way+Set Counters
	Summary
	Partitioning Mechanism
	Scheduling: L2
	Way-Counter Implementation
	Way+Set Counter Implementation

