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Problem

• Memory system performance is critical
• Everyone thinks about their own application

– Tuning replacement policies
– Software/hardware prefetching

• But modern computer systems execute multiple 
applications concurrently/simultaneously
– Time-shared systems

• Context switches cause cold misses 
– Multiprocessors systems sharing memory hierarchy 

(SMP, SMT, CMP)
• Simultaneous applications compete for cache space 
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Solutions:  Cache Partitioning & 
Memory-Aware Scheduling

• Cache Partitioning
– Explicitly manage cache space allocation amongst concurrent/ 

simultaneous processes
• Each process gets different benefit from more cache space
• Similar to main memory partition (e.g.. Stone 1992) in the old days

• Memory-Aware Scheduling
– Choose a set of simultaneous processes to minimize 

memory/cache contention
– Schedule for SMT systems (Snavely 2000)

• Threads interact in various ways (RUU, functional units, caches, etc)
• Based on executing various schedules and profiling them

– Admission control for gang scheduling (Batat 2000)
• Based on the footprint of a job (total memory usage)
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BUT…

• Testing many possible schedules not viable 
– The number of possible schedules increase exponentially as the 

number of processes increase
– Need to decide a good schedule from individual process 

characteristics complexity increases linearly

• Footprint-based scheduling not enough information
– Footprint of a process is often larger than the cache
– Processes may not need the entire working set in the cache 

• Can we find a good schedule for cache performance?
– What information do we need for each process?
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Information a Scheduler/Partitioner Needs

• Characterizing a process
– For scheduling and partitioning, need to know the effect of 

varying cache size
• Multiple performance numbers for different cache sizes 
• Ignore other effects than cache size

• Miss-rate curves; m(c)
– Cache miss-rates as a function of cache 

size (cache blocks)
• Assume a process is isolated
• Assume the cache is FULLY-ASSOCIATIVE

– Provides essential information for 
scheduling and partitioning
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Using Miss-Rate Curves for Partitioning

• What do miss-rate curves tell about cache allocation?
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Finding the best allocation 

• Use marginal gain; g(c) = m(c) ·ref - m(c+1)·ref
– Gain in the number of misses by increasing the cache space

• Allocate cache blocks to each process in a greedy manner
– Guaranteed to result in the optimal partition if m(c) are convex
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Partitioning Results

0

0.5

1

1.5

2

2.5

0.25 0.5 1 2 4

L2 Size (MB)

IP
C LRU

Partition
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processes (spec2000 benchmarks: art and mcf )
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Intuition for Memory-Aware Scheduling

• How to schedule 4 processes on 2 processor system 
using individual miss-rate curves?
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Determining the Knee of the Curve

• Use partitioning technique
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Scheduling Results

• Schedule 6 SPEC CPU benchmarks for 2 Processors
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Analytical Model (ICS`01)
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• Miss-rate curves (or marginal gains) alone may not be 
enough for optimizing time-shared systems
– Partitioning amongst concurrent processes
– Scheduling considering the effects of context switches
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BUT…

• Processes to execute are only known at run-time
– Users decide what applications to run
– Scheduling/Partitioning decisions should be made at run-time

• The behavior of a process changes over time
– Applications have different phases
– Miss-rates curves (and marginal gains) may change over an 

execution

• Cache configurations are different for systems
– Miss-rate curves (and marginal gains) are different for systems

• Need an on-line estimation of miss-rate curves (and 
marginal gains)
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On-Line Estimation of Marginal Gains: 
Fully-Associative Caches
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BUT…

• Most caches are SET-ASSOCIATIVE 
– Except main memory
– Usually up to 8-way associative

• Set-associative caches only maintain temporal 
ordering within a set
– No global temporal ordering

• Cannot use block-by-block temporal ordering to 
obtain marginal gains for fully-associative caches
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Way-Counters

• Way-Counters
– Use the existing LRU information within a set
– One counter per way (D-way cacehs D counters)
– Hit on the ith MRU Increment ith counter

• Each way-counter represents the gain of having S more 
blocks (S is the number of sets)
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Way+Set Counters

• Use more counters for more detailed information
– Maintain the LRU information of sets
– Hit on the ith MRU way and jth MRU set Increment counter(i,j)
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Summary

• Caches should be managed more carefully considering 
the effect of space/time-sharing
– Cache Partitioning
– Memory-Aware Scheduling

• Miss-rate curves provide very relevant information for 
scheduling and partitioning
– Enables us to predict the effect of varying the cache space
– Useful for any tradeoff between performance and space (power)

• On-line counters can estimate miss-rate curves at run-
time
– Use the temporal ordering of blocks to predict miss-rates for 

smaller caches
– Works for both fully-associative and set-associative caches
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