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Problem
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Memory system performance is critical

Everyone thinks about their own application

— Tuning replacement policies
— Software/hardware prefetching

But modern computer systems execute multiple

applications concurrently/simultaneously

— Time-shared systems
e Context switches cause cold misses

— Multiprocessors systems sharing memory hierarchy

(SMP, SMT, CMP)

e Simultaneous applications compete for cache space
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Solutions: Cache Partitioning &
Memory-Aware Scheduling

e (Cache Partitioning

— Explicitly manage cache space allocation amongst concurrent/
simultaneous processes

e Each process gets different benefit from more cache space
e Similar to main memory partition (e.g.. Stone 1992) in the old days

e Memory-Aware Scheduling

— Choose a set of simultaneous processes to minimize
memory/cache contention

— Schedule for SMT systems (Snavely 2000)
e Threads interact in various ways (RUU, functional units, caches, etc)
e Based on executing various schedules and profiling them

— Admission control for gang scheduling (Batat 2000)
e Based on the footprint of a job (total memory usage)
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BUT...

e Testing many possible schedules = not viable

— The number of possible schedules increase exponentially as the
number of processes increase

— Need to decide a good schedule from individual process
characteristics > complexity increases linearly

e Footprint-based scheduling = not enough information
— Footprint of a process is often larger than the cache
— Processes may not need the entire working set in the cache

e Can we find a good schedule for cache performance?
— What information do we need for each process?
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Information a Scheduler/Partitioner Needs

e Characterizing a process
— For scheduling and partitioning, need to know the effect of

varying cache size
e Multiple performance numbers for different cache sizes

e Ignore other effects than cache size

e Miss-rate curves; m(c) :
— Cache miss-rates as a function of cache 08
size (cache blocks)
e Assume a process is isolated
e Assume the cache is FULLY-ASSOCIATIVE

— Provides essential information for 0.2|
scheduling and partitioning .
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Using Miss-Rate Curves for Partitioning

e \What do miss-rate curves tell about cache allocation?
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Finding the best allocation

e Use marginal gain; g(c) = m(c) ‘ref - m(c+1)-ref
— Gain in the number of misses by increasing the cache space

o Allocate cache blocks to each process in a greedy manner
— Guaranteed to result in the optimal partition if m(c) are convex
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Partitioning Results

e Partition the L2 cache amongst two simultaneous
processes (spec2000 benchmarks: artand mcr)
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Intuition for Memory-Aware Scheduling

e How to schedule 4 processes on 2 processor system
using individual miss-rate curves?
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Determining the Knee of the Curve

e Use partitioning technique
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e However, now we may need multiple time slices to
schedule processes (2 time slices in our example)

e Available cache resource should be doubled
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Scheduling Results

e Schedule 6 SPEC CPU benchmarks for 2 Processors
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Analytical Model (ICS 01)

e Miss-rate curves (or marginal gains) alone may not be
enough for optimizing time-shared systems
— Partitioning amongst concurrent processes
— Scheduling considering the effects of context switches

e Use analytical model to predict cache-sharing effects
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BUT...

e Processes to execute are only known at run-time
— Users decide what applications to run
— Scheduling/Partitioning decisions should be made at run-time

e The behavior of a process changes over time
— Applications have different phases

— Miss-rates curves (and marginal gains) may change over an
execution

e (Cache configurations are different for systems
— Miss-rate curves (and marginal gains) are different for systems

 Need an on-line estimation of miss-rate curves (and
marginal gains)
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On-Line Estimation of Marginal Gains:
Fully-Associative Caches

e Marginal gains can be directlv counted based on th
temporal ordering ¢ "™ & )
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BUT...

e Most caches are SET-ASSOCIATIVE

— Except main memory
— Usually up to 8-way associative

e Set-associative caches only maintain temporal
ordering within a set

— No global temporal ordering

e Cannot use block-by-block temporal ordering to
obtain marginal gains for fully-associative caches
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Way-Counters
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Way+Set Counters

e Use more counters for more detailed information
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Summary

e (Caches should be managed more carefully considering
the effect of space/time-sharing
— Cache Partitioning
— Memory-Aware Scheduling

e Miss-rate curves provide very relevant information for
scheduling and partitioning
— Enables us to predict the effect of varying the cache space
— Useful for any tradeoff between performance and space (power)

e On-line counters can estimate miss-rate curves at run-
time
— Use the temporal ordering of blocks to predict miss-rates for
smaller caches
— Works for both fully-associative and set-associative caches
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