
Improving Worst-Case Cache Performance through
Selective Bypassing and Register-Indexed Cache

Mohamed Ismail, Daniel Lo, and G. Edward Suh
Cornell University
Ithaca, NY, USA

{mii5, dl575, gs272}@cornell.edu

ABSTRACT
Worst-case execution time (WCET) analysis is a critical
part of designing real-time systems that require strict timing
guarantees. Data caches have traditionally been challenging
to analyze in the context of WCET due to the unpredictabil-
ity of memory access patterns. In this paper, we present a
novel register-indexed cache structure that is designed to be
amenable to static analysis. This is based on the idea that
absolute addresses may not be known, but by using rela-
tive addresses, analysis may be able to guarantee a number
of hits in the cache. In addition, we observe that keeping
unpredictable memory accesses in caches can increase or de-
crease WCET depending on the application. Thus, we ex-
plore selectively bypassing caches in order to provide lower
WCET. Our experimental results show reductions in WCET
of up to 35% over the state-of-the-art static analysis.

1. INTRODUCTION
Real-time systems are becoming increasingly prevalent as

our physical world continues to become more computerized.
One essential component to the design of real-time systems
is the analysis of the worst-case execution time (WCET) of
tasks. WCET analysis is used in many real-time scheduling
algorithms and is essential in providing timing guarantees.
As a result, a large amount of work has looked into reduc-
ing the WCET and providing accurate WCET estimates [1].
Low WCET allows for better utilization of the processor and
improved schedulability.

Data caches, which are widely used in modern comput-
ing systems, introduce a particular challenge in providing a
tight bound for the WCET. While caches often improve the
average-case performance by exploiting spatial and tempo-
ral locality, they cannot improve the WCET estimate unless
a cache access can be guaranteed to be a hit in all possi-
ble executions. As a result, the WCET analysis of caches
needs to consider all possible memory access patterns, and
its effectiveness is heavily dependent on the ability to predict
memory access patterns. While accesses to the instruction
cache are relatively easy to predict, accesses to the data
cache often depend on memory addresses that can only be
resolved at run-time. This makes it difficult to predict the
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worst-case performance of the data cache.
Although data cache analysis for WCET has been studied

[2, 3, 4, 5, 6, 7, 8, 9], existing techniques still result in overly
conservative worst-case performance, in particular because
of their inefficiency in handling memory accesses whose ad-
dresses cannot be predicted statically. Static cache analysis
methods need to be conservative and assume that an unpre-
dictable access can either evict any cache block or update
the recency (i.e., LRU) history of any set, which makes it
rather difficult to guarantee a hit on following accesses. Al-
ternatively, researchers have proposed to have unpredictable
memory accesses bypass caches. Yet, this approach can lead
to an excessive WCET estimate when there exists a large
number of unpredictable accesses because all unpredictable
accesses must pay the latency of accessing main memory.

In this paper, we present a new approach to improve
the worst-case performance guarantee for data caches by
designing cache hardware and its worst-case static analy-
sis together. Given that today’s WCET analysis cannot
effectively handle memory accesses with unpredictable ad-
dresses, we first propose a new auxiliary cache structure that
is specifically designed to enable worst-case analysis for un-
predictable addresses. We call this new cache structure a
register-indexed cache. Intuitively, the cache and its analy-
sis method exploit the observation that the spatial and tem-
poral locality between nearby memory accesses can often be
seen without knowing exact memory addresses. For exam-
ple, a program may access multiple elements in an array
using the same base address with different offsets. The new
cache is indexed by a register number instead of a memory
address, and allows static analysis of cache hits based on
temporal and spatial locality between memory accesses that
use the same register as a base address, even when the base
address is unknown.

In addition to the register-indexed cache, we also note that
using a fixed policy for unpredictable memory accesses to
either bypass or use data caches is suboptimal; the effective-
ness of bypassing a cache heavily depends on application
memory access patterns and the cache configurations of a
target system. For example, static analysis may be able to
guarantee cache hits for memory accesses to an array for
a large cache, but not for a small cache. For the lowest
possible WCET guarantee, memory accesses need to be se-
lectively bypassed based on whether the accesses lead to an
improved static estimate of the worst-case performance for
a given access pattern and cache configuration combination.

We evaluated our selective bypassing technique on vari-
ous benchmark programs and found that we can improve
the WCET by up to 24.3% over the state-of-the-art static
analysis. Additionally, experimental results show that we
can reduce the WCET by up to 35.3% by including both



selective bypassing and the register-indexed cache for un-
predictable memory accesses.

This paper has the following main contributions:

• The paper presents a novel cache structure along with
an analysis algorithm that can allow guaranteed cache
hits in static analysis even for memory accesses whose
addresses are considered statically unpredictable.

• The paper notes that, in order to reduce the WCET,
memory accesses should selectively bypass data caches
based on how they affect the static analysis results.

• The paper evaluates the proposed schemes and shows
that they can significantly reduce the WCET guaran-
tee on certain applications.

This paper is organized as follows. Section 2 presents
related work. Section 3 presents details of the proposed
framework. Section 4 evaluates the proposed methodology
and Section 5 concludes the paper.

2. RELATED WORK
To the best of our knowledge, there is no previous work

that presents a cache structure that can be statically ana-
lyzed to ensure hits on accesses with unpredictable memory
addresses. Previous work has also only explored a fixed pol-
icy for cache bypassing whereas we show that selective by-
passing depending on static analysis is important to achieve
low WCET guarantee. This section briefly summarizes pre-
vious work on data caches in the context of WCET.

Hard real-time systems often use scratchpads [10, 1, 11,
12] instead of data caches in order to have predictable mem-
ory access time while utilizing low-latency on-chip memory.
However, scratchpads require software to explicitly man-
age data movement between on-chip and off-chip memory.
These data movement instructions lead to additional over-
head that does not exist for caches, and also imply that
programs need to be re-compiled for each system depend-
ing on their scratchpad size. As a result, data caches that
can be transparently used for many programs still represent
an attractive option if their worst-case performance can be
tightly bounded.

For the purposes of using caches in hard real-time systems,
there has been extensive work on static analysis techniques
that aim to predict memory addresses and model the worst-
case cache performance. These techniques include abstract
interpretation [8], persistent analysis [6], scope-aware analy-
sis [3], and unified multi-level cache modeling [2]. While the
static analysis techniques can often accurately predict cache
misses and hits for memory accesses with known addresses,
they remain overly conservative for accesses with unknown
addresses. Typically, the analysis treats an unknown access
as a cache flush in order to account for a potential cache
eviction and a change to the LRU history. In this paper, we
augment the static cache analysis to selectively bypass un-
predictable accesses to obtain a better worst-case guarantee.

In addition to simply analyzing existing caches, cache op-
erations can be slightly changed in order to provide better
worst-case bounds. For example, Lundqvist and Stenström
[13] proposed to bypass memory accesses to unpredictable
data structures and showed more than a factor of two im-
provement on worst-case performance for data caches. Addi-
tionally, they also empirically observed that in the SPEC95
benchmark suite 84% of data accesses are predictable and
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Figure 1: Overview of selective cache usage and bypassing
based on memory access types.

quantified the effect of bypassing the cache on all unpre-
dictable memory accesses [14]. However, these bypassed ac-
cesses always suffer the full latency to main memory and
can negatively impact the worst-case execution time in some
cases. This paper proposes to bypass selectively and intro-
duces a new register-indexed cache that can reduce the num-
ber of worst-case cache misses for unpredictable accesses.

Cache locking [15, 11] has also been proposed as a way
to mitigate the effects of unpredictable memory accesses
on worst-case cache performance. By locking certain cache
blocks, accesses to those blocks can easily be analyzed with-
out considering unpredictable memory accesses. However,
cache locking does not help memory accesses such as un-
predictable ones that are not explicitly locked, and requires
explicit locking instructions that need to be inserted in a
program, which reduces the transparency of caches.

3. WCET-AWARE CACHE DESIGN
3.1 Overview

In this section, we present our cache design that is tar-
geted to provide a low WCET bound. While reducing the
WCET by itself is important, our main goal is to optimize
the worst-case performance that can be statically analyzed
and guaranteed. The static analysis predicts cache opera-
tions based on the static knowledge of memory access pat-
terns that are obtained through symbolic execution. As a
result, the effectiveness of static analysis often depends on
how predictable memory accesses and their addresses are.
In this context, our scheme categorizes memory instructions
based on their predictability and analyzability, and applies
different techniques to obtain the worst-case performance for
each type. The overall scheme is shown in Figure 1.

We can first separate memory instructions into ones whose
data address can be determined statically and ones whose
address is unknown without run-time information. For the
instructions with known memory addresses, the only source
of non-determinism in cache analysis across runs is through
convergence of control flows with different cache states. To-
day’s static analysis algorithms can model such accesses
rather accurately and provide a reasonable bound on the
worst-case performance. Therefore, our scheme places these
accesses in a normal data cache and uses static analysis to



obtain the worst-case bound. We note that this class of in-
structions can also include instructions where the address is
based on induction variables.

On the other hand, addresses for some memory instruc-
tions cannot be determined statically. For example, memory
accesses whose address depends on input values cannot be
precisely known until run-time. We categorize these memory
instructions with unknown addresses into two types: ones
whose address range is known and small enough to fit into
the target cache, and the rest.

Although the specific address of a memory access may
not be known, for some accesses, it is possible to bound the
access to a range of addresses. For example, an instruction
may access a global array, whose length is known and whose
address can be obtained from the symbol table of the binary.
In this case, although the index of an array access may not
be known statically, the address range of this instruction
can be bounded to the memory range of the array. If this
range of addresses can fit in the cache, then static analysis
may be able to use this information and lower the WCET.
In fact, today’s state-of-the-art static analysis [3] can indeed
guarantee cache hits for certain accesses to a global variable
within a predictable range.

However, not all memory accesses with a known range lead
to better worst-case cache performance when included in the
static analysis of a traditional cache. For example, accesses
to global variables with large ranges can introduce extra
conservatism in the static analysis. Because these accesses
may map to multiple cache sets, the static analysis needs
to assume that they can pollute many cache sets, effectively
evicting many cache blocks that a program may access later.
As a result, depending on the memory access pattern of a
program and the cache size, using the data cache for memory
accesses with a known range may or may not lead to a better
WCET bound.

Therefore, our scheme selectively bypasses these memory
accesses by comparing the static analysis result for cases
with and without them. If the static analysis results in less
cache misses without these accesses, the memory instruc-
tions are marked to bypass the normal cache and instead
use the register-indexed cache, described in the next subsec-
tion. The bypass information is encoded as a single-bit tag
per memory instruction and is used by the processor at run-
time. In our current implementation, the bypass decision
is made at a coarse grain; we either bypass all instructions
with an unknown address but a known range or include all
of them in the normal cache analysis. We note that this
decision can be made at a finer granularity (i.e., instruction
level). However, we found that even a coarse-grained deci-
sion can result in noticeable improvements to the WCET.

Finally, there exists memory instructions whose addresses
cannot be determined or restricted at all statically. For these
instructions, we always bypass the data cache and instead
use the special register-indexed cache. The cache behav-
ior of these instructions is particularly difficult to analyze
statically because the data could potentially be placed in
any cache set. The static analysis needs to assume that
these accesses may evict a block in any set or change the
LRU history, which leads to unpredictable replacement in
the future. To be safe, today’s static analysis techniques
effectively flush the cache on such an unpredictable mem-
ory access, leading to an overly conservative estimate of the
worst-case performance. Therefore, bypassing memory in-

ld r1, 0(r2) ; addr in r2 unknown

…

; Computation that does not modify r2

…

ld r3, 0(r2) ; mem[r2] can be predicted as hit

addi r2, r2, 4

ld r4, 0(r2) ; mem[r2 + 4] can be predicted as hit

Figure 2: Accesses which can be predictably cached despite
unknown addresses.
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Figure 3: Block diagram of the register-indexed cache.

structions with unknown memory addresses almost always
improves the worst-case bound that the static analysis can
provide.

3.2 Register-Indexed Cache
Here, we present our new cache structure, named register-

indexed cache, which is designed to lower the WCET for
memory accesses with unpredictable addresses. We first de-
scribe the intuition, then show the cache structure and its
operations, and finally discuss the static analysis for the pro-
posed cache.

For memory accesses to unpredictable addresses, it may
still be possible to cache some of these accesses to have pre-
dictable hits with a static guarantee. Specifically, we found
that although the memory address of an initial access may
be unknown, subsequent accesses using the same register as
the base address may be statically analyzed. For example,
consider the code shown in Figure 2. In this example, the ad-
dress value in r2 cannot be determined statically. However,
if r2 is not modified, then subsequent loads from address r2
can be predicted to hit in a cache structure. Similarly, spa-
tial locality can also be exploited if the offset from the initial
unknown address is within a cache line. In the example, if
the cache line for address r2 includes r2 + 4, then the sub-
sequent access to r2 + 4 can be predicted as a hit. In order
to prevent pollution of the traditional data cache and to be
able to analyze these register-based predictable accesses, we
designed a novel register-indexed cache architecture.

3.2.1 Cache Architecture
Figure 3 shows a block diagram of our register-indexed

cache design. The basic idea is to index into the cache us-
ing the base address register number as opposed to using
a portion of the memory address. For example, consider a
memory instruction of the form: ld r1, off(r2). Since r2

is the base address register, the value 2 is used as the index
into the cache.

Cache lines are typically larger than one word in order to
exploit spatial locality. In traditional caches, a cache block
stores a chunk of data with a fixed memory alignment no



0: lui r1, ADDR

1: addi r1, r1, 4

2: ld r2, 0(r1)

3: ld r3, 8(r1)

4: addi r1, r1, 20

5: ld r4, 8(r1)

6: lui r1, ADDR2

0 -

DataTagValid

r1 -

0 -r1 -

1 mem[ADDR+4 : ADDR+19]r1 ADDR+4

1 mem[ADDR+4 : ADDR+19]r1 ADDR+4

1 mem[ADDR+4 : ADDR+19]r1 ADDR+4

1 mem[ADDR+32 : ADDR+51]r1 ADDR+32

0 -r1 -

Miss

Hit

Miss

Figure 4: Example of register-indexed cache operation.

matter which part of the block is accessed on a cache miss.
For example, a cache with 32-byte blocks will always be
aligned to 32-byte blocks in memory. However, given un-
predictable base addresses, this construction does not allow
static analysis to detect cache hits based on spatial locality;
the static analysis cannot guarantee whether other accesses
with a different offset will hit or not. For example, for the
code example in Figure 2, if r2 points to a location at the
end of a memory-aligned block, then r2 + 4 will be a cache
miss. On the other hand, if r2 points to the start of a
memory-aligned block, then r2 + 4 will be a cache hit. In
order to enable static analysis of spatial locality in the worst-
case, a cache block in the register-indexed cache is aligned
to the memory address that initially loads the cache block.
In the code example, a 32-byte cache block will store a 32-
byte chunk starting from the location pointed by r2. This
implies that a miss on the register-index cache may require
two reads from memory in order to fill the cache line.

Since cache lines are not memory-aligned, the stored tag
cannot simply be the most significant bits of the memory
address. Instead, the tag is the full address of the first byte
stored in the cache line. On a cache access, the memory
address of the access is checked against the address range
between the tag as the base and the tag plus block size as
the bound to determine whether the access is a hit or miss.

One issue that arises with the register-indexed cache is
that a memory location could be found in multiple cache
lines. In order to handle this aliasing, on a write to the
register-indexed cache, all cache lines are checked to see if
they contain the address being written to. Any lines that
include the address are updated with the new value. Since
all cache lines are kept up-to-date, no modification is needed
when reading to account for aliased locations. Note that
the register-index cache only has a small number of cache
blocks, one for each register that can be used as a memory
base address. By assuming a write-through policy in our
design, cache lines can be updated in parallel with the write
to memory. For example, updating two lines per cycle allows
us to update 32 cache lines in the register-indexed cache
within 16 cycles which is faster than the worst-case access
time of main memory. This allows us to simply use the
worst-case latency of a write to memory when analyzing
store instructions.

3.2.2 Run-Time Operation
Figure 4 shows an example of how the register-indexed

cache operates. The left side shows a series of instructions
and the right side shows the state of the cache line corre-
sponding to architectural register r1 after each instruction.
For this example, we assume a cache with a block size of
four words (16 bytes) and one cache block per register. On

0: lui r1, ADDR

1: addi r1, r1, 4

2: ld r2, 0(r1)

3: ld r3, 8(r1)

4: addi r1, r1, 20

5: ld r4, 8(r1)

6: lui r1, ADDR2

0 -

DataTagValidDelta

r1 0 r1 -

0 -r1 4 r1 -

1 mem[4 : 19]r1 4 r1 4

1 mem[4 : 19]r1 4 r1 4

1 mem[4 : 19]r1 24 r1 4

1 mem[32 : 51]r1 24 r1 32

0 -r1 0 r1 -

Miss

Hit

Miss

Figure 5: Example of WCET analysis for register-indexed
cache.

instruction 0, an unknown address is loaded into r1. This
causes the r1 cache line to be invalidated. Instruction 1

increments r1 so the address for instruction 2 is ADDR + 4.
Instruction 2 uses r1 as the base address which indexes into
the r1 line of the register-indexed cache. Currently, this line
is invalid so the access is a miss. The block of memory from
ADDR + 4 to ADDR + 19 is loaded in the cache line and the
tag is set as ADDR + 4.

Instruction 3 performs a load from ADDR + 12 using reg-
ister r1. This address falls in the range that is stored in the
cache line and so the access is a hit. Instruction 4 increments
r1 to ADDR + 24. Thus, the load for instruction 5 accesses
memory location ADDR + 32. This does not fall within the
range stored in the cache line so the access is a miss. The
cache line is evicted and replaced with the data from ADDR

+ 32 to ADDR + 51. Finally, instruction 6 loads a new un-
known address into r1. Since this will be unpredictable in
analysis, we also invalidate the cache line.

3.2.3 WCET Analysis
The register-indexed cache was designed to capture mem-

ory accesses to statically unpredictable addresses. Thus, a
major challenge in analyzing its worst-case performance is
determining its hit/miss pattern without having information
about absolute memory addresses. However, it is possible
to analyze the cache access pattern by tracking relative ad-
dresses from an initial unknown register value. In order to
perform this analysis, we introduce the idea of delta values.

The static analysis maintains a delta value for each archi-
tectural register. Whenever an unknown value is loaded into
a register, the delta value of that register is reset to 0 and the
corresponding cache line is invalidated. On increments and
decrements to the register, the delta value is updated to rep-
resent the relative address from the initial unknown value.
When this register is used as the base address on a miss to
the register-indexed cache, the cache line that is brought in
is associated with the current delta value of the register plus
the memory instruction offset. That is, rather than storing
an absolute tag address, which is unknown at analysis time,
the relative address (delta + offset) is stored instead. On
subsequent accesses to the register-indexed cache, the anal-
ysis checks whether the current delta value plus memory
instruction offset resides within the range of the cache line.

Figure 5 revisits the code example from Figure 4 in or-
der to show the WCET analysis. Note that this example
essentially shows a symbolic execution in the static analy-
sis. The left side shows the sequence of instructions and the
right side shows the delta value and analyzed cache state
corresponding to register r1. The analysis does not actually
load data values into the cache state but the data field is



Instruction Type WCET Analysis
Load Reset delta; Invalidate cache line
Inc./Dec. by known value Update delta
Inc./Dec. by unknown value Reset delta; Invalidate cache line
Other ALU Ops Reset delta; Invalidate cache line

Table 1: WCET analysis of register-indexed cache.

shown here to represent the range of relative memory ad-
dresses that analysis knows to be in the cache. When the
initial unknown address is loaded into r1, delta for r1 is re-
set to 0 and the corresponding cache line is invalidated. On
instruction 1, when r1 is incremented, delta is updated to
4. Thus, on the load at instruction 2, the “tag” stored is the
relative address of 4. With this, the analysis is able to rec-
ognize that instruction 3, which accesses a relative address
of 8, will result in a hit in the cache. Instruction 4 again in-
crements r1, so its delta value is updated to 24. This causes
the load for instruction 5 to miss in the cache since it now
accesses the relative address 32 (delta + offset). On this
miss, it evicts the old cache block and updates its tag to
represent that the cache block starts at relative address 32.
Finally, instruction 6 shows another unknown address being
loaded into r1 which forces the analysis to reset the delta
value for r1 and invalidate the cache line.

Table 1 outlines the operations that the analysis performs
on each instruction type. For increments and decrements by
statically known values (e.g., addi, subi), the analysis up-
dates the delta value of the appropriate register. However,
if the increment/decrement is by an amount that cannot be
statically determined, the WCET analysis must conserva-
tively reset the delta register and invalidate the cache line.
Similarly, for other ALU operations such as shifts and log-
ical operations where the delta value would depend on the
register value, the analysis conservatively resets delta and
invalidates the cache line.

In static analysis, we must also handle the case of merg-
ing control flows for different execution paths. We use the
following criteria to ensure correct worst-case behavior:

1. Do any of the incoming basic blocks perform an inval-
idation?

2. Is there a mismatch between the delta values?

If the answer to any of the above questions is a yes, then
we reset the delta and assume that the cache line is invalid.
Otherwise we merge the cache state in a similar way to tra-
ditional analysis methods (i.e., taking the intersection of the
states accounting for proper LRU behavior).

Intuitively, the first question captures the case where only
a subset of control paths perform an invalidation. To flatten
the state, we propagate all invalidations through multiple
paths in the control flow graph. For loops, we only consider
the pre-head basic block in the first iteration. For other
iterations, only the basic blocks in the loop are considered.
The second question captures the case where one register can
have multiple possible values depending on the control flow.
By performing an invalidation on a mismatch, we can flatten
the state for the cache line corresponding to the register.

4. EVALUATION
4.1 Experimental Setup

In order to evaluate our design, we compared the WCET
estimate from our framework with the WCET of two state-
of-the-art techniques: today’s static analysis techniques with

and without simple cache bypassing where all unpredictable
accesses are bypassed to memory. We use Chronos [16],
an open source WCET analysis tool, as our baseline static
analysis tool. We modify Chronos to evaluate the simple
bypassing as well as our selective bypassing scheme. We
also implement the analysis for our register-indexed cache in
Chronos by modifying the symbolic analysis to track deltas,
tags, and invalidations corresponding to each register. We
did not see significant increases in analysis time due to our
modifications.

We evaluated our scheme using a subset of programs from
the MiBench [17] and the Mälardalen [18] suites. By default,
these benchmarks have a fixed input set and their memory
access pattern is deterministic across runs. In order to eval-
uate unpredictable accesses, we modified the benchmarks to
be analyzed with unknown input variables. This is more
representative of real-world applications where input values
will not be known until run-time. Some benchmarks did not
show any unpredictable memory accesses, even with modify-
ing the input variables, and so we do not show their results.
Other benchmarks proved too complex to port and success-
fully execute within a reasonable analysis time even without
our modifications to Chronos and thus are omitted.

For the baseline hardware, we assume a 5-stage in-order
processor with single-level L1 instruction and data caches
with 30 cycle miss penalties. For the cache configuration,
we used specifications similar to the ARM R5 processor.
The instruction cache is a 2-KB 2-way set-associative cache
with 32-byte cache lines. The data cache is an 8-KB 4-
way set-associative cache with 32-byte cache lines. For our
register-indexed cache design, we also use 32-byte blocks and
assume a 30 cycle miss penalty. Because the blocks are not
memory-aligned, register-indexed cache misses may require
two memory requests. To limit the miss penalty, we assume
that the register-indexed cache returns data after the first
memory request completes so that the execution can resume.
With 32 architectural registers, the capacity of the register-
indexed cache is 1 KB. We assume a write-through cache
policy to simplify the analysis, which is common for studies
on the worst-case cache analysis.

Based on a first-order estimate from CACTI [19] assuming
a 40nm technology node, the area overhead of the register-
indexed cache compared to the data cache is 15.3%. Sim-
ilarly, the power overhead of the register-indexed cache is
12.0% compared to the data cache.

4.2 Selective Bypassing
We first run the analysis with just selective bypassing. All

accesses which are bypassed go directly to memory. Since
our selective bypassing balances between the overly conser-
vative cache analysis and the long latency of bypassing, we
achieve the same or better WCET for all benchmarks com-
pared to the static analysis. Figure 6 shows the WCET
results for different techniques normalized to the baseline
Chronos. Even with a coarse-grain decision of whether to
bypass or not, we find that selective bypassing can improve
the WCET by as much as 24.9%. We also note that the
simple bypassing policy can lead to a significant overhead
for certain benchmarks (up to 84% overhead).

4.3 Register-Indexed Cache
Next, we evaluate using our register-indexed cache in the

bypass path. The results show that the register-indexed
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Figure 6: WCET with selective bypassing and register-indexed cache.

cache combined with the selective bypass can improve the
WCET by as much as 35.3% compared to today’s static
analysis method. We inspected benchmark binaries to un-
derstand the sources of the improvements, and found that
the benchmarks with a large number of accesses with un-
known addresses that incremented in a loop showed the most
improvements for the register-indexed cache.

Finally, we note that different cache configurations and
memory latencies may yield different results. For example,
increasing the block size of the register-indexed cache can
further improve the results. We found that the best WCET
improvement increased to 39.9% and 42.2% for 64-byte and
128-byte blocks. In addition, increased memory latencies
highlight the need for predictable caching. For example,
we found that with a doubled memory latency, the WCET
improvement increased to up to 38.5%.

5. CONCLUSION
In this paper, we presented a framework to improve the

worst-case performance guarantee for caches in real-time
systems. Our approach uses selective bypassing of certain
memory instructions along with a new register-indexed caching
structure that can improve the memory access time of in-
structions whose memory addresses are unknown statically.
Applying these two techniques, our results show up to 35.3%
improvements in WCET.
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