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ABSTRACT
Many mobile applications utilize hardware accelerators
for computation-intensive tasks. Often these tasks in-
volve real-time user interactions and must finish within
a certain amount of time for smooth user experience. In
this paper, we propose a DVFS framework for hardware
accelerators involving real-time user interactions. The
framework automatically generates a predictor for each
accelerator that predicts its execution time, and sets a
DVFS level to just meet the response time requirement.
Our evaluation results show, compared to running each
accelerator at a constant frequency, our DVFS frame-
work achieves 36.7% energy savings on average across a
set of accelerators, while only missing 0.4% of the dead-
lines. The energy savings are only 3.8% less than an
optimal DVFS scheme. We show with the introduction
of a boost level, the deadline misses can be completely
eliminated while still achieving 36.4% energy savings.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Heterogeneous
(hybrid) systems

Keywords
DVFS, energy efficiency, hardware accelerator

1. INTRODUCTION
Modern mobile SoCs often contain a large number

of hardware accelerators/IP blocks, such as audio and
video codecs, camera/image signal processor, gestures/
motion processor, etc [1]. Analysis of die photos from
recent generations of Apple SoCs indicate that more
than half of the die area is used by blocks other than the
CPU and GPU [2, 3]. The majority of these blocks are
hardware accelerators. Mobile applications use hard-
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ware accelerators to enable features that are computa-
tionally intensive and thus not energy-efficient or infea-
sible to run on traditional CPUs, such as high-definition
video playback/recording, image signal processing, etc.

Although more energy-efficient than CPUs, the power
consumption of hardware accelerators is becoming a
concern as consumer markets demand ever more fea-
tures and performance, such as 4K video and multi-
megapixel cameras. For example, a recently published
video codec [4] has an area of 2.16mm2 in 28nm pro-
cess and consumes 126.73mW. In comparison, the ARM
Cortex-A7 has an area of 0.45mm2 and consumes less
than 100mW of total power in typical conditions [5].
Accelerators are also heavily used in next-generation
wearable devices such as smart eyeglasses for augmented
reality applications [6,7]. Due to the compute-intensive
nature of augmented reality algorithms, these heavy-
weight accelerators consume considerable power, often
greater than 400mW, resulting in less than 6 hours op-
eration time with a 2.1Wh battery [6]. In addition to
ASIC accelerators, FPGA-based accelerators are being
deployed to accelerate various applications. For exam-
ple, FPGAs used to accelerate the Bing web search en-
gine consumes up to 22.7W per chip [8]. It is desirable
to reduce the energy consumption of hardware accel-
erators, which could extend the battery life of mobile
devices, or reduce the cooling and power distribution
costs of datacenters.

Applications using hardware accelerators often have
response time requirements, usually because they are
interactive or frame-based. Interactive applications are
required to respond to user inputs by a certain dead-
line for responsiveness. Frame-based applications need
to render each frame before the screen refresh deadline,
otherwise the frame will be dropped, and the applica-
tion will feel sluggish. In both cases, meeting response
time requirements is essential for good user experience.
On the other hand, finishing tasks earlier than the re-
sponse time requirements does not improve user expe-
rience due to the limits of human perception.

Today’s software/hardware abstractions do not offer
applications an easy way to express their timing require-
ments. As a result, the hardware accelerators/IP blocks
are usually agnostic to the timing requirement of the
applications, and operate in best-effort mode. When
there is a high variation in the workload, the hardware



accelerators need to operate conservatively to make sure
they meet deadlines even in the worst-case. This means
they often run at unnecessarily high performance levels
compared to what is needed to meet deadlines in the
average case, which leads to wasted energy. In other
words, there often exists slack in interactive or real-
time applications, which can be exploited to improve
energy-efficiency by lowering the performance level of
the system, using techniques such as dynamic voltage
and frequency scaling (DVFS).

Various techniques exist for exploiting such slack in
the software part of applications, using either reactive
approaches [9–13] or predictive approaches [14–17]. How-
ever, exploiting slack to inform fine-grained DVFS has
not been studied much for hardware accelerators. A
previous study considered performing DVFS for smart-
phone applications that use hardware accelerators [18],
but it assumed accelerators had constant execution time
independent of inputs. However, many accelerators show
significant input-dependent variations in execution time.

In this paper, we present a predictive approach to
control the DVFS levels of hardware accelerators at fine
granularity, exploiting input-dependent variations. We
observe that input-dependent control decisions are the
major source of execution time variations. A good esti-
mate of an accelerator’s execution time can be obtained
if its control decisions for a certain input are known. In
order to do this, we propose an automatic flow to gen-
erate a minimal version of a hardware accelerator from
its RTL description, which computes the control deci-
sion features given an input. A model based on convex
optimization is developed and trained to map these fea-
tures to the accelerator’s execution time. From that,
we estimate the lowest DVFS level that meets real-time
requirements, set a DVFS level, and run the accelerator.

Our approach is general and applicable to a wide
range of hardware accelerators. We implemented and
tested this predictive DVFS framework on a number of
accelerators including video decoding, image processing,
encryption, physics computation, etc. Our results show
the proposed DVFS scheme achieves 36.7% energy sav-
ings compared to running each accelerator at a constant
frequency. Comparing with a PID-based DVFS con-
troller, predictive DVFS reduces deadline misses from
10.5% to 0.4% while being 4.3% more energy-efficient.
The contributions of this paper are:

1. A look-ahead approach to control DVFS that uses
metrics from upcoming workloads instead of look-
ing at workload history.

2. An automated flow to extract features that affect
execution time from RTL description of hardware
accelerators, and a model based on convex opti-
mization to map features to execution time and
consequently the best DVFS level to use.

3. An automated flow to generate low-cost hardware-
based predictors using hardware slicing techniques.

The rest of this paper is organized as follows. Sec-
tion 2 discusses execution time variations in hardware
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Figure 1: A sequence of jobs for a task.

accelerators and existing DVFS controllers. Section 3
describes our predictive DVFS framework, including the
features used, prediction model, method to generate the
predictor, and DVFS model. We also include a case
study on using the framework for an example acceler-
ator. Section 4 discusses our evaluation methodology,
experimental setup, and evaluation results. Section 5
discusses related work, and Section 6 concludes the pa-
per.

2. FINE-GRAINED DVFS FOR HARDWARE
ACCELERATORS

2.1 System Setup
The system we consider in this paper consists of pro-

cessor cores, caches, main memory, and hardware accel-
erators. The cores and accelerators are loosely coupled.
The accelerators access memory through DMA instead
of going through the processor’s cache. Each accelerator
contains computation logic, and often internal scratch-
pad memories to store the working set. We assume each
accelerator’s DVFS level can be controlled individually.

2.2 Tasks and Jobs
Here we define some terminologies used in this paper.

A task is a piece of work that has an associated deadline.
For example, for a video player, decoding and rendering
a frame is a task. In this case, the deadline associated
with a task is determined by the frame rate of the video.
A job is a dynamic instance of a task. For example,
decoding a video at 60fps executes 60 jobs every second.
Figure 1 shows a sequence of jobs for a task.

2.3 Execution Time Variation
The execution time for each job can vary depending

on the job’s input. For example, Figure 2 shows the
execution time for a hardware H.264 decoder when de-
coding three video clips of the same resolution. We can
see that even though all frames have the same resolu-
tion, there is a large variation in job execution time
for frames in different videos, or even between frames
in the same video. The reason for such large execu-
tion time variations is that for each frame, depending
on the content in it, the H.264 algorithm chooses differ-
ent modes to encode each macroblock in a frame, which
leads to different computation complexity for decoding,
and thus different execution time. Note that if we take
into account videos of different resolutions, the execu-
tion time variation will be even larger. If we can lower
the frequency for frames with shorter execution time,
significant energy savings can be achieved.

However, setting an appropriate DVFS level for each
job is not easy. The large and irregular variations in
workload make it difficult to predict the next job’s ex-
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Figure 2: Execution time of H.264 decoder for three
video clips at 60fps. Each point is one job (frame).

ecution time. Without accurate prediction, the DVFS
controller has to be conservative and use higher DVFS
levels to avoid deadline misses, missing opportunities
for energy reduction. Otherwise, the DVFS controller
risks missing deadlines when there is a sudden increase
in job execution time.

2.4 Current Approaches to DVFS
DVFS is widely used for reducing the energy of com-

putation. The key idea of DVFS is to reduce voltage and
frequency to provide “just enough” performance to the
application. An important part of a DVFS controller
is the prediction of future workload, which allows the
voltage and frequency to be lowered to the minimum
required level while satisfying QoS requirements.

For applications without response time requirements,
simple interval-based scheduling algorithms [19] can be
used. These algorithms usually divide time into fixed-
length intervals and measure the utilization of the pre-
vious interval and set DVFS level for the next inter-
val. Since response time is not a requirement, some
level of performance degradation caused by workload
misprediction can be tolerated. These algorithms are
widely used in operating systems. For example, the
Linux power governors [9] are interval-based.

For applications with response time requirements, mis-
prediction has to be minimized since it degrades quality-
of-service. There are many approaches in literature and
industry practice to perform DVFS under response time
requirements. The following summarizes approaches
that can be applied to hardware accelerators.

Table-based: Some hardware accelerators, includ-
ing the Multi-Format Codec (MFC) in Samsung Exynos
Series SoCs, use a lookup table to determine the DVFS
level [20]. The table is addressed by a coarse-grained
parameter, such as the resolution of a video. Before de-
coding a video, the driver will look into the table and
set a DVFS level for the entire video sequence. People
have also studied using the type of frames as inputs to
the table [21]. However, these approaches do not take
into account fine-grained job-to-job execution time vari-
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Figure 3: Actual execution time and execution time
predicted by PID controller for H.264.

ations. Essentially, these approaches set DVFS levels to
the worst case for that coarse-grained parameter used
to index the table. As can be seen in Figure 2, though
all jobs have the same coarse-grained parameter (reso-
lution in this case), most jobs have much shorter execu-
tion time than the worst-case. Thus the coarse-grained
approach misses opportunities for energy reduction.

Reactive Control: A number of previous studies
proposed using reactive control approaches to adjust
DVFS levels. Some studies investigated using job ex-
ecution time history to predict future job execution
time, and set DVFS levels accordingly [10, 18]. Others
proposed using control theory-based approaches, such
as PID control [11–13]. Most of these studies target
software-based systems, but some of them also consider
hardware accelerators [18, 21]. These approaches are
simple to implement, and work well for applications
whose execution time varies slowly with time. How-
ever, many applications and accelerators do not fall
into this category. For applications with rapid changes
in job-to-job execution time, reactive decisions to ad-
just DVFS levels tend to lag behind actual changes,
leading to deadline misses. Figure 3 shows an example
how a PID-based controller mis-predicts job execution
time for H.264 video decoding. When actual execution
time shows spikes occasionally, the PID controller’s pre-
diction lags behind by one frame, causing one under-
prediction and one over-prediction, which leads to one
job missing deadline and one job running at unnecessar-
ily high frequency around the spike. Apart from lagging
behind in decision making, reactive control approaches
can not be applied in some cases. For example, when
browsing a website, the images sent to the JPEG de-
coding accelerator usually do not show correlation with
previous or next images, rendering any reactive control
approaches ineffective.

Predictive Control: There have been a few stud-
ies that looked at using predictive approaches to pre-
dict execution time and set DVFS levels accordingly.
The target applications include interactive games [14],
video players [22], web browsers [15,16] and servers [17].
Predictive control has been shown to outperform reac-
tive control for these applications. However, all of these
studies target software-based systems. Moreover, these
approaches use application-specific features for predic-
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Figure 5: Accelerator with execution time prediction-
based DVFS.

tion, which require domain-specific knowledge to ob-
tain. Predictive control of DVFS for hardware acceler-
ators is largely unexplored. As more and more hardware
accelerators are deployed in applications today, it is nec-
essary to take them into account in controlling DVFS.
In this paper, we propose a predictive DVFS framework
for hardware accelerators. In addition, our prediction
framework uses features automatically extracted from
hardware, which eliminates the need for domain-specific
knowledge in obtaining features.

3. PREDICTIVE DVFS FRAMEWORK FOR
HARDWARE ACCELERATORS

In this section, we propose a framework for control-
ling accelerator DVFS based on execution time predic-
tion. At high level, our goal is to predict the lowest
DVFS level each job can run at without violating re-
sponse time requirements. This can be done in two
steps: first, we predict the execution time for each job
at a nominal frequency (i.e. without doing DVFS). Af-
ter that, we predict what the execution time would be
at each DVFS level, and choose the lowest level that
meets response time requirements.

Figure 4 illustrates how accelerators operate with pre-
dictive DVFS. For each job, a predictor is run first to ob-
tain an estimate of the execution time of the job. Then
the best DVFS level is set according to predicted exe-
cution time. After frequency and voltage change stabi-
lizes, the accelerator’s main logic starts execution. Fig-
ure 5 shows the block diagram of an accelerator with
execution time prediction-based DVFS. For each job,
the predictor informs the clock generator and voltage
regulator the frequency and voltage to be used. Ac-
cess to the scratchpad memory is time-multiplexed be-
tween the predictor and the main computation logic.
Although in our implementation the predictor directly
controls DVFS circuitry, the control can also be done
in software through the operating system.

We have the following design goals:

Control Unit
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Request Response

Data In Data Out

Accelerator Logic

Figure 7: Control-Datapath structure of an accelerator.
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Figure 8: Example Finite State Machine in control unit.

• Look-ahead: Instead of reacting to changes in job
execution time, the DVFS controller looks ahead
into upcoming jobs and predicts what the execu-
tion time would be before actually running the
jobs.
• General: The DVFS framework should be general

and applicable to a wide range of accelerators. To
this end, the framework does not use application-
specific knowledge.
• Automated: The DVFS controller should be gen-

erated by an automated flow with minimal manual
effort.
• Low overhead: The DVFS controller should have

low overhead in terms of area and energy, or in-
creased design complexity.

Figure 6 shows the high-level flow for our DVFS frame-
work based on execution time prediction. It consists of
two parts. The offline part works during the design pro-
cess of the accelerator to generate the predictor. The
online part shows the operation of the predictor during
accelerator execution.

Although we only investigate DVFS in this paper,
this approach can also be applied to other methods for
performance-energy trade-off, such as dynamically re-
configuring accelerators to different performance-energy
points, etc.

3.1 Source of Execution Time Variation
In Section 2.3, we showed that accelerators can have

significant input-dependent execution time variations.
Here we describe where these variations come from. Fig-
ure 7 shows a typical high-level structure of an acceler-
ator. It mainly consists of two parts: control unit and
datapath. The control unit is responsible for handling
requests and responses, as well as orchestrating com-
putation in the datapath by generating various control
signals. The datapath performs computation on the
input data to generate the output, and also generates
various signals for the control unit to make decisions.
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Figure 6: Execution time prediction flow.

The control unit is usually composed of one or more
Finite State Machines (FSMs). Figure 8 shows an ex-
ample FSM from the control unit of an accelerator. In
state S1, the accelerator reads a piece of input data.
Then, depending on the value, the FSM transitions to
either state S2 or S3 to perform computation. When
computation is done, the FSM transitions to state S4
to generate an output, then transitions back to S1 to
process the next input. The computation in state S2
and S3 can take different number of cycles (for exam-
ple, 50 and 100 respectively). This is the major source
of execution time variation.

A job usually uses multiple inputs. For example, an
image consists of multiple macroblocks. If we know the
decisions made by the control FSMs when processing
each input, and the processing time of each computation
state, we can predict execution time, and consequently
the best DVFS level to run the job at.

3.2 Features from Hardware Accelerators
In this section, we describe the features we use to rep-

resent the decisions of the control unit. Here a feature
refers to a measurable property that can be extracted
during accelerator execution. We also show how these
features and the control decisions they represent corre-
late with execution time.

We observe that control unit decisions are embedded
in the state transitions of the control unit FSM. For
example, in Figure 8, a state transition from S1 to S2
means the control unit decides to perform some compu-
tation associated with state S2. If we count the number
of state transitions from S1 to S2, we can know the num-
ber of times computation associated with S2 has taken
place. Thus, we use state transition count (STC) as a
type of feature in our prediction model.

However, knowing state transition counts is not enough.
We also need to know how each state transition impacts
execution time of the accelerator. This can be divided
into two cases: If the latency of a computation state is
fixed, we can use statistical regression to figure out how
much time the computation takes given enough training
data. If the latency is variable depending on input, sta-
tistical regression can only estimate the average latency,
which is not enough to make good predictions. We ob-
serve that in this case, there is usually a counter to keep
track of whether the computation is finished. For ex-

Feature Source Granularity

STC FSM Each source-destination states pair
IC Counter Each counter

AIV Counter Each counter
APV Counter Each counter

Table 1: Summary of features in prediction model.

ample, when the computation starts, the control unit
sets the counter to the latency of the computation. In
each cycle the counter is decremented until it reaches
zero, signaling the end of computation. The range of
the counter correlates with the computation’s impact
on execution time. In a decrementing counter, range
can be obtained from the counter’s initial value. In
an incrementing counter, range can be obtained from
the counter’s final value before a reset. Thus, we use
several counter-related features: 1) initialization count
(IC), which is the number of times each counter is ini-
tialized. 2) average initial value (AIV), which is the
average value a counter is initialized to. 3) average pre-
reset value (APV), which is the average of a counter’s
final value before a reset. The last two features cap-
ture the range of each counter. Table 1 summarizes the
features we use in our prediction model.

3.3 Identifying and Obtaining Features
Manually annotating and modifying FSMs and coun-

ters in hardware accelerator designs would be too te-
dious and not feasible for large designs. Moreover, many
accelerators are third-party IPs and system designers
are not familiar with their internals. Thus, we propose
an automated approach to identify and extract such fea-
tures in hardware accelerators based on a static analysis
of RTL code of accelerators.

The first step of the analysis is to identify FSMs and
counters in the RTL, as these are the sources of fea-
tures. To achieve this, a behavioral RTL of hardware
accelerators is first transformed to a structural RTL us-
ing a synthesis tool. We use Yosys [23], which is an
open-source synthesis suite. After that, we use an algo-
rithm to find FSMs in the design based on techniques
from a previous study [24] on extracting FSMs from a
gate-level netlist. The algorithm works by analyzing the
RTL and look for specific structures related to FSMs.
Similar to identifying FSMs, counters are also identified
by RTL analysis.

The next step is to instrument the accelerator so that



it records feature values during its operation, as illus-
trated in the offline stage of Figure 6. This is done
through RTL analysis and instrumentation. For state
transition counts, we extract each FSM’s transition ta-
ble and compute the criteria for each state transition to
take place. For each source-destination pair, we instru-
ment the RTL to generate a signal whenever the tran-
sition criteria is met, and record the number of times
the signal is asserted using a register. With this, we
can simply read out the register’s value to get a state
transition count. Similarly, for initialization counts, we
compute the criteria for the counter to be initialized
and instrument the RTL to generate a signal when the
criteria is met. To keep track of an average initial value
and an average pre-reset value, we use registers which
are controlled by the initialization criteria. Note that
we do not actually have to calculate the average, it is
sufficient to record the sum of these values and the pre-
diction model will take care of scaling the values to ob-
tain average. All these steps are done automatically
without manual effort using our RTL analysis and in-
strumentation framework implemented inside the Yosys
open-source Verilog analysis and synthesis suite.

After instrumenting the accelerator, we run RTL sim-
ulations with a training set of job input data to obtain
the feature values as well as execution time for each job.

3.4 Prediction Model
After obtaining the features and execution time for

each job, we develop a model that takes feature values
and maps them to execution time. The model is then
trained using the feature values and execution time data
from training runs. We have the following design goals
for our prediction model: (1) Accurate prediction. (2)
Low overhead in terms of time, area, and energy. A
simple model which uses a small number of features
is preferred. (3) Conservative prediction, which means
when there is a trade-off to be made between a deadline
miss and less energy savings, the model should avoid
deadline miss even though it may use more energy.

With these design goals in mind, we use a linear
model to map feature values to execution time. Lin-
ear models are very simple to evaluate at runtime by
calculating the dot product of feature values and model
coefficients, which is just a series of multiply accumulate
operations. The linear model can be written as

ȳ = xβ

where ȳ is the predicted execution time, x is a vec-
tor of feature values, and β is a vector of model coeffi-
cients. Table 2 summarizes the variables in our predic-
tion model.

To train a linear model, the most common way is to
use a least squared error as a metric. That is, we try to
minimize the following term

minimize
β

‖Xβ − y‖2

However, this commonly used approach has major draw-
backs in the context of DVFS control: first, it uses all
feature values to calculate the target function, despite

Variable Type Description

ȳ Scalar Predicted execution time
x Vector Feature values
β Vector Model coefficients

y Vector Profiled execution times
X Matrix Profiled feature values

Xβ − y Vector Prediction errors

α Scalar Under-predict penalty weight
γ Scalar Number of terms penalty weight
‖ · ‖ Scalar L2-norm (Euclidean distance)
‖ · ‖1 Scalar L1-norm (sum of absolute values)

Table 2: Variables in prediction model.

the fact that only a few features are often sufficient to
predict the execution time. Second, this approach tries
to minimize both positive and negative errors. How-
ever, in the context of DVFS, it is more important to
minimize negative errors to reduce deadline misses.

To address the first issue, we use Lasso [25] to min-
imize the number of non-zero coefficients in our model
by adding a penalty term to our model:

minimize
β

‖Xβ − y‖2 + γ‖β‖1

where γ is parameter empirically determined to reduce
the number of non-zero coefficients without impacting
modeling accuracy too much. To address the second
issue, we separate positive and negative errors:

minimize
β

‖pos(Xβ−y)‖2+α‖neg(Xβ−y)‖2+γ‖β‖1

where pos(x) = max(x, 0) and neg(x) = max(−x, 0).
We set α > 1 to place more weight on negative errors.

It can be shown that the objective function we try to
minimize above is convex. Thus, we can use a convex
optimization solver to fit the model.

3.5 Hardware Slicing
Now we have a model to predict execution time from

features. However, to obtain feature values for a job at
run-time, we need to run the hardware accelerator with
the job’s input. This is not feasible since our goal is to
predict execution time before running the hardware ac-
celerator. To address this issue, we propose to generate
a minimal version of the hardware accelerator, which we
call a hardware slice. During runtime, the slice can be
executed with the job’s input to quickly calculate the
feature values.

To generate such a slice, we use program slicing tech-
niques on hardware description languages [26] to only
keep the part of the original accelerator that computes
the features of interest, while removing other parts of
the hardware. This allows us to obtain a slice that is
much smaller than the original hardware accelerator in
terms of area.

However, executing such a slice would take the same
number of cycles as the original hardware accelerator.
This is not fast enough since we need to make predic-
tions before running the hardware accelerator. The rea-
son why a slice can not run faster is that the control unit
is not aware that some parts of the hardware were re-
moved, and still waits in certain states as if the original



computation is still taking place. For example, in Fig-
ure 8, the FSM still transitions to S2, waits for a number
of cycles, and then transitions to S4. This inefficiency
can be removed by modifying the FSM transition ta-
ble to remove the waiting behavior. This optimization
does not affect the accuracy of the prediction because
we still have the information about how long the FSM
would stay in waiting states from counter initial values
and pre-reset values. The resulting hardware slice effi-
ciently calculates the control flow features of the original
hardware accelerator.

3.6 DVFS Model
After obtaining an execution time prediction for a job

under the nominal frequency, a DVFS model is used to
predict what the execution time would be under dif-
ferent frequencies. We use a common model in litera-
ture [27] that decomposes execution time into memory
time and compute time:

T = Tmemory + C/f

where T is execution time, Tmemory is the part of exe-
cution time when the accelerator is stalled waiting for
memory, which does not scale with accelerator frequency.
C is the number of cycles when the accelerator is not
stalled, and f is the frequency of the accelerator. From
the execution time prediction, we know

T0 = Tmemory + C/f0

where T0 is the predicted execution time, and f0 is the
nominal frequency. To predict the execution time un-
der a different frequency, we need to know Tmemory and
C. We found that for the many accelerators, Tmemory

is negligible, for two reasons: 1) Many accelerators are
computation-intensive rather than memory-intensive. 2)
For accelerators that are memory-intensive, they usu-
ally have a local scratchpad memory and use a DMA
engine to carefully coordinate data transfer from main
memory to minimize stalls due to memory. Thus, the
equation above can be simplified as

T0 = C/f0

Assuming Tbudget is the time budget for the job, we can
run the accelerator at

f = C/Tbudget = f0T0/Tbudget

to minimize energy while meeting deadline.
In real hardware, however, there are only a few dis-

crete frequencies the accelerator can run at. As a re-
sult, we need to round up f to the nearest frequency
level. Also, executing the hardware slice and switching
voltage/frequency takes some time, which needs to be
deducted from Tbudget. We can also add a margin to
the predicted execution time to be conservative. After
taking all these into account, we set the final frequency
level to be

f = df0(T0 + Tmargin)/(Tbudget − Tslice − TDV FS)e

and execute the accelerator, where d·e represents round-
ing to the nearest frequency level above.
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Figure 9: Architecture of H.264 decoder.

3.7 Case Study
In this section, we present a case study on execution

time prediction using the H.264 decoder as an exam-
ple. We discuss the features chosen by the framework
and why these features can be used to predict execution
time. We also discuss the details of the hardware slice,
and show which parts of the original accelerator were
kept and which parts were sliced out.

Figure 9 shows the high-level architecture of the H.264
decoder [28]. During decoding, the bitstream parser
reads an H.264 bitstream from memory, and performs
parsing and entropy decoding. Then, according to the
prediction type, each macroblock is either sent to the
intra prediction or inter prediction pipeline. The predic-
tion output is then combined with the output of residue
decoding. The result is then processed by the deblock-
ing filter to generate the final picture. Each block in
Figure 9 has its control unit and datapath.

In feature detection step, our framework detected 257
features related to FSMs and counters. Using Lasso, the
number of features is reduced to only 7 while still main-
taining good prediction accuracy with a worst-case er-
ror around 3%. Among these features, two of them are
FSM transitions related to the number of transform co-
efficients in the residue decoding of a macroblock. The
other 5 features come from the inter prediction (motion
compensation) pipeline. They are counters that con-
trol the preloading of data used by inter prediction, as
well as counters that control the computation of mac-
roblocks. All these features are in the control unit of the
corresponding blocks of the H.264 decoder, and thus do
not involve the main computation datapath.

Since the most computation-intensive parts of the de-
coder are not involved in generating the features, the
hardware slicing step of the framework was able to re-
move them, such as the datapath of intra and inter pre-
diction, deblocking filter, etc. The slice only contains
the bitstream parser and the control units of intra and
inter prediction pipeline. As a result, the hardware slice
was very small and energy-efficient compared to the full
decoder. The area of the slice is 37,713µm2, which is
only 5.7% of the full decoder. In addition, the execu-
tion time optimization step of our framework was able
to remove empty waiting states in the hardware slice,
thus the slice only takes 5%-15% percent of the full de-
coder’s execution time to generate features. As a result,
the hardware slice only consumes 2.8% of the energy
compared to the full decoder. Furthermore, predicting



the execution time from features is very fast since the
model is linear with only 7 coefficients.

For comparison, we also built a predictor based on
application-specific features that we manually identi-
fied for H.264 using an approach proposed in a previous
study [22]. These features were obtained using an H.264
bitstream analysis software. Surprisingly, the predic-
tor using manually identified features had a worst-case
prediction error around 10%, compared to 3% for our
automatically generated predictor. Further inspection
revealed that a subtle effect (long latency for blocks
with quarter-pixel motion vectors) was not captured by
the manually identified features. While carefully chosen
application-specific features may improve prediction ac-
curacy, obtaining them requires a deep understanding of
the algorithm, which often can only be done by domain
experts.

4. EVALUATION
In this section, we present the evaluation results for

the proposed DVFS framework. We first discuss our
evaluation methodology and experimental setup. Then,
we show evaluation results for ASIC and FPGA-based
accelerators, and discuss some extensions to our work.

4.1 Methodology
We use a vertically integrated evaluation methodol-

ogy that uses a combination of circuit-level, gate-level
and register-transfer-level modeling. Circuit-level mod-
eling is used to characterize the voltage-frequency re-
lationship. Gate-level modeling is used to build accu-
rate area and energy models. And register-transfer-level
modeling is used to accurately model the performance
of hardware accelerators.

Circuit-level modeling: For ASIC accelerators, we
characterize the relationship between voltage and fre-
quency for our accelerators using SPICE simulations
based on a method reported in literature [29]. For each
accelerator, we used a chain of FO4 loaded inverters
such that the total delay of the chain matches the cy-
cle time of the accelerator at nominal voltage. Then
we change the supply voltage and measure the voltage-
delay curve and use that to model the accelerator’s fre-
quency under different voltage levels. For FPGA accel-
erators, the voltage-frequency relationship is obtained
from published characterizations [30].

Gate-level modeling: For ASIC accelerators, we
implemented each hardware accelerator using Synop-
sys Design Compiler, IC Compiler, PrimeTime PX with
the TSMC 65nm standard-cell library characterized at 1
V. Detailed post-place-and-route gate-level simulations
were used to obtain the power and energy of the acceler-
ator’s execution for a subset of the jobs at 1 V. Then we
apply the voltage-frequency model and the frequency-
execution time model to estimate the power and the
energy consumption under different DVFS levels. For
FPGA accelerators, the synthesis and place-and-route
flow is based on Vivado 2014.2. Post-place-and-route
simulations are used to obtain power and energy esti-
mations, which are then scaled to different DVFS levels.

Register-transfer-level modeling: We use RTL
simulations to determine the execution time of each job
for our accelerators. We assume the accelerators are
not bandwidth-limited and the DMA controller trans-
fers data from the main memory to the accelerator’s
scratchpad before executing each job.

4.2 Experimental Setup
We use a set of seven benchmark accelerators in our

evaluation, including an H.264 video decoder [28], a
JPEG encoder [31], a JPEG decoder [32], a molecu-
lar dynamics accelerator [33], a stencil filtering acceler-
ator used in image processing [33], an Advanced En-
cryption Standard (AES) accelerator [34], and a Se-
cure Hash Algorithm (SHA) accelerator [35]. Note that
even though some hardware accelerators are tradition-
ally throughput-oriented, they can have response time
requirements when used as a part of a frame-based or
interactive application. For example, when a user is
playing a DRM-protected video, a crypto accelerator
has to decrypt the data for each frame before a cer-
tain deadline. As another example, when a smartphone
camera shoots in a burst mode, the JPEG engine has to
encode each picture before a certain deadline. Table 3
lists the accelerators, describes what a task is in each
accelerator, and the workloads we use to train and test
the DVFS controller.

For ASIC accelerators, we use six equally-spaced volt-
age levels that span from the nominal voltage at 1 V
(high performance/energy point) to 0.625 V (low per-
formance/energy point). The frequency corresponding
to a voltage is determined using the voltage-frequency
relationship obtained from circuit-level modeling. For
FPGA accelerators, we use seven equally-spaced volt-
age levels from 1 V to 0.7 V. We assume voltage regu-
lators are off-chip. Switching time for off-chip voltage
regulators are typically in the range of 10µs [36]. In
our evaluation, switching time is conservatively set to
100µs to account for potential overheads in case chang-
ing DVFS levels involves device drivers. However, we
do note that there are faster DVFS switching techniques
in literature [29, 36], which could further reduce DVFS
switching overhead to the range of tens of nanoseconds.

We set the deadline for each job at 16.7ms, which cor-
responds to the 60fps screen refresh rate in most of to-
day’s devices. We compare our prediction-based DVFS
controller with the following schemes:

1. baseline: The baseline runs at constant voltage
and frequency. Each accelerator runs at 1 V and
the frequency it is synthesized at.

2. pid: The PID-based controller uses prediction er-
rors from previous jobs together with a control-
theory based algorithm to determine the execu-
tion time of the next job. For each accelerator, we
tuned the PID controller’s parameters to achieve
the best prediction accuracy. A margin is added
to PID controller’s output to reduce the number
of deadline misses. We tried different margins and
chose 10% as the amount that balances deadline
miss rate and energy savings.



Bmark. Description Task Workload (Train) Workload (Test)

h264 H.264 video decoder Decode one frame 2 videos (600 frames, same size) 5 videos (1500 frames, same size)
cjpeg JPEG encoder Encode one image 100 images (various sizes) 100 images (various sizes)
djpeg JPEG decoder Decode one image 100 images (various sizes) 100 images (various sizes)
md Molecules/physics simulation Simulate one timestep 200 steps (particle pos. changes) 200 steps (particle pos. changes)
stencil Image filtering Filter one image 100 images (various sizes) 100 images (various sizes)
aes Adv. Encryption Standard Encrypt a piece of data 100 pieces of data (various sizes) 100 pieces of data (various sizes)
sha Secure Hash Function Hash a piece of data 100 pieces of data (various sizes) 100 pieces of data (various sizes)

Table 3: Summary of benchmarks and workloads.

Bench- Area Freq. Execution Time (ms)
mark (µm2) (MHz) Max Avg. Min

h264 659,506 250 11.46 7.56 6.50
cjpeg 175,225 250 13.90 5.22 0.88
djpeg 394,635 250 14.79 3.78 1.82
md 31,791 455 15.52 7.11 0.80

stencil 10,140 602 15.97 5.92 1.41
aes 56,121 500 16.19 4.62 1.94
sha 19,740 500 12.94 4.11 1.11

Table 4: Summary of ASIC implementation results.

3. prediction: This is our prediction-based DVFS
controller. A 5% margin is added to its prediction.
Its predictions are usually fairly accurate so only
a small margin is needed.

4.3 Results for ASIC Accelerators
Implementation Results.

Table 4 shows the area, frequency, and execution time
statistics for the benchmark accelerators. The area num-
bers are from place-and-route results. The frequency
numbers are shown for nominal voltage at 1 V. The
execution time statistics are obtained at nominal volt-
age and frequency. Large execution time variations are
observed.

Execution Time Prediction Accuracy.
Figure 10 shows box-and-whisker plots of prediction

error of our scheme for each benchmark. The box ex-
tends from the 25% to 75%, with a line at the me-
dian. The whiskers extend from the box to show the
range of the data. Positive numbers correspond to over-
prediction and negative numbers correspond to under-
prediction. For most benchmarks, the prediction er-
ror is negligible, indicating the effectiveness of our ap-
proach. The JPEG decoder showed higher prediction
error. This is because some of its execution time varia-
tions cannot be accurately modeled using the extracted
features. Specifically, some of the FSMs in the decoder
stay in a state for a variable number of cycles which can-
not be obtained using a corresponding counter. How-
ever, our slice-based predictor still captured the ma-
jority of its execution time variations. In addition, the
convex optimization-based prediction framework is con-
servative and leads to very few under-predictions.

Energy Savings and Deadline Misses.
Figure 11 shows the comparison of normalized energy

and deadline misses between different DVFS schemes.
The energy numbers are normalized to the baseline.
The baseline always runs at constant frequency and thus
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Figure 10: Errors of slice-based execution time predic-
tion. The box extends from the 25% to 75%, with a
line at the median. The whiskers show the range of the
data. Outliers are shown as individual points.
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Figure 11: Normalized energy and deadline misses of
different DVFS schemes.

has the highest energy but no deadline misses. On aver-
age, our schemes achieved 36.7% energy savings across
all benchmarks. PID-based DVFS controller has 4.3%
higher energy consumption than our scheme. In addi-
tion, the PID controller often chooses lower DVFS levels
than needed which leads to many deadline misses. On
average, the PID-based controller misses 10.5% of the
deadlines while our prediction-based controller misses
only 0.4% of the deadlines.

Overheads of Execution Time Prediction.
The hardware slice for our prediction-based DVFS

has overheads in terms of area, energy, and time. The
prediction slice takes up extra die area, and consumes
energy during execution. Also, since the prediction slice
is run before the actual job, the time needed to run the
slice reduces the amount of time left to run the job,
which in turn reduces the opportunity to run the job at
a lower frequency. Figure 12 shows the overheads of the
slice. Slice energy is normalized to the actual job’s en-
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Figure 12: Area, energy and execution time overhead
of prediction slice.
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Figure 13: Normalized energy and deadline when over-
head is removed.

ergy. Slice area is normalized to the accelerator’s area.
Slice time is normalized to the job’s deadline. On aver-
age, the prediction slice adds 5.1% area overhead to the
baseline accelerator. Running the prediction slice takes
about 3.5% of the time budget, while adding 1.5% en-
ergy overhead to the job on average. The energy over-
head is low because the slice is small compared to the
full accelerator, and only runs for a short period. Be-
sides the overheads introduced by the hardware slice,
DVFS switching also has overheads since the voltage
and frequency takes time to stabilize. Note that the
results shown in Figure 11 includes these overheads.

To better understand how these overheads impact en-
ergy savings and deadline misses, we show the results
for the prediction scheme when the overheads of hard-
ware slice and DVFS switching are removed. In addi-
tion, we also show the results for an oracle scheme that
always sets a best DVFS level for each job, and with-
out DVFS switching overhead. Figure 13 shows that by
removing these overheads, energy savings are improved
by 3.1%, from 36.7% to 39.8%. Deadline misses are re-
duced from 0.4% to 0%. The oracle scheme has 40.5%
energy savings, which is 0.7% higher than the prediction
scheme without overheads. Both the oracle scheme and
the prediction scheme without overhead have zero dead-
line misses. This shows that the prediction scheme with
overhead removed is very close to optimal. It also indi-
cates that the deadline misses we see in the prediction
scheme without overhead is not due to misprediction.
Instead, it is because insufficient time budget is left af-
ter the slice finishes execution, so that even running at
highest frequency will miss the deadline. This only hap-
pens to jobs whose execution time is very close to, or

h2
64
cjp

eg
djp

eg md
ste

nc
il
ae

s
sh

a

av
era

ge
0

10
20
30
40
50
60
70
80

N
or

m
al

iz
ed

 E
ne

rg
y 

(%
)

prediction prediction w/ boost

h2
64
cjp

eg
djp

eg md
ste

nc
il
ae

s
sh

a

av
era

ge
0.0

0.5

1.0

1.5

2.0

D
ea

dl
in

e 
M

is
se

s 
(%

)

Figure 14: Normalized energy and deadline misses with
voltage boosting.
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Figure 15: Normalized energy and deadline misses when
varying deadlines (averaged across all benchmarks).

even longer than the length of the deadline, which are
usually rare.

These rare misses can be eliminated by boosting volt-
age temporarily for these jobs. With execution time
prediction, the DVFS controller knows when the time
budget left is not enough, and can boost DVFS level ac-
cordingly. Figure 14 shows normalized energy and dead-
line misses when we introduce a boost level at 1.08 V.
With voltage boosting, deadline misses are eliminated
while only increasing normalized energy by 0.24%.

Sensitivity Study on Varying Deadlines.
Figure 15 shows the normalized energy and deadline

misses when we vary the job deadline from 0.6x to 1.6x
of the deadline used before. Due to space limit, we only
show results averaged across all benchmarks. Since our
DVFS model is aware of the deadline, it will use lower
DVFS levels to save energy when deadlines are longer,
and use higher DVFS levels trying to meet response
time requirements when deadlines are shorter. When
the deadline is shorter than 1.0x, the prediction-based
DVFS controller starts showing misses. This is mostly
due to the deadlines being too short to meet for some
jobs even when running at highest frequency, which is
why the baseline policy also shows misses. When the
deadline is increased, the prediction-based DVFS con-
troller achieves more energy savings while still meet-
ing all deadlines. Note that the execution time predic-
tor does not need to be retrained when the deadline
changes. Only a new deadline needs to be set in the



h2
64
cjp

eg
djp

eg md
ste

nc
il

ae
s

sh
a

av
era

ge
0

20

40

60

80

100

N
or

m
al

iz
ed

 E
ne

rg
y 

(%
)

baseline pid prediction

h2
64
cjp

eg
djp

eg md
ste

nc
il

ae
s

sh
a

av
era

ge
0
2
4
6
8

10
12
14
16

D
ea

dl
in

e 
M

is
se

s 
(%

)

Figure 16: Normalized energy and deadline misses for
FPGA-based accelerators.
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Figure 17: Area, energy and execution time overhead
of prediction slice for FPGA accelerators.

DVFS model. The PID-based controller, on the other
hand, still shows misses even with longer deadlines be-
cause it often uses the wrong DVFS level due to low
prediction accuracy.

4.4 Results for FPGA-based Accelerators
In this section, we show results for FPGA-based ac-

celerators. The target FPGA device we use is Xilinx
Kintex-7. The execution time prediction accuracy for
FPGA accelerators is similar to the accuracy for ASIC
accelerators because the features used for prediction are
from RTL level, and the prediction model is able to
adapt to differences in operation frequency.

Figure 16 shows normalized energy and deadline misses
of different DVFS schemes for FPGA-based accelera-
tors. Overall, FPGA-based accelerators achieved 35.9%
energy savings with the predictive DVFS framework,
while missing 0.4% of the deadlines. The numbers are
comparable to ASIC results.

Figure 17 shows the overheads of the slice for FPGA-
based accelerators. On average, the prediction slice use
9.4% resources (average of LUT/DSP/BRAM) of the
baseline accelerator. Running the prediction slice con-
sumes 2% of the energy of the job on average, while
using about 3.5% of the time budget. The resource
overhead for stencil appears large because the accel-
erator only uses a small number of LUTs for control
logic while using DSP blocks for main computations.
As a result, the relative overhead is shown to be high
even though the absolute resource usage of the predic-
tion slice is quite low.
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Figure 18: Comparison of prediction errors and deadline
misses between slicing at RTL and HLS level.
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Figure 19: Comparison of area, energy and execution
time overhead between slicing at RTL and HLS level.

4.5 Extensions
Accelerators Generated using High-Level Synthesis.

High-Level Synthesis (HLS) allows designers to write
accelerators in a high-level programming language such
as C, and synthesizes them into RTL descriptions. To
use our framework with HLS-generated accelerators, one
way is to analyze the RTL generated by HLS, extract
features, and build a predictor by slicing the RTL. How-
ever, if analysis can be done during the HLS process, it
can potentially enable optimizations that can not be
easily performed at RTL level. For example, instead of
slicing the RTL to obtain a hardware slice, we can use
program slicing [37] on the C code to obtain a software
slice that calculates the control flow features, and then
synthesize the sliced C code into hardware. The HLS
tool can perform optimizations during the synthesis, re-
sulting in a slice that calculates feature values faster.
This leaves more time budget to run the accelerator it-
self, reducing the possibility of deadline misses due to
insufficient time budget after slice execution.

We compared these two approaches using the md and
stencil accelerators [33], which have C versions avail-
able. Figure 18 shows that the prediction accuracy of
both approaches are very high, but when the hardware
slice is generated using HLS from sliced C code, the
deadline misses are gone. This implies the slice gener-
ated using HLS runs faster because we know from Sec-
tion 4.3 that the deadline misses in md and stencil are
caused by insufficient time budget left after the slice fin-
ishes execution rather than mispredictions. This can be
verified by looking at Figure 19, which shows the slice
execution time for the HLS approach is much shorter.

Software-based Predictors.
Some accelerators have a software version with the



same function, either because they are generated using
HLS, or because they have a software implementation
(e.g. ffmpeg for H.264). In these cases, instead of build-
ing hardware predictor, we can run a software predictor
on the CPU to predict the execution time of the accel-
erator. We experimented with this idea on the H.264
decoder, and achieved good prediction accuracy. We do
not include detailed results here due to the space limit.

5. RELATED WORK

5.1 Dynamic Voltage and Frequency Scaling
DVFS is a widely studied technique for reducing the

energy of computation. For applications without re-
sponse time requirements, simple interval-based schedul-
ing algorithms [19] are often used. For example, the
Linux power governors [9] are interval-based. However,
interval-based algorithms do not perform well for work-
loads with large variability.

Researchers have studied DVFS in the context of hard
real-time systems. One approach uses worst-case exe-
cution time (WCET) analysis of tasks to guide DVFS
settings [38]. Although it guarantees that deadlines are
met, it can be overly conservative since actual execu-
tion time can be much shorter than worst-case execu-
tion time. As a result, this approach is limited to hard
real-time systems where deadlines must be strictly met.

DVFS has been studied in the context of resource
management in datacenters to achieve energy propor-
tionality, as well as controlling tail latency. PEGASUS
[12] is a feedback-based DVFS controller that utilizes
request latency statistics to make power management
decisions. However, it only responds to slowly-changing
workload variations. Adrenaline [17] uses workload met-
rics to predict tail queries for web services, and boosts
DVFS levels accordingly. However, the workload met-
rics it uses are application-specific and manually iden-
tified, thus not generalizable to other applications.

DVFS has also been studied in the context of hard-
ware accelerators. Linux implements interval-based gov-
ernors in its devfreq framework [39] for controlling
DVFS of hardware accelerators. As with other interval-
based scheduling algorithms, these governors have the
same issues when dealing with workloads that show
large variability.

A number of studies have investigated using work-
load metrics to predict the execution time in order to
inform DVFS decisions for interactive games [14], video
decoding [22], and web browsing [15,16]. However, most
of these studies use application-specific metrics that re-
quires domain-specific knowledge to obtain.

A recent study investigated DVFS settings for mo-
bile applications that use multiple hardware accelera-
tors [18]. The key idea is to consider multiple devices
together instead of individually. Their applications had
little job-to-job execution time variation so a simple
history-based approach worked well. However, we show
that many applications have large job-to-job execution
time variation. Thus our approach can potentially ex-
pand the applicability of their work.

5.2 Execution Time Prediction
Worst-case execution time analysis is a well-studied

topic in hard real-time systems [40] and has been ap-
plied to DVFS for these systems [38]. WCET tries to
calculate an upper bound of a job’s execution time un-
der all possible inputs. However, it does not estimate a
job’s execution time given a specific input.

Mantis [41] is an execution time prediction framework
for smartphone applications, which uses automatically-
extracted program features and thus is general across
different applications. The high-level approach of Man-
tis is similar to our work. However, Mantis only con-
siders software programs. Our work proposes an execu-
tion time prediction framework for hardware accelera-
tors and investigates its application to DVFS.

6. CONCLUSION
In this paper, we presented a framework for gener-

ating DVFS controllers for hardware accelerators based
on execution time prediction. Using features from hard-
ware operation, the controller predicts a hardware ac-
celerator’s execution time and the appropriate DVFS
level that minimizes energy while meeting response time
requirements. Our approach achieves 36.7% energy sav-
ings on average for ASIC accelerators compared to run-
ning each accelerator at a constant frequency, with only
0.4% deadline misses. The energy savings are only 3.8%
less than an optimal DVFS scheme. We also show that
by introducing a boost level, the deadline misses can be
completely eliminated while still achieving 36.4% energy
savings. The DVFS controller has a low cost, adding
only 5.1% area to accelerators on average.
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