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Abstract—Recent studies have shown that run-time monitor-
ing is a promising approach for improving the security and
reliability of computer systems. In this paper, we present a
framework and architecture for applying run-time monitoring
to hard real-time systems. In this framework, monitoring is only
performed when enough dynamic slack exists in order to ensure
that the monitoring does not impact the timing guarantees of
tasks. If the slack is insufficient, a dropping operation is run
which minimizes the timing impact on the task while ensuring
that no false positives occur. We present a novel hardware
architecture that can perform this dropping operation in a single
cycle, matching the throughput of the task being monitored.
Thus, run-time monitoring is able to be applied opportunistically,
with no impact on the worst-case execution time of tasks. Our
experimental results for three different monitoring techniques
verify that timing is never violated and that false positives never
occur. In addition, on average, 15-66% of monitoring coverage
is achieved with no impact on the worst-case execution times of
tasks depending on the monitoring technique. With an FPGA-
based monitor, this average coverage of monitoring ranged from
62-86% depending on the monitoring technique.

I. INTRODUCTION

Real-time systems are becoming increasingly prevalent as
our world continues to become more computerized. Many of
these real-time systems are found in safety-critical situations
such as automobiles, airplanes, and medical devices where
secure and reliable computation is critical. Errors in these
systems can cause physical damage, injury, or even loss of
life.

Recent studies have shown that monitoring of run-time
program behavior can significantly improve the security and
reliability of computing systems. For example, Dynamic Infor-
mation Flow Tracking (DIFT) is a recently proposed security
technique that tracks and restricts the use of untrusted I/O
inputs, and has been shown to be able to effectively detect a
large class of common software attacks [1]. Similarly, run-time
monitoring can enable many new protection capabilities such
as fine-grained memory protection [2], array bounds check [3],
hardware error detection [4], etc. In fact, Intel has recently
announced plans to support buffer overflow protection in future
architectures [5].

These run-time monitors introduce performance overheads,
both in the average case and in the worst case. Architectures
that use programmable parallel hardware for monitoring, such
as extra cores on a multi-core system or an FPGA coprocessor,
have shown low average case overheads (low tens of percent)
[6], [7], [8]. However, the worst-case execution time (WCET)
can still be high. Previous work has shown an increase in
WCET of up to 3.5x for a task with monitoring compared

to without monitoring [9]. Thus, applying monitoring to real-
time systems requires a large increase in the time allocated
to tasks. Currently, if a real-time system cannot support this
extra utilization, then monitoring cannot be applied to the
system. In this work, we have developed a system that greatly
decreases the amount of time that must be statically allocated
to tasks in the worst case (i.e., WCET) in order to enable
monitoring. Specifically, our system exploits dynamic slack
in order to opportunistically perform as much monitoring as
possible within the time constraints of the system.

The work in this paper is based on three key observations:

1) Tasks often run faster than their worst-case time.
2) The performance impact of monitoring is rarely equal

to the worst-case impact.
3) Performing partial monitoring can still provide some

degree of protection.

Since tasks typically run faster than their conservatively esti-
mated WCET, there exists dynamic slack at run-time that can
be used for monitoring. Similarly, the estimation of the WCET
of monitoring is conservative. In actuality, the overheads
of monitoring are much lower, as shown by the average-
case performance impact. Finally, although performing all
monitoring operations in full is preferred, performing only
a portion of the monitoring still gives increased protection
over a system with no monitoring applied. By shifting the
decision of whether to enable or disable monitoring to run
time, we are able to trade off monitoring coverage in order
to reduce the WCET impact of monitoring. The system we
present decides whether or not to perform monitoring based
on whether there is enough dynamic slack to account for the
worst-case performance impact of the monitoring.

A main challenge in skipping monitoring operations is
ensuring that the monitor can still run in a useful manner.
Although we trade off the coverage provided by monitoring
in order to meet timing requirements, we must also guarantee
that no false positives occur in order to prevent false alarms.
We prevent false positives through the use of a dropping task
that invalidates metadata when monitoring is skipped. With
hardware optimizations, this invalidation can be handled with
no impact on the task’s WCET. In addition, the hardware archi-
tecture we present skips monitoring on invalidated metadata,
saving dynamic slack to be used for useful monitoring on valid
metadata.

We evaluate our architecture for three different monitoring
techniques and several benchmark programs. In all our ex-
periments, we saw that the monitoring program never caused
the original program to exceed its WCET. We also saw that
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Fig. 1. Overview of run-time monitoring architecture.

false positives never occurred, as designed. For the three
different monitoring techniques that we tested, we found that
on average, depending on the monitoring technique, 15-66%
of monitoring coverage could be achieved with no impact
on the program’s WCET. By applying our architecture to a
high-performance FPGA-based monitor, the average coverage
ranged from 62-86% depending on the monitoring technique.
Additionally, by designing additional slack in the system, we
were able to increase the number of monitoring operations that
are performed.

This paper is organized as follows. Section II presents an
overview of the run-time monitoring architecture assumed in
this paper. In Section III, we discuss how to decide when to
skip monitoring and how to handle this in a safe manner.
Hardware optimizations for handling this dropping opera-
tion are presented in Section IV. We present our evaluation
methodology and experimental results in Section V. Finally,
we discuss some related work in Section VI and conclude
in Section VII. In addition, the Appendix details how our
architecture applies to three different monitoring techniques
and includes some extra evaluation results.

II. MONITORING ARCHITECTURE MODEL

There are several options on how to implement run-time
monitoring. Implementing run-time monitoring in software us-
ing binary instrumentation or other similar methods introduces
especially high overheads. For example, dynamic informa-
tion flow tracking (DIFT) implemented in software suffers
a 3.6x slowdown on average [10]. Implementing monitors
in hardware greatly decreases the performance impact by
performing monitoring in parallel to a program’s execution. A
dedicated hardware implementation of DIFT reduces average
performance overheads to just 1.1% [1]. However, fixed hard-
ware loses the programmability of software. A fixed hardware
implementation cannot be updated and cannot change the
type of run-time monitoring performed. Thus, recent studies
have proposed using programmable parallel hardware, such as
extra cores in a multi-core system or FPGA coprocessors, for
monitoring [6], [7], [8]. Our work in this paper is targeted at
these programmable parallel hardware monitors.

Figure 1 shows a block diagram of the architecture we
focus on in this paper. This is a dual-core system where one
core is used to run tasks while the second core is used to
perform monitoring. The main task is the computation task that
performs the original function of the real-time system and is
run on the main core. The main task has a worst-case execution
time (WCET) which can be upper-bounded using a variety
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Fig. 2. The main core pipeline is modified to forward information on certain
instruction types.
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Fig. 3. Example of how an uninitialized memory check (UMC) monitoring
scheme works.

of existing techniques [11]. This WCET is used for timing
analysis in the design of the real-time system. As long as the
execution time of the main task does not exceed this bound,
then all timing guarantees from the analysis hold.

On certain events during the main task, a packet of
information is sent to the monitoring core. This core will
perform a monitoring task in order to check whether the
system is operating properly and to perform bookkeeping for
future monitoring tasks. The events that trigger monitoring
are referred to as monitoring events. For example, a common
monitoring event is the commit of certain instruction types
(e.g., ALU, store, load, etc.). Figure 2 shows how an example
main core pipeline can be modified to automatically forward
information when instructions of certain types are committed.
When an instruction commits, a comparator checks whether
the opcode of the committed instruction is one that should
be forwarded. If the instruction should be forwarded, then an
enqueue signal is sent to a FIFO. Information about the in-
struction that is needed for monitoring, such as register values,
memory locations accessed, etc., is stored in the FIFO on these
events. In this way, the detection and handling of monitoring
events is handled in hardware, with no need to modify the
main task. A different monitoring task is executed depending
on the type of monitoring event. We refer to the collection
of monitoring tasks as a monitor or a monitoring scheme.
Different monitoring schemes seek to ensure different run-time
properties. If the monitoring scheme detects an inconsistent or
undesired behavior in the sequence of monitoring events, then
an error is detected. We do not focus here on how to handle
such an error. However, there are several options on how to
handle an error such as raising an exception, notifying the user,
or switching to a simpler, more trusted main task [12].

There are many possible monitoring schemes that can be
implemented on this type of monitoring architecture. One such
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monitoring scheme is an uninitialized memory check (UMC)
where monitoring is used to detect when software attempts
to read from a memory location that was not previously
initialized. Figure 3 shows how UMC works. UMC forwards
the memory addresses of store and load instructions to the
monitoring core. For every memory location, the monitoring
core keeps one bit of metadata information. On a store to a
memory location, the monitoring core marks the corresponding
metadata bit to indicate that the memory location has been
initialized. On a load, the monitoring core checks that the
corresponding metadata bit has been previously marked as
initialized. If the metadata bit is not set, then an error is
detected.

In order to decouple the execution of the main task and the
monitoring task, a dedicated hardware FIFO is used to buffer
monitoring events between the main core and the monitoring
core. In the ideal case, the monitoring task operates in parallel
with the main task. However, since the rate of monitoring
events can be high (i.e., every instruction of the main task)
and monitoring an event may take several instructions, the
monitoring core is not always able to keep up with the
throughput of monitoring events generated by the main core.
Thus, when the FIFO is full, the main core is forced to stall on
monitoring events. Figure 4 shows an example execution where
a series of instructions are monitored. In this simple example,
the FIFO only has 2 entries and it takes the monitoring task
2 cycles to process a monitoring event. For simplicity, only
the commit stage of the main core pipeline is shown. After
the 4th instruction (ADD) is committed by the main core, the
FIFO is full and the monitoring core is busy. Thus, in order to
not miss information about a monitoring event, the main core
must stall before continuing execution and committing the 5th
instruction (STR).

The baseline architecture we discuss uses an extra core
on a multi-core system for monitoring. However, an alternate
implementation would be to use an FPGA coprocessor to
perform monitoring [7]. This system is similar to the system
shown in Figure 1 except the monitoring core is an on-
chip FPGA or FPGA-like fabric and the monitoring task is a
hardware circuit implemented on this FPGA. With pipelining,
such a design can achieve better performance than a processor-
core based monitor. Although our discussion focuses on the
processor-core based model, our method and architecture for
opportunistic monitoring can also apply to an FPGA copro-
cessor based implementation and our evaluation in Section V
includes results for such a design.

III. OPPORTUNISTIC MONITORING

In this section we present a framework for opportunistically
performing monitoring in such a way as to ensure that the main
task’s execution time does not exceed its WCET bound. The
basic idea is that on a monitoring event, the system checks
whether there is enough slack to account for the worst-case
impact of monitoring on the main task’s execution time. If
there is enough slack, then the monitoring task proceeds. If
there is not enough slack, then instead the event is dropped.

There are two main challenges in this scheme. The first
is how to measure slack at run time and decide when it
is necessary to drop monitoring tasks, which we discuss in
Section III-A. Once it has been decided to drop a monitoring

event, the second issue is how to drop the monitoring task in
such a way as to maintain the correctness of the monitoring
scheme which we discuss in Section III-B.

A. Measuring Slack

In order to decide when it is possible to perform monitor-
ing, we must be able to measure the dynamic slack available.
Dynamic slack is defined as the difference between a task’s
expected worst-case execution time (WCET) and its actual
execution time [13]. This is only a portion of the total slack
which is the difference between a task’s finish time and its
deadline (see Figure 5). Although the dynamic slack only
accounts for a portion of the total slack, we only focus on
dynamic slack because this is the portion of slack that is
specific to a task. Additional slack in the schedule could be
assigned to a specific task to be used for monitoring by the
system designer or scheduler. For brevity, we will use the term
slack to refer to dynamic slack.

In order to perform monitoring as the task runs, we need
to be able to measure dynamic slack as the task runs. We
can track dynamic slack by setting a number of checkpoints
throughout the task. These checkpoints effectively divide the
task into a number of sub-tasks. For each of these sub-tasks,
the sub-task’s WCET is determined. At run-time when a sub-
task finishes, the difference between its actual run-time and its
WCET is the slack generated by the sub-task. Specifically, we
insert code to mark each sub-task boundary. At the beginning
of a sub-task, the WCET of a sub-task is loaded into a timer.
Each cycle, the timer decreases. At the end of a sub-task, the
remaining value in the timer is the slack generated by the sub-
task. This value is added to the current slack. An example
of this process is shown in Figure 6. In our experiments, the
division of a task into sub-tasks was done by hand but this
process could be automated to divide a task using function
boundaries, code length, or some other criteria. In addition to
the slack accumulated while running, a portion of headstart
slack can be initially assigned by the designer or scheduler to
the task. For example, if the designer knows that static slack
exists in the schedule, this slack can be added to the initial
dynamic slack of a task to be used for monitoring.

By accumulating this slack as the task runs, we can
determine whether monitoring can be performed while still
meeting the real-time constraints. If the worst-case impact of a
monitoring task on the main task is less than the accrued slack,
then the monitoring task can execute. If running the monitoring
task causes the main task to stall, as in the example shown in
Figure 4, then slack is consumed. Slack was initially generated
since the main task was running ahead of its WCET, so stalling
up to the slack time will not cause the main task to exceed
its WCET (see Figure 6). In the best case, the monitoring
task executes entirely in parallel and does not affect the main
task and thus consumes no slack. On the other hand, if the
worst-case impact of the monitoring task on the main task’s
execution time is greater than the slack, then, conservatively,
the monitoring task cannot be run. Instead, it must be dropped
in order to guarantee that the main task finishes within its
WCET.

B. Dropping Tasks

Dropping a monitoring task implies that some functionality
of the monitor has been lost. This may cause either false
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Fig. 4. Pipeline diagram of monitoring. The main core stalls due to the slower throughput of the monitor.
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Fig. 5. Dynamic slack and total slack.
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Fig. 6. Dynamic slack increases when a sub-task finishes early. Slack is
consumed as monitoring causes the task to stall.

negatives, where an error that occurs in the main task’s
execution is not detected, or false positives, where the monitor
incorrectly believes an error has occurred. For example, a false
positive can occur for UMC if a store monitoring event is
dropped. This causes the memory location of the store to not
be marked as initialized. A subsequent load for the memory
location will incorrectly cause an error to be raised. We accept
false negatives as the loss in coverage that we trade off in order
to ensure the WCET of the main task is met. However, we must
safely drop monitoring events in such a way as to avoid false
positives so that the system does not incorrectly raise an error.

In order to ensure that no false positives occur, we need
to run a dropping task when a monitoring task is dropped.
The specifics of how this dropping task operates may vary for
different monitoring schemes. However, in analyzing various
monitoring schemes, we found that most monitoring tasks per-
form operations of primarily two types: checks and metadata
updates. Monitoring tasks check certain properties to ensure
correct main task execution and they update metadata for
bookkeeping. Skipping a check operation can only cause false
negatives and will never cause a false positive. Therefore, the
dropping task may simply skip a check operation. Skipping
an update operation can cause false negatives but may also
cause false positives. Essentially, when an update operation is
skipped, we can no longer trust the corresponding metadata.
In some cases, the dropping task can handle this by setting the
metadata to a neutral value that will not cause false positives
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Fig. 7. WCET with original monitoring task, with software dropping task,
and with no monitoring for UMC. Results are normalized to the WCET with
no monitoring.

(e.g., cleared or null). A more general solution is for the
dropping task to mark the corresponding metadata as invalid,
to prevent future false positives.

In the worst case, no monitoring can be done and the
system must ensure that there is enough time to run a drop-
ping task for every monitoring event in order to avoid false
positives. Thus, the main task’s WCET estimation must be
modified to take into account the worst-case impact due to the
dropping task. By minimizing the dropping task’s execution
time, the impact on the main task’s WCET can be much lower
than the impact due to the monitoring task. Figure 7 compares
the original WCETs with and without monitoring to the WCET
with dropping tasks implemented in software for UMC. The
WCETs are normalized to the WCET without monitoring. The
WCET with dropping is reduced by 43% on average from the
WCET without dropping.

IV. HARDWARE-BASED DROPPING ARCHITECTURE

In Section III, we presented a general framework for how
to design a system that allows dropping of monitoring tasks to
ensure the main task’s execution time. However, implementing
this framework in software still has significant impacts on the
WCET as shown in Figure 7. In this section, we present a
novel hardware architecture that eliminates these impacts to
the main task’s WCET.

There are two main sources that affect the main task’s
WCET: the additional code for keeping track of slack and the
impact of the dropping task. In Section IV-A, we describe
hardware to keep track of slack and to make the decision
on whether to run the monitoring or dropping task. In Sec-
tion IV-B, we present a hardware-based metadata invalidation
scheme that allows dropping to be performed in a single cycle.
By handling the dropping in a single cycle, the throughput is
able to match the throughput of the main core. Section IV-C
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builds upon the hardware-based invalidation scheme to filter
out monitoring tasks for invalid metadata in order to reserve
slack for more useful cases of running the monitoring task.
Finally, in Section IV-D we show the full architecture.

A. Slack Tracking

Figure 8 shows a hardware slack tracking module (STM).
In order to keep track of slack, a watchdog timer is loaded
with a sub-task’s WCET at the start of a sub-task and counts
down each cycle. At the end of a sub-task, the remaining time
in this watchdog timer is added to the current dynamic slack
which is stored in a register. At the start of a task, the dynamic
slack register is cleared and set to the headstart slack if one
is specified. In addition, whenever the main task is stalled due
to the monitoring core, this dynamic slack is decremented.

The currently measured dynamic slack is used to determine
whether the monitoring task can run in full. When the monitor
is initialized, the monitor will load its worst-case needed slack
in order to perform the monitoring task into a register. When
there is a monitoring event in the FIFO to be processed, a
hardware comparator checks whether the dynamic slack is
greater than or equal to the necessary slack for full monitoring.
If enough slack exists, the monitoring core is signaled to
perform the monitoring task. Otherwise, the monitoring event
is dropped.

B. Metadata Invalidation Module

In the worst-case, all monitoring events must be dropped.
Thus, it is important that whatever dropping task needs to be
run has a minimal impact on the main task. If this dropping
task can match the maximum throughput of the main core, then
the original WCET of the main task is not affected, removing
the need to redo the WCET analysis. In this section, we present
a hardware architecture that can handle dropping monitoring
events in a single cycle, matching the throughput of the main
core.

As mentioned in Section III-B, the dropping task must
invalidate metadata on a dropped monitoring event. Thus, we
have designed a hardware module to perform this invalida-
tion. Figure 9 shows a block diagram of this module, which
we call the metadata invalidation module (MIM). When the
slack tracking module indicates that a monitoring task must
be dropped, the metadata invalidation module sets a bit in
the metadata invalidation table (MIT) corresponding to the
metadata to be invalidated. The metadata to be invalidated
depends on the monitoring scheme and the monitoring event.
For example, for the uninitialized memory check monitoring
scheme, on a store event, metadata corresponding to the
memory access address is set to indicate initialized memory.
Thus, on a dropped event, the MIM must be able to calculate
the address of this metadata in order to set a corresponding
invalidation flag. The MIM includes a small ALU to perform
these simple address calculations. Since this metadata address
mapping varies for different monitoring schemes, the inputs
to the ALU can either be data from the monitoring event, the
previous metadata address, or a constant. The input selection
and the ALU operation to perform are looked up from a config-
uration table depending on the type of monitoring event. The
monitor sets up this configuration table during initialization.

In order for this dropping operation to match the throughput
of the main core (i.e., up to one monitoring event per cycle),
the metadata invalidation information is stored on-chip. The
MIT is implemented as a small on-chip memory, similar to a
cache. This memory stores invalidation flags and is indexed
using part of the metadata address. It stores the remaining
portion of the address as a tag. Unlike a cache, if an access
misses in the MIT, there is no lower-level memory structure
to go to. This is done in order to ensure that the MIM can
handle a monitoring event every cycle. Instead of backing
the MIT with lower-level memory, if writing to the MIT
would force an eviction, we instead mark the corresponding
cache set as “aliased”. From this point on, we are forced to
conservatively consider any metadata that would be mapped to
this cache set as invalid, regardless of the tag corresponding
to its metadata invalidation address. This reduces the amount
of useful monitoring that can be done, but guarantees that
the dropping hardware can match the main core’s throughput.
These aliased sets can be reset by re-initializing (e.g., resetting
to a null value) all metadata that could map to the aliased
set. By using dynamic slack or a dedicated periodic task, the
system can occasionally reset aliased sets. In either case, a
sufficiently sized MIT should ensure that aliasing is rare.

In some cases we would like to use the MIM hardware
to operate in such a way as to ensure that aliasing does not
occur. For example, we found that some monitoring schemes
save metadata information about registers. Since this metadata
is used often, it is important to manage it in such a way
that aliasing does not occur. Thus, the MIM also includes
a metadata invalidation scratchpad (MISP). This MISP is
explicitly addressed and it is up to the system designer to
utilize it in such a way that aliasing will not occur.

Both the MIT and MISP are accessible by the monitor. This
allows the monitor to be aware of what has been invalidated.
The monitor can also re-validate metadata when possible, such
as when the monitoring task writes metadata values.

We note that the MIM was designed with the idea of
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marking certain metadata as valid or invalid with a 1-bit
flag. However, in general the MIM simply sets or clears a
bit based on a calculated address. We expect that for certain
monitoring schemes, designers may be able to use the MIM
in new ways such as using the MIT and MISP to directly
express certain metadata. Section A3 of the Appendix shows
how the MISP can be used to directly express the register file
taint metadata used for a Dynamic Information Flow Tracking
(DIFT) scheme.

C. Filtering Invalid Metadata

Given that certain metadata becomes invalidated by the
metadata invalidation module, performing check and update
monitoring operations based on the invalid metadata is not
useful. Thus, we can drop these monitoring tasks. By skipping
these invalid monitoring tasks, slack can be reserved for mon-
itoring tasks which operate on valid metadata. Determining
when a monitoring event can be filtered out in this manner is
done by the metadata filtering module (MFM) which is shown
in Figure 10.

We examined multiple monitoring schemes and found
that most monitoring schemes read in up to two metadata,
corresponding to the two input operands of an instruction, in
order to perform an update. Thus, the MFM was designed
with a pair of configurable metadata address generation units,
similar to the ones used in the MIM. These address generation
units calculate a pair of addresses which correspond to a pair
of metadata invalidation flags which are read from the MIT
and/or MISP. The two flag bits are then used to look up an
entry in a lookup table that specifies whether to filter the event
or not. Typically, if either of the source metadata operands are
marked as invalid, then the monitoring task can be filtered. We
must ensure no false positives occur due to filtering out these
monitoring events. Thus, the entry in the lookup table can also
inform the MIM of metadata that must be invalidated. Similar
to the MIM, the monitor also configures the MFM address
calculations and the lookup table during initialization.

D. Full Architecture

Figure 11 shows a block diagram of the complete architec-
ture. Monitoring events from the main core are first enqueued
in a FIFO. The events in the FIFO are dequeued and processed
by the metadata filtering module. The MFM checks the MIT

FIFO MFM
event

STM

MIM
Monitoring 

Core
Main
Core

MIT/
MISP

drop

invalidate

Fig. 11. Block diagram of full hardware architecture for opportunistic
monitoring on hard real-time systems.

and/or MISP to decide whether the event should be filtered
because of invalid metadata. If the event is not filtered, then
the metadata invalidation module decides whether to drop the
event based on the slack tracking module. If the event is
dropped or filtered, then the MIM marks invalidation flags
using the MIT/MISP. Instead, if the event is not dropped or
filtered, then it is forwarded to the monitoring core to perform
the monitoring task.

V. EVALUATION
A. Methodology

We implemented our monitoring architecture for real-time
systems by modifying the ARM version of the gem5 simulator
[14] to support parallel hardware monitoring and our hardware
optimizations for opportunistic monitoring. In order to explore
the generality of the architecture for different monitors, we
implemented the three different monitors: uninitialized mem-
ory check (UMC), return address check (RAC), and dynamic
information flow tracking (DIFT). Uninitialized memory check
was mentioned in Section II and seeks to detect loading
from memory locations that are not initialized first. Return
address check protects against certain security attacks, such as
return-oriented programming [15], by checking that the address
returned to after a function completes matches the address
that originally called the function. Dynamic information flow
tracking is another security monitoring scheme. DIFT attempts
to detect when information from untrusted sources is used
to affect the program control flow. The details of how each
of these monitoring schemes works with our architecture is
discussed in the Appendix. We tested our system using several
benchmarks from the Mälardalen WCET benchmark suite [16].

We model the main and monitoring cores as 500 MHz in-
order cores, each with 16 KB of L1 I/D-caches. The latency
to main memory is 15 ns. This setup is similar to Freescale’s
i.MX353 processor which targets embedded, automotive, and
industrial applications. For our experiments, we used a FIFO
of 16 entries connecting the main and monitoring cores. The
MISP was 16 entries matching the 16 registers found in the
ARM architecture. The MIT was configured with 2 ways and
256 entries.

No static WCET analysis tools exist for the gem5 simulator.
In order to estimate the WCET of tasks, we ran tasks several
times on the gem5 simulator and took the worst-case observed
execution time. Our WCET estimate is expected to be lower
than those that a WCET analysis tool would generate since
WCET analysis tools guarantee a conservative estimate. As a
result, in our experiments the gap between actual execution
times and our estimated WCET is lower than what we would
expect with a WCET analysis tool. Therefore, the results we
present for the amount of monitoring that can be done are less
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than what is expected when a strictly conservative WCET is
used.

B. Amount of Monitoring Performed

Table I shows the number of monitoring events that are
monitored, dropped, and filtered as a percentage of the total
number of monitoring events. We find that a portion of
monitoring can still be done without exceeding the main
task’s WCET. This is due to the dynamic slack that is gained
during run time. On average, UMC can perform 17% of its
monitoring tasks. RAC can perform 66% of its monitoring
and DIFT can perform 31% of its monitoring. No results are
shown for insertsort and nsichneu for RAC because
these benchmarks do not make any function calls. For DIFT,
we store the actual DIFT register file metadata in the MISP
instead of invalidation flags. This optimization allows us to
use the MIM and MFM to perform certain monitoring tasks
(see Section A3 of the Appendix for details). These correct
metadata updates are counted as “Monitored” in the statistics
while events are counted as dropped or filtered only if they
were due to insufficient slack.

As expected, a false positive never occurred in our exper-
iments. However, false negatives can occur due to dropping
monitoring tasks. Specifically, dropped or filtered check-type
monitoring operations can result in false negatives. Table II
shows the number of checks that are monitored as a percentage
of the total checks. This acts as a measure of the coverage
achieved by the monitors. The coverage for UMC is 15% on
average and the coverage for RAC is 66% on average. The
average coverage for DIFT is 59% which is much higher than
the percentage of monitoring tasks that are not dropped or
filtered. In fact, for some of the benchmarks, DIFT is able
to achieve 100% coverage. This implies that only a portion
of the monitoring operations performed by DIFT actually
affect the checks. For example, DIFT propagates metadata
on every ALU, load, and store instruction. However, only
instructions that eventually propagate metadata to an indirect
jump instruction affect the coverage.

For an underutilized system, if some headstart slack is
given to a task initially, then the amount of monitoring that
can be performed can be increased. As an example, Figure 12
shows how the coverage increases as we increase the headstart
slack given to the main task for UMC. Figure 13 shows how
the coverage varies with headstart slack for DIFT. Results for
RAC are similar and can be found in Section B of the Ap-
pendix. The headstart slack is displayed as a percentage of the
main task’s WCET for each benchmark and is varied from 0%
to 600%. With enough headstart slack, 100% of the monitoring
is able to be performed. For DIFT, only benchmarks which
were not able to reach 100% coverage with zero headstart
slack are shown. compress and statemate do not reach
100% coverage across the varied range. This is not surprising
as both had especially high WCET for performing monitoring
without dropping (see Figure 7). With higher headstart slack,
these benchmarks should also reach 100% coverage.

C. FPGA-based Monitor

Performing monitoring in software, although parallelized,
can still incur high overheads since multiple instructions are
needed to handle each monitoring event. One possible solution
to improve the performance of monitoring while maintaining

programmability is to use an FPGA-based monitor [7]. We
model the FPGA-based monitor as being able to run at 250
MHz and handle up to one monitoring event each cycle. Note
that this means that the FPGA-based monitor can process a
monitoring event every two cycles of the main core which
runs at 500 MHz. Table III shows the number of monitored,
dropped, and filtered events with no headstart slack for this
FPGA-based monitor. UMC and RAC are able to run 67% of
their monitoring tasks on average, while DIFT is able to run
72% of its monitoring tasks on average. Table IV shows the
coverage achieved by these monitoring schemes on an FPGA-
based monitor. RAC shows similar numbers to processor-
based monitoring because the number of calls and returns in
these benchmarks is relatively small. However, for UMC and
DIFT, we see that an FPGA-based monitor allows much more
monitoring to be done without increasing the headstart slack.
The coverage for UMC increases from 15% to 62% while the
coverage for DIFT increases from 59% to 86%.

Figure 14 shows how the coverage for UMC varies as we
increase the headstart slack from 0% to 10% for an FPGA-
based monitor. Figure 15 shows this data for DIFT and results
for RAC can be found in Section B of the Appendix. We can
see that for a high-performance FPGA-based monitor, with a
small amount of slack, we are able to achieve 100% monitoring
for almost all benchmarks while guaranteeing the main task’s
execution time does not exceed its WCET.

D. Area and Power Overheads

Adding the dropping hardware in order to enable adjustable
overheads adds overheads in terms of area and power. We
use McPAT [17] to get a first-order estimate of these area
and power overheads in a 40 nm technology node. McPAT
estimates the main core area as 1.96 mm2 and the peak
power usage as 152.9 mW averaged across all benchmarks.
The average runtime power usage was 71.6 mW. These area
and power numbers consist of the core and L1 cache, but
do not include memory controllers and other peripherals. The
power numbers include dynamic as well as static (leakage)
power. For the dropping hardware, the ALUs, MISP, MIT,
and configuration tables are modeled using the corresponding
objects in McPAT. We note that this is only a rough area and
power result since components such as the wires connecting
these modules have not been modeled. However, this gives
a sense of the order-of-magnitude overheads involved with
implementing our approach.

An additional 0.132 mm2 of silicon area is needed, an
increase of 7% of the main core area. Table V shows the
peak and runtime power overheads with zero headstart slack
for both a processor-based monitor as well as an FPGA-based
monitor. The peak power is 5-17 mW, which is 3-11% of the
main core’s peak power usage. The average runtime power is
5-9 mW, corresponding to 7-12% of the main core’s runtime
power. For UMC and DIFT, the core-based monitor has lower
power usage due to more monitoring events being filtered out
that do not require invalidation. This reduces the activity of the
Metadata Invalidation Module which reduces the power usage.

VI. RELATED WORK

The architecture we present in this paper is applicable
to a wide range of parallel hardware run-time monitoring
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TABLE I. NUMBER OF MONITORED, DROPPED, AND FILTERED MONITORING EVENTS AS A PERCENTAGE OF THE TOTAL NUMBER OF MONITORING
EVENTS. THESE PERCENTAGES ARE SHOWN FOR ZERO HEADSTART SLACK.

Monitor Type Benchmark Average
compress crc edn fir insertsort jfdc nsichneu statemate

UMC
Monitored 11.9% 59.0% 4.4% 28.4% 15.9% 16.2% 0.0% 3.3% 17.4%
Dropped 29.4% 9.4% 5.9% 3.9% 45.6% 43.4% 0.13% 33.4% 21.4%
Filtered 58.7% 31.6% 89.7% 67.7% 38.6% 40.4% 99.9% 63.3% 61.2%

RAC
Monitored 93.8% 50.0% 83.3% 90.9% - 0.0% - 80.0% 66.3%
Dropped 3.1% 25.0% 8.3% 4.5% - 50.0% - 10.0% 16.8%
Filtered 3.1% 25.0% 8.3% 4.5% - 50.0% - 10.0% 16.8%

DIFT
Monitored 11.0% 92.2% 26.7% 22.0% 61.8% 22.1% 4.7% 10.6% 31.4%
Dropped 26.3% 0.89% 19.6% 18.4% 16.6% 12.6% 57.5% 65.7% 27.2%
Filtered 62.8% 6.9% 53.7% 59.6% 21.6% 65.2% 37.8% 23.6% 41.4%

TABLE II. PERCENTAGE OF CHECKS THAT ARE NOT DROPPED OR FILTERED. THESE PERCENTAGES ARE SHOWN FOR ZERO HEADSTART SLACK.

Monitor Benchmark Average
compress crc edn fir insertsort jfdc nsichneu statemate

UMC 0.0% 59.9% 0.41% 27.8% 10.9% 16.3% 0.0% 0.41% 14.5%
RAC 93.8% 50.0% 83.3% 90.9% - 0.0% - 80.0% 66.3%
DIFT 3.8% 66.7% 44.4% 16.7% 100.0% 100.0% 100.0% 43.3% 59.4%
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Fig. 12. Percentage of checks performed as headstart slack is varied for UMC. Headstart slack is shown normalized to the main task’s WCET.
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Fig. 13. Percentage of checks performed as headstart slack is varied for DIFT. Headstart slack is shown normalized to the main task’s WCET.

techniques. We briefly mention some recent platforms as
examples. For example, INDRA [18] uses a checker core to
monitor coarse-grained events on a computation core such as
function call/return, code origin inspection, and control flow
inspection. Nagarajan et al. studied implementing DIFT on a
multi-core system [19]. Chen et al. proposed hardware accel-
eration techniques for multi-core systems and showed that a
set of parallel monitoring techniques for security and software
debugging can be realized with low performance overheads
(tens of percents) [6]. The FlexCore [7] and Harmoni [8]
architectures showed that parallel monitoring can be made even
more efficient by implementing monitors on reconfigurable
hardware. SecureCore [20] is a monitoring scheme targeted
specifically at real-time systems which attempts to detect
code injection attacks by detecting anomalous timing behavior.
However, the architecture assumes enough buffering so that the
timing behavior of the main task is not affected. Overall, these
previous studies demonstrate that parallel monitoring can be
used to significantly improve system security and reliability
with minimal overheads.

There have been several projects that have looked into

performing limited monitoring. Testudo [21] performs limited
monitoring across many users in order to limit the performance
impact of monitoring. The Quality Virtual Machine (QVM)
is a modification of the Java Virtual Machine that supports
run-time monitoring with controllable overheads [22]. QVM
enables and disables monitoring in an attempt to match the
specified target overhead. Similarly, Huang et al. created a
framework for controlling the overheads of software-based
monitoring [23]. These projects provide no strict guarantees
on the performance impact and thus are not applicable to
hard real-time systems. In contrast, our architecture is able
to provide a strict guarantee on the worst-case overheads. In
addition, these projects enable and disable monitoring at a
coarse granularity in order to guarantee that false positives
do not occur. Instead, we have presented an invalidation-based
mechanism to prevent false positives. This allows the decision
of whether to perform monitoring to be extremely fine-grained
(i.e., per monitoring event).

As mentioned earlier, there is existing work for statically
estimating the WCET of monitoring using an MILP-based
method [9]. In general there has been a multitude of work in
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TABLE III. NUMBER OF MONITORED, DROPPED, AND FILTERED MONITORING EVENTS AS A PERCENTAGE OF THE TOTAL NUMBER OF MONITORING
EVENTS FOR AN FPGA-BASED MONITOR. THESE PERCENTAGES ARE SHOWN FOR ZERO HEADSTART SLACK.

Monitor Type Benchmark Average
compress crc edn fir insertsort jfdc nsichneu statemate

UMC
Monitored 29.6% 85.9% 97.3% 83.3% 91.4% 88.7% 14.5% 45.7% 67.1%
Dropped 17.4% 3.3% 0.05% 2.7% 3.0% 3.1% 0.10% 8.5% 4.8%
Filtered 53.0% 10.8% 2.7% 14.0% 5.6% 8.3% 85.4% 45.8% 28.2%

RAC
Monitored 94.8% 50.0% 83.3% 95.5% - 0.0% - 81.0% 67.4%
Dropped 3.1% 25.0% 8.3% 4.5% - 50.0% - 10.0% 16.8%
Filtered 2.1% 25.0% 8.3% 0.0% - 50.0% - 9.0% 15.7%

DIFT
Monitored 40.6% 97.6% 64.7% 50.6% 97.9% 75.8% 96.6% 51.5% 71.9%
Dropped 8.8% 0.06% 13.6% 0.91% 0.97% 0.95% 2.1% 33.6% 7.6%
Filtered 50.6% 2.3% 21.7% 48.5% 1.1% 23.3% 1.3% 14.9% 20.5%

TABLE IV. PERCENTAGE OF CHECKS THAT ARE NOT DROPPED OR FILTERED FOR AN FPGA-BASED MONITOR. THESE PERCENTAGES ARE SHOWN FOR
ZERO HEADSTART SLACK.

Monitor Benchmark Average
compress crc edn fir insertsort jfdc nsichneu statemate

UMC 9.9% 87.8% 97.1% 85.1% 86.1% 84.8% 14.5% 28.3% 61.7%
RAC 95.8% 50.0% 83.3% 100.0% - 0.0% - 82.0% 68.5%
DIFT 3.8% 93.3% 100.0% 100.0% 100.0% 100.0% 100.0% 88.3% 85.7%
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Fig. 14. Percentage of checks performed as headstart slack is varied for UMC on an FPGA-based monitor. Headstart slack is shown normalized to the main
task’s WCET.
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Fig. 15. Percentage of checks performed as headstart slack is varied for
DIFT on an FPGA-based monitor. Headstart slack is shown normalized to the
main task’s WCET.

TABLE V. AVERAGE POWER OVERHEADS FOR DROPPING HARDWARE
AT ZERO HEADSTART SLACK. PERCENTAGES IN PARENTHESES ARE

NORMALIZED TO THE MAIN CORE’S POWER USAGE.

Monitor Peak Power [mW] Runtime Power [mW]

Processor
UMC 4.9 (3.2%) 4.7 (6.6%)
RAC 4.7 (3.1%) 4.7 (6.6%)
DIFT 5.0 (3.3%) 4.8 (6.7%)

FPGA
UMC 16.7 (10.9%) 8.5 (11.9%)
RAC 4.7 (3.1%) 4.7 (6.6%)
DIFT 13.0 (8.5%) 8.8 (12.3%)

analyzing WCET [11], including for multi-core architectures
[24], [25]. However, since these methods are static, they can
be overly conservative and require redoing the timing analysis
when any changes are made to the main or monitoring tasks.
Instead, the architecture we presented in this paper takes

advantage of run-time behavior to perform monitoring while
maintaining timing guarantees.

There has also been a host of work on hardware architec-
tures for real-time systems. The VISA architecture [26] uses
dynamic slack to run in a faster but difficult to analyze mode.
It switches to a simpler mode under which timing analysis
and WCET is calculated when there is not enough slack. We
use a similar method to keep track of slack. However, we use
slack for monitoring rather than for running under a different
mode. The PRET architecture [27] seeks to have a processor
design that is both high performance and easy to analyze in
terms of timing. Paolieri et al. proposed an analyzable multi-
core hardware architecture for hard real-time systems [28].
These architectures all design hardware with real-time system
requirements in mind, but ours is the first work that we know
of that designs a hardware architecture for parallel hardware
run-time monitoring on real-time systems.

VII. CONCLUSION

Run-time monitoring techniques are attractive for improv-
ing the security and reliability of systems. However, applying
these techniques to real-time systems has a large impact on
the WCET of programs. In this paper, we have presented
an opportunistic monitoring framework that uses dynamic
slack to perform monitoring while minimizing the WCET
impact on programs. This is done by dropping monitoring
events when there is insufficient slack and instead running
a dropping task that invalidates metadata in order to prevent
false positives. With hardware optimizations, we are able to
eliminate this WCET impact entirely. We show that, for three
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different tested monitoring schemes, an average of 15-66% of
monitoring checks, depending on the monitoring scheme, can
be performed with no impact on the main task’s WCET. For
an FPGA-based monitor, a range of 62-86% of monitoring
checks, on average, depending on the monitoring scheme, can
be performed with no impact on WCET.
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APPENDIX

A. Monitoring Extensions

In this section, we detail how our architecture works for the
three different monitoring schemes we evaluated: uninitialized
memory check (UMC), return address check (RAC), and
dynamic information flow tracking (DIFT). Table VI shows a
summary of the monitoring tasks for these monitoring schemes
and Table VII shows how the MIM and MFM operate.

1) Uninitialized Memory Check: As described in Sec-
tion II, uninitialized memory check (UMC) is a monitoring
scheme that checks that memory is written to before it is read
from. Table VI summarizes the monitoring tasks for UMC.

Table VII shows the operations of the MIM and MFM. The
monitoring task performed on a load instruction is a check
operation. Thus, it can simply be skipped without causing any
false positives. However, the monitoring task on a store updates
metadata. On a dropped store event, the MIM calculates the
metadata address and sets an invalidation flag corresponding
to this address in the MIT to indicate that the metadata for this
word is invalid.

In terms of using the metadata filtering module, on a load,
if the metadata is invalid, then performing the check is useless.
Thus, if the filtering module detects that the metadata inval-
idation flag corresponding to the memory access address is
invalid, then the monitoring event is dropped and no operation
is performed. For a store event, the source operand of the
operation is a register value which is always valid. Thus, the
MFM never filters a store event. Instead, if the store event
is not dropped, the monitor will set the metadata bit and can
clear the corresponding invalidation flag.

2) Return Address Check: Several security attacks, such as
return-oriented programming (ROP) [15], attempt to manipu-
late the return address of a function so that the control flow of
a program is diverted. One method to prevent these types of
attacks is to use monitoring to save the return address on a call
to a function and to check on the return that the correct return
address is used. We refer to this type of monitoring scheme
as a return address check (RAC). On a call instruction, RAC
pushes the correct return address for the function onto a stack
data structure. On a return instruction, RAC pops an address
of the stack and checks that this saved address matches the
address the main task is returning to (Table VI).

In the case of UMC, the metadata that we cared about was
a function of information from the monitoring event. For RAC,
the metadata entry that we care about is based on the current
stack pointer for the return address stack that the monitor
maintains. The MIM maintains the previous metadata address
used in a register and we can use this register to maintain the
stack pointer between the monitoring task and the MIM. The
monitoring task updates this register as necessary to ensure
that the MIM has the correct metadata stack pointer. On a
call instruction that needs to be dropped, the MIM marks
the metadata at the current stack pointer (i.e., the previous
metadata address) as invalid and increments the stack pointer.
On a return, the MIM decrements the stack pointer and simply
skips the check operation (Table VII).

On a call instruction, the source of our monitoring opera-
tion is the return address from the monitoring event. This is

always valid, so call instructions are never processed by the
MFM. On a return instruction, if the stored return address is
marked as invalid, then the check can be skipped. Thus, if the
MFM detects that the stored return address is invalid, then the
stack pointer will be decremented but no check will occur,
similar to the invalidation case.

3) Dynamic Information Flow Tracking: Dynamic infor-
mation flow tracking (DIFT) [1] is a security monitoring
scheme that seeks to detect when information from untrusted
sources is used to affect the control flow. In its simplest form,
DIFT keeps a 1-bit metadata tag for each memory location and
each register, indicating tainted or untainted. Multi-bit versions
of DIFT have been proposed to track more detailed semantic
information about data. When data is read from an untrusted
source, it is marked as tainted. As this data is used for other
operations, the results of these operations are also marked as
tainted. On an indirect jump, the taint bit of the register used
is checked. If the register is found to be tainted, then an error
is detected. These monitoring task operations are summarized
in Table VI.

In the case of DIFT, since the registers have associated
metadata and these are used very often, we use the MISP to
avoid aliasing. Also, in this discussion, we are considering a
1-bit taint, so the MISP can be used to store the exact taint
value, rather than an invalidation flag. This shows some of the
flexibility in how these hardware structures can be used for
specific monitoring schemes. For more complicated multi-bit
DIFT schemes, the MISP would be used to store invalidation
flags as before. For ALU and load instructions which have
a register as a destination, the MIM will clear the register’s
taint in the MISP on a dropped monitoring event. This is safe
because an error is only raised for a tainted data value. On a
store instruction, which writes to memory as a destination, the
MIM invalidates the associated memory address in the MIT,
similar to how UMC operates. Finally, on an indirect jump,
only a check operation is performed. Thus, this can be dropped
without any extra invalidation.

The MFM operates similar to the UMC case for some of
these monitoring events (Table VII). For an indirect jump, if
the metadata is found to be invalid, then the event is filtered and
no check is performed. For a load instruction, if the loaded data
has its metadata marked as invalid, then the MFM will clear the
taint bit for the target register, as in the invalidation case. For
a store instruction, the source is from a register, which always
has a valid taint bit in the MISP, so these are never filtered out.
The most interesting case is for ALU instructions. The MFM
is able to read the taint bits from the MISP and then signal to
the MIM to write to the MISP, so we can actually perform the
entire monitoring task in hardware. The MFM reads the taint
bits from the MISP for both source registers. These are fed
into the filter lookup table (see Figure 10) which is configured
to signal the MIM to set or clear the taint bit in the MISP for
the destination register depending on the read taint bits.

B. Coverage of Return Address Check

This section shows how the coverage varies as headstart
slack is changed for RAC. Figure 16 shows the coverage for a
processor core implementation of RAC while Figure 17 shows
the coverage for an FPGA-based monitor. insertsort and
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TABLE VI. MONITORING TASKS FOR UMC, RAC, AND DIFT.

Monitor Event Task Operation

UMC Store Set metadata tag (data initialized) Update
Load Check that metadata tag is set Check

RAC Call Push return address Update
Return Pop return address and check Update & Check

DIFT

ALU Set the output tag as the OR of the input tags Update
Load Set the register tag as the tag of the loaded data Update
Store Set the memory tag as the register tag Update
Indirect jump Check that tag is not set (data is untainted) Check

TABLE VII. OPERATION OF THE MIM AND MFM FOR UMC, RAC, AND DIFT.

Monitor Event Invalidation Filter Condition Filter Operation

UMC Store Set invalidation flag Never -
Load Do nothing Invalid metadata Do nothing

RAC Call Invalidate metadata, increment metadata address Never -
Return Decrement metadata address Invalid metadata Decrement stack pointer

DIFT

ALU Clear taint in MISP Always Perform propagation
Load Clear taint in MISP Invalid metadata Clear taint in MISP
Store Invalidate metadata Never -
Indirect jump Do nothing Invalid metadata Do nothing
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Fig. 16. Percentage of checks performed as headstart slack is varied for RAC implemented on a processor core. Headstart slack is shown normalized to the
main task’s WCET.
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Fig. 17. Percentage of checks performed as headstart slack is varied for RAC on an FPGA-based monitor. Headstart slack is shown normalized to the main
task’s WCET.

nsichneu were omitted as they do not perform function
calls. fir is not shown for the FPGA-based monitor because
it already achieves 100% coverage with zero headstart slack.
In both cases, we see that with a small amount of headstart
slack, RAC is able to reach 100% coverage for all benchmarks.
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