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Abstract—This paper proposes Harmoni, a high performance
hardware accelerator architecture that can support a broad
range of run-time monitoring and bookkeeping functions. Unlike
custom hardware, which offers very little configurability after
it has been fabricated, Harmoni is highly configurable and
can allow a wide range of different hardware monitoring and
bookkeeping functions to be dynamically added to a processing
core even after the chip has already been fabricated. The
Harmoni architecture achieves much higher efficiency than
software implementations and previously proposed monitoring
platforms by closely matching the common characteristics of
run-time monitoring functions that are based on the notion
of tagging. We implemented an RTL prototype of Harmoni
and evaluated it with several example monitoring functions for
security and programmability. The prototype demonstrates that
the architecture can support a wide range of monitoring functions
with different characteristics. Harmoni takes moderate silicon
area, has very high throughput, and incurs low overheads on
monitored programs.

I. INTRODUCTION

As we expand the use of computing devices to handle more
sensitive information and control critical infrastructure, secure
and reliable operation becomes increasingly more important.
In this context, run-time monitoring of program execution at an
instruction granularity provides an effective approach to ensure
a wide range of security and reliability properties, especially
with dedicated hardware support. As an example, Dynamic
Information Flow Tracking (DIFT) is a recently proposed
security technique that tracks and restricts the use of untrusted
I/O inputs by performing additional bookkeeping and checking
operations on each instruction that could handle data derived
from untrusted I/O inputs. DIFT has been shown to be quite
effective in detecting a large class of common software attacks
[1], [2], [3]. Similarly, run-time monitoring has been shown
to enable many types of capabilities such as fine-grained
memory protection [4], array bound checking [5], [6], software
debugging support [7], managed language support such as
garbage collection [8], hardware error detection [9], etc.

This paper presents a programmable accelerator that is
designed to enable a large class of run-time monitoring tech-
niques to execute efficiently in parallel to the main processing
core. Unfortunately, existing proposals for run-time monitoring
techniques suffer from either limited programmability or high
performance/energy overheads.

For example, while a custom hardware implementation
of a runtime monitoring scheme can have negligible run-

time overheads, high development costs and inflexibility of
hardware have made custom hardware difficult to deploy
in practice. Modern microprocessor development may take
several years and hundreds of engineers from an initial design
to production, and custom hardware cannot be added or
updated after the fabrication. Because of the high costs of
development and silicon resources, processor vendors would
rather not implement a mechanism in custom hardware unless
the mechanism is already proven and is widely used.

At the other end of the spectrum, monitoring in software
offers very high flexibility. Software writers can leverage
the inherent programmability of a general purpose processor
to implement mechanisms of arbitrary complexity using as
many general purpose processor instructions as necessary.
However, software implementations of instruction-grained run-
time monitoring mechanisms typically suffer from high perfor-
mance and energy overheads. For example, a software imple-
mentation for DIFT monitoring on a single core is reported
to have an average slowdown of 3.6X even with aggressive
optimizations [10]. The performance overheads of software
monitoring can be mitigated using parallel processing [11],
however, this entails using multiple processing cores to run
each computation thread and is likely to increase power
consumption by a factor of two or more.

In essence, a traditional processing core is a poor match
in terms of efficiency for many runtime monitoring schemes;
for instance, DIFT needs to propagate and check 1-bit tags
on each instruction while a processing core is optimized for
sequential 32-bit (or 64-bit) operations. The bit-level config-
urability of FPGAs makes them a promising solution as an
efficient accelerator for runtime monitoring. A recent proposal
discussed the flexibility and energy efficiency of the FPGA co-
processing approach [12] but also reported that the traditional
FPGA architecture can only keep up with low-performance
processing cores running at hundreds of MHz (< 500MHz).
For higher performance cores, an FPGA co-processor can
incur a significant performance penalty.

Fundamentally, there exists a trade-off between efficiency
and programmability as illustrated in Figure 1. Because pro-
grammability requires additional hardware such as a mul-
tiplexer to allow a choice, greater programmability implies
higher overheads. In this paper, we develop an accelerator
architecture that can provide low-overhead run-time monitor-
ing even for high-performance processors with a few GHz
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Fig. 1. Trade-off between efficiency and programmability.

clock frequency. We achieve this goal by carefully restrict-
ing the programmability and optimizing the architecture for
common monitoring operations. In particular, we found that
many instruction-grained monitoring techniques are built upon
tagging, where a piece of meta-data is attached to each value,
memory location, or program object, and the meta-data is
updated/checked based on instruction events in the monitored
program. While the notion of tagging has been studied before,
this work presents a unified architectural framework that can
support a broad range of run-time monitoring techniques that
use tagging.

Our on-chip accelerator architecture, named Harmoni
(Hardware Accelerator for Runtime MONItoring), provides an
efficient realization of the general tagging model. The Harmoni
architecture is designed to match common tagging operations,
which consist of reading, updating, checking, and writing the
tag for each instruction on the main processing core. Harmoni
maintains programmability by broadly supporting monitoring
schemes that use tagging in various types and granularities.
Harmoni also supports operations on tags that range from
regular ALU computations to irregular tag update and check
by combining ALUs and memory-based look-up tables.

By focusing specifically on supporting monitoring schemes
that make use of tagging, Harmoni can achieve a high operat-
ing clock frequency of 1.25GHz on a 65nm standard cell tech-
nology. This higher clock frequency allows Harmoni to keep
pace with high-performance processors that are running at
clock frequencies of a few GHz and have minimal performance
overheads. An evaluation of the Harmoni prototype also shows
that the architecture is far more energy efficient compared
to using multiple identical processing cores for both main
computations and monitoring operations in parallel. Harmoni
has moderate area overheads for a small 5-stage embedded
processor, but is quite small compared to processing cores
that run at higher frequencies.

This paper makes the following main contributions:
• General run-time monitoring model: The paper proposes

a general model for parallel run-time monitoring based
on the notion of tagging. This model enables efficient
hardware implementations while capturing a broad range
of monitoring techniques.

• Accelerator architecture: The paper presents an accel-
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Fig. 2. Parallel run-time monitoring with tags.

erator architecture that realizes the proposed monitoring
model. Unlike other programmable monitoring platforms
available today, the accelerator can match the throughput
of a high-frequency processing core with low energy
overheads.

• Prototype implementations and evaluations: The paper
implements and studies a prototype in RTL (VHDL) and
presents results from its evaluation.

The rest of the paper is organized as follows. Section II
describes the model for the parallel monitoring with tagging,
and shows how example monitors can map to the model.
Section III presents the tagging architecture. Section IV studies
the performance, area, and power consumption of our archi-
tecture. Section V discusses the related work, and Section VI
concludes the paper.

II. TAG-BASED MONITORING MODEL

The main challenge in designing a high-performance, pro-
grammable accelerator for run-time monitoring lies in iden-
tifying functions that are common across a broad class of
monitors so that certain aspects of programmability can be
limited without sacrificing functionality. In this context, we
studied a number of run-time monitoring techniques and found
that many of them can be seen under the common framework
of tagging; monitoring schemes often maintain and check
meta-data information for data that are used in the main core.
This section presents our run-time monitoring model used on
Harmoni that is based on the notion of tagging.

A. Overview

Figure 2 shows a high-level model of typical instruction-
grained monitoring techniques. In the figure, the light blocks
on the left represent the main computation and the darker
blocks on the right represent the monitoring function. A
monitor often maintains its own meta-data to keep track of
the history of the monitored computation; we will refer to
this meta-data as “tags” in this discussion. Conceptually, the
monitor observes a trace of instructions from the monitored
program and checks program properties by maintaining and
checking tags. We will refer to maintaining and checking tags
as “tagging operations” in this discussion. A failed tag check
indicates that a monitored-for event, which was intended to
be caught or avoided, had occurred in the program running on



the main processing core. Therefore, if a tag check fails, the
monitor raises an exception.

In general, a monitoring function can be characterized based
on its tag type and tag operations. The tag type defines the
meta-data that are maintained by the monitor. The set of
tag operations define which events in the monitored program
triggers a tag operation and how the tags are updated and/or
check on such events.

B. Tag (Meta-data) Types

Run-time monitoring techniques typically associate a tag
(meta-data) with each piece of state in the monitored program.
In particular, monitoring techniques typically rely on tags for
three types of program state: data value, memory location, and
high-level program objects.

Value tag: Many monitoring techniques keep a meta-data
tag for each data or pointer value in a program. For example,
DIFT maintains a 1-bit tag to indicate whether a word/byte
is from a potentially malicious I/O channel or not, and array
bound checks may keep base and bound information for each
pointer. Because most programming languages use 8-bit or
32-bit (or 64-bit) variables to express a value, the value tag
is often maintained for each word or byte in registers and
memory. Each tag also follows the corresponding value as
it propagates during an execution. As an example, loading a
value from memory into a register moves the corresponding
value tag from memory to a tag register, and an output of an
ALU often inherits its tag from tags of source operands.

Location tag: A tag may be associated with a location such
as a memory address instead of a value. Such a location tag
is often used to keep information on the properties of storage
itself rather than its content. For example, a memory protection
technique can keep permission bits for each memory location
and check if an access is allowed. A software debugging
support may use a location tag to check if each memory
location is initialized before a read. Similar to the value
tags, the location tags are generally kept at a word or byte
granularity, matching typical sizes of variables (int, char, etc.)
in program languages. Yet, the location tag does not follow
memory content.

Object tag: A monitoring scheme may keep coarse-grained
tags for relatively large program objects such as classes,
structures, arrays, etc. instead of keeping fine-grained tags per
byte or word. For example, a reference counter for a garbage
collection is maintained for each program object. While it is
possible to implement such coarse-grained tags using per-byte
or per-word tags - essentially, make all tags that correspond
to a large object to be the same value - it is far more efficient
to manage and update the object tags separately.

C. Tag Operations

In addition to the type of tags, a tag-based run-time moni-
toring scheme can be characterized in terms of which events
in the monitored program triggers tag operations and what
actions are taken within the tag operation. In general, actions
to update or check tags are triggered when the corresponding

values or locations are used by the monitored program. In-
formation about the values or location used in a program can
be deduced from each instruction that executes. For example,
load/store instructions indicate accesses to memory locations
or values. ALU instructions show processing of values. As
a result, low-level tag operations can often be determined
transparently based on the instruction opcode.

On the other hand, certain tag operations may be triggered
by high-level program events that need to be explicitly com-
municated from the monitored program to the monitor. For
example, a monitor to detect out-of-bound memory accesses
needs to set a tag, which encodes bounds for each pointer,
on memory allocation and deallocation events in order to
check bounds on each memory access. A compiler can often
automatically annotate a program to add explicit tag operations
for common program events and information such as function
calls, memory management operations, type information, etc.
High-level program events may need to be annotated by a
programmer.

For each monitored program event, the tagging operation
typically consists of the following common sequence of oper-
ations.

• Read: The monitor reads tags that correspond to the
values or locations used by the monitored program:
registers or memory for value tags, memory for location
tags, and a special table for object tags.

• Update: The monitor updates tags based on the moni-
tored program event.

• Check: The monitor may checks tags for an invariant and
signals an exception if the invariant is violated.

• Write-back: The monitor writes back the updated tag.
The value tag is typically written to the tag that corre-
sponds to the result of the monitored program’s instruc-
tion. The location tag is often written to the location that
is accessed by the monitored program.

D. Monitoring Examples

Here, we survey several previously proposed monitoring
schemes for security, debugging, and reliability, and discuss
how they map to the proposed tagging model. This is not
a comprehensive list of all possible run-time monitoring
functions. However, these schemes represent a spectrum of
monitoring functions that are diverse in terms of the operations
that they perform, information from the main processing core
that they act on, and the hardware requirements on the meta-
data operations.

Dynamic information flow tracking (DIFT) [1]: DIFT is a
security protection technique that prevents common software
exploits from taking over a vulnerable program by tracking
and limiting uses of untrusted I/O inputs. For example, typical
attacks that changes a program control flow can be detected
by preventing I/O inputs from being used as a code pointer.
DIFT uses a 1-bit value tag per memory word and register
to indicates whether the value has been tainted by data from
untrusted I/O inputs. DIFT uses operating system support to
set the tag (taint) input-derived data, and then transparently



Monitor Trigger Action

DIFT (1-bit value tag)

ALU instructions Tag(reg dest) := Tag(reg src1) or Tag(reg src2)
LOAD instructions Tag(reg dest) := Tag(mem addr)
STORE instructions Tag(mem addr) := Tag(reg dest)
JUMP instructions check reg src1 != “1”

UMC (1-bit location tag) LOAD instructions check Tag(mem addr) != ”0”
STORE instructions Tag(mem addr) := “1”

BC (4-bit location tag and 4-bit value tag)

LOAD instructions check Tag(mem addr) == Tag(reg src1)
Tag(reg src1) := Tag(mem addr)

STORE instructions check Tag(mem addr) == Tag(reg src1)
Tag(mem addr) := Tag(mem src1)

ADD instructions Tag(reg dest) := Tag(reg src1) + Tag(reg src2)
SUB instructions Tag(reg dest) := Tag(reg src1) - Tag(reg src2)
OR instructions Tag(reg dest) := 0
XOR instructions Tag(reg dest) := 0
NOT instructions Tag(reg dest) := -Tag(reg src1)

RC (32-bit object tag) Create pointer refcnt[addr] := refcnt[addr]+1
Destroy pointer refcnt[addr] := refcnt[addr]-1

TABLE I
TAG TYPES AND OPERATIONS FOR A SET OF RUN-TIME MONITORING FUNCTIONS.

tracks the flow of tainted information on each instruction in
the monitored application. On each ALU instruction, the tag
of the destination register is set if at least one of the two
input operand tags is set. On each memory access instruction,
the tag is copied from the source to the destination: a store
copies a tag from the source register to the destination memory
location, a load copies a tag from memory to a register. On
a control transfer instruction, such as an indirect jump, the
tag of the target address in the source operand is checked to
ensure that the address is not tainted.

Uninitialized memory checking (UMC) [13]: UMC de-
tects programming mistakes involving uninitialized variables.
Eliminating these memory errors can be a very important
part of the software development cycle. UMC uses 1-bit
location tag per word in memory to indicate whether the
memory location has been initialized since being allocated.
UMC leverages software support to clear tags when memory
is allocated. On each store instruction, the tag of the accessed
memory word is set. On each load instruction, the tag for the
accessed memory word is read and checked to detect when
data is read before being initialized.

Memory bounds checking (BC) [6]: While there exist a
number of run-time bounds checking techniques, in this paper,
we discuss a technique that utilizes a notion of coloring both
pointers and corresponding memory locations. Conceptually,
this approach maintains a location tag for each word in
memory and a value tag for each register and each word in
memory. The location tag encodes the color for the memory
location, and the value tag encodes the color for a pointer. Our
implementation uses 4-bit tags. The tags are set so that pointer
and memory tags match for in-bound accesses and differ
for out-of-bound accesses. On memory allocation events, BC
assigns the same tag value (color) to both memory locations
that are allocated and the pointer than is returned. On each
memory access instruction, the tag of the pointer that is used to
access memory is compared to the tag of the accessed memory
location. The access is allowed only when the tags match.

In addition to checking the color tags, the BC scheme also
tracks the tags for pointers. On memory load instructions,

the value tag is loaded from memory into the destination tag
register. On memory store instructions, the value tag is copied
into memory as the pointer color tag of the accessed memory
location. On ALU (ADD/SUB) instructions, the value tags are
propagated from the source operands to the output register
to keep track of tags for an updated pointer on an pointer
arithmetic operation.

Reference counting (RC) [8]: RC transparently performs
reference counting in hardware to aid garbage collection mech-
anisms implemented in software. In this scheme, because hard-
ware can transparently maintain reference count information,
software memory allocation mechanisms can quickly find and
free memory blocks that are no longer in use by the monitored
application. RC uses multi-bit object tags for each object in
the monitored application. In our study, we used 32-bit tags
to represent integer reference counts. RC leverages compiler
modifications to find instructions that create or destroy pointer
references. On an instruction that creates a new pointer, the
pointer value is used to look up the object tag, and the tag
is incremented. On an instruction that destroys an existing
pointer, the pointer value is used to look up the object tag,
and the tag is decremented.

Table I summarizes the characteristics of each monitoring
technique in terms of the tag type and tag operations.

III. ARCHITECTURE DESIGN

In this section, we present the design of Harmoni, which
can efficiently support a broad spectrum of runtime monitoring
techniques based on tagging.

A. Overview

Harmoni is designed as a parallel decoupled co-processor
in a runtime monitoring architecture as shown in Figure 3.
The Harmoni architecture supports fine-grained monitoring
techniques by adding specialized hardware support to the
processing core to forward an execution trace of selected types
of instructions from the main processing core to Harmoni.
The forwarded instructions are selected based on the opcode.
The execution trace includes the opcode, register indexes of
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Fig. 3. High-level block diagram of the Harmoni architecture.

source and destination registers, the accessed memory address
on a load/store instruction, and a pointer value for a high-level
object that are being used in the main core.

Forwarded instructions trigger tag operations on the Har-
moni co-processor, which update the corresponding tags
and/or check tag values for errors or events in the monitored
program. In order to efficiently manage location and value
tags in main memory, the Harmoni architecture includes a
tag TLB to translate a data address to a tag address and an
L1 tag cache. The Harmoni pipeline raises an exception if a
check fails; this exception is delivered over a backward FIFO
to the main processing core, which invokes an appropriate
exception handler to pinpoint the cause of the exception and
take necessary actions.

The architecture allows the monitoring on Harmoni to be
mostly decoupled from the program running on the main pro-
cessing core by using a FIFO within the Core-Fabric interface
to buffer forwarded instructions. Using the interface, the main
processing core can queue each completed instruction that is
to be forwarded to Harmoni into the FIFO and then continue
execution without waiting for the corresponding check on
Harmoni to complete. The Harmoni co-processor can dequeue
instructions at its own pace from the Core-Fabric interface and
perform tag operations for each dequeued instruction. As long
as the FIFO within the Core-Fabric interface is not full, the
main processor and Harmoni can effectively run in parallel.
In our implementation of the Harmoni prototype, the FIFO
is sufficiently sized (64 entries) to accommodate short-term
differences in the throughput between the main processing core
and the Harmoni co-processor.

Because the monitoring on Harmoni is performed in a
decoupled fashion, an exception signal reaches the main core
after the corresponding instruction has already completed. The
delayed exception is sufficient if we assume a fail-stop model
where the monitored program is terminated on an error. To
avoid erroneous program outputs and corruption in persistent
state, critical instructions such as system calls with externally
visible effects are delayed until Harmoni checks are completed
for all preceding instructions. If necessary, exceptions raised
by Harmoni can be made precise by either utilizing standard
precise exception mechanisms for modern out-of-order pro-
cessors or by adding a small amount of buffering to in-order
processors [14].

B. Programmability

At a high level, the Harmoni co-processor supports a wide-
range of tag-based program monitoring techniques by allowing
both tag type and tag operations to be customized depending
on the monitoring technique. The Harmoni co-processor is
designed to efficiently support the three types of tags: value,
location, and object tags. The size of the tag can be statically
configured to be any value that is a power of two, up to a
word (32 bits). The granularity of location tags can be set to
be a value that is a power of two and equal to or greater than
a byte. The granularity of a single byte means that there is a
tag for each byte. The object tags allow an arbitrary range in
memory to be tagged.

For location tags, the Harmoni architecture supports storing
a tag for each memory location using a tag memory hierarchy
(TMEM). Figure 4 show the block diagram with major com-
ponents in the Harmoni pipeline. The tags are stored in a linear
array in main memory alongside program instructions and
data. TMEM is accessed using a memory address forwarded
along with an instruction from the main processing core. The
mapping between the monitored program’s memory address
and the corresponding tag address can be done as a simple
static translation in virtual addresses based on the tag size and
granularity. The operating system can allocate physical mem-
ory space to program data and tags using the virtual memory
mechanism. The mappings can be cached in the tag TLB,
which translates memory addresses used by the monitored
application into memory tag addresses. Harmoni supports the
tagging of memory blocks with statically configurable sizes
of one byte or larger (any power of two) with tags that can
be any size that is a power of two in bits and up to a word
length (32 bits). Similar to regular data accesses, the latency
of tag accesses is reduced using a tag cache hierarchy. In
our prototype, the cache uses write-back and write-allocate
policies.

For value tags, Harmoni supports tagging each register and
each value in memory using a tag register file (TRF) and tag
memory hierarchy (TMEM). The TRF stores a tag for the
corresponding register in the main core. The TRF is accessed
using source/destination register numbers from the main core.
The TMEM is accessed using the memory address from the
main core on load/store instructions in the same way that the
location tag is handled.

Because both location and value tags require tags in mem-
ory, the memory hierarchy in Harmoni needs to be able to
deal with two tags at a time in order to allow both tag types
to be used simultaneously. In case that both location and value
tags are enabled, Harmoni stores a concatenation of the two
tags in a linear array so that both tags can be easily accessed
together. The tag cache allows reading both tags together and
updating only one tag type. For example, our bounds checking
prototype uses 4-bit location and value tags per word. Harmoni
maintains an 8-bit meta-data per word in memory. On a load,
the tag cache reads the 8-bit meta-data and splits it into two
4-bit tags. On a store, the cache only overwrites 4 bits out of



TBASE

TBOUND

Control 
Table

AN
D

AN
D

AN
D

E
n
c
o
d
e

TTBL
REN

TRF
WEN

TMEM
WEN

TTBL
WEN

UALU
OP

CALU
OP

M
U
X

Decode Tag Read Tag Update Tag Check Tag Write

M
U
X

UTBL
OP

CTBL
OP

PASS

SEL

SEL

M
U
X
SEL

TMEM
REN

TRF
REN

M
U
X
SEL

miss?

tbl miss
update miss
check miss

M
U
X
SEL

rs1
rs2
rd

alu_result

op

Tag Read Tag Compute Tag Update

M
U
X
SEL

Fig. 4. High level block diagram of the Harmoni pipeline. The pipeline can be broken down into five discrete stages. The first two stages read the tags of
operands used in the instruction, the third and fourth stage update and check the tags, the fifth stage writes the updated tag. The output of the control table
is connected to all of the modules in the last four stages of the pipeline and determines their behavior.

the 8-bit meta-data.
Object tags are supported with a software-controlled object

table (OBJTBL), which stores a tag for recently accessed high-
level program objects. Each entry in the OBJTBL contains
base and bound addresses of an object along with its tag. The
table is looked up in two steps using a pointer from the main
core. In the first step, the table compares the base and bound
addresses of each entry with the input pointer to see if there
is a match. If the corresponding entry is found, the tag value
is read in the second step. If the entry does not exists in the
table, a object table miss exception is raised so that the table
can be updated by software. In our prototype, the OBJTBL can
cache up to 32 entries for object tags. Previous studies [15],
[16], [17] have shown that program objects and arrays have
very high temporal locality, and only a handful of entries are
sufficient to cache object tags with low miss rates.

In addition to flexible tag types and sizes, the Harmoni
architecture also supports programmable tag update and check
operations. On each forwarded instruction from the main core,
Harmoni can compute a new tag for the destination that is
accessed by the instruction. More specifically, this update
operation can be performed either by a tag ALU (UALU) or a
software-controlled table (UTBL). The UALU can handle full
32-bit integer computations on two tags, which can be from tag
registers, tag memory, or the tag object table, and is designed
for monitoring techniques with regular tag update policies. For
example, in reference counting, each pointer creation event
results in a regular increment of the object’s reference count.

The update table (UTBL) works as a cache that stores recent
tag update rules and enables complex software-controlled tag
update policies. The UTBL takes two input tags along with
control bits that define an operation. Each entry stores a new
tag value for the specified tag operation with specific input tag
values. The UTBL raises an exception if an entry cannot be

found for a monitored instruction that is configured to use the
table. Then, software computes the new tag value and caches
it in the UTBL. The updated tag can be simply read from the
table if an identical tag operation with input tag values is later
performed.

Similar to the update, the tag check operation can also be
performed using either a check ALU (CALU) or a software-
controlled check table (CTBL). The check operation can take
up to two input tags and outputs a 1-bit signal indicating
whether a check passes or not. One input tag comes from the
output of the tag update unit, and the other input tag is from
the tag register, the tag memory, or the object table. The CALU
can handle a range of full 32-bit binary or unary comparison
operations on one or two tags. The CTBL handles complex
check policies by storing recent check results from software
in the same way that the UTBL caches recent update rules. In
our prototype, both UTBL and CTBL are implemented as a
direct-mapped caches with 32 entries.

To configure the tag operations, Harmoni uses a statically-
programmed look-up table for pipeline control signals (CON-
TBL). The CONTBL is indexed by the opcode of the for-
warded instruction and holds one set of control signals for each
opcode type. Our prototype supports 32 instruction types. The
control signals from the CONTBL determine where tags are
read from, how the tag update and check should be performed,
and where the updated tag should be written to. As an example,
for the tag update operation, the CONTBL signals specify
whether the computation will be handled by the UALU or
the UTBL, which tag values are used as inputs (up to two
from the tag registers, up to two from the tag memory, up
to one from the object table), and what the UALU or UTBL
operation should be.
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Fig. 5. Run-time monitoring techniques mapped to the Harmoni co-processor.

C. Tag Processing Pipeline

Having described the Harmoni architecture at a high-level,
we now describe the Harmoni pipeline in more detail, which is
shown in Figure 4. The Harmoni pipeline can be broken down
into five stages. The first two stages read the relevant tags for
the monitored instruction, the third stage updates the tag, the
fourth stage performs a tag check, and the fifth stage writes
the updated tag back to the tag register file, the tag memory,
or the object tag table.

In the first stage of the pipeline, the instruction is “decoded”.
The CONTBL is accessed using the opcode of the forwarded
instruction. The tag register file indexes to read tags from are
specified in this control table. At the same time, the stage looks
up the OBJTBL by checking the base and bound addresses
with the pointer address from the main processing core.

In the second stage of the pipeline, tag information is
accessed from the tag register file (TRF), the tag memory
(TMEM), and the software-controlled table (OBJTBL). Up to
two tags are read from the TRF, the TMEM is accessed for up
to two tags corresponding to the memory content or address
(value or location tag), and one object tag is read from the
OBJTBL.

In the third stage of the pipeline, the updated tag is
computed. Up to two tags are used by either the UALU or the
UTBL to calculate the updated tag. The UALU allows broad
range of typical tag processing operations including bit-wise
logic operations (AND, NOT, OR, XOR), integer arithmetic
operations (Add and Sub), bit-shifting operations (shift and
rotate), and propagation of either operand. The UTBL caches
software specified tag update results in order to perform a
more complex tag update. The output of either the UALU or
the UTBL is selected using control signals from the CONTBL
at the end of the third stage and propagated to the next stage

of the Harmoni pipeline.
In the fourth stage of the pipeline, the tag is checked against

invariants. The CALU takes the updated tag along with another
tag from the TRF, the TMEM, or the OBJTBL, and performs
a unary or binary comparison to determine if an exception
should be raised. The CTBL uses the same input tags to
perform a complex tag check. The CONTBL selects which
module, the CALU or the CTBL, should drive an exception
signal back to the main processing core.

In the fifth and final stage of the pipeline, the updated tag
is written back to the tag register, the tag memory, and/or the
object tag table. The updated tag is sent on a broadcast bus
to these three structures, and the writing of this tag for each
module is controlled by a set of control signals generated from
the CONTBL.

D. Monitor Examples

Figure 5 shows how the run-time monitoring techniques that
we discussed in Section II can be mapped to Harmoni. The
figure highlights the modules that are used by each monitoring
scheme in block diagrams.

The modules used by dynamic information flow tracking
(DIFT) are shown in Figure 5(a). In DIFT, ALU instruc-
tions propagate taint information between registers, memory
instructions propagate taint information between registers and
memory, and taint is checked on control transfer instructions.
For ALU instructions, the CONTBL enables reading from the
TRF and register tags are sent to the UALU. The UALU is
programmed to propagate the tag based on the input tags and
the instruction opcode by performing an OR operation, and
the result is written back to the TRF. For load instructions, the
CONTBL enables reading a tag from the TMEM and sends
the tag to to the UALU. The UALU passes through the taint
tag unaltered and this result is written to the TRF using the



destination register index for the load. For store instructions,
the CONTBL enables reading of the tag from the TRF. This
tag is propagated through the UALU and into the TMEM. For
indirect jump instructions, the tag of the jump target address
is read from the TRF, propagated through the UALU, and
checked in the CALU. If the tag is non-zero, an exception is
raised.

The modules that are used by uninitialized memory check-
ing (UMC) are shown in Figure 5(b). In UMC, the location
tag of the memory that is accessed is read and checked on
a load, and the location tag of the accessed memory address
is set on a store. For load instructions, the CONTBL enables
reading of the tag of the accessed memory location from the
TMEM. This tag is propagated through the UALU unchanged,
and checked in the CALU to confirm that the accessed memory
location was initialized (the tag is set). For store instructions,
the control table sets the UALU to output a constant ”1”, which
is stored to the TMEM at the address from the store.

The modules used by bounds checking (BC) are shown in
Figure 5(c). In bounds checking, explicit instructions set and
clear a value tag (pointer tag) and location tags (corresponding
locations) on memory allocation and deallocation events, the
pointer tags are propagated on an ALU instruction and a
load/store operation, and then the pointer and location tags
are compared on each memory access instruction to ensure
in-bound accesses. In our prototype, we implemented the
scheme using 4-bit tags, which represent 16 colors. For ALU
instructions, the value tags (pointer colors) of source operands
are read from the TRF and propagated to the UALU. The
UALU calculates the tag for the result, and this tag is written to
the TRF for destination register. For memory load instructions,
the CONTBL enables both the TRF and the TMEM in the
second state to read both the value tag of the load address
(TRF) and the value and location tags of the accessed memory
location (TMEM). Then, the pointer tag of the memory address
is compared with the memory location tag from the TMEM
in the CALU to ensure that they match. The tag of the loaded
memory value is then written back to the TRF. For memory
store instructions, the pointer tag of the accessed address is
read from the TRF and compared with the memory location
tag from the TMEM as in the load case. The tag of the value
that is being stored is then stored to the TMEM. To improve
the accuracy of the bounds checking scheme, the pointer
tag propagation can be complemented by the UTBL so that
software can make more intelligent decisions on exceptional
cases.

The modules used by hardware reference counting (RC) are
shown in Figure 5(d). In the reference counting, specialized
instructions that create or overwrite a pointer explicitly send
the pointer that was created or overwritten to the co-processor.
The pointer is compared to a stored list of object base and
bound addresses in the OBJTBL to determine the reference
count (tag) that needs to be updated. If the pointer does not
lie within the base and bound addresses of any objects in
the OBJTBL, an exception is raised so that software on the
main processing core can update the OBJTBL. For instructions

Leon3 Processor
Pipeline 7-stage, in-order
Instruction cache 32 KB, 4-way set-associative
Data cache 32 KB, 4-way set-associative
Cache block Size 32 B
Cache write policy write-through
Register file 144 registers, 8 windows
Harmoni Pipeline
Control table 32 entries (28 bits per entry)
UTBL 32 entries
CTBL 32 entries
Harmoni Support Structures
Core-Harmoni FIFO 64 entries
Tag cache 4KB, direct-mapped
Tag cache block size 32B
Tag cache write policy write-back

TABLE II
ARCHITECTURE PARAMETERS.

that create a pointer, the object that the created pointer points
to is looked up and the reference count for that object is
incremented in the UALU. This updated reference count is
written back to the OBJTBL. For instructions that overwrite
a pointer, the object that the overwritten pointer points to is
looked up, the reference count for that object is decremented
in the UALU, and this updated reference count is written back
to the OBJTBL. The reference counts can be read by the main
core to quickly determine if a certain object can be removed.

E. Limitations

The Harmoni architecture targets to support a broad range of
tag-based monitoring techniques efficiently through carefully
trading off programmability and efficiency. While we found
that many monitoring techniques can be mapped to the current
Harmoni design, the architecture is not Turing complete and
certain monitoring techniques may not work well. Here, we
briefly discuss the limitations of the current architecture, which
we plan to investigate in the future.

One main limitation of the current Harmoni design is that it
only allows a single tag operation for each monitored instruc-
tion. Therefore, tagging techniques that require a sequence
of operations for a single monitored instruction cannot be
efficiently supported. We plan to investigate the possibility of
expanding the control table to allow multiple operations per
opcode or even simple control instructions. Another limitation
comes from the limited interface to the main processing core.
Currently, the architecture is designed to only work on tags
but not data. Therefore, a monitor that checks data values
of the monitored program such as soft error detection is not
supported by the architecture.

IV. EVALUATION

To evaluate the Harmoni architecture, we implemented a
prototype system based on the Leon3 microprocessor [18].
Leon3 is a synthesizable RTL model of a 32-bit processor
compliant with the SPARC [19] instruction set. The Leon3
processor includes a single-issue in-order seven stage integer
pipeline and 32KB of on-chip L1 instruction and data caches.
Completed instructions are forwarded from the exception stage
of the integer pipeline to the Harmoni co-processor. Since



Description Max Freq (MHz) Area Power
µm2 overhead mW overhead

Leon3 Processor - 32KB IL1/DL1 465 835,525 - 365 -
Harmoni (32-bit) 465 156,517 18.7% 46 12.46%

1250 187,255 22.4% 120 32.9%
Harmoni (16-bit) 465 82,552 9.9% 24 6.6%

1250 94,289 11.3% 63 17.3%
Harmoni (8-bit) 465 46,319 5.5% 14 3.8%

1250 50,974 6.1% 35 9.6%
Support structures: FIFO, cache, etc. 458 271,442 32.5% 53 14.6%

TABLE III
THE AREA, POWER, AND FREQUENCY OF THE HARMONI ARCHITECTURE WITH DIFFERENT MAXIMUM TAG SIZES. THE OVERHEADS IN SILICON AREA

AND POWER CONSUMPTION ARE SHOWN RELATIVE TO THE BASELINE LEON3 PROCESSOR.

the opcode in the SPARC ISA can come from different
parts of the instruction and are irregular in size, we divide
instructions in the SPARC ISA into 32 custom categories. Only
instructions from categories that are relevant to the monitoring
function being performed on Harmoni are forwarded from the
Leon3 processor to Harmoni and the CONTBL is indexed
by the instruction category. The Harmoni architecture was
evaluated with the Harmoni pipeline and support structures
that include the Core-Harmoni FIFO and a 4-KB on-chip tag
cache. Table II summarizes the parameters that we used in the
evaluation. To evaluate the area, power, and maximum fre-
quency of this architecture, we synthesized Leon3, Harmoni,
and corresponding hardware support structures in Synopsys
Design Compiler using Virage 65nm standard cell libraries.
The power estimates currently use a fixed toggle rate of 0.1
and static probability of 0.5 to provide rough comparisons.
Table III shows the results of this analysis.

Even without extensive optimizations, the Harmoni pipeline
can run up to 1.25 GHz, which is more than 2.5 times the
maximum frequency of the Leon3 processing core. This result
shows that Harmoni can keep pace with processing cores
that have much higher operating frequencies and application
performance. The rest of the Harmoni architecture, including
the FIFO interface from the main core and a tag memory
system, is synthesized with the Leon3 core and shown to have
a minimal impact on the core’s clock frequency even with the
additional signals that are required for forwarding instructions
and supporting an exception.

The Harmoni architecture does show noticeable area and
power consumption compared to the Leon3 processor. The
total area that includes the forwarding FIFO, the tag cache,
and the full 32-bit Harmoni pipeline makes up an additional
55% in area compared to the baseline Leon3 processor. The
area overhead can be mitigated by limiting the maximum
size of the tags that Harmoni can support. By going to 16-
bit and 8-bit pipelines for tag updates and tag checks, the
respective area overheads of Harmoni can be reduced to 44%
and 39%. Furthermore, we note Leon3 is a very small and
simple embedded processing core. The performance of the
Harmoni architecture allows it to be easily coupled with much
larger and higher-performance processing cores that runs at a
few GHz. For example, the Intel Atom processing core [20]
is more than 25 times larger than Leon3 while running at
a comparable clock frequency with Harmoni. The full 32-bit
Harmoni pipeline would present an area overhead of less than
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Fig. 6. The performance overheads of run-time monitoring on the Harmoni
co-processor. The Y-axis shows normalized performance relative to an un-
modified Leon3 processor. The X-axis shows the names of benchmarks used
in the evaluation.

3% for Atom. Moreover, we note that the Harmoni architecture
is far more energy efficient compared to an approach that
utilizes a regular processing core as a monitor. At 465MHz,
Harmoni is estimated to consume 46mW, which is less than
15% of the baseline processor power consumption. This is
far more efficient than consuming twice the power using two
identical cores for both computation and monitoring.

To evaluate the performance overheads of the Harmoni
architecture, we performed RTL simulations of the architecture
with three different monitoring techniques for several bench-
marks. Benchmarks include programs from the MiBench [21]
benchmark suite as well as two kernel benchmarks for SHA-
256 and GMAC, which are popular cryptographic standards.
We compared the execution time of these benchmarks between
an unmodified Leon3 processor, Leon3 with a hardware mon-
itor mapped to Harmoni, and Leon3 with a hardware monitor
mapped to the FPGA fabric as in FlexCore [12].

Figure 6 shows the normalized execution time of bench-
marks on Harmoni with respect to an unmodified Leon3
processing core. We implemented three monitoring techniques
on Harmoni, including uninitialized memory checking (UMC),
dynamic information flow tracking (DIFT), and array bounds
checking (BC). The results show that run-time monitoring on
Harmoni has low performance overheads on the monitored
program. In fact, the Harmoni performance is almost identical
to that of custom hardware monitors because most overheads
come from tag accesses to memory, which is identical in both
cases.

The Harmoni architecture as shown in Table III is capable



0.90	  

0.95	  

1.00	  

1.05	  

1.10	  

1.15	  

1.20	  

sha	   gmac	   stringsearch	   3	   basicmath	   bitcount	   geomean	  

N
or
m
al
iz
ed

	  P
er
fo
rm

an
ce
	  

Benchmark	  

Harmoni	   FlexCore	  

(a) UMC

0.00	  

0.20	  

0.40	  

0.60	  

0.80	  

1.00	  

1.20	  

1.40	  

1.60	  

1.80	  

2.00	  

sha	   gmac	   stringsearch	   4	   basicmath	   bitcount	   geomean	  

N
or
m
al
iz
ed

	  P
er
fo
rm

an
ce
	  

Benchmark	  

Harmoni	   FlexCore	  

(b) DIFT

0.00	  

0.20	  

0.40	  

0.60	  

0.80	  

1.00	  

1.20	  

1.40	  

1.60	  

1.80	  

2.00	  

sha	   gmac	   stringsearch	   4	   basicmath	   bitcount	   geomean	  

N
or
m
al
iz
ed

	  P
er
fo
rm

an
ce
	  

Benchmark	  

Harmoni	   FlexCore	  

(c) BC

Fig. 7. Normalized performance overheads of run-time monitoring on the
Harmoni co-processor and the FPGA-based co-processor (FlexCore) for a
main processing core running at 1GHz.

of running at a high clock frequency. The high performance
and energy efficiency distinguish Harmoni from previously
proposed run-time monitoring platforms. For example, Flex-
Core [12] provides flexibility using on-chip FPGA fabric, but
reports that monitors on the FPGA fabric can only run at
a couple of hundred MHz. Figure 7 shows the normalized
performance of Harmoni on a main processing core with a
high clock frequency (1GHz) and compares the result with
the FlexCore approach with an on-chip FPGA fabric, which
can only run at roughly one-fourth of the main core’s clock
frequency. Because Harmoni can match the main processing

core’s clock frequency, its performance impact is fairly low.
On the other hand, due to its low clock frequency, monitoring
on an FPGA introduces significant overheads for techniques
that require frequent tag operations. For the majority of
benchmarks that we ran in the evaluation, the performance
overheads of Harmoni were much lower than FlexCore with
a slow on-chip FPGA. While not shown here, we found
that Harmoni can keep pace even with a main processing
core running at twice its maximum frequency of 2.5GHz
with small overheads. Because not all instructions on the
main core triggers a tag operation, running the tag pipeline
at a slower clock frequency does not directly translate to
performance overheads for most monitoring techniques. The
higher frequencies achievable by Harmoni allows it to be used
with high performance processing cores running at a Gigahertz
and more.

V. RELATED WORK

Here, we briefly discuss how the Harmoni architecture is
related and different from the previous work in run-time mon-
itoring. In a high-level, Harmoni represents a unique design
point in the context of the inherent trade-off between pro-
grammability and efficiency; Harmoni is much more general
and programmable compared to dedicated hardware solutions
for a single run-time monitoring technique while providing
much higher performance and power efficiency compared to
fully programmable approaches.

A. Hardware-Based Run-Time Monitoring

Run-time monitoring and tagging as methods to ensure
various program properties have been extensively studied. This
work uses the previously proposed monitoring techniques and
also borrow ideas such as tagging, decoupled monitoring archi-
tecture, and software-controlled tables from existing hardware
implementations. However, the goal of Harmoni is to enable
a broad range of monitoring techniques on a single platform
rather than realizing one particular monitor.

Feustel [22] argued that a complete tagged architecture can
make software and systems more cost effective for performing
practical computations and can deal with type and program
safety issues in computer systems in a natural and transparent
manner. This previous work introduced the notion of tagging,
but only in the context of a fixed hardware extension.

Recently, the dynamic information flow tracking (or dy-
namic taint analysis) has been widely studied in the context
of building more secure systems. DIFT [1] used a single-bit
hardware tagging mechanism to track the flow of untrusted
information in a system and to prevent program hijacking
attempts that take advantage of program vulnerabilities. Using
simple hardware support and tag memory management opti-
mizations, DIFT was able to perform information flow tracking
with negligible performance overheads. Similarly, Minos [23]
tags individual words of memory data and implements Biba’s
low-water-mark integrity policy [24] on the use of memory
data to stop attacks that attempt to corrupt control data in
order to hijack program control flow.



Raksha [3] expanded upon DIFT by using multi-bit tags
to support programmable and concurrent information flow
security policies along with low-overhead security handlers
that allow software to better manage detected errors. Flex-
iTaint [25] proposed a fully flexible DIFT implementation
where a software-controlled table can be used to propagate
and check taint information on each instruction. In that sense,
FlexiTaint can be considered as supporting value tags in a
way that the propagation and check policies are completely
flexible. However, FlexiTaint is only designed to support a
dynamic information flow tracking with flexible policies. The
Harmoni architecture borrows the idea of software-controlled
tables. However, Harmoni processor supports a wider range of
monitoring techniques by enabling value, location, and object
tags and also allowing them to be combined together.

Tiwari et al [26] extended DIFT to the hardware gate level.
By restricting the ISA, using predicated execution, bounded
loops, and an iteration-coupled load/store architecture, the
authors designed a provably-sound information flow tracking
system that is capable of tracking all explicit and implicit
information flows within a computer system. Harmoni targets
to monitor program-level behaviors and does not handle gate-
level information flows.

The early DIFT implementations added tagging capabilities
directly into a processing core pipeline. However, performing
invasive hardware modifications to existing processor designs
presented a major obstacle in deploying information flow
tracking in practice due to the high hardware design and
verification costs. The DIFT co-processor [27] proposed to
reduce these costs by performing DIFT in a small decoupled
co-processor. The DIFT co-processor was shown to be able to
provide the same degree of security as the most complete in-
tegrated DIFT architecture, had lower performance overheads,
and required fewer invasive changes to the baseline processing
core. Harmoni uses a similar decoupled co-processor archi-
tecture, but support a wide range of monitoring schemes in
addition to DIFT.

In addition to DIFT, a number of run-time monitoring
schemes have been proposed to enable many types of capabil-
ities such as fine-grained memory protection [4], array bound
checking [5], [6], software debugging support [7], managed
language support such as garbage collection [8], hardware
error detection [9], etc. Harmoni targets to support many of
them with a single hardware platform.

B. Programmable Monitoring Platforms

There have been recent efforts to build programmable run-
time monitoring architectures, which can enable more than
one monitoring scheme. Compared to these proposals, the
Harmoni architecture is either more flexible or provides higher
performance.

MemTracker [13] is a runtime monitoring approach for
memory bug detection in which a hardware state machine
uses a memory tag and memory operation to update the
memory tag and check for memory bugs on each memory
access instruction. In comparison to MemTracker, Harmoni

is not restricted to monitoring for memory bugs and can
perform more sophisticated monitoring functions by keeping
track of tags for a larger portion of program state. Effectively,
MemTracker only supports memory location tags with very
simple update and check rules.

LBA [28] proposes to utilize a large number of processing
cores in future microprocessors for run-time monitoring. More
specifically, LBA augments each processor with hardware
support for logging a main program trace and delivering it
to another (otherwise idle) processing core for inspection.
A software program running on this other core executes the
monitoring task. Compared to LBA, Harmoni is less general,
yet far more efficient and have better throughput because it
performs monitoring entirely in hardware and avoids the area
and power overheads of running general purpose instructions
on a separate processing core.

FlexCore [12] is a hybrid architecture that combines a
general-purpose processing core with a decoupled on-chip,
bit-level reconfigurable fabric. The fabric can be reconfig-
ured to perform a range of runtime monitoring functions in
hardware to detect reliability and security errors. However,
the low throughput of the bit-level programmable fabric used
in the FlexCore architecture can cause it to have very high
performance overheads on high-performance processing cores
that can run at a high clock frequency. This work addresses
this performance challenge by narrowing the scope of run-
time monitoring functions and optimizing the architecture for
tagging techniques.

VI. CONCLUSION

This paper proposed the Harmoni architecture, a high-
performance and reconfigurable co-processor that can be used
to implement program monitoring techniques based on tagging
in hardware. We showed how a variety of runtime monitoring
techniques can be mapped to the Harmoni hardware so as
to check for memory bugs, security violations, and support
the management of system resources. Harmoni presents a
new design point on the spectrum between performance and
flexibility for runtime monitoring approaches; by matching the
common characteristics of monitoring approaches based on
tagging, Harmoni can achieve very high performance without
restricting the capabilities of the monitoring approaches. We
evaluated the overheads of the Harmoni co-processor by
building an RTL model and evaluated the application perfor-
mance with Harmoni monitoring using RTL simulations. The
evaluation results demonstrated that the Harmoni coprocessor
takes moderate silicon area and has low overheads on program
performance for a range of monitoring approaches.
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