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Abstract—Traffic uncertainty makes designing optimal routing
protocols for many networks a difficult problem. A good way to
capture uncertainty is via an uncertainty set - a collection of traffic
matrices with associated probabilities of occurrence. Averaged
optimal routing, where the performance metric is averaged
over the potential traffic matrices, allows us to incorporate
an uncertainty set into an optimization framework. We derive
bounds on the performance of averaged optimal routing where
the objective is to minimize maximum channel load, a commonly
used metric. Furthermore, we provide examples of networks and
uncertainty sets where the bounds are tight. These bounds can
be used to quickly check whether averaged optimal routing is an
effective routing protocol for a given network and uncertainty
set. Numerical evaluations of the performance of the bounds for
uncertainty sets drawn from random graphs are presented and
some interesting trends are noted. Also, simulations performed
on a cycle level on-chip network simulator demonstrate that
averaged optimal routing outperforms general-purpose routing
algorithms.

I. INTRODUCTION

Optimal routing for a given network and traffic pattern has
been an important subject of research since it was first studied
in the seventies [2,3]. But in practice, while the network
structure might be known, we cannot typically predict what
traffic pattern might occur on the network at any point. Real
world applications where this is the case include internet traffic
engineering and the rapidly evolving field of on-chip networks.
In the first case, the difficulty arises from the infeasibility
of characterizing dynamic intra-domain traffic with a single
traffic matrix. On the other hand, on-chip networks have dy-
namically changing application phases that generate different
traffic patterns and the routes that are configured a priori need
to handle all such application phases.

As a result, most routing algorithms that are implemented
are general-purpose algorithms, since they are designed to
perform well over a wide-range of traffic patterns. Some
network-on-chip algorithms like dimension ordered routing,
ROMM [6] and O1TURN [8] are completely oblivious to the
network’s traffic pattern while others like minimal adaptive
routing [4] and GOAL [10] adapt to the network traffic
through indirect local information about the network’s global
performance. Similarly, OSPF which is used for intra-domain
routing adapts to internet traffic conditions by choosing the
least congested paths available.

A drawback of these heuristic algorithms is that they lack
provable guarantees on their performance when compared to
the optimal routes that the traffic could take at any instant.
But before attempting an optimization-based approach, it is
important to have a good quantitative characterization of the

network traffic patterns. We begin by noting that it is difficult
to specify one traffic pattern that captures the behavior of a
general network’s traffic. But by studying the traffic carefully,
we might be able to capture the behavior of the network
traffic using a set of traffic matrices for which we can specify
associated probabilities of occurrence. We will call this set
an uncertainty set. However, as we will show, even with this
information we cannot solve an optimal routing problem that
will necessarily yield the best routes for every pattern in the
uncertainty set.

One natural idea is to try and solve a combined optimal
routing problem where the objective function is the averaged
value of the objective functions of the individual optimal
routing problems. The advantage that this approach offers is
that unlike the heuristic routing schemes discussed earlier, it
helps us prove a guarantee on the performance of the routes
obtained. Also, as we will show in the simulations section,
taking an optimal routing approach gives better performance
than the other heuristic routing algorithms.

The main contribution of this paper is that we provide a
performance guarantee on averaged optimal routing which
is important as a natural approach to dealing with traffic
uncertainty. Aside from its value as a good tool for evaluating
when averaged optimal routing would be a good routing algo-
rithm, we believe that the approach we present to derive the
performance guarantees is of independent theoretical interest
in the area of robust optimization.

II. RELATED WORK

The difficult reality of dealing with traffic uncertainty when
formulating the optimal routing problem has only begun to
receive attention over the last few years. Algorithms like
COPE [11] approach the problem by trying to minimize the
worst case performance of the routing scheme within an uncer-
tainty set. On the other hand, the problem of finding optimal
routes by minimizing the expected cost over a set of traffic
patterns has been studied previously in the context of intra-
domain routing on the Internet [12]. However, the focus was
on setting up the problem and extending the prior results [3]
to develop a distributed solution method. Importantly, there
was no guarantee provided for how well the averaged optimal
routes performed with respect to the specialized optimal routes
for the traffic matrices in the uncertainty set.

From the perspective of potential applications of averaged
optimal routing, the problem has been considered in the con-
text of network-on-chip where varying application phases and
limited reconfigurability presents a natural setting that involves

978-1-4673-3140-1/12/$31.00 ©2012 IEEE



traffic uncertainty [7]. We vary from that work in that we
consider maximum channel load as an objective function since
it makes it easier to develop insights into how well averaged
optimal routing works. As noted earlier, another area where
traffic uncertainty plays an important role is in internet traffic
engineering. In fact, prior work [1] has looked at studying
the fundamental tradeoffs in dealing with uncertain traffic
demands. But while it is hard to estimate a representative
traffic matrix for autonomous systems on the Internet, it is
still possible to approximate it with a suitable uncertainty set.
Our work provides a framework for evaluating and deploying
averaged optimal routing as an effective routing protocol for
both these problems as well as others where traffic uncertainty
is common.

III. PROBLEM FORMULATION

In order to introduce the notation used in the paper, we
first describe the linear programming formulation of the op-
timal routing problem when the objective is to minimize the
maximum channel load for a single traffic pattern. Following
that, the more general combined optimal routing problem for
multiple traffic patterns and its formulation as a linear program
is presented. As stated earlier, we wish to provide performance
guarantees for the routes generated by the combined problem
with respect to the routes generated by the specialized problem
for each traffic matrix in an uncertainty set.

A. Specialized Optimal Routing Problem

We consider a network graph G with N nodes and L
links. The following terms will help with the mathematical
formulation of the optimal routing problem on the graph G.

Traffic Matrix/Pattern (D) – The traffic matrix D ∈ RN×N

specifies the traffic requirements of the application. Each
entry D(s, d) represents the desired rate of data transfer
from node s to node d and each such source-destination
pair is said to constitute a network flow. We suppose that
there are F non-zero flows in each traffic matrix, and we
label the flow from s to d as the tuple 〈s, d〉.

Incidence Matrix (A) – The flow constraints imposed by the
topology of the network are captured by its incidence matrix
A ∈ RN×L which is defined as follows,

A(i, j) =


+1, if link j is directed to node i
−1, if link j is directed away from node i
0, otherwise.

Link Rates (Y ) – Y ∈ RL×F represents the rate on each
link due to each flow in the traffic matrix. It is easy to see
that solving for the link rates for each flow specifies the
route the flow takes through the network. We also define
γ =

∑F
j=1 Y

j as the vector of the total rate on each link
required by the traffic matrix where Y j represents the link
rates corresponding to the flow j.

Maximum Channel Load (W ) – W = max γ is a useful
metric since minimizing it makes sure that we are using the

network’s resources as well as we can and also because
when the channels are not heavily loaded we get better
performance in terms of latency and throughput which
are important performance metrics that are used in many
networks.

With the above notation, the specialized optimal routing
problem for a given traffic matrix D can be formulated as
follows,

minimize
Y,W

W

subject to AY = D,

F∑
j=1

Y j ≤We,

Y ≥ 0.

(1)

where the matrix D ∈ RN×F is obtained from the traffic
matrix D as follows,

D(l, sd) =


+D(s, d), if l = d for the flow 〈s, d〉
−D(s, d), if l = s for the flow 〈s, d〉
0, otherwise.

and e ∈ RL is a vector of 1s.
The above problem can be solved efficiently for a given

traffic matrix D to obtain optimal routes for it using the
standard techniques developed for linear programs. In the
rest of the paper, feasible and optimal solutions to the above
problem will be called specialized routes and specialized
optimal routes respectively. Next we describe the combined
optimal routing problem when we are given an uncertainty
set D = {D1, . . . , DM} of M traffic patterns that occur with
probabilities p1, . . . , pM instead of a single traffic matrix D.
In order to keep notation consistent, we will use the sub-
index i to indicate quantities associated with traffic matrix
Di. Also, feasible solutions to the combined problem will be
called combined routes and the optimal solution will be called
combined optimal routes.

B. Combined Optimal Routing Problem

The key challenge in setting up the combined optimal
routing problem is creating a unified optimization framework
that can determine both the specialized routes for each traf-
fic pattern and the way these specialized routes interact to
determine combined optimal routes. The approach that we
adopt is to design an optimization problem that minimizes
the expected maximum channel load across all traffic matrices
in the uncertainty set. In addition, the combined routes have
to satisfy the requirements of every traffic matrix in the
uncertainty set simultaneously. This means that if there is a
flow that is shared across multiple traffic matrices, i.e. for a
given source-destination pair multiple traffic matrices have a
corresponding non-zero entry, then the route computed for it
should be the same for each of those traffic matrices. From
[7], we know that this problem can be formulated as,
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Fig. 1. Specialized and Combined Routes for Traffic Matrices
DA and DB – DA(i, j) = DB(i, j) = 0 except for DA(0, 3) =
DA(0, 2) = DB(0, 2) = DB(2, 1) = 1.

minimize
Y1,Y2,...,YM

W1,W2,...,WM

M∑
i=1

piWi

subject to AYi = Di, i = 1, 2, . . . ,M

Fi∑
j=1

Y j
i ≤Wie, i = 1, 2, . . . ,M

Yi ≥ 0, i = 1, 2, . . . ,M

Y
〈s,d〉
i /Di(s, d) = Y

〈s,d〉
j /Dj(s, d)

if flow 〈s, d〉 is in both Di and Dj .

(2)

It is possible that we can find combined routes that are
the same as the specialized optimal routes for each traffic
matrix in the uncertainty set. Solving the above optimization
problem is guaranteed to find this solution if it exists. Sup-
pose that there exists such a solution for an uncertainty set
D = {D1, . . . , DM} with probabilities p1, . . . , pM and that the
solution to Problem 2 does not correspond to these routes. We
can then show that a contradiction results, since selecting the
aforementioned solution will further decrease the cost function
in Problem 2 as Wi corresponding to each Di is minimized
by the specialized optimal routes by definition.

As a simple example of when combined routes are the
same as specialized optimal routes consider Fig. 1. Here each
network link represents two unidirectional channels. So there
are two specialized optimal routes that work for the flow〈0, 2〉
in traffic matrix DB . The combined routes shown in Fig. 1c
are also specialized optimal for both DA and DB while the
routes shown in Fig. 1d though feasible are neither combined
optimal nor specialized optimal for DA.

But there are still cases as in Fig.2 when it is simply not
possible to find combined routes that are also specialized
optimal for every traffic matrix in the uncertainty set. Here
choosing combined routes that are specialized optimal for one
traffic matrix results in a sub-optimal solution for the other
traffic matrix. In such cases we would like to provide bounds
on how much performance is lost by using the combined
optimal routes instead of the specialized optimal routes for
the traffic matrix that needs to routed. We would also like to
know how good the bounds in question are in practice. In the
next section we present answers to these questions.
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Fig. 2. Specialized and Combined Routes for Traffic Matrices
DA and DC – DA(i, j) = DC(i, j) = 0 except for DA(0, 3) =
DA(0, 2) = DC(0, 2) = DC(1, 2) = 1.

IV. PERFORMANCE EVALUATION OF COMBINED OPTIMAL
ROUTES

We will first use a deterministic construction to get a
bound on the maximum channel load resulting from using
the combined optimal routes for a traffic matrix Di. Then,
after giving examples where this bound is tight, we will use
it to derive a bound that also accounts for the probabilities
associated with the traffic matrices in a given uncertainty
set. Throughout this section we will use the superscript * to
represent specialized optimal solutions.

Theorem 1. Suppose that Yi represents the routes that are
generated for a traffic matrix Di by solving the combined
optimal routing problem. Then Wi, the maximum channel load
corresponding to these routes, can be bounded as follows,

Wi ≤W ∗i +
M∑
j=1

j 6=i

∑
〈s,d〉j

Di(s, d)

where 〈s, d〉j represents the flows that are shared between
Di and Dj but which are not already shared with Dk where
k < j and which do not have the same routes for both Y ∗i
and Y ∗j , j 6= i.

Proof: Let us construct a solution Ŷi with corresponding
maximum channel load Ŵi. We can do this by selecting the
routes Y

〈s,d〉∗
i for all 〈s, d〉 that are not shared with any

of the other traffic matrices and adding to them the routes
Di(s, d)Y

〈s,d〉∗
j /Dj(s, d) for the flows that are shared with

traffic matrix Dj . In the case where flows are shared with
multiple traffic matrices, we select the routes specified by the
first Y ∗j encountered.

Note that any constructed solution Ŵi can be upper bounded
by the sum of the demands generated by the shared flows be-
tween the traffic matrices Di and Dj where j = 1, . . . ,M, j 6=
i and W ∗i , the maximum channel load seen by the network
when routing using Y ∗i . This is because the most heavily
utilized link’s load can be increased by at most the demands of
the shared flows when routing using the solution for another
matrix. Of course, here it is important to not double count
flows. Also, it is not necessary to include all shared flows in the
summation since the flows which are shared yet share the same
specialized optimal routes will not contribute to this worst case
load. The same observation is true about the maximum channel
load resulting from implementing the combined optimal routes



for a traffic matrix Di. This is because in Yi we use the optimal
routes for the flows that are not shared with the other traffic
matrices, and the worst case increase in maximum channel
load can be captured as,

Wi ≤W ∗i +
M∑
j=1

j 6=i

∑
〈s,d〉j

Di(s, d)

At this point a natural observation is that this bound can
be very bad if there are multiple shared flows of large value.
Regardless, it is possible to show that we need to account
for them in bounding the channel load. The following simple
example illustrates that the bound derived above can be tight,
i.e., achieve equality. More cases where the bound achieves
equality can be constructed by extending the ideas in the
following construction. Consider the network shown in Fig. 3.
Suppose that the uncertainty set consists of two traffic matrices
DA and DB with 〈s, d〉 pairs and their specialized optimal
routes as shown. Also, suppose that the two traffic patterns
have associated probabilities of occurrence pA = pB = 1/2.

Now it is easy to show that the optimal averaged maximum
channel load for this example has value 2. Let us first focus
attention on DA. One combined optimal solution is to use the
specialized optimal routes for the unshared flows, DA(4, 3)
and DB(4, 3) and to route DA(4, 6) the same way that
DB(4, 6) is routed. Thus, the maximum channel load in case
traffic pattern B occurs will still be 2 but if traffic pattern A
occurs it increases to 2 from 1. The bound is tight since from
Theorem 1 for DA it can be computed as,

W ∗A +DA(4, 6) = 1 + 1 = 2

Next we can focus on traffic matrix DB . Another combined
optimal solution to problem (2) would be to once again use
the specialized optimal routes for DA(4, 3), DB(4, 3) and the
unshared flows and to modify the route taken by DB(4, 6)
to that taken by DA(4, 6). Now the maximum channel load
when traffic pattern B occurs increases to 3 but the maximum
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Fig. 3. Specialized Routes for Traffic Matrices DA and DB

– DA(i, j) = DB(i, j) = 0 except for DA(4, 3) = DA(4, 6) =
DA(3, 6) = DB(4, 3) = DB(4, 6) = 1 and DB(5, 6) = 2.

channel load when traffic pattern A occurs is still 1. We can
see that the bound is tight since for DB the bound can be
computed as,

W ∗B +DB(4, 6) = 2 + 1 = 3

The above example shows that for two traffic patterns
the bound is tight. It is easy to construct examples for any
number of traffic patterns by using similar networks and traffic
patterns. For instance, another example is presented in Fig. 4.
Now there are three traffic matrices DA, DB and DC with
〈s, d〉 pairs and corresponding specialized optimal routes as
shown. The probabilities of ocurrence are pA = pB = pC =
1/3. The optimal averaged maximum channel load for this
uncertainty set is 7/3. One set of routes that achieves this
average maximum channel load can be obtained by using the
specialized optimal routes for DA and DB and modifying the
routes used by DC(7, 5) and DC(1, 3) accordingly. Then we
can show that the bound achieves equality for traffic pattern
C since,

W ∗C +DC(7, 5) +DC(1, 3) = 1 + 1 + 1 = 3 =WC

Another set of routes that achieves the optimal value can
be specified by using the specialized optimal routes for DC

and modifying the routes taken by DA(1, 3) and DB(7, 5)
accordingly. Again, the bound can be shown to be tight for
both traffic patterns A and B since,

W ∗A +DA(1, 3) = 2 + 1 = 3 =WA

W ∗B +DB(7, 5) = 2 + 1 = 3 =WB

So far we have described a deterministic bound on the
averaged optimal channel load obtained by using the combined

.
Fig. 4. Specialized Routes for for Traffic Matrices DA, DB

and DC – DA(i, j) = DB(i, j) = DC(i, j) = 0 except
for DA(1, 2) = DB(7, 6) = 2 and DA(1, 3) = DB(7, 5) =
DC(1, 3) = DC(7, 5) = DC(8, 4) = 1.



optimal routes. But depending on the parameters, accounting
for the probabilities associated with the traffic matrices could
improve the bound. Consequently, we also present a bound
on the averaged optimal channel load that incorporates the
probabilities of occurrence of the different traffic matrices.

Theorem 2. Suppose that Yi represents the routes that are
generated for a traffic matrix Di by solving the combined
optimal routing problem. Then Wi, the maximum channel load
corresponding to these routes, can be bounded as follows,

Wi ≤W ∗i +
1

pi

M∑
j=1

j 6=i

pj

M∑
k=1

k 6=j

∑
〈s,d〉k

Dj(s, d)

where 〈s, d〉k represents the flows that are shared between
Dj and Dk but which are not already shared with Dl where
l < k and which do not have the same routes for both Y ∗i and
Y ∗j , j 6= i.

Proof: We will rely on constructing a feasible solution to
the combined optimal routing problem in order to establish
the result. Note that a feasible solution can be constructed by
taking the routes specified by Y ∗i for the flows in Di, taking
the routes specified by Y ∗j for the flows in Dj (where j 6= i)
that are not shared with each other and adding to them the
routes specified by Y ∗i for the flows that are shared with Di

and choosing routes arbitrarily for the flows that are shared
among matrices not including Di. Then for each traffic matrix
Di and corresponding maximum channel load Wi, the result
holds because of the following chain of inequalities.

∑
j=1

j 6=i

pj

M∑
k=1

k 6=j

∑
〈s,d〉k

Dj(s, d) +
M∑
j=1

pjW
∗
j ≥

M∑
j=1

j 6=i

pjŴj + piW
∗
i

≥
M∑
j=1

pjWj ≥
∑
j=1

j 6=i

pjW
∗
j + piWi

Here the first inequality follows from the bound from
Theorem 1 applied to each Ŵj , the second inequality is
true since a feasible solution has a higher average maximum
channel load than the optimal solution to problem (2) and the
last inequality holds since the optimal maximum channel loads
are less than or equal to the channel loads obtained by using
combined optimal routes.

V. NUMERICAL AND SIMULATION RESULTS

Till now we have focused on providing performance bounds
for the combined optimal routes. Of course, this is useful only
if averaged optimal routing is a good approach for problems
where there is traffic uncertainty. As noted in the introduction,
on-chip networks are a natural setting for combined optimal
routing. Also, the key metrics that are of interest in a net-
work are communication latency and network throughput. In
previous work [7] it was shown that when the objective is to
minimize the total traffic on the network, combined optimal

Fig. 5. Latency vs. Offered Bandwidth for Optimal Combined
Routes – Theoretical and numerical analysis predicts the combined
routes should be able to achieve the same throughput as the special-
ized routes.

Fig. 6. Latency vs. Offered Bandwidth for Sub-Optimal Com-
bined Routes – Theoretical analysis shows that combined routes
that are specialized optimal for both traffic matrices are infeasible,
but numerical analysis predicts that the combined routes should still
perform close to the specialized routes.

routes perform very well compared to specialized routes with
respect to these metrics. A natural question is whether this is
still the case when the objective is changed to minimizing the
maximum channel load.

The simulator that we used was DARSIM [5], a cycle-level
on-chip network simulator. All the simulations were performed
on a 6×6 two-dimensional mesh network. The simulator was
given a warm-up period of 20,000 cycles after which perfor-
mance statistics were collected over 100,000 cycles in order to
ensure the accuracy of the results. The primary performance
criteria that we measured were throughput and latency. The
data rates are expressed in flits/cycle and each packet is divided



p 0.1 0.3 0.5 0.7 0.9
0.1 1.78 3.67 6.13 8.06 10.71
0.3 2.12 3.88 6.23 10.27 13.57
0.5 2.37 4.55 6.51 9.00 12.94
0.7 2.41 5.18 6.90 8.30 10.90
0.9 2.53 5.69 7.96 8.90 9.10

TABLE I
Expected performance ratio as calculated by the deterministic bound for 4x4
meshes. The (i, j)th entry is the expected performance ratio for the matrix

drawn from the family with probability specified by row i.

into 8 flits. Also the simulator was configured so that each
physical channel was divided into 6 virtual channels with 8
flits of buffering each. The capacity of the physical channel
was set to be 1 flit/cycle. In the simulator, virtual channels
are pre-allocated to the different flows once the routes are
computed so that deadlock is avoided according to the static
virtual channel allocation scheme described in [9].

The simulations were performed with a view to incor-
porating affects like buffering and flow control so that we
can evaluate the combined optimal routing model better. We
present two examples, one where the combined optimal routes
match the performance of the specialized optimal routes and
one where they do not. Also plotted are throughput-latency
curves associated with commonly used on-chip network rout-
ing algorithms like ROMM, O1TURN, and DOR.

The results in Fig. 5 and Fig. 6 show that combined optimal
routes perform well even when the objective is changed to
minimizing the maximum channel load. The graphs show
two cases of randomly generated uncertainty sets with two
matrices. In Fig. 5, the uncertainty set had combined optimal
routes that were also specialized optimal for both matrices in
the set. But in Fig. 6 we see that the combined optimal routes
are no longer specialized optimal though they still perform
very well. Lastly, note that combined optimal routing with
respect to maximum channel load outperforms the application-
oblivious routing algorithms.

Another experiment that we performed was to try and
quantify how well the bound performed when the uncertainty
set consisted of two matrices drawn from random graphs with
different probabilities of links (of weight 1) occuring for a 4x4
mesh. The results were evaluated numerically and for each pair
of random graph families the expected bound was averaged
over 100 runs. The results are presented in Table I.

It is interesting to note the trend that the more dense demand
matrix has a better predicted performance bound. This is
because it determines how most of the traffic will be routed in
the averaged case as it will have a higher maximum channel
load. On the other hand, the predicted performance for the
sparser matrix is worse since it has less influence in deter-
mining the routes in the averaged optimal solution. Another
observation is that when both demand matrices are relatively
sparse the resulting performance bounds are good since there
is more freedom for routes to be reconfigured without affecting
the optimal channel load. A surprising observation was that,

on average, at least for the case of two randomly generated
demand matrices, the performance bound was not as large as
its definition indicated it should be.

Of course, it should be noted that in many of the cases
that we tested, the averaged optimal routes performed as well
as their specialized counterparts despite the prediction of the
bound. But this was expected since the bound was designed to
capture worst case scenarios which do not necessarily occur
when randomly generating uncertainty sets.

VI. SUMMARY AND FUTURE WORK

In this paper we derived a deterministic and a probabilistic
bound on the performance of average optimal routing given
an uncertainty set and also provided examples where the
deterministic performance bound is tight. We showed that
averaged optimal routing where the objective is to minimize
maximum channel load performs better than other routing
schemes that are typically implemented to deal with traffic
uncertainty. From an engineering perspective, the performance
guarantees are useful as tools to quickly evaluate whether
averaged optimal routing would be a good routing algorithm
for a given uncertainty set. From a theoretical perspective, the
bounds help improve our understanding of averaged optimal
routing as a robust optimization approach. As part of future
work, we would like to construct examples where the proba-
bilistic bounds are tight as well as further explore the structure
of the averaged optimal routing approach to see if these bounds
are the best performance guarantee that we can provide.
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