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Abstract. This paper proposes dynamic cache partitioning amongst simultaneously executing processes/
threads. We present a general partitioning scheme that can be applied to set-associative caches.

Since memory reference characteristics of processes/threads can change over time, our method collects
the cache miss characteristics of processes/threads at run-time. Also, the workload is determined at run-
time by the operating system scheduler. Our scheme combines the information, and partitions the cache
amongst the executing processes/threads. Partition sizes are varied dynamically to reduce the total number
of misses.

The partitioning scheme has been evaluated using a processor simulator modeling a two-processor CMP
system. The results show that the scheme can improve the total IPC significantly over the standard least
recently used (LRU) replacement policy. In a certain case, partitioning doubles the total IPC over
standard LRU. Our results show that smart cache management and scheduling is essential to achieve high
performance with shared cache memory.
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1. Introduction

In the near future, microprocessors will be able to execute multiple processes/threads
simultaneously and exploit process/thread-level parallelism.! Multiple processors
may be on a single chip (CMP) [5], or simultaneous multithreading (SMT) may be
used [6,11,20]. In these systems, processes or threads share parts of the memory
system often including L1 and L2 caches. Therefore, executing multiple contexts
simultaneously exacerbates the stress on the memory subsystem, especially since the
standard least recently used (LRU) replacement scheme treats all references in the
same way. In the LRU scheme, a single process can easily “pollute” the cache with
its data, causing higher miss-rates for other threads, and resulting in low overall
performance.

Managing cache space amongst multiple processes is particularly important when
the cache is large enough to support multiple contexts, but not large enough to hold
all of the working sets of the simultaneously executing processes. In fact, an early
study of the SMT architecture demonstrated significant improvement in IPC for a set
of workloads that fit into a 256-KB L2 cache, where cache contention is not a
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problem [11]. However, we believe that workloads have become much larger and
more diverse; multimedia programs such as video or audio processing software often
consume hundreds of MB and many SPEC CPU2000 benchmarks benefit by using
several MB caches [9].

This paper presents a dynamic cache partitioning scheme that explicitly allocates
cache space amongst simultaneously executing processes and minimize the overall
cache misses. Using a set of on-line counters, our scheme dynamically estimates each
process’ gain or loss in different cache allocations in terms of the number of cache
misses. Then, the allocation is dynamically changed so that more needy processes
can use more cache space. For example, consider the case when a streaming process
runs simultaneously with a process with high temporal locality. Our partitioning
scheme detects that more cache space does not improve a streaming process, and
allocates most of cache space to the other process.

Our scheme only considers partitioning amongst simultaneous processes. In
conventional time-shared systems, cache partitioning depends not only on the active
process, but also on the memory reference pattern of inactive processes which have
run in the past, and will run again in the near future. On the other hand, in CMP/
SMT systems, multiple processes are active at the same time, collectively stressing the
memory system. Since these processes very quickly use up cache resources once they
start running, partitioning depends only on the memory reference characteristics of
the set of active processes.

The cache can be partitioned by either augmenting the standard LRU replacement
policy or using column caching [4]. In the augmented LRU policy, the replacement
unit keeps track of the number of cache blocks belong to each active process, and
allocates a new cache block to a process only if its current allocation is below its
limit. Column caching partitions the cache at cache column or “way’’ granularity (a
D-way associative cache has D columns). The simulation experiments presented here
are based on the augmented LRU policy.

Simulation results demonstrate that the cache partitioning can significantly
improve the instructions per cycle (IPC) metric of the overall workload. Partitioning
the cache amongst simultaneous processes is especially effective when the cache is
not large enough to hold the entire working set, but not too small so that it can hold
some critical portion of the working set.

This paper is organized as follows. In Section 2, we describe related work. In
Section 3, we first study the optimal cache partitioning problem for the ideal case of
fully associative caches that are partitionable on a cache-block basis. We then extend
our method to the more realistic set-associative cache case, and discuss
implementation details in Section 4. Section 5 evaluates the partitioning method
by simulations. Finally, Section 6 concludes the paper.

2. Related work

Stone et al. [13] investigated the optimal allocation of cache memory between two
competing processes that minimizes the overall miss-rate of a cache. Their study
focuses on the partitioning of instruction and data streams, which can be thought of
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as multitasking with a very short time quantum, and shows that the optimal
allocation occurs at a point where the miss-rate derivatives of the competing
processes are equal.

In previous work [15] we proposed an analytical cache model for multitasking, and
also studied the cache partitioning problem for time-shared systems based on the
model. The technique is applicable to any length of time quanta rather than just
short time quantum, and shows that the cache performance can be improved by
partitioning a cache into dedicated arecas for each process and a shared area.
However, the partitioning was performed by collecting the miss-rate information of
each process off-line, and we did not describe techniques to partition the cache
memory at run-time.

Thiébaut et al. [18] applied their theoretical partitioning study [13] to improve disk
cache hit-ratios. The model for tightly interleaved streams is extended to be
applicable for more than two processes. They also describe the problems in applying
the model in practice, such as approximating the miss-rate derivative, non-
monotonic miss-rate derivatives, and updating the partition. Trace-driven simula-
tions for 32-MB disk caches show that the partitioning improves the relative hit-
ratios in the range of 1 to 2% over the LRU policy. However, they only focused on
disk caches that are fully-associative with cache block granularity whereas the
scheme in this paper works for set-associative caches.

Recently, people have studied re-sizing caches to save energy [1, 12, 22]. Although
they change the size of the cache, their purpose is to reduce the energy
consumption. These works focus on one process and re-size the cache by turning
off a part of the cache. Unsal proposed to partition the cache to optimize the energy
consumption for multimedia processing [21]. His work isolates a stream in a media
application, which pollutes the cache. Ranganathan introduced a way of
partitioning the cache exploiting the associativity, and showed an application to
media processing. Although these two works studied partitioning of cache memory,
they only rely on static compiler analysis for media processing. Our work is
significantly different from these in a sense that we focus on optimizing
performance considering multiple processes and that we partition the cache
dynamically using hardware counters.

3. Partitioning algorithm

This section presents an analytical analysis of cache partitioning. First, we define the
optimal cache partition that minimizes the total number of misses for simultancous
processes. To develop a partitioning algorithm, marginal gains are introduced as a
way of determining the usefulness of cache space for a process. Finally, we discuss
how to find the optimal partition when the marginal gains for each process are given.
A search algorithm for the case when the marginal gains monotonically decrease as
cache space increases is summarized from previous work [13], and extended to
handle non-convexity.
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3.1. Optimal cache partitioning

Given N executing processes sharing a cache of C blocks with partitioning on a cache
block granularity, the problem is to partition the cache into N disjoint subsets of
cache blocks so as to minimize the overall misses. Since it is unreasonable to re-
partition the cache every memory reference, the partition remains fixed over a time
period, T, that is long enough to amortize the re-partitioning cost. Let ¢; represent
the number of cache blocks allocated to the i-th process over the time period. A
cache partition is specified by the number of cache blocks allocated to each process,
i.e., {6‘1 ,C2y ey CN}.

Define m;(c) as the number of cache misses for the i-th process over a time period
T as a function of partition size (¢). Then the optimal partition for the period is the
set of integer values {c, ¢z, ..., ¢y}, that minimizes the following expression:

N
Total misses over time period T = Zm;(ci) (1)
=1

under the constraint that 7Y ¢; = C. C is the total number of blocks in the
cache.

3.2.  Partitioning using marginal gains

To find the optimal partition (or at least a good partition), we make use of marginal
gains of each competing process. The marginal gain of a process, namely g;(c), is
defined as the derivative of the miss curve (m;(c)) at a given cache space c;

gi(c) =m(c) —m(c+1). (2)

The marginal gain at a given allocation represents the number of cache misses that
will be reduced by having one more cache block. Thus, it indicates the benefit of
increasing the cache allocation from c¢ to ¢ + 1 blocks for a process.

For the case where the marginal gain for each process is a monotonically
decreasing function of cache space, Stone et al. [13] noted that finding the optimal
partition, {ci,c2,...,cn}, falls into the category of separable convex resource
allocation problems. The following, well-known, simple greedy algorithm is
guaranteed to result in an optimal partition [7, 13]:

1. Initialize c; = ¢, =---=¢cy =0.

2. Increase by one the number of cache blocks assigned to the process that has the
maximum marginal gain given the current allocation. Increase ¢, by one, where &k
is the index for which gy (cx) is largest.

3. Repeat step 3 until all cache blocks are assigned (i.e., C times).
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3.3.  Handling non-convexity

The number of misses for a real application is often not strictly convex as illustrated
in Figure 1. Thus, the marginal gain may not be a monotonically decreasing
function. The figure shows the miss-rate curve of art from the SPEC CPU2000
benchmark suite [9] for a 32-way 1-MB cache. As long as the miss-rate curve is
convex, the marginal gain function decreases, and at the non-convex points, the
marginal gain function will increase.

In theory, every possible partition should be compared to obtain the optimal
partition for non-convex miss-rate curves. However, non-convex curves can be
approximated by a combination of a few convex curves. For example, the miss-rate
of art can be approximated by two convex curves, one before the steep slope and
one after that. Once a curve only has a few non-convex points, the convex resource
allocation algorithm can be used to guarantee the optimal solution for non-convex
cases.

1. For each process, i, compute the p;, non-convex points of its miss-rate curve:
{pit,pias- - pip, > &i(pig) < gi(pij+1).

2. Execute the convex algorithm with ¢; initialized to 0 or p; ;, Vj.

3. Repeat step 2 for all possible initializations, and choose the partition that results
in the maximum ZlN:l m;(c;).

This algorithm is very effective in finding the optimal point when the marginal
gains are not monotonically decreasing functions. However, it may be too expensive
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Figure 1. The miss-rate of art as a function of cache blocks.
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to actually implement this algorithm in cache partitioning. In practice, we use a
simplified version discussed in the next section.

4. Implementation

The previous section discussed partitioning the cache based on marginal gains of
competing processes. Now, we consider how to implement cache partitioning in set-
associative caches. Our partitioning scheme consists of three parts: marginal gain
counters, a partitioning mechanism, and an OS controller (see Figure 2). First, we
use a set of counters to estimate the marginal gains of executing processes. Second,
we need a mechanism in the cache that can actually control the allocation to each
process. Finally, the operating system determines the best partition based on the
information from counters and sets the cache allocation.

4.1. Marginal-gain counters

To perform dynamic cache partitioning, the marginal gains of having one more
cache block should be estimated on-line. For a running process, we want to obtain
marginal gains for various cache sizes without actually changing the cache
configuration. In cache simulations, it has been shown that different cache sizes
can be simulated in a single pass [14]. We emulate this technique in hardware to
obtain multiple marginal gains while executing a process with a fixed cache
configuration.

We use a set of counters to collect the marginal gains of each process for the past
time periods, and assume that the past marginal gain is a good prediction for the
future. Our mechanism assumes that the cache uses the standard LRU replacement

policy.

Software (0OS)

Hardware

OS Process
Scheduler

Set of Live
Processes

Marginal Gain

Counters Marginal

Gains

Cache Allocation

Cache
Replacement
Unit

Partition
Module

Figure 2. The implementation of overall partitioning scheme.
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For a fully-associative cache with C blocks, it is possible to compute g(c¢) over a
time period T on-line using C counters. Computing the marginal gain simply follows
from the following set of counters:

Counters for a fully associative cache: There is one counter for each block in the
cache; counter(0) records the number of hits in the most recently used block, and
counter(1) is the number of hits in the second most recently used block, etc. When
there is a reference to the i-th most recently used block, then counter(i — 1) is
incremented. Note that the item referenced then becomes the most recently used
block, so that a subsequent reference to that item is likely to increment a different
counter.

The marginal gain g(c) is obtained directly by counting the number of hits in the
(¢ + 1)-th most recently used block (counter(c)).

In set-associative caches, LRU ordering is kept only within each set. A set of
counters, one for each associativity (way) of the cache rather than each cache block,
is maintained per process. On every cache hit, the corresponding counter is
increased. Although we can only estimate marginal gains of having each way, not
each cache block, this is often good enough for partitioning if the cache has
reasonably high associativity.

Way-counters for a set-associative cache: There is one counter for each way of the
cache. A hit in the cache to the MRU block of some set updates counter(0). A hit
in the cache to the LRU block of some set updates counter(D — 1), assuming
D-way associativity.

Figure 3 illustrates the implementation of these hardware counters for two-way
associative caches.

Each way in a set-associative cache includes S cache blocks, where S is the number
of sets. Assuming that cache accesses are well distributed over sets, we can
approximate the marginal gain of having additional S blocks for a fully-associative
cache from the way-counters as follows:

counter(k) = Z g(o), 3)

where S is the number of sets.

With a minimum monitoring granularity of a way, high-associativity is essential
for obtaining enough information for performance optimization; our experiments
show that eight-way associative caches can provide enough information for
partitioning. Content-addressable-memory (CAM) tags are attractive for low-power
processors [23] and they have higher associativity; the SA-1100 StrongARM
processor [10] contains a 32-way associative cache. When a cache is low-associative,
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Figure 3. The implementation of memory monitors for two-way associative caches. On a cache access,
the LRU information is read for the accessed set. Then the counter is incremented based on this LRU
information if the access hits on the cache.

we need to add additional information about temporal ordering of sets to obtain
detailed marginal gains [16].

4.2.  Partitioning mechanisms

For set-associative caches, various partitioning mechanisms can be used to actually
allocate cache space to each process. One way to partition the cache is to modify the
LRU replacement policy. This has the advantage of controlling the partition at cache
block granularity, but LRU implementations can be expensive for high-associativity
caches.

On the other hand, there are mechanisms that operate at coarse granularity. Page
coloring [2] can restrict virtual address to physical address mapping, and as a result
restrict cache sets that each process uses. Column caching [4] can partition the cache
space by restricting cache columns (ways) that each process can replace. However, it
is relatively expensive to change the partition in these mechanisms, and the
mechanisms support a limited number of partition blocks. In this section, we
describe the modified LRU mechanism and column caching to be used in our
experiments.

4.2.1. Modified LRU replacement. In addition to LRU information, the
replacement decision depends on the number of cache blocks that belong to each
process (b;). On a miss, the LRU cache block of the process (i) that caused the miss
is chosen to be replaced if its actual allocation (b;) is larger than the desired one
(¢; < b;). Otherwise, the LRU cache block of another over-allocated process is
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chosen. For set-associative caches, there may be no cache block of an over-allocated
process in the set. In this case, the standard LRU replacement policy is used and
evicts the LRU cache block in the set.

To implement this augmented LRU scheme in hardware, a processor ID is added
to each cache block. An L2 cache that is shared by two processors requires one bit
processor IDs. The space overhead of these IDs is negligible since they are only a few
bits per cache block. We also need one cache block counter (b;) per processor, which
keeps the number of cache blocks belonging to the processor. The counter is
decremented whenever a block is evicted from the cache, and incremented when a
new cache block is brought into the cache. Note that the counters are only updated
on a cache miss, and are not on the critical path of accessing the cache.

4.2.2. Column caching. Column caching is a mechanism that enables partitioning
a cache at column or “way” granularity [4]. A standard cache considers all cache
blocks in a set as candidates for replacement. As a result, a process’ data can occupy
any cache block. Column caching, on the other hand, restricts the replacement to a
subset of cache blocks, which essentially partitions the cache.

Column caching specifies replacement candidacy using a bit vector in which a bit
indicates if the corresponding column is a candidate for replacement. A LRU
replacement unit is modified so that it replaces the LRU cache block from the
candidates specified by a bit vector. Each partitionable unit has a bit vector. Since
look-up is precisely the same as for a standard cache, column caching incurs no
performance penalty during look-up.

4.3.  Partition controller

The previous two subsections discussed two hardware mechanisms to enable cache
partitioning: marginal gain counters and partition mechanisms. In our scheme, the
operating system controls these mechanisms to properly partition caches. A partition
module in the operating system has two major roles. First, it determines a desired
cache allocation based on the marginal gain counters. Second, it properly updates
the counters to reflect dynamic changes in program behavior.

Every T cycles, the operating system interrupts a running process and starts the
partition module. The partition module first reads marginal gain counters to update
its data structure for marginal gains. Based on the new marginal gains, it decides a
proper partition for each process and changes the allocation at cache partition unit
(modified replacement unit). Finally, the module clears the counters and restarts a
process. To reduce the overhead, the partition period 7 should be long enough. We
discuss this issue in more detail in the experiments section (Section 5).

4.3.1. Cache allocation. The algorithms in the previous section assume that we
can control cache allocation at a cache block granularity, and we know marginal
gains also at a block granularity. However, with way-counters for set-associative
caches, we cannot accurately estimate marginal gains at a cache block granularity.



16 SUH ET AL.

Also, it is very difficult to control the cache allocation at a block granularity.
Therefore, we allocate chunks of cache blocks at a time, referred to as a partition
block.

Using way counters, we obtain marginal gains at a cache way granularity. Thus,
we use a partition block that is the same size with one way of the cache (S blocks).
The cache allocation to each process can only be multiples of S blocks. For this
purpose, we define marginal gains of a partition chunk gyay(k):

Eway (k) = Z g(C) (4)

c=k*S

To handle non-convexity, we randomly choose an initial allocation and use a
greedy algorithm to decide a partition. After computing a new partition, we compare
it with the previous partition and pick the better one to be a partition for the next
partition period. The complete algorithm is as follows.

1. Initialize {c, ca,...,cn} randomly.

2. Find the process that will get the most benefit by having one more partition block
(index i for which gyay(c;) is largest), and the process that will lose the least by
giving up one partition block (index j(# i) for which guay, j(c; — 1) is smallest).

3. If gway,i(¢i) > Gway,j(¢; — 1), increase ¢; and decrease c;.

Repeat steps 3 and 4 until gyay i(¢i) < gway,j(¢; — 1) (maximum D times).

5. Compare the new partition with the previous one, and choose the better one.

>

Considering that N (the number of simultaneous processes) and D (the number of
partition blocks = associativity) are small, the overhead of computing the new
partition is rather small. For the case when we have two processors sharing a eight-
way L2 cache, the number of instructions for the computation should be well below
10,000. If we have a partition period of five million cycles, which we show is
reasonable in the experimental section, the overhead of computing a new partition is
less than 0.2%.

4.3.2. Counter update. Since characteristics of processes change dynamically, the
estimation of gway(x) should reflect the changes. But we also wish to maintain some
history of the memory reference characteristics of a process, so we can use it to make
decisions. We can achieve both objectives, by giving more weight to the counter
value measured in more recent time periods.

When a process begins running for the first time, all marginal gains are set to zero.
The partition module updates the marginal gains (gway(k)) every partition period by
giving more weighting to new counter values:

8way (k) = 0 * gway (k) + counter(k). (5)

As a result, the effect of hits in the previous period exponentially decays, but we
maintain some history.
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5. Experimental results

This section presents the simulation results in order to understand the quantitative
effects of our cache partitioning scheme. First, we describe our simulation
framework based on the SimpleScalar tool set [3]. Then, we evaluate our partitioning
scheme by running different sets of benchmarks on a CMP system with two
processors sharing an L2 cache. Finally, we discuss how long the partition period
should be.

5.1.  Simulation framework

Our simulation framework is based on the SimpleScalar 3.0 tool set [3], which
models speculative out-of-order execution. The original SimpleScalar is modified to
have multiple processors sharing an L2 cache. A processor has its own L1 instruction
and data caches, but all processors share one unified L2 cache. To model contention
among multiple processors, the L2 cache bus and the memory bus were implemented
in SimpleScalar.

Our partitioning scheme is implemented for the shared L2 cache. Due to large
space and long latency, our scheme is more likely to be useful for an L2 cache, and so
that is the focus of our simulations. For an eight-way associative L2 cache, eight
counters per processor are added, which estimate the marginal gains. Based on the
marginal gains, SimpleScalar decides a new partition every 7T cycles and updates
counters. Finally, we implemented the augmented LRU replacement policy to
actually control the number of blocks in the cache. To be conservative, we use 10,000
cycles overhead for computing a new partition for every partition period.

The architectural parameters used in the simulations are shown in Table 1.
SimpleScalar is configured to execute Alpha binaries, and all benchmarks are
compiled on EV6 (21264) for peak performance. The size of the L2 cache is varied

Table 1. Architectural parameters used in simulations

Architectural parameters

Specifications

Processors

Clock frequency

L1 I-caches

L1 D-caches

L2 caches

L1 latency

L2 latency

Memory latency (the first chunk)
Instruction/data TLBs

Memory bus
Fetch/decode/issue/commit width
Load/store queue size

Register update unit size

2

1 GHz

64-KB, two-way, 32-B cache lines
64-KB, two-way, 32-B cache lines
Unified, eight-way, 64-B cache lines
2

10

80

Four-way, 128-entries

200 MHz, eight-B wide (1.6 GB/s)
4/4/4/4

64

128
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from 1 to 32MB. Unless indicated otherwise, the partition period is five million
cycles, which is 5ms in 1 GHz clock speed.

5.2. Benchmarks

To evaluate the cache partitioning scheme, we use several benchmarks from SPEC
CPU2000 benchmark suite [9]: art, mcf, vpr, swim, applu, vortex, and gcc.
Benchmarks that show different characteristics for the L2 cache are selected to
represent various types of applications. Some benchmarks require a large L2 cache
to achieve high performance, while less than 1 MB is enough for others. Some
benchmarks get significant benefit by having more cache space, while others do not.

Figure 4 illustrates the characteristics of the benchmarks that we use. The first
figure shows the IPC of each benchmark as a function of L2 cache size between 1 MB
and 32 MB. The second figure shows the number of L2 cache misses per million
processor cycles for various L2 cache sizes. To exclude the effect of an initial setup
phase, the benchmarks are simulated after skipping the first three billion
instructions.

Figure 4(a) demonstrates that the performance of some benchmarks is very
sensitive to cache size. The IPC of art, mcf, applu, and gcc can be significantly
improved by having a larger L2 cache. This means that the performance of these
benchmarks can be significantly degraded by other competing processes when the L2
cache is shared. Therefore, for these benchmarks, it is particularly important to
manage cache space carefully to achieve a high IPC.

The figures also indicate that the standard LRU replace policy may not manage
the cache space properly. The LRU policy tends to allocate more space to processes
that generate more cache misses. However, processes with many misses do not
necessarily benefit from having large cache space. For example, swim experiences
many L2 cache misses as shown in Figure 4(b). But the IPC improvement of swim as
we increase the L2 cache size is minimal compared to other benchmarks such as art,
mcf, applu. Therefore, the standard LRU policy will not manage the cache
properly when swim executes with art, mcf, or applu.

Finally, the figures illustrate that the characteristics of a benchmark is heavily
dependent on the L2 cache size in the system. For example, mcf will look like a
streaming application with little temporal locality if a system has a cache smaller
than 8§ MB. However, if the cache is larger than 16 MB, mcf shows high temporal
locality. Thus, static analysis alone is not enough to determine proper cache
allocation; compilers cannot tell whether an application shows high temporal locality
or not. The characteristics of an application should be determined dynamically at
run-time.

5.3.  Partition results

Now we study the advantage and the weakness of our cache partitioning scheme.
For the evaluation, we simulate four mixes of SPEC CPU2000 benchmarks. The first
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Figure 4. The L2 cache characteristics of the benchmarks used in simulations. (a) IPC as a function of L2
size. (b) The number of L2 misses per million processor cycles as a function of L2 size.

mix runs art and mcf, where each program has large marginal gain at different
cache size. The second mix runs mcf and swim. In this case, both programs need a
16 MB or larger L2 cache to achieve high performance. The third mix runs vpr and
swim, where both benchmarks only get minimal improvement by having more cache
space. Finally, we run vortex and gcc. In this case, only gcc gets benefit by
having a large cache (see Figure 4).

The simulations compare the IPC of the standard LRU replacement policy and
the IPC of our partitioning scheme. In each case, two processes are run sharing the
L2 cache. Each simulation was run for two hundred million cycles after skipping first
three billion instructions of each process. The partition period T 'is five million cycles,
and the weighting factor is set as 6 = 0.5. There is 10,000 cycle overhead modeling
the operating system computing a partition every partition period.

Figure 5 illustrates the speed-up of our partitioning scheme over the standard
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Figure 5. The speed-up of the partitioning scheme over the standard LRU replacement policy.
T =5,000,000, 6 =0.5.

LRU replacement policy. The results are shown for various L2 cache sizes, which
range from 1 MB to 32 MB.

The simulation results demonstrate that cache partitioning can improve the total
IPC significantly; for a 4-MB L2 cache running art and mcf, partitioning doubles
the IPC over the LRU policy. Partitioning also improves the IPC up to 32% for the
second mix (mcf and applu). Our partitioning scheme allocates more cache space
to the process with a larger marginal gain, whereas the LRU policy blindly allocates
more space to the one with more cache misses. More interestingly, the process with a
larger marginal gain changes depending on the process mixes. mcf is treated as a
streaming process in the first mix, but the same mc £ gets most of cache space in the
second mix.

The figure also illustrates the relationship between the cache size and the
effectiveness of partitioning. For small caches, partitioning does not seem to help
since the size of the total workloads is too large compared to the cache size. In this
case, changing the process schedule should be considered. At the other extreme,
partitioning cannot improve the cache performance if the cache is large enough to
hold all the workloads. The range of cache sizes for which partitioning can improve
performance depends on both the number of simultaneous processes and the
characteristics of the processes. In our experiments, cache partitioning improves the
performance in the range of up to tens of MB.

Table 2 summarizes more detailed IPC information for the same set of
simulations. The IPC of each process and the total IPC are shown for the LRU
replacement policy and the partitioning scheme. The total IPC is just a sum of two
IPCs.

The results in the table provide more insight into sharing caches among multiple
processors and partitioning the cache. First, the experimental results demonstrate
that performance degradation due to sharing the cache can really be significant. For
example, consider the case when running art and mcf with a 4-MB L2 cache. If we
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Table 2. Detailed comparison of IPCs between the standard LRU and the partitioned LRU strategy

LRU IPC Partition IPC
Cache (MB) art mcf Tot. art mcf Tot. Speed-up
1 0.1507 0.0441 0.1948 0.1428 0.0423 0.1852 0.95
2 0.5553 0.1001 0.6554 0.5468 0.0952 0.6420 0.98
4 0.9698 0.1263 1.0962 2.0761 0.1622 2.2382 2.04
8 1.9490 0.1803 2.1294 1.9490 0.1803 2.1294 1.00
16 2.1727 0.7476 2.9204 2.1727 0.7476 2.9204 1.00
32 2.1932 1.3682 3.5614 2.1932 1.3682 3.5614 1.00
mcf applu Tot. mcf applu Tot.
1 0.0922 0.4821 0.5744 0.0879 0.4414 0.5292 0.92
2 0.0900 0.4757 0.5656 0.0859 0.4503 0.5362 0.95
4 0.0926 0.4804 0.5730 0.0909 0.4672 0.5582 0.97
8 0.1073 0.4958 0.6030 0.1133 0.4921 0.6054 1.01
16 0.5958 0.7804 1.3762 0.9921 0.8269 1.8190 1.32
32 1.1373 1.1640 2.3012 1.1280 1.0037 2.1316 0.93
vpr swim Tot. vpr swim Tot.
1 0.7304 0.5987 1.3290 0.7972 0.5610 1.3582 1.02
2 0.7981 0.6115 1.4096 0.8818 0.6039 1.4858 1.05
4 0.8817 0.6289 1.5106 0.9693 0.6370 1.6064 1.06
8 0.9404 0.6427 1.5830 1.0396 0.6624 1.7020 1.08
16 0.9949 0.6605 1.6554 1.1461 0.6900 1.8360 1.11
32 1.0513 0.6879 1.7392 1.1892 0.7090 1.8982 1.09
vortex gcc Tot. vortex gcc Tot.
1 1.6420 1.5122 3.1542 1.5882 1.4882 3.0764 0.98
2 1.6896 1.5662 3.2558 1.6691 1.5303 3.1994 0.98
4 1.7058 1.6910 3.3968 1.6993 1.6323 3.3316 0.98
8 1.7168 1.7624 3.4792 1.7165 1.7603 3.4768 1.00
16 1.7224 1.7682 3.4906 1.7224 1.7682 3.4906 1.00
32 1.7227 1.7683 3.4910 1.7227 1.7683 3.4910 1.00

execute only one process at a time, the IPC of art and mcf will be 2.1489 and
0.1719, respectively from Figure 4. If we run them simultaneously on two processors
sharing an L2 cache without cache partitioning, the total IPC is only 1.0962. In this
case, it is better to just idle the second processor than use it unless we partition the
cache.

Cache partitioning also improves the performance by reducing the memory
bandwidth. In the table, consider the case of running art and mcf on a 4-MB L2
cache again. In this case, our partitioning scheme allocates less space to mc £ than the
LRU scheme would allocate. Thus, the miss-rate of mcf is higher with cache
partitioning. However, the IPC of mcf is still higher than in the case of the LRU
policy (from 0.1263 to 0.1622). This happens because we reduce the memory latency
by reducing the total bandwidth usage. The effect is also shown in the results of the
second and the third mixes.
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Although our partitioning scheme significantly improves the performance when
the LRU is wrong, the experimental results also show some cases where the
partitioning degrades the performance by a few percent. There are two weaknesses of
our partitioning scheme that cause a problem. First, we can change the partition only
every partition period T and our partition granularity is S blocks, whereas the
standard LRU policy can change the allocation every cycle on a cache block basis.
Due to this limitation, the partitioning can result in slightly worse performance than
the LRU policy if the LRU policy happens to result in a near-optimal allocation.
This is why the partitioning does not help for the last mix (vortex and gcc). The
LRU policy does the right thing for this mix by allocating more space to gcc.
However, the performance degradation due to this reason is very small compared to
the significant benefit of our scheme for the other cases.

The other weakness of our partitioning scheme is the fact that we can only
estimate marginal gains using cache ways. This mechanism is based on the
assumption that cache blocks are randomly distributed over different sets.
Unfortunately, some programs only use a part of cache sets heavily. In this case,
our algorithm is likely to allocate an unnecessarily large amount of cache space to
the program. Figure 6 illustrates this problem for the second mix (mcf and
applu). The figure shows the number of cache blocks allocated to mcf over time.
The black line represents the number of blocks that are actually in the cache, the
gray line represents the desired number of cache blocks allocated by our
partitioning scheme. As shown in the figure, the partitioning scheme over-allocates
cache space to mcf. The allocated space cannot be fully used by mcf since mcf
uses only a part of the cache sets heavily and therefore it is likely to replace its own
block in a heavily accessed set. The figure shows that the number of cache blocks
of mcf does not increase in the middle of an execution. This allocation limits the
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Figure 6. The cache allocation for mcf when running with applu using a 32-MB cache. The black line
represents the actually number of cache blocks in the cache. The gray line represents the desired allocation
decided by the partition scheme.
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performance of applu since applu will get fewer cache blocks. This problem
should disappear as we use better mapping functions that maps an address to a
cache set [8, 19].

5.4. Partition period

Thus far, we set the partition period T to be five million cycles for all our
experiments without any discussion. In this subsection, we study how long the
partition period should be. Figure 7 illustrates the effects of the partition period on
the speed-up. Each curve represents a process mix with the particular L2 size
indicated in the legend.

As shown in the figure, the performance degrades when the partition period is
either too short or too long. Short partition periods hurt the performance due to two
reasons. First, there is an overhead of computing a new partition every partition
period. Second, short partition periods hurt the estimation of marginal gains. We age
our marginal gains every partition period by multiplying them by ¢. If the partition
period is too short, the marginal gains quickly lose the past history.

On the other hand, if the partition period is too long, a partition cannot track
dynamic changes in the program behavior quickly enough, which results in poor
performance. However, program behavior does not change very quickly in our
experiments. As a result, any partition period between 500,000 cycles and 10,000,000
showed the best possible performance. Therefore, we can make the partition period
the same as the time slice, and handle re-partitioning as a part of the context
switching process.

—e—art+mcf, 4 MB
—a— mcf +applu, 32 MB
—&— vpr + swim, 32 MB

Speed-Up

—m— vortex +gce, 2MB

Partition period (cycle)

Figure 7. The speed-up as a function of the partition period. Each curve represents a process mix with the
particular L2 size indicated in the legend.
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6. Conclusion

Low IPC can be attributed to two factors, data dependency and memory latency.
Executing multiple processes simultaneously such as in CMP/SMT systems mitigates
the first factor but not the second. We have discovered that simultaneous execution
of multiple processes may exacerbate the problem when the executing processes
require large caches. That is, when multiple executing processes interfere in the
cache, even multiple processing units cannot be well utilized because not all required
data is present in the memory.

We have studied one method to reduce cache interference among simultaneously
executing processes. Our on-line cache partitioning algorithm estimates the miss
characteristics of each process at run-time, and dynamically partitions the cache
amongst the processes that are executing simultaneously. The algorithm estimates
the marginal gains as a function of cache size and uses a search algorithm to find the
partition that minimizes the total number of misses.

The hardware overhead for the modifications proposed in this paper are minimal.
A small number of additional counters are required. The counters are updated on
cache hits, however, they are not on the critical path and so a small buffer can absorb
any burstiness. To actually partition the cache, we can modify the LRU replacement
hardware in a simple way to take the values of the counters into account. Or, we can
use column caching which requires a small number of additional bits in the TLB
entries, and a small amount of off-critical-path circuitry that is invoked only during
a cache miss.

The partitioning algorithm has been implemented in the shared L2 cache of a
CMP simulator based on the SimpleScalar tool set. The simulation results show that
partitioning can improve the cache performance noticeably over the standard LRU
replacement policy for a certain range of cache size for given processes. Additionally,
our partitioning algorithm can solve the problem of process interference in caches
for a range of cache sizes. However, partitioning alone cannot improve the
performance if caches are too small for the workloads. Therefore, processes that
execute simultaneously should be selected carefully considering their memory
reference behavior. Cache-aware job scheduling is a subject of our ongoing work
[16,17].

Even without CMP/SMT, one can view an application as multiple processes
executing simultaneously where each process has memory references to a particular
data structure. Therefore, the result of this investigation can also be exploited by
compilers for a processor with multiple functional units and some cache partitioning
control.
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Notes

1. Hereafter, we use a term ““process’ to represent both process and thread rather than explicitly using
“process/thread”.
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