
A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning

G. Edward Suh, Srinivas Devadas, and Larry Rudolph
Laboratory for Computer Science

MIT
Cambridge, MA 02139

{suh,devadas,rudolph}@mit.edu

Abstract

We propose a low overhead, on-line memory monitor-
ing scheme utilizing a set of novel hardware counters. The
counters indicate the marginal gain in cache hits as the size
of the cache is increased, which gives the cache miss-rate
as a function of cache size. Using the counters, we describe
a scheme that enables an accurate estimate of the isolated
miss-rates of each process as a function of cache size un-
der the standard LRU replacement policy. This information
can be used to schedule jobs or to partition the cache to
minimize the overall miss-rate. The data collected by the
monitors can also be used by an analytical model of cache
and memory behavior to produce a more accurate overall
miss-rate for the collection of processes sharing a cache in
both time and space. This overall miss-rate can be used to
improve scheduling and partitioning schemes.

1. Introduction

We present a low-overhead, on-line memory monitoring
scheme that is more useful than simple cache hit counters.
The scheme becomes increasingly important as more and
more processes and threads share various memory resources
in computers using SMP [2, 7, 8], Multiprocessor-on-a-chip
[3], or SMT [21, 10, 4] architectures.

Regardless of whether a single process executes on the
machine at a given point in time, or multiple processes exe-
cute simultaneously, modern systems arespace-sharedand
time-shared. Since multiple processes or threads1can in-
terfere in memory or caches, the performance of a process
can depend on the actions of other processes. Despite the
importance of optimizing memory performance for multi-

1We use the term “process” in the paper to potentially includeany exe-
cution context, such as threads. Too bad there is no consistent use of these
terms.

tasking situations, most published research focuses only on
improving the performance of a single process.

Optimizing memory usage between multiple processes
is virtually impossible without run-time information. The
processes that share resources in the memory hierarchy are
only known at run-time, and the memory reference char-
acteristic of each process heavily depends on inputs to the
process and the phase of execution. But, hardware cache
monitors in commercial, general-purpose microprocessors
(e.g., [22]) only count the total number of misses which is
useful for performance monitoring of a single application.

To determine how many and which jobs should execute
simultaneously, it is often necessary to know how an appli-
cation would perform for various cache sizes. The cache
“footprint” for each application usually does not help since
footprints for several applications executing simultaneously
are likely to exceed the cache size for small caches. For
example, consider the miss-rate curves for three different
processes from SPEC CPU2000 [6] shown in Figure 1. For
a cache of size 50,A andB could execute together butC
should execute alone. Miss-rates as a function of cache size
give much more information than a single footprint number
and this information can be very relevant in scheduling and
partitioning the cache among processes.

The memory monitoring scheme presented in this paper
requires small modifications to the TLB, L1, and L2 cache
controllers and the addition of a set of counters. Despite
the simplicity of the hardware, these counters provide iso-
lated miss-rates of each running process as a function of
cache size under the standard LRU replacement policy2.
Moreover, the monitoring information can be used to dy-
namically reflect changes in process’ behavior by properly
weighting counters’ values.

In our scheduling and partitioning algorithms (Section 3,
4), we use marginal gains rather than miss-rate curves. The

2Previous approaches only produce a single number corresponding to
one memory size.

0 50 100
0

0.2

0.4

0.6

0.8

1

Cache Size

M
is

s-
ra

te

(c)

0 50 100
0

0.2

0.4

0.6

0.8

1

Cache Size

M
is

s-
ra

te

0 50 100
0

0.2

0.4

0.6

0.8

1

Cache Size

M
is

s-
ra

te

xA xB(a) (b)

Figure 1. (a) Miss-rate curve for process A (gcc). (b) Miss-rate

curve for process B (swim). (c) Miss-rate curve for process

C (bzip2).

marginal gain of a process, namelyg(x), is defined as the
derivative of the miss-rate curve3 m(x) properly weighted
by the number of references for a process (ref);

g(k) = (m(k − 1) − m(k)) · ref. (1)

Therefore, we directly monitor marginal gains for each pro-
cess rather than miss-rate curves. Using marginal gains,
we can derive schedules and cache allocations for jobs to
improve memory performance. If needed, miss-rate curves
can be computed recursively from marginal gains.

We show how the information from the memory mon-
itors is analyzed using an analytical framework, which
models the effects of memory interference amongst
simultaneously-executing processes as well as time-sharing
processes (Section 5). The counter values alone only esti-
mate the effects of reducing cache space for each process.
When used in conjunction with the analytical model, they
can provide an accurate estimate of the overall miss-rate of
a set of processes time-sharing and space-sharing a cache.

3the miss-rate of a process usingx cache blocks when the process is
isolated without competing processes.

The overall miss-rate provided by the model can drive more
powerful scheduling and partitioning algorithms.

The rest of this paper is organized as follows. In Section
2, we describe the counter scheme and its implementation.
Section 3 and 4 validate our approach by targeting memory-
aware scheduling and cache partitioning, respectively. We
describe a simple algorithm for each problem, and then pro-
vide experimental results. Section 5 describes the analytical
model which incorporates cache contention effects due to
space-sharing and time-sharing. Related work is discussed
in Section 6. Finally, Section 7 concludes the paper.

2. Marginal-Gain Counters

Memory monitoring schemes should provide informa-
tion to estimate the performance of a given level of the
memory hierarchy under different configurations or alloca-
tions to be useful when optimizing that level’s performance.
This section proposes an architectural mechanism using a
set of counters to obtain themarginal-gainin cache hits for
different sizes of the cache for a process or set of processes.
Such information is used by memory-aware scheduling and
partitioning schemes.

For fully-associative caches, the counters simply indi-
cate the marginal gains, but for set-associative caches, the
counters are mapped to marginal gains for an equivalent
sized fully-associative cache. It is much easier to work with
fully-associative caches and experimental results show that
this works well in practice. For example, the contention be-
tween two processes sharing a fully-associative cache is a
good approximation to the contention between the two pro-
cesses sharing a set-associative cache.

2.1. Implementation of Counters

We want to obtain marginal gains for a process for var-
ious cache sizes without actually changing the cache con-
figuration. In cache simulations, it has been shown that dif-
ferent cache sizes can be simulated in a single pass [15].
We emulate this technique in hardware to obtain multiple
marginal gains while executing a process with a fixed cache
configuration.

In any situation where the exact LRU ordering of each
cache block is known, computing the marginal gaing(x)
simply follows from the following set of counters:

Counters for a Fully Associative Cache:There
is one counter for each block in the cache;
counter(1) records the number of hits in the
most recently used block, andcounter(2) is the
number of hits in the second most recently used
block, etc. When there is a reference to theith

most recently used block, thencounter(i) is in-
cremented. Note that the item referenced then
becomes the most recently used block, so that a
subsequent reference to that item is likely to in-
crement a different counter.

To compute the marginal gain curve for each process,
a set of counters is maintained for each process. In a
uniprocessor system, the counters are saved/restored dur-
ing context switches, and when processes execute in par-
allel, multiple sets of counters are maintained in hardware.
We thus subscript the counters with their associated process
id. The marginal gaingi(x) is obtained directly by count-
ing the number of hits in thexth most recently usedblock
(counter(x)). The counters plus an additional one,refi,
that records the total number of cache references for pro-
cessi, are used to convert marginal gains to miss-rates for
analytical models (Section 5).

2.1.1 Main Memory

Main memory can be viewed as a fully-associative cache
for which on-line marginal gain counters could be useful.
That is, we want to know the marginal gain to a process as a
function of physical memory size. For main memory, there
are two different types of accesses that must be considered:
a TLB hit or a TLB miss. Collecting marginal gain infor-
mation from activity associated with a TLB hit is important
for processes that have small footprints and requires hard-
ware counters in the TLB. Collecting this information when
there is a TLB miss is important for processes with larger
footprints and requires mostly software support.

Assuming the TLB is a fully-associative cache with LRU
replacement, the hardware counters defined above can be
used to compute marginal gains for theCTLB most recently
used pages, whereCTLB is the number of TLB entries, Fig-
ure 2. The counters are only increased if a memory access
misses on both L1 and L2 caches. Therefore, counting ac-
cesses to main memory does not introduce additional delay
on any critical path. If the TLB is set-associative we use the
technique described in the next subsection.

On a TLB miss, a memory access is serviced by either a
hardware or software TLB miss handler. Ideally, we want
to maintain the LRU ordering for each page and count hits

Software

Hardware

TLB
(CTLB entries)

Memory Access

MISS?

HIT?

Counter(1)

MRU? L1,L2 miss?

Operating System

• Keep the LRU ordering of pages

• Count the number of hits for each group of pages

• Replace a TLB entry

Counter(1)
Ref

MRU?

Counter(1)

MRU?
MRU?

Counter(1)

LRU

Ordering

CTLB Counters

Figure 2. The implementation of memory monitors for main

memory.

per page. However, the overhead of per-page counting is
too high and experimentation shows that only dozens of
data points are needed for performance optimization such as
scheduling and partitioning. Therefore, the entire physical
memory space can be divided into a few dozen groups and
we count the marginal gain per group. It is easy for software
to maintain the LRU information. All of a process’ pages in
physical memory form a linked list in LRU ordering. When
the page is accessed, its group counter is updated, its po-
sition on the linked list is moved to the front, and all the
pages on group boundaries update their group. Machines
that handle TLB misses in hardware need only insert the
referenced page number into a buffer and software can do
the necessary updates to the linked list on subsequent con-
text switches. The overhead is minor requiring only several
bytes for each page whose size is of the order of 4-KB, and
tens of counters to compute marginal gains.

2.1.2 Set-Associative Caches

In set-associative caches, LRU ordering is kept only within
each set. (We call this LRU ordering within a set asway
LRU ordering.) Although we can only estimate marginal
gains of having eachway, not each cache block, it turns out
to often be good enough for scheduling and partitioning if
the cache has reasonably high associativity.

Way-Counters for a Set-Associative Cache:
There is one counter for each way of the cache.
A hit in the cache to the MRU block of some set
updatescounter(1). A hit in the cache to the
LRU block of some set updatescounter(D), as-
sumingD-way associativity. There is an addi-
tional counter,ref , recording all the accesses to
the cache.

Figure 3 (a) illustrates the implementation of this hardware
counters for2-way associative caches. It is also possible to
have counters associated with each set of a cache.

Set-Counters for a Set-Associative Cache:
There is one counter for each set of the cache.
LRU information for all sets is maintained. A
hit to any block within the MRU set updates
counter(1). A hit to any block within the LRU
set updatescounter(S), assumingS sets in the
cache. There is an additional counter,ref ,
recording all the accesses to the cache.

To obtain the most detailed information, we can combine
bothway-countersandset-counters. There areD · S coun-
ters, one for each cache block. A hit to a block within the
ith MRU set and thejth MRU way updatescounter(i, j).
We refer to these asDS-counters.

In practice, we do not need to maintain LRU ordering
on a per cache set basis. Since there could be thousands of
cache sets, the sets are divided into several groups and the
LRU ordering is maintained for the groups. Figure 3 (b)
illustrates the implementation of DS-counters with two set
groups.

2.2. Computing fully-associative marginal
gain from set-associative counters

The marginal gain for a fully-associative cache can be
approximated from the way-counters as follows:

counteri(k) =
k·S∑

x=(k−1)·S+1

gi(x) (2)

whereS is the number of sets.
With a minimum monitoring granularity of away, high-

associativity is essential for obtaining enough information
for performance optimization; our experiments show that
8-way associative caches can provide enough information
for partitioning. Content-addressable-memory (CAM) tags
are attractive for low-power processors [23] and they have
higher associativity; the SA-1100 StrongARM processor
[9] contains a 32-way associative cache.

If the cache has low associativity, the information from
the way LRU ordering alone is often not enough for good
performance optimization. For example, consider a2-way
associative cache shown in Figure 4 (a). For cache partition-
ing, the algorithm would conclude that the process needs a
half of the cache to achieve a low miss-rate from two given

Which Way?

DataTagVLRUDataTagVLRU

Counter(1)

Counter(2)

HIT?
Ref

Way LRU of Set 0
Way LRU of Set1

(a)

(b)

Way LRU of Hit Block

Which Way?

Group
1

Group
0

DataTagVLRUDataTagVLRU

HIT?
Ref

Way LRU of Set 0 Way LRU of Set1

Way LRU of Hit Block

Set LRU

Set LRU Ordering

Counter(1)

Counter(4)

Figure 3. The implementation of memory monitors for 2-way

associative caches. On a cache access, the LRU information

is read for the accessed set. Then the counter is incremented

based on this LRU information if the access hits on the cache.

The reference counter is increased on every access. (a) The

implementation that only uses the LRU information within a s et.

(b) The implementation that uses both the way LRU informatio n

and the set LRU information.

points, even though the process only needs one tenth of the
cache space.

To obtain finer-grained information, we use either
Way-Counterwith Set-Countersor DS-Countersfor low-
associative caches. For example, Figure 4 (b) shows the
miss-rate curve obtained using DS-Counters. As shown in
the figure, we can obtain much more detailed information
if we keep the set LRU ordering for8 or 16 groups. Way-
Counters with Set-Counters, which provideD + S counter
values, can also be used instead of DS-Counters. In this
case, the value in each set-counter is distributed over the
ways (D software counters) based on the values in the way-
counters to generateD · S values.

There are several strategies for converting theD · S
counter values into full-associative marginal gain informa-

tion. In Figure 4 (b), we usedsorting as a conversion
method. First,D · Sgroup counter values are obtained from
the hardware counters, whereSgroup represents the number
of set groups. Then, these counters are sorted in decreas-
ing order and assigned to marginal gains. This conversion
is based on the assumption that the marginal gain is mono-
tonically decreasing function of cache size. We are also
investigating other conversion methods; column-major con-
version, binomial probability conversion, etc.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Cache Size

M
is

s−
ra

te

Ideal
Way LRU Only

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Cache Size

M
is

s−
ra

te

Ideal
Way LRU Only
Set LRU (8 Groups)
Set LRU (16 Groups)

(a)

(b)

Figure 4. The estimated miss-rate curves using the set-

associative cache monitor. The cache is 32-KB 2-way asso-

ciative, and the benchmark is vpr from SPEC CPU2000. The

ideal curve represents the case when you know the LRU order-

ing of all cache blocks. (a) Approximation only using the way

LRU information. (b) Approximation using both the way LRU

information and the set LRU information.

Since characteristics of processes change dynamically,
the estimation ofgi(x) should reflect the changes. But we
also wish to maintain some history of the memory refer-
ence characteristics of a process, so we can use it to make
decisions. We can achieve both objectives, by giving more

Time

Slice 3

Time

Slice 2

Time

Slice 1

Proc

P
…Proc

2

Proc

1

Processor

1

Processor

P

Memory

…

(a)

...

A(s,p) Matrix

(b)

Figure 5. (a) A shared memory multiprocessor system with P
processors. (b) Space-sharing and Time-sharing in multipr o-

cessor system.

weight to the counter value measured in more recent time
periods.

When a process begins running for the first time, all its
counter values are initialized to zero. At the beginning of
each time quantum that processi runs, the operating system
multipliescounteri(k) for all k andrefi by δ = 0.5. As a
result, the effect of hits in the previous time slice exponen-
tially decays, but we maintain some history.

3. Memory-Aware Scheduling

When a scheduler has the freedom to select which pro-
cesses execute in parallel, knowing the memory require-
ments of each process can help produce a better schedule. In
particular, this section demonstrates how the marginal gain
counters can be used to produce a memory-aware sched-
ule. First, we begin with the problem definition and as-
sumptions. Then, a scheduling algorithm based on marginal
gains of each process is briefly explained. Finally, we vali-
date our approach by simulations for main memory.

3.1. Scheduling Problem

We consider a system whereP identical processors share
the memory andN processes are ready to execute, see Fig-
ure 5 (a). The system can be a shared-memory multiproces-
sor system where multiple processors share the main mem-
ory, or it can be a chip multiprocessor system where proces-
sors on a single chip share the L2 cache.

Since there areP processors, a maximum ofP pro-
cesses can execute at the same time. To schedule more than
P processes, the system is time-shared. We will assume
processes are single-threaded, and allP processors context
switch at the same time as would be done in gang schedul-
ing [5]. These assumptions are not central to our approach,
rather for the sake of brevity, we have focused on a basic

scheduling scenario. There may or may not be constraints
in scheduling the ready processes. Constraints will merely
affect the search for feasible schedules.

A schedule is a mapping of processes to matrix elements,
where elementA(s, p) represents the process scheduled on
processorp for time slices, see Figure 5 (b). A matrix with
S non-empty rows indicates thatS time slices are needed to
schedule allN processes. In our problem,S = dN

P
e.

Our problem is to find the optimal scheduling that mini-
mizes processor idle time due to memory misses. The num-
ber of memory misses depends on both contention amongst
processes in the same time slice and contention amongst
different time slices. In this section, we only consider the
contention within the time slice. Considering contention
amongst time slices is briefly discussed in Section 5. For a
more general memory-aware scheduling strategy, see [18].

3.2. Scheduling Algorithm

For many applications, the miss rate curve as a function
of memory size has a knee (See Figure 1). That is, the miss
rate quickly drops and then levels off. To minimize the num-
ber of misses, we want to schedule processes so that each
process can use more cache space than the ordinate of its
knee.

The relative footprint for processi is defined as the num-
ber of memory blocks allocated to the process when the
memory withC ·S blocks is partitioned among all processes
such that the marginal gain for all processes is the same.C
represents the number of blocks in the memory, andC · S
represents the amount of available memory inS time slices.
Effectively, the relative footprint of a process represents the
optimal amount of memory space for that process when all
processes execute simultaneously sharing the total memory
resource overS time slices4. Intuitively, relative footprints
corresponds to a knee of the miss-rate curve for a process.

We use a simpleC · S step greedy algorithm to compute
relative footprints. First, no memory block is allocated to
any process. Then, for each block, we allocate the block to
the process that obtains the maximum marginal gain for an
additional block. After allocating allC · S blocks to pro-
cesses, the allocation for each process is the relative foot-
print of the process. We limit the number of blocks assigned
to each process to be less than or equal toC.

Once the relative footprints are computed, assigning pro-
cesses to time slices is straightforward. In a greedy manner,
the unscheduled process with the largest relative footprint is
assigned to a time slice with the smallest total relative foot-
print at the time. We limit the number of processes for each
time slice to beP .

4Stone, Turek, and Wolf [14] proved the algorithm results in the opti-
mal partition assuming that marginal gains monotonically decrease as al-
located memory increases.

Name Description FP (MB)

bzip2 Compression 6.2
gcc C Compiler 22.3
gzip Compression 76.2
mcf Combinatorial Optimization 9.9

vortex Object-oriented Database 83.0
vpr FPGA Placement and Routing 1.6

Table 1. The descriptions and Footprints of benchmarks used

for the simulations. All benchmarks are from SPEC CPU2000

[6].

3.3. Experimental Results

A trace-driven simulator demonstrates the importance
of memory-aware scheduling and the effectiveness of our
memory monitoring scheme. Consider scheduling six pro-
cesses, randomly selected from SPEC CPU2000 benchmark
suite [6] on the system with three processors sharing the
main memory. The benchmark processes have various foot-
print sizes (See Table 1), that is, the memory size that a
benchmark requires to achieve the minimum miss-rate. Pro-
cessors are assumed to have 4-way 16-KB L1 instruction
and data caches and a 8-way 256-KB L2 cache. The sim-
ulations concentrate on the main memory varying over a
range of 8 MB to 256 MB with 4-KB pages.

All possible schedules are simulated. For various mem-
ory sizes, we compare the average miss-rate of all possible
schedules with the miss-rates of the worst schedule, the best
schedule, and the schedule by our algorithm. The simula-
tion results are summarized in Table 2 and Figure 6. In
the table, a corresponding schedule for each case is also
shown except for the 128-MB and 256-MB cases where
many schedules result in the same miss-rate. A schedule
is represented by two sets of letters. Each set represents a
time slice, and each letter represents a process: A-bzip2,
B-gcc, C-gzip, D-mcf, E-vortex, F-vpr. In the figure,
the miss-rates are normalized to the average miss-rate.

The results demonstrate that process scheduling can have
a significant effect on the memory performance, and thus
the overall system performance. For 16-MB memory, the
best case miss-rate is about 30% better than the average
case, and about 53% better than the worst case. Given the
very large penalty for a page fault, performance is signifi-
cantly improved due to this large reduction in miss-rate. As
the memory size increases, scheduling becomes less impor-
tant since the entire workload fits into the memory. How-
ever, note that smart scheduling can still improve the miss-
rate by about 10% over the worst case even for 256-MB
memory that is larger than the total footprint size from Ta-
ble 1. This happens because the LRU policy does not allo-

Memory Average of Worst Case Best Case Algorithm
Size (MB) All Cases

8 Miss-Rate(%) 1.379 2.506 1.019 1.022
Schedule (ADE,BCF) (ACD,BEF) (ACE,BDF)

16 Miss-Rate(%) 0.471 0.701 0.333 0.347
Schedule (ADE,BCF) (ADF,BCE) (ACD,BEF)

32 Miss-Rate(%) 0.187 0.245 0.148 0.157
Schedule (ADE,BCF) (ACD,BEF) (ABD,CEF)

64 Miss-Rate(%) 0.072 0.085 0.063 0.066
Schedule (ABF,CDE) (ACD,BEF) (ACF,BDE)

128 Miss-Rate(%) 0.037 0.052 0.029 0.029
Schedule (ABF,CDE) (ACD,BEF) (ACD,BEF)

256 Miss-Rate(%) 0.030 0.032 0.029 0.029
Schedule (ABF,CDE) (ACD,BEF) (ACD,BEF)

Table 2. The performance of the memory-aware scheduling alg orithm. A schedule is represented by two sets of letters. Eac h set

represents a time slice, and each letter represents a proces s: A-bzip2, B-gcc, C-gzip, D-mcf, E-vortex, F-vpr. For some

cases multiple schedules result in the same miss-rate.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

8 16 32 64 128 256

Memory Size (MB)

N
or

m
al

iz
ed

 M
is

s-
ra

te

Worst Case Best Case Monitor-Based

Figure 6. The comparison of miss-rates for various schedule s:

the worst case, the best case, and the schedule decided by

the algorithm. The miss-rates are normalized to the average

miss-rate of all possible schedules for each memory size.

cate the memory properly.
The results also illustrate that our scheduling algorithm

can effectively find a good schedule, which results in a low
miss-rate. In fact, the algorithm found the optimal sched-
ule when the memory is larger than 64-MB. Even for small
memory, the schedule found by the algorithm shows a miss-
rate very close to the optimal case.

Finally, the results demonstrate the advantage of having
marginal gain information for each process rather than one
value of footprint size. If we schedule processes based on
the footprint size, executinggcc, gzip andvpr together
and the others in the next time slice seems to be natural
since it balances the total footprint size for each time slice.
However, this schedule is actually theworst schedule for
memory smaller than 128-MB, and results in a miss-rate
that is over 50% worse than the optimal schedule.

Memory traces used in this experiment have footprints
smaller than 100 MB. As a result, the scheduling algorithm
could not improve the miss-rate for memory which is larger
than 256 MB. However, many applications have very large
footprints, often larger than main memory. For these appli-
cations, the memory size where scheduling matters should
scale up.

4. Cache Partitioning

Just like knowing memory requirements can help a
scheduler, it can also be used to decide the best way to
dynamically partition the cache among simultaneous pro-
cesses. A partitioned cache explicitly allocates cache space
to particular processes. In a partitioned cache, if space

On-line Cache

Monitoring
OS Process

Scheduler

Cache

Replacement

Unit

Partition

Module

SoftwareHardware

Cache Allocation

Marginal

Gains

Set of Live

Processes

Figure 7. The implementation of on-line cache partitioning .

is allocated to one process, it cannot be used to satisfy
cache misses by other processes. Using trace-driven sim-
ulations, we compare partitioning with normal LRU for set-
associative caches.

4.1. The Partitioning Scheme

The standard LRU replacement policy treats all cache
blocks in the same way. For multi-tasking situations, this
can often result in poor allocation of cache space among
processes. When multiple processes run simultaneously
and share the cache as in simultaneous multithreading and
chip multiprocessor systems, the LRU policy blindly al-
locates more cache space to processes that generate more
misses even though other processes may benefit more from
increased cache space.

We solve this problem by explicitly allocating cache
space to each process. The standard LRU policy still man-
ages cache space within a process, but not among processes.
Each process gets a certain amount of cache space allocated
explicitly. Then, the replacement unit decides which block
within a set will be evicted based on how many blocks a
process has in the cache and how many blocks are allocated
to the process.

The overall flow of the partitioning scheme can be
viewed as a set of four modules: on-line cache monitor, OS
processor scheduler, partition module, and cache replace-
ment unit (Figure 7). The scheduler provides the partition
module with the set of executing processes that shares the
cache at the same time. Then, the partition module uses this
scheduling information and the marginal gain information
from the on-line cache monitor to decide a cache partition;
the module uses a greedy algorithm to allocate each cache
block to a process that obtains the maximum marginal gain
by having one additional block. Finally, the replacement
unit maps these partitions to the appropriate parts of the
cache. Since the characteristics of processes change dynam-

Name Process Description

Mix-1 art Image Recognition/Neural Network
mcf Combinatorial Optimization

Mix-2 vpr FPGA Circuit Placement and Routing
bzip2 Compression
iu Image Understanding

Mix-3 art1 Image Recognition/Neural Network
art2
mcf1 Combinatorial Optimization
mcf2

Table 3. The benchmark sets simulated. All but the Image Un-

derstanding benchmark are from SPEC CPU2000 [6]. The Image

Understanding is from DIS benchmark suite [12].

ically, the partition is re-evaluated after every time slice. For
details on the partitioning algorithm, see [17].

4.2. Experimental Results

This section presents quantitative results using our cache
allocation scheme. The simulations concentrate on chip
multiprocessor systems where processors (either 2 or 4)
share the same L2 cache. The shared L2 cache is 8-way
set-associative, whose size varies over a range of 256 KB
to 4 MB. Each processor is assumed to have its own L1 in-
struction and data caches, which are 4-way 16 KB. Due to
large space and long latency to main memory, our scheme
is more likely to be useful for an L2 cache, and so that is
the focus of our simulations. We note in passing, that we
believe our approach will work on L1 caches as well if L1
caches are also shared.

Three different sets of benchmarks are simulated, see Ta-
ble 3. The first set (Mix-1) has two processes,art and
mcf both from SPEC CPU2000. The second set (Mix-2)
has three processes,vpr, bzip2 andiu. Finally, the third
set (Mix-3) has four processes, two copies ofart and two
copies ofmcf, each with a different phase of the bench-
mark.

The simulations compare the overall L2 miss-rate of a
standard LRU replacement policy and the overall L2 miss-
rate of a cache managed by our partitioning algorithm. The
partition is updated every two hundred thousand memory
references (T = 200000), and the counters are multiplied
by δ = 0.5 (cf. Section 2.2). Carefully selecting values
of T andδ is likely to give better results. The hit-rates are
averaged over fifty million memory references and shown
for various cache sizes (see Table 4).

The simulation results show that the partitioning can im-
prove the L2 cache miss-rate significantly: for cache sizes
between 1 MB to 2 MB, partitioning improved the miss-

Size L1 L2 Part. L2 Abs. Rel.
(MB) %Miss %Miss %Miss %Imprv. %Imprv.

art + mcf
0.2 84.4 84.7 -0.3 -0.4
0.5 82.8 83.6 -0.8 -0.9

1 28.1 73.8 63.1 10.7 14.5
2 50.0 48.9 1.1 2.2
4 23.3 25.0 -1.7 -7.3

vpr + bzip2 + iu
0.2 73.1 77.9 -0.8 -1.1
0.5 72.5 71.8 0.7 1.0

1 4.6 66.5 64.2 2.3 3.5
2 40.4 33.7 6.7 16.6
4 18.7 18.5 0.2 1.1

art1 + mcf1 + art2 + mcf2
0.2 88.0 87.4 0.6 0.7
0.5 85.8 85.7 0.1 0.1

1 28.5 83.1 81.0 2.1 2.5
2 73.4 65.1 8.3 11.3
4 49.5 48.7 0.8 1.6

Table 4. Hit-rate Comparison between the standard LRU and th e

partitioned LRU.

rate up to 14% relative to the miss-rate from the standard
LRU replacement policy. For small caches, such as 256-KB
and 512-KB caches, partitioning does not seem to help. We
conjecture that the size of the total workloads is too large
compared to the cache size. At the other extreme, partition-
ing cannot improve the cache performance if the cache is
large enough to hold all the workloads.

The results demonstrate that on-line cache monitoring
can be very useful for cache partitioning. Although the
cache monitoring scheme is very simple and has a low im-
plementation overhead, it can significantly improve the per-
formance for some cases.

5. Analytical Models

Although the straightforward use of the marginal gain
counters can improve performance, it is important to know
its limitation. This section discusses analytical methods
that can model the effects of memory contention amongst
simultaneously-running processes, as well as the effects of
time-sharing, using the information from the memory mon-
itoring scheme. The model estimates the overall miss-rate
when multiple processes execute simultaneously and con-
currently. Estimating an overall miss-rate gives a better
evaluation of a schedule or partition. First, a uniprocessor
cache model for time-shared systems is briefly summarized.
Then, the model is extended to include the effects of mem-

ory contention amongst simultaneously-running processes.
Finally, a few examples of using the model with the moni-
toring scheme are shown.

5.1. Model for Time-Sharing

The time-sharing model from elsewhere [16] estimates
the overall miss-rate for a fully-associative cache when mul-
tiple processes time-share the same cache (memory) on a
uniprocessor system. There are three inputs to the model:
(1) the memory size (C) in terms of the number of memory
blocks (pages), (2) job sequences with the length of each
process’ time slice (Ti) in terms of the number of memory
references, and (3) the miss-rate of each process as a func-
tion of cache space (mi(x)). The model assumes that the
least recently used (LRU) replacement policy is used, and
there are no shared data structures among processes.

5.2. Extension to Space-Sharing

The original model assumes only one process executes
at a time. In this subsection, we describe how the origi-
nal model can be applied to multiprocessor systems where
multiple processes can execute simultaneously sharing the
memory (cache). We consider the situation where all pro-
cessors context switch at the same time. More general cases
where each processor can context switch at a different time
can be modeled in a similar manner.

To model both time-sharing and space-sharing, we apply
the original model twice. First, the model is applied to pro-
cesses in the same time slice and generates a miss-rate curve
for a time slice considering all processes in the time slice as
one big process. Then, the estimated miss-rate curves are
processed by the model again to incorporate the effects of
time-sharing.

What should be the miss-rate curve for each time slice?
Since the model for time-sharing needsisolatedmiss-rate
curves, the miss-rate curve for each time-slices is defined
as the overall miss-rate of all processes in time slices when
they execute together without context switching using mem-
ory of sizex. We call this miss-rate curve for a time slice
as a combined miss-rate curvemcombined,s(x). Next we
explain how to obtain the combined miss-rate curves.

The simultaneously executing processes within a time
slice can be modeled as time-shared processes with very
short time slices. Therefore, the original model is used to
obtain the combined miss-rate curves by assuming the time
slice isrefs,p/

∑P

i=1 refs,i for processorp in time-slices.
refs,p is the number of memory accesses that processorp
makes over time slices.

Now we have the combined miss-rate curve for each
time-slice. The overall miss-rate is estimated by using the

original model assuming that only one process executes for
a time slice whose miss-rate curve ismcombined,s(x).

5.3. Model-Based Optimization

The analytical model can estimate the effects of both
time-sharing and space-sharing using the information from
our memory monitors. Therefore, our monitoring scheme
with the model can be used for any optimization related
to multi-tasking. For example, more accurate schedulers,
which consider both time-sharing and space-sharing can be
developed. Using the model, we can also partition the cache
among concurrent processes or choose proper time quanta
for them. In this subsection, we provide some preliminary
examples of these applications.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

8 16 32 64 128 256

Memory Size (MB)

N
or

m
al

iz
ed

 M
is

s-
ra

te

Worst Best Model-Based Monitor-Based

Figure 8. The comparison of miss-rates for various schedule s:

the worst case, the best case, the schedule based on the model ,

and the schedule decided by the algorithm in Section 3.

We applied the model to the same scheduling problem
solved in Section 3. In this case, however, the model evalu-
ates each schedule based on miss-rate curves from the mon-
itor and decides the best schedule. Figure 8 illustrates the
results. Although the improvement is small, the model-
based scheduler finds better schedules then the monitor-
based scheme for small memories.

The model is also applied to partition the cache space
among concurrent processes. Some part of the cache is ded-
icated to each process and the rest is shared by all. Figure 9
shows the partitioning results when 8 processes (bzip2,
gcc, swim, mesa, vortex, vpr, twolf, iu) are shar-
ing the cache (32 KB, fully associative). The partition is up-
dated every105 cache references. The figure demonstrates

that time-sharing can degrade cache performance for some
mid-range time quanta. Partitioning can eliminate the prob-
lem.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Reference per Time Quantum

M
is

s−
ra

te

Normal LRU
Model, P=105

Figure 9. The results of cache partitioning among concurren t

processes.

6. Related Work

Several early investigations of the effects of context
switches use analytical models. Thiébaut and Stone [19]
modeled the amount of additional misses caused by con-
text switches for set-associative caches. Agarwal, Horowitz
and Hennessy [1] also included the effect of conflicts be-
tween processes in their analytical cache model and showed
that inter-process conflicts are noticeable for a mid-range
of cache sizes that are large enough to have a considerable
number of conflicts but not large enough to hold all the
working sets. However, these models work only for long
enough time quanta, and require information that is hard to
collect on-line.

Mogul and Borg [11] studied the effect of context
switches through trace-driven simulations. Using a time-
sharing system simulator, their research shows that system
calls, page faults, and a scheduler are the main sources of
context switches. They also evaluated the effect of context
switches on cycles per instruction (CPI) as well as the cache
miss-rate. Depending on cache parameters, the cost of a
context switch appears to be in the thousands of cycles, or
tens to hundreds of microseconds in their simulations.

Snavely and Tullsen [13] proposed a scheduling algo-
rithm considering various resource contention for simulta-
neous multithreading systems. Their algorithm runs sam-
ples of possible schedules to identify good schedules. While
this approach is shown to be effective for a small number
of jobs, random sampling is unlikely to find a good sched-
ule for a large number of jobs. The number of possible

schedules increase exponentially as the number of jobs in-
creases. Our monitoring scheme with cache models can
estimate cache miss-rates for all possible schedules with-
out running all schedules. Therefore, our mechanism en-
ables a scheduler to identify good schedules without a long
sampling phase when the major resource contention is in
caches. When there are many resources shared by processes
(threads), the cache monitor can help the sampling scheme
by suggesting good candidates with low cache contention.

Stone, Turek and Wolf [14] investigated the optimal allo-
cation of cache memory between two competing processes
that minimizes the overall miss-rate of a cache. Their study
focuses on the partitioning of instruction and data streams,
which can be thought of as multitasking with a very short
time quantum. Their model for this case shows that the opti-
mal allocation occurs at a point where the miss-rate deriva-
tives of the competing processes are equal. The LRU re-
placement policy appears to produce cache allocations very
close to optimal for their examples. They also describe a
new replacement policy for longer time quanta that only in-
creases cache allocation based on time remaining in the cur-
rent time quantum and the marginal reduction in miss-rate
due to an increase in cache allocation. However, their pol-
icy simply assumes the probability for a evicted block to be
accessed in the next time quantum as a constant, which is
neither validated nor is it described how this probability is
obtained.

Thiébaut, Stone and Wolf applied their partitioning work
[14] to improve disk cache hit-ratios [20]. The model for
tightly interleaved streams is extended to be applicable for
more than two processes. They also describe the problems
in applying the model in practice, such as approximating
the miss-rate derivative, non-monotonic miss-rate deriva-
tives, and updating the partition. Trace-driven simulations
for 32-MB disk caches show that the partitioning improves
the relative hit-ratios in the range of 1% to 2% over the LRU
policy.

An analytical model for time-sharing effects in fully-
associative caches was presented in [16] (cf. Section 5.1).
Partitioning methods based on off-line profiling were pre-
sented. Here, we have focused on on-line monitors to
drive a partitioning scheme that better adapts to changes
of behavior in processes. Further, we have extended the
model to include the effects of memory contention amongst
simultaneously-executing processes (Section 5.2). We have
also addressed the memory interference issue in schedul-
ing problems, and presented a memory-aware scheduling
algorithm. An earlier version of this scheduling work has
presented at the Job Scheduling Workshop for Parallel Pro-
cessing [18].

7. Conclusion

The effects of memory contention are quite complex and
vary with time. Current cache-hit counters and other pro-
filing tools are geared to single job performance when ex-
ecuted in isolation. We have developed a methodology to
solve certain scheduling and partitioning problems that opti-
mize memory usage and overall performance, for both time-
shared and space-shared systems.

Marginal gain information is collected for each process
separately using simple on-line hardware counters. Rather
than simply counting the number of hits to the cache, we
propose to count the number of hits to the most recently,
second most recently, etc., items in a fully-associative
cache. For set-associative caches, a similar set of counters
are used to approximate the values of counters had the cache
been fully associative. A small amount of hardware instru-
mentation enables main memory to be similarly monitored.

This information can be used to either schedule jobs or
partition the cache or memory. The key insight is that by
knowing the marginal gains of all the jobs, it is then pos-
sible to predict the performance of a subset of the jobs ex-
ecuting in parallel or the performance from certain cache
partitioning schemes.

The isolated miss-rate curves for each job can be com-
puted from the marginal gain information and the miss-
rate versus cache size curves are fed to an analytical model
which combines the running processes’ miss-rates to ob-
tain an overall miss-rate curve for the entire set of running
processes. The model includes the effects of space-sharing
and time-sharing in producing the overall miss-rate, which
is the quantity that we wish to minimize. Therefore, we can
apply search algorithms that repeatedly compute the over-
all miss-rate for different sets of processes or cache sizesto
determine which configuration is best. In some cases, the
model-based approach outperforms the monitor-based ap-
proach.

The overhead associated with our methodology is quite
low. We require hardware counters in a number that grows
with the associativity of hardware caches, L1 or the TLB.
Other counters are implemented in software. Our model
is quite easy to compute, and is computed in schedulers
or partitioners within an operating system. Alternately, in
multi-threaded applications,schedulerscan be modified to
incorporate the model.

Our results justify collecting additional information from
on-line monitoring beyond the conventional total hit and
miss counts. Our framework will apply to other problems
in memory optimization, including prefetching, selectionof
time quanta, etc.

Acknowledgments

Funding for this work is provided in part by the Defense
Advanced Research Projects Agency under the Air Force
Research Lab contract F30602-99-2-0511, titled “Malleable
Caches for Data-Intensive Computing”. Thanks also to E.
Peserico, D. Chiou, D. Chen, and especially to P. Portante.

References

[1] A. Agarwal, M. Horowitz, and J. Hennessy. An analyti-
cal cache model.ACM Transactions on Computer Systems,
7(2), May 1989.

[2] Compaq. Compaq AlphaServer series.
http://www.compaq.com.

[3] W. J. Dally, S. Keckler, N. Carter, A. Chang, M. Filo, and
W. S. Lee. M-Machine architecture v1.0. Technical Report
Concurrent VLSI Architecture Memo 58, Massachusetts In-
stitute of Technology, 1994.

[4] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm,
and D. M. Tullsen. Simultaneous multithreading: A plat-
form for next-generation processors.IEEE Micro, 17(5),
1997.

[5] D. G. Feitelson and L. Rudolph. Evaluation of design
choices for gang scheduling using distributed hierarchical
control. Journal of Parallel and Distributed Computing,
1996.

[6] J. L. Henning. SPEC CPU2000: Measuring CPU perfor-
mance in the new millennium.IEEE Computer, July 2000.

[7] HP. HP 9000 superdome specifications. http://www.hp.com.
[8] IBM. RS/6000 enterprise server model S80.

http://www.ibm.com.
[9] Intel. Intel StrongARM SA-1100 Microprocessor, April

1999.
[10] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, D. M. Tullsen,

and S. J. Eggers. Converting thread-level parallelism to
instruction-level parallelism via simultaneous multithread-
ing. ACM Transactions on Computer Systems, 15, 1997.

[11] J. C. Mogul and A. Borg. The effect of context switches
on cache performance. Inthe fourth international confer-
ence on Architectural support for programming languages
and operating systems, 1991.

[12] J. Munoz. Data-Intensive Systems Benchmark Suite Analy-
sis and Specification. http://www.aaec.com/projectweb/dis,
June 1999.

[13] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling
for a simultaneous multithreading processor. InNinth Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2000.

[14] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning
of cache memory.IEEE Transactions on Computers, 41(9),
Sept. 1992.

[15] R. A. Sugumar and S. G. Abraham. Set-associative cache
simulation using generalized binomial trees.ACM Transac-
tions on Computer Systems, 1995.

[16] G. E. Suh, S. Devadas, and L. Rudolph. Analytical cache
models with application to cache partitioning. Inthe 15

th

international conference on Supercomputing, 2001.

[17] G. E. Suh, S. Devadas, and L. Rudolph. Dynamic cache par-
titioning for simultaneous multithreading systems. InThir-
teenth IASTED International Conference on Parallel and
Distributed Computing System, 2001.

[18] G. E. Suh, L. Rudolph, and S. Devadas. Effects of memory
performance on parallel job scheduling. In7th International
Workshop on Job Scheduling Strategies for Parallel Process-
ing (in LNCS 2221), pages 116–132, 2001.

[19] D. Thiébaut and H. S. Stone. Footprints in the cache.ACM
Transactions on Computer Systems, 5(4), Nov. 1987.

[20] D. Thiébaut, H. S. Stone, and J. L. Wolf. Improving disk
cache hit-ratios through cache partitioning.IEEE Transac-
tions on Computers, 41(6), June 1992.

[21] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In22nd
Annual International Symposium on Computer Architecture,
1995.

[22] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Perfor-
mance analysis using the MIPS R1000 performance coun-
ters. InSupercomputing’96, 1996.

[23] M. Zhang and K. Asanović. Highly-associative caches for
low-power processors. InKool Chips Workshop in 33rd In-
ternational Symposium on Microarchitecture, 2000.

