
Reliable Communication in Massive MIMO
with Low-Precision Converters

Christoph Studer

vip
.ec
e.c
or
ne
ll.e
du



Smartphone traffic evolution needs technology revolution

Source: Ericsson, June 2017
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Fifth-generation (5G) may come to rescue

Source: Ericsson, June 2017
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5G has a wide range of requirements
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Massive MIMO may provide solutions to all these
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Multiple-input multiple-output (MIMO) principles

User1

User2

BS

3 Multipath propagation offers “spatial bandwidth”

3 MIMO with spatial multiplexing improves throughput, coverage,
and range at no expense in transmit power

3 MIMO technology enjoys widespread use in many standards

Conventional small-scale point-to-point or multi-user (MU) MIMO
systems already reach their limits in terms of system throughput
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Massive MIMO*: anticipated solution for 5G

Equip the basestation (BS) with hundreds
or thousands of antennas B

Serve tens of users U in the same
time-frequency resource

Large BS antenna array enables high array
gain and fine-grained beamforming

*Other terms for the same technology: very-large MIMO, full-dimension MIMO, mega

MIMO, hyper MIMO, extreme MIMO, large-scale antenna systems, etc.
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Promised gains of massive MIMO (in theory)

3 Improved spectral efficiency, coverage, and range

Ü 10× capacity increase over small-scale MIMO

Ü 100× increased radiated efficiency

3 Fading can be mitigated substantially → “channel hardening”

3 Significant cost and energy savings in analog RF circuitry

3 Robust to RF and hardware impairments

3 Simple baseband algorithms achieve optimal performancevip
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Short “history” of massive MIMO

2010: Conceived by Tom Marzetta (Nokia Bell Labs) [1]

2012: First testbed for 64× 15 massive MIMO system [2]

2013: Samsung achieves > 1 Gb/s with 64 BS antennas [3]

2016: ZTE releases first pre-5G BS with 64 antennas [4]

2017: Sprint & Ericsson field tests with 64 antennas [5]

Google Scholar search for “Massive MIMO” yields 13,300 results...

[1] T. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE
T-WCOM, 2010

[2] C. Shepard, H. Yu, N. Anand, L. E. Li, T. Marzetta, R. Yang, and L. Zhong, “Argos: practical many-antenna
base stations,” ACM MobiCom, 2012

[3] H.Benn, “Vision and key features for 5th generation (5G) cellular,” Samsung R&D Institute UK, 2014

[4] “ZTE Pre5G massive MIMO base station sets record for capacity,” ZTE Press Center, 2016

[5] “Sprint and Ericsson conduct first U.S. field tests for 2.5 GHz massive MIMO,” Sprint Press Release, 2017
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Practical challenges
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Practical challenges

7 The presence of hundreds or thousands of high-quality RF
chains causes excessive system costs and power consumption

7 High-precision ADCs/DACs cause high amount of raw
baseband data that must be transported and processed

7 The large amount of data must be processed at high rates
and low latency and often within a single computing fabric
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Power breakdown of a single, high-quality RF chain

Analog circuit power of a single RF chain in a picocell BS in Watt [1]

Data converters & amplifiers consume large portion of BS power

[1] C. Desset et al., “Flexible Power Modeling of LTE Base Stations,” IEEE WCNC, 2012
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We will show that massive MIMO enables reliable
communication with low-precision data converters
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Why should we use low-resolution ADCs/DACs at BS?

Lower resolution → lower power consumption
Power of ADCs/DACs scales exponentially with bits

Massive MIMO requires a large number of ADCs/DACs

Lower resolution → reduced hardware costs
Remaining RF circuitry (amplifiers, filters, etc.) needs to
operate at precision "just above" the quantization noise floor*

Extreme case of 1-bit data converters enables the use of
high-efficiency, low-power, and nonlinear RF circuitry

Lower resolution → less data transported from/to BBU
Example: 128 antenna BS and 10-bit ADCs/DACs operating at
80 MS/s produces more than 200 Gb/s of raw baseband data

*terms and conditions apply
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Uplink: users → basestation
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Quantized massive MIMO uplink
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We consider infinite-precision DACs at the user equipments (UEs)
and low-precision ADCs at the basestation (BS) side

Ü Is reliable communication with low-precision ADCs possible?

Ü How many quantization bits are required?

Ü Do we need complicated/complex baseband algorithms?
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System model details
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n (Narrowband)
channel model:

y = Q(Hx+ n)

y ∈ YB receive signal at BS; Y quantization alphabet

Q(·) describes the joint operation of the 2B ADCs at the BS

H ∈ CB×U MIMO channel matrix

x ∈ OU transmitted information symbols (e.g., QPSK)

n ∈ CB noise; i.i.d. circularly symmetric Gaussian, variance N0vip
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How can we deal with quantization errors? Model 1

Assume that input Y is a zero-mean Gaussian random variable

Simple model: Z = Q(Y ) = Y +Q

Quantization error Q is statistically dependent on input Y

An exact analysis with this approximate model is difficult

[1] A. Zymnis, S. Boyd, and E. Candès, “Compressed sensing with quantized measurements,” IEEE SP-L, 2010

[2] J. J. Bussgang, “Crosscorrelation functions of amplitude-distorted Gaussian signals,” MIT Research Laboratory
of Electronics, technical report, 1952
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How can we deal with quantization errors? Model 2

Assume that input Y is a zero-mean Gaussian random variable

Model input-output relation statistically [1]

Probability distribution p(Z | Y ) has a known form

Exact model but a theoretical analysis is difficult

[1] A. Zymnis, S. Boyd, and E. Candès, “Compressed sensing with quantized measurements,” IEEE SP-L, 2010

[2] J. J. Bussgang, “Crosscorrelation functions of amplitude-distorted Gaussian signals,” MIT Research Laboratory
of Electronics, technical report, 1952
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How can we deal with quantization errors? Model 3

Assume that input Y is a zero-mean Gaussian random variable

Bussgang’s theorem [2]: Z = Q(Y ) = gY + E

Quantization error E is uncorrelated with input Y

This decomposition is exact → theoretical analysis possible

[1] A. Zymnis, S. Boyd, and E. Candès, “Compressed sensing with quantized measurements,” IEEE SP-L, 2010

[2] J. J. Bussgang, “Crosscorrelation functions of amplitude-distorted Gaussian signals,” MIT Research Laboratory
of Electronics, technical report, 1952
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Consider linear channel estimation and detection

Bussgang’s theorem linearizes the system model:

y = Q(Hx+ n) = GHx+ Gn+ e

where G is a diagonal matrix that depends on the ADC and
error e is uncorrelated with x

Using Bussgang’s theorem, we derive a linear channel estimator:

Ĥ =
g
∑P
t=1 ytx

H
t

g2P · SNR + g2 + (1− g2)(U · SNR + 1)

P = number of pilots; g = Bussgang gain that depends on ADC

Zero-forcing (ZF) equalization: x̂ = (Ĥ)†y

Do such simple receive algorithms work for coarse quantization?
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Uncoded BER vs. SNR: ZF with QPSK
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Markers correspond to simulation results; solid lines correspond
to Bussgang-based approximations

[1] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and CS, “Throughput analysis of massive MIMO uplink
with low-resolution ADCs,” IEEE T-WC, 2017
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Are these results still valid for realistic
wideband massive MIMO-OFDM systems?
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Full-fledged massive MIMO-OFDM system model [1]
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We consider quantized channel estimation and data detection

We compare two methods:

Exact model (model quantization statistically)

Approximate model (treat as unorrelated noise)

Ü How many bits are required for reliable uplink transmission?

[1] CS and G. Durisi, “Quantized massive MIMO-OFDM uplink,” IEEE T-WCOM, 2016
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Two methods: exact & complex vs. simple & suboptimal

Exact MMSE equalizer for the quantized system requires the
solution to a large convex optimization problem:


minimize
s̃w ,w∈Ωdata

−
B∑
b=1

log p(qb |FHzb) +
∑

w∈Ωdata

E−1
s ‖sw‖2

2

subject to {zb}Bb=1 = T {Ĥw sw}Ww=1

sw = tw , w ∈ Ωpilot

To minimize complexity, we can alternatively use conventional
MIMO-OFDM receivers that ignore the quantizer altogether

The same two approaches exist for channel estimationvip
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Performance of quantized massive MU-MIMO-OFDM
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Performance of quantized massive MU-MIMO-OFDM
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Performance of quantized massive MU-MIMO-OFDM
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Downlink: basestation → users
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Quantized massive MIMO downlink with low-res. DACs
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We consider low-precision DACs at the basestation (BS)
and infinite-precision ADCs at the UE side

Ü Is reliable communication with low-precision DACs possible?

Ü How many quantization bits are required?

Ü Do we need complicated/complex baseband algorithms?
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Quantized massive MIMO downlink with low-res. DACs
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(Narrowband) channel model: y = Hx+ n

y ∈ CU receive signals at U users; y = [y1, . . . , yU ]T

H ∈ CU×B MIMO channel matrix

x(s,H) ∈ XB transmitted vector; satisfies E
[
‖x‖2

]
≤ ρ

s ∈ OU are the information symbols (e.g., QPSK symbols)

n ∈ CU noise; i.i.d. zero-mean Gaussian with variance N0
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The quantized precoding (QP) problem

Optimal precoder finds transmit vector x and associated β that
minimizes the receive-side MSE between ŝ and s

MSE = En

[
‖ŝ− s‖2

2

]
= ‖s− βHx‖2

2 + β2UN0

The optimal quantized precoding (QP) problem is given by

(QP)

{
minimize
x∈XB, β∈R

‖s− βHx‖2
2 + β2UN0

subject to ‖x‖2
2 ≤ ρ

Problem is NP-hard: Transmit vector x ∈ XB belongs to a
finite lattice due to the finite-precision of DACs

7 For 128 BS antennas with 1-bit DACs, an exhaustive search
would evaluate the objective more than 1077 times...

We need more efficient, approximate algorithms!
vip
.ec
e.c
or
ne
ll.e
du



Linear-quantized (LQ) precoding

PLQ(·)
×s

P(H, N0)

Q(·) x

Idea: multiply the information vector s ∈ OU with a (linear)
precoding matrix P ∈ CB×U and quantize the result:

x = PLQ(s) = Q(Ps)

Q(·) models the effect of the 2B DACsvip
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Linear-quantized precoding can be analyzed [1]

We can derive simple expressions for the signal-to-interference-
noise-and-distortion ratio (SINDR) using Bussgang’s theorem:

SINDRZF ≈
g2(B − U)/U

(1− g2) + N0/ρ

g depends on the DAC resolution; ρ is the transmit power

The SINDR can be used to approximate

BER ≈ Q(
√
SINDR) (for QPSK inputs)

Rsum ≈ U log2(1 + SINDR) (for Gaussian inputs)

[1] S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and CS, “Quantized precoding for massive MU-MIMO,"
IEEE T-COM, 2017
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Uncoded BER: simulations vs. analytical expressions
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ZF precoding; QPSK signaling; B = 128, U = 16; Rayleigh fading

Do linear precoders achieve near-optimal performance?
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No! Linear-quantized precoding is far from optimal

ZF, 10-bit DACs
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16-QAM signaling, B = 8, U = 2, SNR =∞; Rayleigh fading

Can we design precoders that achieve near-optimal
performance without resorting to an exhaustive search?vip
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Solution: Nonlinear (NL) precoding [1]

PNL(·)s x

H N0

We now return to the original QP problem:

(QP)

{
minimize
x∈XB, β∈R

‖s− βHx‖2
2 + β2UN0

subject to ‖x‖2
2 ≤ P

Idea: Relax the QP problem so that we can solve it more
efficiently using (non-)convex optimization techniques:

SDR (semidefinite relaxation)
C1PO (biConvex 1-bit PrecOding)

[1] S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and CS, “Quantized precoding for massive MU-MIMO,"
IEEE T-COM, 2017
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Uncoded BER for NL precoders with 1-bit DACs
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Non-linear precoders significantly outperform LQ precoders
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“In theory, theory and practice are the same.
In practice, they are not.” [A. Einstein]
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Non-linear precoding can be implemented in practice

Algorithms that seem efficient can often not be implemented
efficiently in very-large scale integration (VLSI) circuits

Semidefinite relaxation is notoriously difficult to implement

CxPO were specifically designed and optimized for VLSI [1]

C1PO C2PO

[1] O. Castañeda, S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, “1-bit Massive MU-MIMO
Precoding in VLSI,” under review, IEEE JETCAS
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FPGAs implementation results [1]

C2PO implementation on a Xilinx Virtex-7 XC7VX690T FPGA

BS antennas B 64 128 256

Slices 6 519 12 690 24 748
LUTs 21 920 43 710 85 323
Flipflops 12 461 26 083 53 409
DSP48 units 272 544 1 088

Clock freq. [MHz] 206 208 193
Latency [clock cycles] 40 41 42
Mvectors/s 5.13 5.06 4.63

16-QAM in 128× 16 system yields max. 324Mb/s throughput

[1] O. Castañeda, S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, “1-bit Massive MU-MIMO
Precoding in VLSI,” under review, IEEE JETCAS

vip
.ec
e.c
or
ne
ll.e
du



Are these results still valid for
wideband massive MIMO-OFDM systems?
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Full-fledged massive MIMO-OFDM system model [1]
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Downlink precoding is far more challenging than uplink:

Ü BS must avoid MU interference via precoding

Ü Nonlinearity introduced by DACs causes intercarrier interference

Bussgang-based analysis can be extended to
MIMO-OFDM systems and oversampling DACs [1]

[1] S. Jacobson, G. Durisi, M. Coldrey, and CS, “Linear Precoding with Low-Resolution DACs for Massive
MU-MIMO-OFDM Downlink ,” submitted to a journal, 2017

vip
.ec
e.c
or
ne
ll.e
du



LQ precoding is possible* even with 1-bit DACs
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Practical issue: out-of-band (OOB) interference [1]
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7 Conversion with low-precision DACs causes OOB interference

7 Practical systems would require sharp analog filters to meet
stringent OOB requirements

Spectrum regulations may prevent the use of 1-bit precoders

[1] S. Jacobson, G. Durisi, M. Coldrey, and CS, “Linear Precoding with Low-Resolution DACs for Massive
MU-MIMO-OFDM Downlink,” submitted to a journal, 2017
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Solution: nonlinear precoders (again)

Nonlinear precoders approximate optimal quantized precoder for
MIMO-OFDM, e.g., using convex relaxation [1]

error-rate comparison
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Massive MU-MIMO-OFDM, 4096 subcarriers (1200 occupied), 128 BS antennas,
16 users, QPSK, uncoded, 3.4× oversampling

Significant OOB suppression, better BER, but higher complexity

[1] S. Jacobson, G. Durisi, M. Coldrey, and CS, “Massive MU-MIMO-OFDM downlink with one-bit DACs and
linear precoding,” submitted to a journal, 2017
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Conclusions and open problems
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Summary

The use of high-quality RF chains at the BS would result
in excessive system costs and power consumption

3 Massive MU-MIMO enables reliable uplink and downlink
communication with low-precision data converters

3 Quantization is a nonlinear operation but its artifacts can be
analyzed via Bussgang’s theorem

3 The uplink requires no changes; 4-to-6 bit are sufficient

3 The downlink is significantly more challenging but feasible

Preliminary results show that nonlinear precoders can be
implemented in VLSI and mitigate OOB interference
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Open problems

Uplink

Ü Is robust timing, sampling rate, and frequency synchronization
still possible with coarse quantization?

Ü Can we still use digital time-domain filters after the ADCs?

Downlink

Ü We need new ideas of how to reduce OOB interference

Ü We need efficient nonlinear precoders for massive MIMO-OFDM

System design

Ü Precision, power, and cost trade-offs between number of BS
antennas and ADC/DAC quality are not well-understood

Ü Do all these results still hold for mm-wave systems?
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Thanks to my collaborators!
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