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Abstract—Future wireless communication systems will rely on
large antenna arrays at the infrastructure base stations (BSs) to
serve multiple users with high data rates in a single cell. We
demonstrate that the availability of high-dimensional channel
state information (CSI) acquired at such multi-antenna BSs
enables one to learn a chart of the radio geometry, which
captures the spatial geometry of the users so that points close in
space are close in the channel chart, using no other information
than wireless channels of users. Specifically, we propose a novel
unsupervised framework that first extracts channel features
from CSI which characterize large-scale fading effects of the
channel, and then uses specialized dimensionality reduction tools
to construct the channel chart. The channel chart can, for
example, be used to perform (relative) user localization, predict
cell hand-overs, or guide scheduling tasks, without accessing
location information from global navigation satellite systems.

I. INTRODUCTION

Fifth-generation (5G) wireless communication systems must
be able to serve a large number of users within a given cell and
provide higher spectral efficiency than existing communication
systems [1], [2]. Massive multi-user multiple-input multiple-
output (mMIMO) is widely believed to be a core technology
that provides a solution for these requirements [3]-[5]. The
idea of mMIMO is to deploy hundreds of antennas at the
infrastructure base-stations (BSs) which enables fine-grained
beamforming to transmit and receive user data at the same time
and in the same frequency band. However, user mobility, sharp
hand-over regions between neighboring cells, and massive
device densification, mainly driven by the Internet of Things,
pose severe implementation challenges of this technology.

It is widely believed that machine learning will play a
critical role in unlocking the true potential of 5G technolo-
gies [6]. Concretely, one must provide the BS with information
about user mobility, cell hand over, and congested areas to
successfully deploy mMIMO in practice. To this end, one
must lean heavily on the available high-dimensional channel
state information (CSI) acquired at the multi-antenna BS. To
effectively use the collected CSI, the BS has to learn the radio
geometry in which the users are moving. What needs to be
learned is a chart of the radio geometry, which represents
user location and movement related to CSI. To automate
learning and charting, to dynamically adapt to changes in the
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environment, to prevent extensive measurement campaigns,
and to avoid human intervention, learning the radio geometry
should be unsupervised.

A. Contributions

We show that the availability of high-dimensional CSI in
mMIMO systems enables one to learn a chart of the radio
geometry that captures the spatial geometry of the users so that
points close in space are also close in the channel chart. The
proposed method, referred to as channel charting (CC), maps
high-dimensional CSI of the users into a low-dimensional
channel chart that accurately preserves the local geometry of
the users’ true location in space. CC first extracts suitable
channel features that represent slowly varying CSI components
in time and space; these features are then used to learn a
channel chart via specialized dimensionality reduction methods.
In contrast to existing localization methods that require vast
amounts of CSI labelled with the users’ true locations, e.g.,
obtained from global navigation satellite systems (GNSSs), CC
operates in an unsupervised fashion. The unsupervised nature
of CC avoids the need for extensive measurement campaigns
and enables the BSs to perform cognitive and predictive tasks
critical to 5G networks which are currently unavailable. We
demonstrate the efficacy of CC via numerical simulations
under realistic channel models and conditions.

B. Relevant Prior Art

Unsupervised charting of the radio geometry has not been
addressed in the literature. Existing methods for user localiza-
tion are mainly based on triangulation that use geometrical
models to map a low-level descriptor of the channel, such as
the received signal strength or angle-of-arrival, to a location
in space [7]-[9]. For triangulation to work, cooperation of
multiple BS located far from each other and line-of-sight
(LoS) propagation conditions are necessary. Similarly, for
channel fingerprinting [10]-[15], a channel map is generated
via extensive measurement campaigns that directly associates
CSI with position information from GNSSs [10], [12]-[17].
Fingerprinting methods are fully supervised and require
training of the wireless channel at wavelength scales in
space [17]. In contrast, CC is unsupervised and requires
orders-of-magnitude sparser spatial sampling. Furthermore,
supervision achieved by means of precise location information
with application layer localization services, such as GNSS, is
currently infeasible as this information is not accessible to
BSs according to OSI layering principles [18].

In charting of wireless channels, we are primarily interested
in preserving the local neighborhood structure of the spatial



geometry when charting the radio geometry. Tools from
manifold learning [19], [20] and dimensionality reduction [21]
have extensively been used to compute low-dimensional
embeddings that preserve the geometry of high-dimensional
datasets. Specific methods for these tasks are, among many
others, multidimensional scaling (MDS) [19] or Sammon’s
mapping [20], which attempt to embed a high-dimensional
manifold into a low-dimensional space. While such machine
learning tools have been extensively used for data mining and
data visualization purposes [22], dimensionality reduction has
not been used in wireless communication systems. We will
show how accurate channel charts can be generated using
tools from manifold learning and dimensionality reduction.

C. Notation

Lowercase and uppercase boldface letters stand for column
vectors and matrices, respectively. For the matrix A, the
Hermitian conjugate is A, and the kth row and fth column
entry is A, ¢ or [A], . For the vector a, the nth entry is a.
The Frobenius norm of A is denoted by ||A||r. The M x N all-
zeros and all-ones matrix is Oz x v and 1,7y N, respectively,
and the M x M identity is I;. The collection of N vectors a,,,
n=1,...,N,is denoted by {a, }N_;.

II. CHANNEL CHARTING PRINCIPLES

The objective of CC is to learn a low-dimensional channel
chart from a large amount of high-dimensional CSI (acquired
at the infrastructure BS from users at different spatial locations)
that locally preserves the original spatial geometry, i.e., users
that are nearby in physical space will be nearby in the
channel chart and vice versa. CC operates in an unsupervised
fashion from CSI only, i.e., does not require application layer
location information from GNSSs. Note that practical wireless
systems require the extraction of CSI anyway for reliable data
transmission. Hence, CSI is readily available at the BS. We
now detail the principles underlying this approach.

A. Channel Function and Assumptions

Consider a single-antenna user that is either static or moves
in real space. We denote its spatial locations at discrete time
instants n = 1,..., N by the set {x,})_, with x,, € R,
where D is the dimensionality of the spatial geometry (e.g.,
the user’s z, y, and z coordinates). At each time instant n,
the user transmits pilots or information symbols s,,, which is
received at a mMIMO BS with B antennas. The received data
is modeled as y, = H(s,) + n,, where the function H(-)
represents the wireless channel between the transmitting user
and the receiving BS; the vector n,, models noise.

For CC, we are not interested in the transmitted data
but rather in the associated CSI. Concretely, the Rx uses
the received data y, to extract CSI denoted by h, € CM,
where M denotes the dimensionality of the acquired CSI from
all antennas, frequencies, and/or delays; typically, we have
M > D. We denote the mapping from spatial location x,, to
CSI h,, by the channel function H : RP? — CM, where CM
refers to the radio geometry. In practice, the CSI represented

by h,, depends on the user’s spatial location x,,, but also on
(static or moving) objects within the cell, as well as on noise
and interference. CSI captures the overall geometry of the cell,
including all scatterers, reflectors, and diffractors in the built
and natural environment. In what follows, we will make the
following assumptions:

Assumptions 1. We assume that the statistical properties of
the multi-antenna channel vary slowly across space, on a
length-scale related to the macroscopic distances between
scatterers in the channel, not on the small fading length-scale
of wavelengths. We also assume a static channel function H.

Large-scale channels effects are typically created by reflec-
tion, diffraction, and scattering of the environment, whereas
small-scale effects are caused by multipath propagation [23].
Accordingly, this assumption is well supported by measure-
ments. As we will demonstrate in Section V, CC performs
exceptionally well under these assumptions.

B. Channel Charting

CC first distills CSI h,, into channel features f, € RM '
with M’ denoting the feature dimension; typically, we have
M’ > D. Feature extraction is denoted by the function F :
CM — CM’| whose purpose is to extract large-scale fading
properties from CSI. CC then proceeds by using the set of
N collected features {f,})_, to learn the so-called forward
charting function in an unsupervised manner. The forward
charting function to be learned is denoted by C : CM' — R’
and maps each channel feature f,, to a point z,, € RP' in the
low-dimensional channel chart; typically, we have D' ~ D.
The forward charting function C to be learned should preserve
local geometry between neighboring data points, i.e., aims at
implementing the condition:

If d.(x,x') is small, then d.(z,z’) = d,(x,x"). (1)

Here, x,x’ € RP are two distinct coordinates in spatial
geometry, z,z € RY "are two distinct points in the learned
channel chart, and d,(x,x’) and d.(z,z’) are suitably defined
distance (or dissimilarity) measures. The goal of CC is to
compute a channel chart {z, })_; satisfying (1), solely from
the set of N channel features {f,,}_, in an unsupervised
manner, i.e., without access to the spatial locations {x, }2_,.

Figure 1 outlines the process of CC. The users are located
in spatial geometry denoted by R” which represents their
coordinates. The wireless channel H maps transmit signals
into CSI in radio geometry denoted by C™. This non-linear
mapping obfuscates the spatial relationships between the users.
The purpose of feature extraction is to find a representation
from which spatial geometry is easily recovered. CC learns
the forward charting function C that maps the channel features
into low-dimensional points in the channel chart RP " such
that neighboring transmit locations (in real-world coordinates)
will be neighboring points in the channel chart.

III. CHANNEL FEATURES

We start by the feature extraction stage. We show that lifting,
scaling, and transforming the CSI in the angular domain yields
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Fig. 1. Summary of CC. Users are located in spatial geometry RP and a
mMIMO BS extracts CSI in radio geometry CM . Feature extraction distills
useful information into feature geometry CM /, which is used to learn the
charting function C that maps features into a low-dimensional channel chart
in RP" that preserves the local geometry of the original spatial locations RP.

features that accurately represent large-scale fading properties
of the channel. To limit our search for suitable channel features,
we focus on Frobenius distance as dissimilarity measure on
pairs of feature matrices, i.e., we use df(F,F’) = |F —F’||p.

A. Lifted CSI Moments

CSI is affected by small-scale fading (due to multi-path
propagation) and large-scale fading (due to shadowing, path
loss, and other macroscopic effects). Small-scale fading effects
change the phase of CSI at sub-wavelength scales and hence,
are typically modeled statistically. To render our CSI features
robust to such random phase shifts, we propose to compute
features that are invariant to global phase shifts but contain
information of the relative phase within the antenna array [24].
We compute the raw 2™ moment (R2M) of dimension M?
given by H = E[hh*], where expectation is over noise
and variations in CSI caused by small-scale motion during
short time. In practice, we compute H = ﬁ ZZ;I h;hf,
where T is the number of samples we are averaging over.

B. Adaptive Feature Scaling

One of the key aspects in the design of good channel features
is to realize that CSI in radio geometry is a particularly poor
representation of spatial geometry. To see this, assume that
two users A and B are close to the BS, and two users C and D
are further away. Due to path-loss, the CSI contained in Hc
and Hp of users C and D appears to be weaker (i.e., has small
Frobenius norm) than that of the users nearby, Ha and Hpg.
If we now directly compare the Frobenius distance between C
and D, their distance appears to be smaller than that between A
and B because they have small overall norm, even though
they should be further apart. To compensate for this “warping”

phenomenon, we adaptively scale the CSI contained in the
R2M so that it is more compatible with spatial geometry.
Consider a user that is separated d meters from a BS whose
B antennas form a uniform linear array (ULA). Assume a
narrowband line-of-sight (LoS) channel without scatterers and
a 2-dimensional plane wave model (PWM), which accurately
models transmitters in the far field. For this scenario, the
entries hy, of the CSI vector h € CP are given by [25]

hy=d=° exp(—%’rAT(b -1 cos((b)), )

for b=1,..., B, where p > 0 is the path-loss exponent, Ar
is the antenna spacing, and ¢ is the incident angle of the user
to the BS. For this LoS scenario, we have the following result.

Lemma 1. Let H = hh? be the R2M. Assume two users
A and C with the same incident angle ¢, with distances dp
and d¢ to the BS. By scaling the R2M as
H=23""H with B=1+1/(2p), 3)
5]l
the distance dh(I:I~A,I:IC) = ||[Hs — H¢l|p of the scaled
moments Hp and He is their true distance, i.e.,

dn(FLa, He) = |da— dol. *

Proof. The proof follows by inserting (3) and (2) into (4), and
the fact that both users A and C are associated with the same
channel vector h in (2) but with different path losses. O

We emphasize that adaptive scaling operation in (3) “un-
wraps” the radio geometry, i.e., CSI from transmitters far away
is amplified and nearby CSI is attenuated. Since the path-loss
exponent p > 0 is often unknown in practice, we can also
use it as a tuning parameter. Note that for the special case
of B =1, the scaling in (3) simply normalizes the matrices
to unit Frobenius norm, effectively discarding any path loss
information. The resulting scaled CSI moments from (3) are
then passed to the feature transform stage discussed next.

C. Transformation into Beamspace

We are now ready to transform the scaled R2M H into
channel features. A straightforward choice would be to directly
set the feature to the scaled CSI moments F = I:I; for
simplicity, we now allow features to be matrices and denote this
feature by “C{-}”. It turns out, however, that applying certain
well-designed nonlinear transforms to the scaled CSI moments
significantly improves the feature quality. In particular, we
transform H into DHD* where D is the M x M discrete
Fourier transform (DFT) matrix. This approach converts the
scaled R2M from the antenna domain into the so-called
beamspace domain, which represents the incident angles of
the user and potential scatterers to the BS array in a concise
way [26]. To see this, it is key to realize that the vector h
for the LoS PWM model in (2) resembles a basis function
of the DFT. As a final step, we take the entry-wise absolute
value of the scaled and transformed R2M, i.e., our features
are given by F = [DHD|. This last step mitigates noise
that is caused by residual phase fluctuations.



IV. CHANNEL CHARTING ALGORITHMS

We now propose two dimensionality reduction algorithms
that have been specialized for the purpose of channel charting.
Corresponding simulation results are provided in Section V.

A. Sammon’s Mapping

Sammon’s mapping (SM) [20] is a classical nonlinear
method that maps a high-dimensional point set into a point
set of lower dimensionality with the goal of retaining small
pairwise distances between both point sets as in (1). We
next detail how SM can be used for CC, explain an efficient
algorithm to compute the channel chart, and propose a
specialized version that takes into account side information
that is typically available in wireless communication systems.

1) SM Basics: First, we compute a pairwise distance
matrix D between all channel features, i.e.,

Dmg:df(Fn,Fg), n:l,...,N, 621,...,]\[,

using the Frobenius distance. SM tries to find a low-
dimensional channel chart, i.e., a point set {z,}Y_;, that

results from the following optimization problem:
.. . —1
minimize Z D, ((Dne — ||zn — z¢|2)?
n=2,...,N

(SM) n=1..N y_1  n-1
SubjeCt to Z Z, = 0prx1,
n=1,..,N

where we omit pairs of points for which D, , = 0. The
objective function of SM promotes channel charts for which
the Euclidean distance of pairs of nearby points in R? ' agrees
with the feature distance. Points for which D;’% is small (i.e.,
points that are dissimilar in feature geometry) are discounted;
this ensures that SM ignores relationships of points that are
far apart in feature geometry. Since the objective function is
invariant to global translations, we enforce the channel chart
to be centered in each of the coordinates in RP".

2) Forward-Backward Splitting for SM: While the problem
(SM) is non-convex, we next detail an efficient first-order
method that enables us to include side information that is
available for CC; see Section IV-B. Concretely, we use an
accelerated forward-backward splitting (FBS) procedure [27],
[28] that solves a class of convex optimization problems of
the following general form: minimize f(Z)+ g(Z), where the
function f(Z) = 25:1 fn(2zy) should be convex and smooth
and g should be convex, but does not need to be smooth or
bounded. FBS consists of the iteration

Z0+D) = prox (2 — 70 v £(2(8), 70))

fort = 1,..., T Here, V f(Z) is the gradient of the smooth
function f, and the proximal operator for the nonsmooth
function g is [29]

prox,(Z,7) = arg miny {7g(V) + 3[|V — Z||3.}.

The sequence {7(*) > 0} contains carefully selected step-size
parameters that ensure convergence of FBS.

For CC, the matrix Z = [z, ..., zy] contains all points in
the channel chart. The function f is chosen to be

f(Z) = Z D;.;(Dn,f — |lzn — z€||2)27 &)
n=2,...,N
l=1,....n—1

and the nth column of the gradient of f is

[vf(z)]n = 2ZD;7;(D7L,£ - ||Z7L - Z€||2)
=

1,..., n

Zp — 2y

120 = 2ell2

The centering constraint of (SM) is enforced by the function
N S .

9(Z) = x(3°,_,2n) which is zero when its argument

> -1 Zn is zero and infinity otherwise. The proximal operator

for this function is a re-projection onto the centering constraint:

1
prox,(Z,7) = Z — NZlelljj\}xl.

Note that since f is nonconvex, FBS is not guaranteed to
find a global minimizer. Nevertheless, as shown in Section V,
FBS initialized with a solution from principal component
analysis (PCA) combined with the adaptive step-size procedure
proposed in [28] yields high-quality channel charts.

B. Sammon’s Mapping with Side-Information

In practice, one often collects a large number of CSI vectors
from a single user over time. For such situations, the channel
features for a given user w form a time series {f,}ncn,,
where N, contains the temporally ordered indices associated
with user u. Since users move with finite velocity, we know
that temporally adjacent CSI vectors from the same user must
be close in the channel chart. To exploit such side information,
we include an elastic-net penalty in the objective function that
keeps temporally adjacent points in N, nearby in the channel
chart. Concretely, for each user u, we add

Ju(Z) = ay Zne/\/u 1Zn — Zn—&-l”%

to the objective of (SM), where the parameter o, > 0
determines the spatial smoothness of user u in the channel
chart. In what follows, we refer to this CC algorithm as
Sammon’s mapping plus (SM+).

V. RESULTS

We now demonstrate the efficacy of CC with our channel
features and charting algorithms for realistic channel models.

A. Quality Measures of Channel Charts

To characterize the quality of the generated channel charts,
we need a performance metric of how well points in the
channel chart preserve the spatial geometry of the true user
locations. To this end, we borrow two metrics commonly
used to measure the quality of mappings in dimensionality
reduction tasks, namely continuity (CT) and trustworthiness
(TW) [22], [30], [31]. Both of these quality measures can be
described in the context of two abstract sets of data points
with cardinality N, i.e., {u,})_, from an original space
and {v,, }_, from a representation of the original space; the
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Fig. 2. Top view of the considered channel scenario: a massive MIMO
BS is equipped with a B = 32 antenna uniform linear array at location
(z,y,2) = (0,0,10) meters. The BS acquires CSI from 2048 randomly
placed points in space; the points forming the “VIP” curve have been added
to simplify visualization of the channel charts in Figure 3.

point v, is said to represent u,,. In the CC context, the original
space would be spatial geometry and the representation space is
the channel chart (cf. Figure 1). We define the K-neighborhood
of a point u as the set containing its K nearest neighbors
in terms of the chosen distance d,, (u,u’); the neighborhood
of v is defined analogously with d,(u,u’).

1) Continuity (CT): Neighbors in spatial geometry (original
space) can be far away (or dissimilar) in the channel chart
(representation space). For such situations, the representation
space does not preserve the continuity of the original point
set. To measure such situations, we first define the point-wise
continuity for K neighbors of the data point u;. Let Vi (u;)
be the K -neighborhood of point u; in the original space. Also,
let 7(4, j) be the ranking (in terms of dissimilarity) of point
v; among the neighbors of point v;. Then, the point-wise
continuity of the representation v; of the point u; is

2

CTi(K) =1~ K(@2N —3K — 1)

> (#(i.j) - K).

JEVK (u;)

The (global) continuity between the sets {u,}N_; and
{v,}_, is the average over the point-wise continuities.
Continuity values close to zero indicate that points similar in
spatial geometry are dissimilar in the channel chart; continuity
values close to one indicate neighbor-preserving mappings.
2) Trustworthiness (TW): In dimensionality reduction, it
may happen that the representation mapping introduces new
neighbor relations that were absent in the original space.
Trustworthiness measures how well the feature mapping avoids
introducing such false relationships. We first define the point-
wise trustworthiness for a K -neighborhood of v;. Let Uk (v;)
be the set of “false neighbors” that are in the K -neighborhood
of v;, but not of u; in the original space. Also, let 7(i,j)
be the ranking (in terms of dissimilarity) of point u; in the
neighborhood of point u;. The point-wise trustworthiness of

the representation at u; is then
2
K(2N -3K —-1)

TW,(K) =1- > (i, §) - K).
JEUK (Vi)

The (global) trustworthiness is simply the average over all
the point-wise trustworthiness values. Trustworthiness values
close to zero indicate situations in which most data points that
appear similar in the channel chart are actually dissimilar in
spatial geometry; trustworthiness values close to one indicate
that data points nearby in the channel chart are also nearby
in spatial geometry,

Remark 1. We set K to 5% of the total number of points N,
i.e, K = 0.06N, as we are interested in preserving local
geometry, this is a common choice in the literature [30].

B. Simulation Settings

Due to space constraints, we focus on a single scenario as
depicted in Figure 2 with a narrowband non-LoS channel gen-
erated from the state-of-the-art Quadriga channel model [32]
with the following parameters. We simulate the Berlin NLoS
scenario (UMa) at a carrier frequency of 2.0 GHz with a
bandwidth of 312.5KHz. The mMIMO BS is located at
coordinate (z,y,z) = (0,0,10) meters and consists of a
B = 32 antenna array arranged as a ULA with Ar = \/2
antenna spacing. We record CSI of N = 2048 randomly
selected spatial locations (with the exception of the “VIP”
curve) within an area of 500m x 500 m; the median distance
between nearest neighbors is approximately 7.86 meters, i.e.,
we sample the space at roughly 53 wavelengths. We acquire
CSI at an SNR of 0dB, i.e., consider channel charting under
adversarial conditions, use 7' = 10, and set p = 16.

C. Feature Comparison

As briefly mentioned in Section III, applying certain
nonlinear transforms to the scaled CSI moments H can
significantly improve the feature quality. To identify suitable
candidate features, we also considered taking the entry-wise
real part (denoted by “R{-}”), imaginary part (denoted by
“3{-}"), angle (denoted by “Z(+)”), or absolute value (denoted
by “| - ") of the scaled CSI moments. We furthermore say
that all these channel features were taken in the antenna
domain. We also consider the case in which we take the
scaled CSI vectors and transform then into the beamspace
domain followed by applying one of the above nonlinearities.

Table I compares the TW and CT measured between the
true locations and between the channel features for all the
combinations of features for the scenario depicted in Figure 2.
This comparison confirms that taking the absolute value in
the beamspace domain, as detailed in Section III, significantly
outperforms all other methods in terms of TW and CT. Hence,
in the remainder of the paper, we only consider on the absolute
value in the beamspace domain, denoted by “beamspace, | - |”.

D. Channel Charting Results

In what follows, CT and TW is measured between the true
spatial locations and the associated points in the channel chart.



TABLE I
COMPARISON OF R2M CHANNEL FEATURES IN TERMS OF TRUSTWORTHINESS (TW) AND CONTINUITY (CT) FOR K = 0.05N.

Domain C{} R{-} 9} Z(4) [
anenna | TW 076 (£0.11) 062 (£0.12)  0.70 (£0.09)  0.67 (£0.09)  0.54 (£0.07)
CT  0.76 (£0.07) 0.71 (£0.07) 0.69 (£0.08) 0.63 (£0.08)  0.56 (£0.09)
Beamsnace TW  see TWabove  0.76 (£0.12)  0.56 (£0.08) 055 (£0.07) 0.81 (£0.13)
P CT  see CT above  0.74 (£0.07) 0.52 (£0.06) 0.53 (£0.09) 0.84 (+0.09)
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(a) PCA (0.92, 0.85) (b) AE (0.91, 0.86)

coordinate 1: [z]1 coordinate 1: [z]1

(c) SM (0.93, 0.85) (d) SM+ (0.93, 0.85)

Fig. 3. D’ = 2 dimensional channel charts for various CC algorithms under the Quadriga non-LoS channel model for the scenario depicted in Figure 2. We
compare PCA, autoencoder (AE), Sammon’s mapping (SM), and Sammon’s mapping with temporal continuity (SM+). The values in the brackets denote
continuity (CT) and thrustworthiness (TW). We see that AE, SM, and SM+ achieve the highest CT and TW, whereas SM+ also delivers visually pleasing results.

1) Channel Charts: We learn channel charts for SM and
SM+ as detailed in Section IV, as well as PCA and a
deep autoencoder (AE), two commonly used methods in the
dimensionality reduction literature [21]. Figure 3 shows the
learned channel charts. For all algorithms, we obtain CT
values ranging between 0.91 and 0.93. This implies that the
neighborhood of a point in spatial geometry is well-preserved
in the learned channel charts. The TW values range between
0.85 and 0.86; this indicates that most neighbors of a point in
the channel charts are also neighbors in spatial geometry. We
can also visually inspect the quality of the obtained results
by comparing (i) the color gradient in Figure 3 with that of
the scenario in Figure 2 or (ii) the “VIP” curve in spatial
geometry and in the channel chart.

Figure 3(a) shows that PCA yields surprisingly high CT and
TW values, and provides a visually accurate embedding of
spatial geometry. We address this behavior to the fact that we
use carefully engineered channel features that well-represent
spatial geometry. Figure 3(b) shows that the AE yields even
higher CT and TW values, comparable to those of SM/SM+.
The AE channel charts are less visually pleasing than, for
example, those of SM+. Figure 3(c) shows that SM yields
high CT and TW and provides excellent preservation of the
color gradients. Figure 3(c) shows that SM+ is able to exploit
temporal side information, while the CT and TW is comparable
to AE and SE. Nevertheless, SM+ provides extremely well-
preserved embeddings of the channel geometry. In fact, one
can even identify the “VIP” curve in the learned channel chart.

2) CT and TW Measures: To gain additional insight into
the quality of the learned channel charts, Figure 4 shows

the CT and TW values for different neighborhood sizes, i.e.,
K ranges from 1 to 100. We see that, for the challenging
Quadriga non-LoS channel, which models complex scattering
and multipath behavior, SM and SM+ perform best, followed
by PCA. Evidently, the AE struggles in achieving high CT but
has the advantage over SM and SM+ of providing a parametric
mapping, i.e., given a new CSI vector, we can use the existing
AE to directly compute the location in the channel chart.

VI. CONCLUSIONS

We have proposed a novel application of dimensionality
reduction to multi-antenna wireless systems. More specifically,
we have developed channel charting (CC), an unsupervised
framework to learn a map between channel-state information
(CSI) acquired at a single base-station (BS) and the relative
user locations. Our method relies on the extraction of care-
fully designed channel features from large amounts of high-
dimensional CSI acquired at a massive MIMO BS, followed by
CC algorithms that borrow ideas from dimensionality reduction
and manifold learning. We have developed new CC algorithms
with varying complexity, flexibility, and accuracy that produce
charts that preserve the local geometry of the transmitter
locations for realistic channel models. Since channel charting
is unsupervised, i.e., does not require knowledge of the true
user locations, the proposed framework finds use in numerous
applications relevant to 5G wireless networks, such as rate
adaptation, network planning, user scheduling, hand-over,
cell search, user tracking, beam finding in millimeter-wave
systems, and other cognitive tasks that rely on CSI and the
user movement relative to the BS.
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Fig. 4. Comparison of continuity (CT) and trustworthiness (TW) for various
CC algorithms under the Quadriga non-LoS channel model. We observe that
Sammon’s mapping (SM) and its extension (SM+) outperform PCA and
autoencoders (AEs) in terms of CT, while the AE slightly outperforms the
other methods in terms of the TW. PCA yields surprisingly good results and
performs close to that of SM and SM+ in terms of CT and TW.

[1]

[2]
[3]

[4]

[5]

[6]
[7]

REFERENCES

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. Soong,
and J. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32,
no. 6, pp. 1065-1082, Jun. 2014.

A. Osseiran, J. Monserrat, and P. Marsch, eds., 5G Mobile and Wireless
Communications Technology. Cambridge Univ. Press, 2016.

T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp- 3590-3600, Nov. 2010.

F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors,
and F. Tufvesson, “Scaling up MIMO: Opportunities and challenges
with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp.
40-60, Jan. 2013.

E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO
for next generation wireless systems,” IEEE Commun. Mag., vol. 52,
no. 2, pp. 186-195, Feb. 2014.

T. J. O’Shea and J. Hoydis, “An introduction to machine learning
communications systems,” arXiv preprint: 1702.00832, July 2017.

F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless
networks,” IEEE Signal Process. Mag., pp. 41-53, July 2005.

[8]

[9]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

S. Kumar, S. Gil, D. Katabi, and D. Rus, “Accurate indoor localization
with zero start-up cost,” in Proc. 20th Annu. Int. Conf. Mobile Comput.,
Sep. 2014, pp. 483—494.

N. Garcia, H. Wymeersch, E. G. Larsson, A. M. Haimovich, and
M. Coulon, “Direct localization for massive MIMO,” IEEE Trans. Sig.
Proc., vol. 65, no. 10, pp. 2475-2487, July 2017.

M. Ibrahim and M. Youssef, “Cellsense: An accurate energy-efficient
GSM positioning system,” IEEE Trans. Veh. Technol., vol. 61, no. 1,
pp. 286-296, Jan. 2012.

A. Prasad, O. Tirkkonen, P. Lunden, O. N. C. Yilmaz, L. Dalsgaard,
and C. Wijting, “Energy-efficient inter-frequency small cell discovery
techniques for LTE-advanced heterogeneous network deployments,”
IEEE Commun. Mag., vol. 51, no. 5, pp. 72-81, May 2013.

Y. Chapre, A. Ignjatovic, A. Seneviratne, and S. Jha, “CSI-MIMO:
An efficient Wi-Fi fingerprinting using channel state information with
MIMO,” Pervasive and Mobile Comput., vol. 23, pp. 89—103, Oct. 2015.
X. Wang, L. Gao, S. Mao, and S. Pandey, “DeepFi: Deep learning for
indoor fingerprinting using channel state information,” in /EEE Wireless
Commun. Netw. Conf. (WCNC), Mar. 2015, pp. 1666-1671.

L. Gao, “Channel state information fingerprinting based indoor localiza-
tion: a deep learning approach,” Auburn University M.S. Thesis, Aug.
2015.

X. Wang, L. Gao, and S. Mao, “CSI phase fingerprinting for indoor
localization with a deep learning approach,” IEEE Internet Things J.,
vol. 3, no. 6, pp. 1113-1123, Dec. 2016.

V. Savic and E. G. Larsson, “Fingerprinting-based positioning in
distributed massive MIMO systems,” in IEEE Veh. Technol. Conf., Sep.
2015, pp. 1-5.

J. Vieira, E. Leitinger, M. Sarajlic, X. Li, and F. Tufvesson, “Deep
convolutional neural networks for massive MIMO fingerprint-based
positioning,” in IEEE 28th Annu. Int. Symp. Personal, Indoor, and
Mobile Radio Commun. (PIMRC), Oct. 2017.

E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for
Mobile Broadband. Elsevier, Mar. 2011.

J. Kruskal, “Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1-27, Mar.
1964.

J. W. Sammon, “A nonlinear mapping for data structure analysis,” /EEE
Trans. Comput., vol. 100, no. 5, pp. 401-409, May 1969.

L. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality
reduction: a comparative review,” Tilburg University, TiCC-TR 2009-005,
2009.

S. Kaski, J. Nikkild, M. Oja, J. Venna, P. Toronen, and E. Castrén,
“Trustworthiness and metrics in visualizing similarity of gene expression,”
BMC Bioinformatics, vol. 4, no. 1, p. 48, Oct. 2003.

T. S. Rappaport, Wireless Communications: Principles and Practice.
Prentice Hall, 1996.

D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading
correlation and its effect on the capacity of multielement antenna
systems,” IEEE Trans. Commun., vol. 48, no. 3, pp. 502-513, Mar.
2000.

D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge Univ. Press, 2005.

J. Brady, N. Behdad, and A. M. Sayeed, “Beamspace MIMO for
millimeter-wave communications: System architecture, modeling, analy-
sis, and measurements,” [EEE Trans. Antennas Propag., vol. 61, no. 7,
pp. 3814-3827, July 2013.

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2,
no. 1, pp. 183-202, Jan. 2009.

T. Goldstein, C. Studer, and R. G. Baraniuk, “A field guide
to forward-backward splitting with a FASTA implementation,”
arXiv preprint:  1411.3406, Nov. 2014. [Online]. Available:
http://arxiv.org/abs/1411.3406

N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
Optimization, vol. 1, no. 3, pp. 123-231, Jan. 2013.

J. Venna and S. Kaski, “Neighborhood preservation in nonlinear
projection methods: An experimental study,” in Int. Conf. on Artificial
Neural Networks. Springer, 2001, pp. 485-491.

A. Vathy-Fogarassy and J. Abonyi, Graph-based clustering and data
visualization algorithms. Springer, 2013.

S. Jaeckel, L. Raschkowski, K. Borner, and L. Thiele, “Quadriga: A 3-d
multi-cell channel model with time evolution for enabling virtual field
trials,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3242-3256,
Mar. 2014.



