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Abstract Massive multi-user (MU) MIMO wireless

technology promises improved spectral efficiency com-

pared to that of traditional cellular systems. While data-

detection algorithms that rely on linear equalization

achieve near-optimal error-rate performance for mas-

sive MU-MIMO systems, they require the solution to
large linear systems at high throughput and low latency,

which results in excessively high receiver complexity. In

this paper, we investigate a variety of exact and ap-

proximate equalization schemes that solve the system

of linear equations either explicitly (requiring the com-

putation of a matrix inverse) or implicitly (by directly

computing the solution vector). We analyze the associ-

ated performance/complexity trade-offs, and we show

that for small base-station (BS)-to-user-antenna ratios,

exact and implicit data detection using the Cholesky

decomposition achieves near-optimal performance at low

complexity. In contrast, implicit data detection using

approximate equalization methods results in the best

trade-off for large BS-to-user-antenna ratios. By combin-

ing the advantages of exact, approximate, implicit, and

explicit matrix inversion, we develop a new frequency-

adaptive equalizer (FADE), which outperforms existing

data-detection methods in terms of performance and

complexity for wideband massive MU-MIMO systems.
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1 Introduction

Massive multi-user (MU) multiple-input multiple-

output (MIMO) will be a core technology for fifth-
generation (5G) wireless systems as it promises sig-

nificant improvements in terms of the spectral efficiency

compared to traditional, small-scale cellular MIMO tech-

nology [1–5]. The key idea of massive MU-MIMO is to

deploy hundreds of antennas at the base station (BS)

and to serve tens of single-antenna users concurrently
and in the same frequency resource. This technology

not only promises significant improvements in terms of

the spectral efficiency compared to traditional, small-

scale MIMO through fine-grained beamforming, but also

enables simple and low-complexity data detection meth-

ods to achieve near-optimal error-rate performance [1].

However, for wideband massive MU-MIMO wireless

systems with a large number of subcarriers, such as

long-term evolution (LTE)-based systems with thou-

sands of subcarriers, even some of the least expensive

linear data-detection algorithms, e.g., methods relying

on linear minimum mean square error (MMSE) equaliza-

tion, require excessive hardware complexity and power

consumption (see [6] for a detailed discussion).

In order to address the complexity and power con-

sumption issue of linear data detection in wideband

massive MU-MIMO systems, a variety of approximate

matrix inversion methods have been proposed in recent

years [1, 6–11]. These methods require, in general, lower

computational complexity than exact, linear methods

or non-linear algorithms, and entail only a small error-
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rate performance loss in massive MU-MIMO systems

having a large BS-to-user-antenna ratio. For systems

in which the BS-to-user-antenna ratio is below two,

however, approximate methods result in a strong er-

ror floor—often too high to enable reliable communi-

cation at high data rates. Furthermore, corresponding

high-throughput very-large scale integration (VLSI) de-

signs for wideband massive MU-MIMO systems that

use orthogonal frequency-division multiplexing (OFDM)

or single-carrier frequency-division multiple access (SC-

FDMA), such as the reference hardware designs in [6,12],
still require large silicon area and excessively high power

consumption. Hence, to successfully deploy massive MU-

MIMO in practical wideband systems, new algorithm

solutions that achieve near-optimal error-rate perfor-

mance at low hardware complexity are necessary.

1.1 Contributions

In this paper, we propose a host of novel low-complexity,

soft-output data detection methods for wideband mas-

sive MU-MIMO systems that further reduce the com-

plexity compared to existing approximate methods in [1,

6–11]. Our contributions are summarized as follows:

– We propose accelerated explicit matrix inversion

methods building on the Neumann series expansion.
– We propose corresponding implicit equalization meth-

ods, which avoid the computation of a matrix inverse

altogether.

– We propose a method that approximates the post-

equalization signal-to-noise-and-interference-ratio

(SINR) values in order to enable soft-output data
detection with implicit equalizers.

– We propose two low-complexity initialization schemes

that improve convergence of our iterative algorithms.

– We propose a hybrid explicit/implicit frequency-

adaptive equalizer (short FADE) that exploits fre-

quency correlation in wideband MIMO wireless sys-

tems and combines the advantages of explicit and

implicit methods.

In order to evaluate the efficacy of our algorithms, we

study the associated performance/complexity trade-offs

in a 3GPP LTE-based massive MU-MIMO wireless sys-

tem1, and we provide a detailed performance and com-

plexity comparison with existing approximate inversion

algorithms proposed in [1, 6–11].

1 The methods proposed in this paper can easily be extended
to other multi-carrier waveforms that support frequency-
domain equalization [13], such as OFDM-based systems.

1.2 Notation

Lowercase boldface letters stand for column vectors;

uppercase boldface letters designate matrices. For a ma-

trix A, we denote its transpose and conjugate transpose

AT and AH , respectively. The entry in the kth row

and `th column of A is Ak,`; the kth entry of a vector

a is ak. The Frobenius norm, the spectral norm, the

`1-norm, and the `∞-norm of a matrix A are denoted

by ‖A‖F , ‖A‖2, ‖A‖1, and ‖A‖∞, respectively. The

M × M identity matrix is IM , 0M×N is an M × N

all-zeros matrix, and FM refers to the orthonormal
M ×M discrete Fourier transform (DFT) matrix satis-

fying FH
MFM = IM .

1.3 Paper Outline

The rest of the paper is organized as follows. Section 2

details the system model and equalization-based data de-

tection for SC-FDMA systems. Section 3 and Section 4

proposes explicit and implicit equalization methods,

respectively. Section 5 and Section 6 proposes new ini-

tialization schemes and the frequency-adaptive equalizer

(FADE), respectively. Section 7 and Section 8 provides
a complexity comparison and a trade-off analysis, re-

spectively. We conclude in Section 9.

2 System Model and Data Detection

We now introduce the LTE uplink model and detail an

efficient, equalization-based minimum mean-square error

(MMSE) data detector for SC-FDMA-based massive

MU-MIMO systems. In what follows, we make frequent
use of the superscript (·)(i,j) to indicate the ith base-

station antenna and the jth user; the subscript (·)w
designates the SC-FDMA subcarrier index.

2.1 Uplink System Model

We consider an LTE-based uplink system in which

U ≤ B single-antenna2 user terminals communicate

with B BS antennas. The ith user first performs dis-

crete Fourier transform (DFT) and subcarrier map-

ping for its serial time-domain (TD) data taken from

a discrete constellation set O (e.g., QPSK) and gener-

ates the frequency domain (FD) symbol vector s(i) =[
s
(i)
1 , . . . , s

(i)
L

]T
. For each user, these FD symbols are

assigned to data-carrying subcarriers, and then trans-

formed back to the TD using an inverse discrete Fourier

2 Our results can be extended to user terminals with multi-
ple antennas.
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transform (IDFT). After prepending the cyclic prefix,

all U users transmit their TD signals over the wireless

channel. The TD signals received at each BS antenna

are first transformed back to the FD using a discrete

Fourier transform (DFT), followed by the extraction of

the data symbols. The received FD symbols on the wth

subcarrier are modeled as yw = Hwsw + nw with

yw =

 y
(1)
w...

y
(B)
w

, Hw =

H
(1,1)
w · · · H(1,U)

w...
. . .

...

H
(B,1)
w · · · H(B,U)

w

,
sw = [s(1)w , . . . , s(U)

w ]T, nw = [n(1)w , . . . , n(B)
w ]T .

Here, y
(i)
w is the FD symbol received on the wth sub-

carrier for antenna i, H
(i,j)
w is the frequency gain (or

attenuation) on the wth subcarrier between the ith re-

ceive antenna and jth user. The scalar s
(j)
w denotes the

symbol transmitted by the jth user on the wth subcar-

rier; the scalar n
(i)
w models i.i.d. circularly-symmetric

complex Gaussian noise with variance N0.

2.2 Soft-Output Data Detection

The goal of soft-output MIMO data detection is to gener-

ate reliability information in terms of LLR values for the

transmitted data bits. Among the best-performing data-

detection algorithms for traditional, small-scale MIMO

systems are tree-search algorithms [14–16] (see [17] for

a recent survey article). Unfortunately, such non-linear

data-detection algorithms do not scale well to massive

MU-MIMO systems with a large number of users and

prevent efficient hardware designs. In recent years, al-

ternative non-linear methods have been proposed for

massive MU-MIMO systems, such as parallel interfer-

ence cancellation [18,19], Monte–Carlo methods [20], and

message-passing algorithms [21,22]. All these methods

exhibit significantly better complexity-scaling properties

than tree-search methods, while enabling near-optimal

performance with massive MU-MIMO. Nevertheless,

none of these methods are directly applicable to SC-

FDMA-based systems. For SC-FDMA, only a hand-

ful of non-linear data-detection methods exist [23–25].

While these methods achieve near-optimal performance

in small-scale MIMO systems, their complexity does,

similarly to tree-search-based methods, not scale well to

large BS antenna arrays. In contrast, equalization-based

linear data detection was shown in [6] to achieve near-

optimal performance for SC-FDMA-based massive MU-

MIMO systems, and the throughput of corresponding

application-specific integrated circuits readily exceeds

3.8 Gb/s [12]. Thus, to achieve the throughputs required

in future massive MU-MIMO systems at near-optimal

performance, we focus on methods that rely on linear

equalization.

2.3 Equalization-Based Linear Soft-Output Data

Detection

The methods proposed in this paper build upon the

MMSE data detector in [26] initially developed for tra-

ditional, small-scale MIMO-OFDM systems. This al-

gorithm performs data-detection in two phases: (i) Es-

timates of the transmitted FD symbols in SC-FDMA

systems are obtained using MMSE equalization on a per-

subcarrier basis; (ii) log-likelihood ratio (LLR) values

are computed in the time domain.

(i) Equalization: To perform MMSE equalization in

the FD, we compute the Gram matrix Gw = HH
w Hw

and the matched filter vector yMF
w = HH

w yw for each

subcarrier w. We then compute the regularized Gram

matrix Aw = Gw + N0E
−1
s IU , which enables us to

compute the equalized FD symbols as

ỹw = A−1w yMF
w , (1)

which are then used to compute the LLR values required

for soft-output data detection [6, 26].

(ii) Soft-output Data Detection: Since the LTE up-

link utilizes SC-FDMA, we first perform an IDFT

on ỹ(i) = [ỹ
(i)
1 , . . . , ỹ

(i)
L ]T to obtain the TD estimate

x̃(i) = [x̃
(i)
1 , . . . , x̃

(i)
L ]T . The so-called max-log LLR value

of the jth bit of tth symbol, L
(i)
(t,j), can then be computed

as follows [26]:

L
(i)
(t,j) = ρ(i)

min
a∈O0

j

∣∣∣∣∣ x̃(i)t

µ(i)
− a

∣∣∣∣∣
2

− min
a∈O1

j

∣∣∣∣∣ x̃(i)t

µ(i)
− a

∣∣∣∣∣
2
. (2)

Here, O0
j and O1

j are the constellation subsets for
which the j bit is 0 and 1 respectively. The post-

equalization signal-to-noise-and-interfence-ratio (SINR)

is ρ(i) = (µ(i))2/ν2i , where ν2i = Esµ
(i) − Es|µ(i)|2 for

SC-FDMA-based systems. The effective channel gain is

computed as µ(i) = L−1
∑L

w=1 aH
i,wgi,w, where aH

i,w is

the ith row of A−1w and gi,w is the ith column of Gw.

See [6] for more details.

2.4 Explicit vs. Implicit Equalization

There exist two distinct equalization methods to com-

pute (1), namely explicit and implicit methods. Explicit

methods first compute the matrix inverse A−1w (or an

approximation thereof) and then, use the matrix in-

verse to compute the equalized FD symbol as in (1).

Implicit methods solve the system of linear equations
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Awỹw = yMF
w either exactly or approximately to com-

pute the equalized FD symbol ỹw; this approach avoids

an explicit computation of the inverse A−1w .

The key advantage of implicit equalization meth-

ods is the fact that they require (often significantly)

lower computational complexity than explicit methods.

In contrast, explicit equalization methods have the fol-

lowing advantages: (i) Massive MU-MIMO systems are

expected to operate as time-division duplexing (TDD)

systems [1], in which the BS estimates the channel during

the uplink phase. As a result, the matrix inverse obtained

during the uplink transmission can be re-used to per-

form MU precoding (or beamforming) in the downlink.

(ii) For slow-fading channels and/or flat-fading chan-

nels with low-delay spread, the inverse can be re-used

for consecutive symbols and/or adjacent subcarriers,

respectively. (iii) Computation of the post-equalization

SINR ρ(i) used in the LLR computation (2) can be ob-

tained from the explicit inverse A−1w (see Section 2.3).

In the following Sections 3 and 4, we discuss both of

these equalization schemes.

3 Explicit Equalization

We start by discussing explicit MMSE equalization, i.e.,
where we obtain the equalized symbol ỹw by first com-

puting or approximating the inverse matrix A−1w , fol-

lowed by computing (1). We provide an overview of

exact, explicit inversion methods and proceed by dis-

cussing existing and new iterative methods that approx-

imate A−1w at low complexity. To simplify notation, we

omit the subcarrier index w.

3.1 Exact Inversion via the Cholesky Decomposition

The literature describes a large number of exact meth-

ods to compute A−1; see the references [27–29] for an

overview. One of the most efficient methods (in terms

of arithmetic operations) that can be implemented in
VLSI at low complexity relies on the Cholesky decom-

position [6, 30–32]. This approach first factorizes the

regularized Gram matrix A = LLH , where L is a lower-

triangular matrix with non-negative entries on the main

diagonal. To obtain A−1, this approach then solves

LX = IU for X using forward substitution—one can

then solve LHA−1 = X for A−1 using back substitution.

The complexity that is required to explicitly com-

pute A−1 using the Cholesky decomposition can become

prohibitive for large values of U (see Section 7). Fur-

thermore, computing the Cholesky decomposition, as

well as performing forward or backward substitution,

exhibits stringent data dependencies, which prevents

highly-parallel hardware architectures. To reduce the

computational complexity of matrix inversion for the

high-dimensional systems anticipated in systems that

use massive MU-MIMO and to enable massively parallel

hardware designs, we next propose novel, low-complexity

methods that explicitly compute approximate versions

of the matrix inverse A−1.

3.2 Exact Inversion using Series Expansions

3.2.1 Accelerated Neumann Series Expansion

In [6], the authors proposed a truncated version of the

Neumann series expansion [33] with the goal of reducing

the complexity of exact, explicit matrix inversion. We

now propose a more general, accelerated version of the

classical Neumann series, which enables the design of

approximate data detectors that achieve superior error-

rate performance at low complexity. The proof of the

following result is given in Appendix A.1.

Lemma 1 (Accelerated Neumann Series). Let Ã−10 ∈
CU×U be a so-called initialization matrix with full rank.

Suppose that

lim
k→∞

(IU − Ã−10 A)k = 0U×U . (3)

Then, we have the following accelerated Neumann series:

A−1 =
∑∞

k=0(I− Ã−10 A)kÃ−10 . (4)

In Section 5, we will develop efficient methods for

computing initialization matrices Ã−10 , which enable

accurate approximations of A−1 with only a few terms
of the accelerated Neumann series in (4). In order to

design such matrices, we will make use of the follow-

ing convergence condition; the proof directly follows
from [33, Thm. 4.20].

Lemma 2 (Convergence Condition). A sufficient con-

dition for (3) to hold is that

‖IU − Ã−10 A‖ < 1 (5)

for any consistent matrix norm.

3.2.2 Accelerated Neumann Series Recursion

As it will be important for the implicit, approximate

inversion methods discussed in Section 4, it is key to

realize that (4) can alternatively be formulated using

the following recursion for the iterations k = 1, 2, . . .

given by

Ã−1k = Ã−10 +
(
IU − Ã−10 A

)
Ã−1k−1, (6)



Implicit vs. Explicit Approximate Matrix Inversion for Wideband Massive MU-MIMO Data Detection 5

which we initialize with Ã−10 (hence, the name initial-

ization matrix). Given that (5) holds, the recursion

satisfies limk→∞ Ã−1k = A−1. The recursion in (6) can

be derived from the right-hand side (RHS) in (4) by

successively factoring IU − Ã−10 A from the infinite sum.

We note that recurrent operations in (6) can be avoided

in practice by precomputing the matrix Ã−10 A.

3.2.3 Schulz Recursion

To obtain faster convergence rates than the accelerated

Neumann series recursion (6), one may use higher-order

recursions. One prominent method is the Schulz re-

cursion [34], which has been proposed for small-scale

MIMO systems in [35]. As for (6), if (5) holds, then the

inverse A−1 can be computed recursively for k = 1, 2, . . .

as follows [34]:

Ã−1k =
(
2 IU − Ã−1k−1A

)
Ã−1k−1 (7)

with the initialization matrix Ã−10 . This recursion gener-

ates 2k Neumann series terms for k iterations, whereas

the accelerated Neumann recursion (6) only generates

k+1 terms per k iterations. The Schulz method (7), how-

ever, requires two matrix multiplications per iteration,

in contrast to the accelerated Neumann recursion (6)

that requires only one. Hence, for a small number of

iterations, i.e., for k ≤ 2, the accelerated Neumann se-

ries recursion is computationally more efficient than the

Schulz recursion (see Section 7.2 for more details).

3.2.4 Higher-Order Recursions

The literature describes other recursive inversion meth-

ods [36, 37], which converge even faster than the Schulz

recursion (7). For example, if (5) holds, then the in-

verse A−1 can be computed recursively for k = 1, 2, . . .

as follows [37]:

Ã−1k = Ã−1k−1

(
3 IU −AÃ−1k−1

(
3 IU −AÃ−1k−1

))
(8)

with the initialization matrix Ã−10 . This 3rd-order ma-

trix inverse approximation requires three matrix mul-

tiplications per iteration (if one precomputes AÃ−1n−1)

and generates 3k Neumann series terms for k iterations.

Note that (8) is computationally more efficient than the

Schulz recursion only for k ≥ 3.

3.3 Approximate Inversion using Truncated Series

Expansions

For a large number of iterations, computing the accel-

erated Neumann Series recursion (6), as well as the

recursions in (7) and (8), is impractical and entails

higher complexity than the Cholesky-based approach in

Section 3.1. However, if we restrict ourselves to a small

number Kmax of iterations, which is equivalent to trun-

cating the series (4) to Kmax terms, one can accurately

approximate A−1 at low complexity. We next discuss

existing and new variations of this general idea.

3.3.1 Truncated Neumann Series

The approximate, explicit inversion approach put for-

ward in [6] evaluates only Kmax terms in (4) together

with a simple initialization matrix. Reference [6] starts

by decomposing the matrix A into its main diagonal

part D and the off-diagonal part E = A−D. Then,

by using Ã−10 = D−1 as the initialization matrix, the

following truncated Neumann series [6]

Ã−1Kmax
=
∑Kmax

k=0 (−D−1E)kD−1 (9)

accurately approximates A−1 for small values of Kmax

in systems with large BS-to-user-antenna ratios.

For Kmax = 0, this approach results in Ã−10 = D−1,

which, together with (1), results in a scaled version of

the matched filter (MF) equalizer ỹ = D−1yMF. For

slightly larger values of Kmax (e.g., one or two), we

can trade-off performance versus complexity. In fact,

the complexity of this approximation is quadratic and

cubic for Kmax = 1 and Kmax = 2 respectively, while
Kmax = 2 outperforms Kmax = 1 in terms of the error

rate (see [6] for a detailed trade-off analysis). We note

that the convergence condition (5) is not guaranteed3

to hold for the choice Ã−10 = D−1. In Section 5, we will

develop novel choices for the initialization matrix Ã−10

that not only require low complexity but also yield more
accurate approximates of A−1.

3.3.2 Higher-Order Series Expansions

Evidently, the above truncation approach can also be

used in combination with the Schulz recursion (7) or

other higher-order recursions, such as the one in (8). In

Sections 7 and 8 we will analyze the associated perfor-

mance/complexity trade-offs.

3.4 LLR Computation for Explicit Inversion Methods

With the above methods for computing the inverse A−1w ,

we can calculate the LLR values for soft-output data

detection using (2). Specifically, for the Cholesky decom-

position in Section 3.1 and the exact series expansions in

Section 3.2, we first compute the equalized symbols (1)

3 A probabilistic convergence condition is provided in [6].
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and then, generate the TD estimates x̃w with an IDFT.

The LLR values (2) are obtained directly from A−1w

and x̃w, where the quantities µ
(i)
w and ρ

(i)
w are computed

as discussed in Section 2.3.

For the approximate matrix inversion methods de-

scribed in Section 3.3, we first compute the approxi-

mate equalized symbol ỹw = A−1w|Kmax
yMF
w for each

subcarrier and then, generate the TD estimates x̃w with
an IDFT. To obtain LLR values (2), we first compute

µ
(i)
K = L−1

∑L
w=1 ãH

i,w|Kgi,w, where ãH
i,w|K is ith row of

A−1w|K . The missing quantity, ρ(i) = (µ(i))2/ν2i , however,

requires a matrix-matrix multiplication as we need to

compute [6]:

ν(i) = Es

∑L
w=1 ãH

i,w|KAwGwãi,w|K − Es|µ(i)
K |2. (10)

Computing this expression requires the same order of

complexity (i.e., cubic) as the approximate matrix in-

verse itself and hence, should be avoided to maintain

low complexity. To this end, one can use the approxima-

tion proposed in [6], which uses ν2i ≈ Esµ
(i)
0 − Es|µ(i)

0 |2

with µ
(i)
0 = L−1

∑L
w=1(d

(i)
w )−1g

(i)
w . Note that this ap-

proximation approaches its exact counterpart in the

large-antenna limit for massive MU-MIMO systems [6].

4 Implicit Equalization

We now discuss existing and novel implicit MMSE equal-

ization algorithms. The idea of these methods is to

obtain the equalized symbol ỹw (or a corresponding ap-

proximation) without ever computing the inverse A−1w .

As discussed in Section 2.4, the complexity of implicit

methods is, in general, significantly lower than for ex-

plicit methods. Nevertheless, exact computation of the

post-equalization SINR, as required for LLR computa-

tion (2), is computationally expensive. To enable soft-
output data detection with implicit equalization meth-

ods, we propose a low-complexity SINR approximation.

To simplify notation, we omit the subcarrier index w.

4.1 Exact Inversion using Implicit Cholesky

Decomposition

Implicit equalization methods solve for ỹ directly with-

out computing A−1 explicitly. A hardware-friendly

approach for implicit equalization first performs the

Cholesky decomposition to obtain A = LLH . Then,

one can solve Lx = yMF for x followed by solving

LH ỹ = x, where ỹ corresponds to the equalized vector

(see, e.g., [32] for a corresponding hardware design).

4.2 Implicit Accelerated Neumann Recursion

To reduce the complexity of implicit equalization, we

can perform the following implicit, accelerated Neumann

recursion; the proof immediately follows from right-

multiplying both sides of (6) by yMF.

Lemma 3 (Implicit Accelerated Neumann Recursion).

Let ỹ0 = Ã−10 yMF, where the initialization matrix Ã−10

satisfies (5). Then, for the iterations k = 1, 2, . . .

ỹk = ỹ0 +
(
IU − Ã−10 A

)
ỹk−1 (11)

we recursively obtain ỹk = Ã−1k yMF with Ã−1k as defined

in (6).

Evidently, the recursion (11) can be terminated after

Kmax iterations to obtain an approximate to (1) at low

complexity. Furthermore, Ã−1A can be precomputed in

practice to avoid recurrent calculations. We note that the

recursion in (11) is a generalization of the equalization

algorithm proposed in [1], which uses Ã−10 = IU . Note
that this particular choice only performs well for suitably

normalized channel matrices and massive MU-MIMO

systems with large BS-to-user-antenna ratios.

Unfortunately, the Schulz recursion and higher-order

recursions do not—to the best of our knowledge—have

efficient implicit forms. In fact, if we right-multiply both

sides of (7) or (8) by yMF, we see that one needs to

keep track of the matrix Ã−1k in order to compute ỹk;

this prevents the design of a computationally efficient,

implicit recursion with these methods.

4.3 Existing Approximate Implicit Equalization

Methods

A variety of low-complexity, implicit equalization meth-

ods for data detection in massive MU-MIMO systems

have been proposed recently [8–10,38]. The Richardson

method proposed in [9] can be rewritten as

ỹk = γ̄yMF + (IU − γ̄A) ỹk−1,

which corresponds to a special case of the acceler-

ated implicit Neumann series recursion in (11) with

Ã−10 = γ̄I; the quantity γ̄ is an algorithm parameter.4

Other implicit methods, such as the conjugate gradient

method (CG) method [10] and the Gauss-Seidel (GS)

algorithm [8] are iterative methods that solve systems of

linear equations for the positive semidefinite matrix A.

Both methods, CG and GS, will converge to the exact

solution for a sufficiently large number of iterations. GS

is initialized by ỹ0 = D−1yMF; for CG, we define the

4 We note that the parameter in [9] is γ̄ = (B + U)−1.
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vector ỹ0 as the output of the first iteration since the

initial guess is an all-zero vector. CG and GS enable ap-

proximate equalization at (often) lower complexity than

other explicit and implicit equalization algorithms [8–10].

In Sections 7 and 8 we compare the computational com-

plexity and performance of these equalization methods,

respectively.

4.4 LLR Approximation for Implicit Inversion Methods

We can evaluate (2) to obtain LLR values for the trans-

mitted bits. Since the proposed implicit methods do not

compute the matrix inverse A−1w (or a corresponding

approximation Aw|Kmax
), computing the quantities µ(i)

and ρ(i) without having A−1w seems difficult. To enable

soft-output data detection with implicit equalization

algorithms, we propose a novel approximation for µ(i)

and ρ(i) that does not need the explicit inverse A−1w or

a corresponding approximation A−1w|Kmax
.

Our approach uses the effective channel gain µ(i) for

the 0th-term Neumann series approximation

µ(i) ≈ µ̃(i)
0 = L−1

∑L
w=1(d

(i)
w )−1g

(i)
w , (12)

where d
(i)
w is the ith diagonal element of Aw and g

(i)
w is

the ith diagonal element of Gw. Analogously, we pro-

pose to use the SINR for the 0th-term Neumann series

approximation

µ(i) ≈ ρ̃(i)0 = (µ
(i)
0 )2/(ν

(i)
0 )2 = µ̃

(i)
0

(
Esµ̃

(i)
0 − Es|µ̃(i)

0 |2
)−1

.

As we will demonstrate in Section 8, this LLR approx-

imation enables implicit equalizers that achieve near-

optimal error-rate performance at low complexity.

5 Initialization Matrices

The proposed series-based explicit and implicit meth-

ods in Sections 3 and 4 require a suitable initialization

matrix Ã−10 to improve (i) the probability of conver-

gence, i.e., the probability that the initialization matrix

satisfies (5), and (ii) the accuracy of the approximated

matrix inverse when performing only a small number

of iterations. We next discuss existing choices for Ã−10

and propose two new methods that enable improved

error-rate performance.

5.1 Relevance of the Initialization Matrix

We first show that the choice of the initialization ma-

trix Ã−1 directly affects the performance of (explicit

and implicit) approximate equalizers that use truncated

series expansions. The following Lemma generalizes the

derivations in [6, Sec. III-B] for the initializer D−1; a

short proof is given in Appendix A.2.

Lemma 4 (Residual Estimation Error). Let ỹKmax
=

A−1Kmax
yMF be the result of an approximate equalizer

using a truncated series expansion. Define the residual

estimation error as

eKmax
= ỹKmax

−A−1yMF.

Then, we have the following upper bound on the residual

estimation error:

‖eKmax‖ ≤ ‖IU − Ã−10 A‖Kmax+1‖ỹ‖,

where ỹ = A−1yMF is the estimate obtained through the

exact equalizer and ‖ · ‖ is a consistent (matrix) norm.

It is evident that by reducing ‖IU − Ã−10 A‖, we di-

rectly reduce the residual estimation error. Furthermore,

if (5) holds, then increasing the number of accelerated
Neumann series terms k → ∞ forces the residual esti-

mation error to zero, i.e., the series expansion is exact.

Hence, it is of utmost important to chose an initializa-

tion matrix Ã−10 that minimizes ‖IU − Ã−10 A‖ in order

to minimize both the residual error and, consequently,

the error-rate of approximate linear equalization.

5.2 Existing Initialization Matrices

Common initialization matrices [36, 37, 39]. that sat-

isfy (5) are of the form Ã−10 = αAH , where α > 0 is a

carefully chosen scalar. For example, reference [37] postu-

lates the use of α−1 = (λmax +λmin)/2, where λmax and

λmin are the largest and smallest eigenvalues of AHA,

respectively. This choice minimizes the left-hand side of

(5) by assuming the spectral norm. Unfortunately, the

complexity required to compute the largest and small-

est eigenvalues of AHA is, in our application, larger

than computing the inverse A−1 itself, which renders

this method unattractive. Related approaches that en-

sure (5) while requiring lower complexity are, for exam-

ple, α−1 = 1
2‖AAH‖∞ or α−1 = ‖A‖1‖A‖∞ [36, 39].

Reference [6] proposes Ã−10 = D−1, where D is the

main diagonal of A. While this initialization approach

requires low complexity and was shown to perform well

for data detection in massive MU-MIMO systems, it

does not guarantee (5) to hold. Nevertheless, as shown

in [6, Thm. 1], for i.i.d. circularly-symmetric complex

Gaussian channel matrices H and for sufficiently large

BS-to-user-antenna ratios (e.g., two or higher), the condi-

tion (5) is satisfied with high probability. Unfortunately,

for small BS-to-user-antenna ratios, this initialization

method results in poor error-rate performance.
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The more recent reference [9] proposes Ã−10 = (U +

B)−1IU , which only converges in the large antenna limit

for i.i.d. circularly symmetric complex Gaussian channel

matrices H. This method, however, still diverges for

“not-so-massive systems” with small BS-to-user-antenna

ratios (see Section 5.4).

5.3 Two New Initialization Matrices

We next propose two new initialization matrices that

can be computed at low complexity and result in small

approximation errors even for a few iterations Kmax.

In addition, as we will show in Section 5.4, the pro-

posed initializers outperform the methods discussed in

Section 5.2 in practical scenarios. We emphasize that

the initialization matrices proposed next are suitable for

any matrix inversion method that uses (truncated) se-

ries expansions, i.e., for applications beyond equalization

and data detection.

The first initialization method requires low complex-

ity; see Section 7.1 for a discussion. In Appendix A.3, we
derive this initialization method by minimizing α ∈ C
in condition (5) for matrices of the form Ã−10 = αD−1.

Initialization 1. Let D contain the main diagonal of
A. Then, the initialization Ã−10 = αoptD−1 with αopt =

U‖D−1A‖−2F minimizes (5).

The second initialization scheme refines Initializa-

tion 1 at slightly higher computational complexity; see

Section 7.1 for a discussion. The method is derived

in Appendix A.4, where we minimize the parameters

{α, . . . , αU} in condition (5) for matrices of the form
Ã−10 = diag(α1, . . . , αU )D−1.

Initialization 2. Let D be the main diagonal of A. Fur-

thermore, let Q contain the off-diagonal part of D−1A.

Then, the initialization Ã−10 = diag(αopt
1 , . . . , αopt

U )D−1

with αopt
i = (1 + ‖ri‖22)−1, where ri is the ith row of Q,

minimizes (5).

We conclude by noting that both of these initial-

ization schemes do not, in general, guarantee conver-

gence according to (5) as we only minimized the free

parameters α or {α1, . . . , αU}. Nevertheless, the pro-

posed initialization methods exhibit (often significantly)

faster convergence compared to the ones discussed in

Section 5.2 and converge (empirically) with high prob-

ability5, even for small BS-to-user-antenna ratios. We

next empirically study the convergence behavior of all

the discussed and proposed initialization matrices.

5 The derivation of probabilistic convergence guarantees
turns out to be non-trivial and is part of ongoing work.

5.4 Comparison of Empirical Convergence Behavior

To assess the convergence behavior of approximate equal-

izers using the truncated series expansions for different

initialization matrices, we generate B × U random ma-

trices H and U -dimensional vectors x, where the entries

are i.i.d. circularly-symmetric complex Gaussian with

unit variance. For each matrix and vector pair, we com-
pute y = Hx. Given H and y, we first compute the

Gram matrix A = HHH and perform recursive matrix

inversion using the accelerated Neumann recursion (6),

the Schulz recursion (7), and the 3rd order recursion (8).

We then use the approximate inverse Ã−1k to obtain

x̃k = Ã−1k y. In addition, we also estimate x̃k using

CG [10] and GS [8], which are both implicit methods.

Figure 1 compares the relative error (RE) at iter-

ation k defined as RE(k) = ‖x− x̃k‖2/‖x‖2 between

the exact and the approximate solution for the Neu-

mann (Figure 1(a)), Schulz (Figure 1(b)), and 3rd order

recursion (Figure 1(c)). We report the average RE over

10, 000 Monte-Carlo trials.

By comparing the convergence behavior of the Neu-

mann recursion (Figure 1(a)) against the Schulz recur-

sion (Figure 1(b)), and the 3rd order recursion (Fig-

ure 1(c)), we see that the average RE decreases faster

for higher-order recursions. Although CG and GS outper-

form the methods that use a truncated Neumann series,

they are both implicit methods and do not compute an
approximate matrix inverse.

Figure 1 also shows the performance of conven-

tional initialization matrices. Traditional initializers,

such as Ã−10 = αAH with (i) α = 2(λmax + λmin)−1,

(ii) α = 2‖AH‖−1∞ , and (iii) α = (‖A‖1‖A‖∞)−1 always

converge, whereas (i) leads to the fastest convergence

among these methods. The initialization matrix D−1

proposed specifically for massive MU-MIMO leads to

faster convergence than these traditional initialization

matrices for large BS-to-user-antenna ratios but diverges

as k →∞ for small ratios. The Richardson method [9]

uses Ã−10 = (B + U)−1IU and exhibits similar conver-

gence as D−1 and also diverges for small BS-to-user-

antenna ratios. The proposed Initializers 1 and 2 enable

faster convergence than all the other considered initial-

ization matrices for all BS-to-user-antenna ratios.

As a general trend, we observe that improved con-

vergence is obtained for all considered algorithms in

Figure 1 by increasing the BS-to-user-antenna ratio.

This fact shows that massive MIMO enables low-

complexity data detection methods to achieve near-

optimal error-rate performance.
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(a) Average RE of the truncated Neumann series recursion with different initializers.
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(b) Average RE of the truncated Schulz recursion with different initializers.
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(c) Average RE of the truncated 3rd order recursion with different initializers.

Fig. 1 Average relative error (RE) comparison for different antenna configuration, algorithms, and initialization methods. The
proposed Initializers 1 and 2 outperform existing initializers, even for small BS-to-user-antenna ratios; CG and GS exhibit
excellent convergence, whereas CG is exact for eight iterations (as we consider an eight-user system).

6 Frequency-Adaptive Equalizer (FADE)

We now propose the frequency adaptive equalizer

(FADE, for short), which combines the advantages of

implicit, explicit, exact, and approximate equalization

methods, and achieves near-exact equalization perfor-

mance at very low computational complexity.

6.1 Exploiting Correlation in Multipath Wireless

Channels

Practical multipath channels in wideband communica-

tion systems typically exhibit correlation across time

and frequency [40]. In fact, by assuming a wide-sense sta-

tionary uncorrelated scattering (WSSUS) channel model,

the TD correlation between symbols is dependent on

the Doppler spread and the FD correlation between sub-

carriers is dependent on the delay spread [41]. Existing

wideband systems that rely on OFDM and SC-FDMA al-
ready exploit time and frequency correlation to estimate

the channel coefficients. For example, 3GPP LTE-A [42]

embeds pilot symbols across frequency and time in the

transmitted signal, which allows the receiver to estimate

the channel coefficients by means of interpolation.

FD correlation has also been exploited to reduce the

complexity for linear data detection in traditional small-
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scale MIMO systems [43, 44]. Reference [43] proposes

to compute an explicit inverse only at a given num-

ber of subcarriers (so-called base-points), whereas the

other inverses at the remaining subcarriers are computed

through interpolation. Given a sufficiently large number

of base points (depending on the delay spread), this

method was shown to be exact. The drawback of such

exact, interpolation-based matrix inversion methods for

massive MU-MIMO is the high computational complex-

ity caused by rather long interpolation filters [44]. Never-

theless, inspired by these algorithms, we next propose an
approximate interpolation-based equalization method

that achieves excellent performance at low complexity.

6.2 Frequency Adaptive Equalizer (FADE)

The key idea of FADE is to exploit correlation across

frequency (and possibly time) and to take advantage

of explicit and implicit equalization schemes. As in [43,

44], we first compute an explicit matrix inverse at a

given (small) set Ω of subcarriers (base-points).6 Given

the inverse matrix A−1w at base-point w ∈ Ω, we can

approximate the matrix inverse at nearby (adjacent)

subcarriers w′ by using one of the accelerated recursions

in Section 3.2 with A−1w as the initialization matrix (i.e.

Ã−1w′|0 = A−1w ). For example, the matrix inverse A−1w′ at a

neighboring subcarrier w′ = w+ 1 can be approximated

by computing one explicit recursion of the Neumann

series in (11) using Ã−1w+1|0 = A−1w as follows:

Ã−1w+1|1 = A−1w +
(
IU −A−1w Aw+1

)
A−1w

= 2A−1w −A−1w Aw+1A
−1
w . (13)

Unfortunately, the complexity of (13) is dominated by

two matrix multiplications, which is higher than that of

a Cholesky decomposition. To reduce the complexity, we
perform implicit equalization on neighboring subcarriers

instead, i.e., we compute

ỹw+1 = 2A−1w yMF
w+1 −A−1w Aw+1A

−1
w yMF

w+1, (14)

where yMF
w+1 = HH

w+1yw+1. Besides computationally-

efficient matrix vector products, this implicit, approxi-

mate equalizer still requires computation of the regular-

ized Gram matrix Aw+1. It is, however, crucial to realize

that the Gram matrix does not need to be computed

when expanding (14) into

ỹw+1 = 2A−1w yMF
w+1−

A−1w

(
HH

w+1Hw+1A
−1
w yMF

w+1 +N0E
−1
s A−1w yMF

w+1

)
.

(15)

6 These set of base-points can either be pre-assigned or
varied on-the-fly depending on channel condition for better
performance.

time (t)

fre
qu

en
cy

 (w
)

base points adjacent subcarriers

Fig. 2 Illustration of the frame structure of a wideband
system. FADE only computes explicit matrix inverses at a
small number of base points (in black); equalization at adjacent
(in time and frequency) subcarriers is performed using one
iteration of the implicit accelerated Neumann series recursion
in (15).

By precomputing A−1w yMF
w+1, all subsequent operations

in (15) consist of matrix-vector multiplications—this is

one of the reasons why FADE requires low computational

complexity. Another reason is the fact that for massive

MU-MIMO only very few base points are required due

to channel hardening [45]. Specifically, the entries in

the Gram matrices Gw between adjacent subcarriers

become similar in magnitude (or flat) as B →∞ [46].

Since FADE avoids computation of a matrix inverse

A−1w′ for adjacent subcarriers w′ /∈ Ω, we compute the

quantities µ(i) and ρ(i) using the approximations out-

lined in Section 4.4 for implicit methods to compute

approximate LLR values. Note that these approxima-

tions require the computation of D−1w , which can be

obtained efficiently from the squared column norms of

the channel matrix Hw.

Although FADE as discussed above only exploits FD

correlation, it can be extended to exploit correlation

in the time domain as well. For example, the inverse

of the wth subcarrier of the (t − 1)th symbol can be

used as the initial estimate for the wth subcarrier of tth

symbol. Figure 2 illustrates how FADE can exploit FD

and TD correlations. In the following, we will show that

FADE is not only computationally extremely efficient

but also achieves near-exact performance, even for small

BS-to-user-antenna ratios.

7 Computational Complexity

We now compare the computational complexity of exist-

ing and the proposed (approximate) inversion methods

in terms of real-valued multiplications as an indication
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Table 1 Complexity of different initialization methods.

2‖AH‖−1
∞ AH (U +B)−1IU D−1 Init. 1 Init. 2

2U2 + 1 0 0 2U2 + U + 1 2U2 + U

Table 2 Complexity of exact and approximate explicit matrix inversion methods for Kmax ≥ 1.

Method αD−1 αAH

Neumann recursion 2BU2 + (Kmax − 1)(2U3) + (2U2 − 2U) 2BU2 + (Kmax + 1)(2U3)

Schultz recursion 2BU2 + (Kmax − 1)(6U3) + (2U2 − 2U) 2BU2 +Kmax4U3

3rd order recursion 2BU2 +Kmax10U3 2BU2 +Kmax6U3

Cholesky decomposition 2BU2 + 10
3
U3 − 4

3
U

Table 3 Complexity of implicit matrix inversion methods.

Method αD−1 or (U +B)−1I 2‖AH‖−1
∞ AH

Neumann 2BU2+Kmax(4U2+2U)+ 2U 2BU2+Kmax8U2+4U2

CG 2BU2 + (Kmax + 1)(4U2 + 20U)
GS 2BU2 +Kmax4U2 + 2U
Cholesky 2

3
U3 + 2BU2 + 4U2 − 2

3
U

of hardware efficiency.7 For each complex-valued mul-

tiplication, we assume four real-valued multiplications

and two real-valued additions. We also exploit sym-

metries (e.g., the fact that A is Hermitian) and avoid

multiplications with zeros and ones.

7.1 Initialization Methods

Table 1 compares the complexity for all initialization

methods discussed in Section 5.2 that can be imple-

mented without an eigenvalue decomposition. Note that

these complexity results ignore the computation of the

regularized Gram matrix A.

Evidently, computing D−1 as in [6] and (U +B)−1IU
as in [9] does not require any multiplications. The com-

plexity of the traditional initializer 2‖AH‖−1∞ AH is dom-

inated by the term ‖AH‖−1∞ and requires a total of
2U2 + 1 real-valued multiplications. The complexity

of the proposed initialization methods, Initialization 1

and 2, is 2U2 + U + 1 and 2U2 + U , respectively. The

complexity of both methods is dominated by the com-

putation of the entry-wise norm of D−1A. While the

multiplication count for both initializers are very similar,

Initialization 1 requires only one reciprocal operation

whereas Initialization 2 requires U such operations. In

7 While the processing latency is another important de-
sign parameter in practice, it typically depends on (i) the
data dependencies of the used algorithm, (ii) the hardware
architecture (parallel or serial), and (iii) the computing fabric
(e.g., GPU, FPGA, or ASIC). Hence, we limit our results on
complexity aspects only—a detailed latency analysis would
require hardware designs and is left for future work.

Table 4 Break-Even Point for Implicit Inversion. The break-
even point is the smallest U such that the method exhibits
lower complexity than the implicit Cholesky decomposition.

Kmax 0 1 2 3 4 5 6

D−1 and (U +B)−1I 1 3 8 14 19 25 31
αoptD−1 1 5 11 16 22 28 33
2‖AH‖−1

∞ AH 1 16 28 40 52 64 76
CG 5 12 18 24 30 36 42
GS 1 3 7 13 19 25 31

what follows, we exclusively focus on Initialization 1,

since Initialization 2 provides only slightly better perfor-

mance (cf. Figure 1 and the discussion in Section 5.4).

7.2 Explicit Series Expansions and Exact Inversion

Table 2 compares the complexity of exact inversion

via the Cholesky factorization and of various explicit

series expansions as discussed in Section 3. All results

in this table include the complexity of computing A,

which is necessary for all considered explicit methods.

The complexity of Cholesky-based exact inversion scales

with U3 and is lower than the complexity of a standard8

matrix multiplication. The complexity of the proposed

explicit series expansions depends on two factors: the

initialization matrix and the iteration count Kmax.

8 More efficient matrix-multiplication algorithms, such as
Strassen’s algorithm which scales with U2.8074, could be
used [47]; the irregularity of such algorithms, however, renders
efficient hardware designs difficult.
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7.2.1 Impact of the Initialization Matrix

The initialization matrix αD−1, for example, causes the

intermediate terms Ã−1K A to not be Hermitian, in gen-

eral. In contrast, using 2‖AH‖−1∞ AH ensures that Ã−1K A

is Hermitian, leading to different operation counts for

these two initialization matrices.

7.2.2 Impact of the Iteration Count

The case Kmax = 0 corresponds to the computation

of the initialization matrix as summarized in Table 1.

For Kmax = 1, the Neumann series expansion with the

initialization matrix αoptD
−1 leads to

Ã−11 = 2αoptD
−1 − α2

optD
−1AD−1,

which requires only column and row scaling of A. Hence,

the associated complexity scales only in U2. In this case,

the truncated Neumann series approximation exhibits
lower complexity than the explicit Cholesky-based in-

verse and is an attractive method for explicit equaliza-

tion in massive MU-MIMO systems [6]. For Kmax = 1

and the initialization matrix 2‖AH‖−1∞ AH , however, the

complexity of the truncated Neumann series expansion
is larger than that of the explicit Cholesky-based inverse,

because of the matrix multiplication required for the

term Ã−10 A.

For Kmax = 1 and αoptD
−1, the Neumann recursion

coincides to the Schultz recursion. For Kmax > 1, how-

ever, the Schultz recursion requires two matrix-matrix
multiplications per iteration, resulting in substantially

higher complexity. Similarly, the 3rd order recursion

requires three such operations per iteration. As a re-

sult, both of these explicit higher-order recursions are

unattractive in terms of complexity despite the fact they

enable fast convergence (cf. Section 5.4).

7.3 Implicit Series Expansions and Exact Inversion

Table 3 compares the complexity of various implicit

equalization schemes, including Cholesky-based exact

matrix inversion, various approximate series expansions,

as well as iterative methods. As expected, the complex-

ity of implicit methods is significantly lower than that

of explicit methods (cf. Table 2). Furthermore, the com-

plexity of Cholesky-based implicit equalization scales

with U3, whereas all other approximate methods scale

only with U2.

As for explicit, approximate methods, the complexity

of the implicit Neumann recursion depends on the ini-

tialization matrix. The choice A−10 = αD−1 requires one

matrix-vector multiplication per iteration; the choice

A−10 = 2‖AH‖−1∞ AH requires two such operations and,

hence, is less attractive (also from a convergence point-

of-view; see Section 5.4). Table 3 also includes the com-

plexity of CG [10] and GS [10], which scales quadratically

in U . As for the implicit Neumann recursion, GS must

be initialized by computing ỹ0 = D−1yMF, whereas CG

uses an all zero vector for the initialization vector. In

addition, we see in Table 3 that the complexity of the

exact Cholesky-based approach scales cubically in U .

We emphasize that the method that exhibits the low-

est computational complexity is not immediately clear

from Table 3. As it turns out, the implicit Cholesky de-

composition often has the lowest complexity depending

on U and Kmax, mainly due to the rather small con-

stant of 2/3 in front of the U3 term. Table 4 provides an

overview of this rather surprising behavior by listing the

break-even points, i.e., the smallest value of the number

of users U such that the complexity of a given approx-

imate implicit method is lower than that of the exact,

implicit Cholesky decomposition. To ensure a fair com-

parison, we take into account the complexity required

to compute the necessary initialization matrices (i.e.,

D−1, αoptD−1, and 2||AH ||−1∞ AH). We observe that the

Neumann recursion, CG, and GS, are only competitive
with the exact, implicit Cholesky decomposition for a

very small number of iterations Kmax. In these cases,

GS exhibits the lowest complexity among all considered

implicit equalization methods.

7.4 Complexity of FADE

We now assess the complexity of the proposed frequency-

adaptive equalizer (FADE). Since this method combines

two methods: (i) an exact, explicit inversion using the

Cholesky decomposition at each base point and (ii) an

approximate, implicit Neumann recursion update on

adjacent subcarriers (15), the total complexity of FADE

is an average of the two methods.

The complexity of explicit inversion using the Cholesky
decomposition is shown in Table 2; the complexity of the

implicit Neumann recursion update in (15) is given by

8BU + 8U2 + 4U . Let p ∈ [0, 1] and p = 1− p ∈ [0, 1] be

the percentage of base-point subcarriers and the percent-

age of adjacent subcarriers, respectively. For example,

p = 4
10 and p = 6

10 in Figure 2. Then, the average num-

ber of real-valued multiplications required per subcarrier

is simply the weighted sum of the two parts given by

p
(
2BU2 + 10

3 U
3 − 4

3U
)

+ p (8BU + 8U2 + 4U). (16)

The parameter p controls a performance/complexity

trade-off—large values of p perform more explicit ma-

trix inversions, which result in high complexity but
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Fig. 3 Error-rate performance vs. complexity trade-off for different antenna configurations (we use the notation B × U). The
proposed FADE algorithm outperforms all considered exact/approximate methods for all antenna configurations and operates
close to the complexity limit of maximum ratio combining (MRC). Furthermore, implicit methods generally outperform explicit
methods in terms of complexity. The complexity is defined as the number of real-valued multiplications and the performance as
the SNR operation point, which is the minimum SNR that is required to achieve a BLER of 10%.

deliver excellent error-rate performance; small values

of p perform less explicit inversions which reduce the

complexity at the cost of error-rate performance—this

trade-off is studied next.

8 Performance/Complexity Trade-offs

We now investigate the performance/complexity trade-

offs associated with the proposed equalizers and that of

existing solutions.

8.1 Simulation Setup and Performance/Complexity

Metrics

To evaluate the error-rate performance of the proposed

soft-output data detectors, we consider a 3GPP-LTE

uplink system [48] with U = 8 single-antenna user ter-

minals and B ∈ {32, 64, 128, 256} BS antennas. For all

simulations, we consider a 20 MHz bandwidth with 1200

subcarriers, and we use 64-QAM with 3GPP turbo code

of rate 3/4. To consider frequency and spatial correla-

tion, we used a WINNER-Phase 2 channel model [49]

with 8.9 cm antenna spacing; the maximum delay spread

for this model is six taps. All simulations assume perfect

synchronization and channel-state knowledge. To assess

the error-rate performance without the need of many

different performance curves, we use the so-called SNR

operation point [50], which is defined as the minimum

SNR required to achieve 10% block error-rate (BLER)

for U = 8 users, which is representative for reliable trans-

mission in LTE-based systems. The BLER is obtained
via Monte-Carlo simulations averaged over 2000 trans-

port blocks (TB), each consisting of 75,376 bits. To assess

the computational complexity, we use the real-valued

multiplication counts in Section 7. For the initialization

matrix αoptD−1, we use αopt = U‖D−1A‖−2.

8.2 Trade-off Comparison

Figure 3 shows the performance/complexity trade-offs

for all considered exact, approximate, explicit, and im-

plicit methods, as well as FADE. First, we emphasize

that the matched filter equalizer (which is equivalent

to Kmax = 0) achieves the lowest complexity but is
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unable to achieve 10% BLER for all considered antenna

configurations. In contrast, the explicit matrix inver-

sion using the Cholesky decomposition leads to exact

MMSE equalization performance, while requiring the

highest complexity. The implicit Cholesky decomposi-

tion achieves a BLER close to that of the exact MMSE

detector for all the considered antenna configurations at

slightly lower complexity—the performance loss of this

implicit data detector comes from the SINR approxima-

tion in Section 4.4.

For B = 32, we see that only Cholesky-based exact
inversion and FADE are able to achieve (near-optimal)

performance. Furthermore, FADE with p = 4% ex-

hibits the same performance at 2× lower complexity.

For B = 64, CG and GS are the only approximate, im-

plicit methods that achieve 10% BLER; these methods,

however, exhibit a similar complexity as the implicit

Cholesky decomposition at about 0.5 dB performance

loss. Again, FADE outperforms all methods in terms

of performance and complexity. By increasing the num-

ber of BS antennas to B ≥ 128, explicit as well as

implicit Neumann series approximations start to ap-

proach the performance of the exact MMSE equalizer.

However, only the implicit Neumann recursion enables

lower complexity than the implicit Cholesky decomposi-

tion, which renders it attractive for massive MU-MIMO

systems with large BS-to-user-antenna ratios. FADE re-

duces the complexity by more than 2× at near-optimal

performance for only 1% base points.

In summary, by exploiting frequency correlation,

FADE is able to significantly reduce the complexity

compared to all other methods, by eliminating the need

to compute the regularized Gram matrix A at all subcar-
riers. We also observe that the complexity advantage of

FADE becomes more pronounced for larger BS antenna

arrays where (i) the complexity of computation of Gram

matrix becomes the dominating operation and (ii) chan-

nel hardening enables us to use fewer base points [45].
We finally note that FADE can be combined with decen-

tralized baseband architectures in which the antennas

are distributed and baseband processing is performed on

multiple computing fabrics in parallel in a decentralized

fashion [51]; such systems have the potential to enable

antenna arrays with thousands of BS antennas.

9 Conclusions

We have analyzed the performance and complexity of

various exact, approximate, explicit, and implicit equal-

ization schemes for wideband massive MU-MIMO sys-

tems that use SC-FDMA. Our results show that for small

BS-to-user antenna ratios, exact and implicit Cholesky

decomposition-based equalization methods achieve the

best trade-off; for large BS-to-user antenna ratios—if

the number of BS antennas is roughly 2× larger than

the number of user antennas—approximate and implicit

methods such as conjugate gradients, Gauss-Seidel, or

accelerated implicit Neumann series approximations in

combination with our post-equalization SINR approxi-

mation enable further reductions in computational com-

plexity at virtually no performance loss. Finally, we

have shown that by combining the advantages of exact

explicit and approximate implicit equalization using the

proposed frequency adaptive equalizer (FADE), we can
exploit frequency (and time) correlation in wideband

massive MU-MIMO systems to achieve near-optimal

error-rate performance at only 50% of the complexity

of competitive methods. A hardware integration of the

proposed algorithms (such as in [6,12,38,52]) on modern

computing fabrics, and corresponding throughput and

latency measurements are part of ongoing work.
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A Proofs and Derivations

A.1 Proof of Lemma 1

We use [33, Thm. 4.20], which establishes that for a given
matrix P ∈ CU×U for which limk→∞Pk = 0U×U , we have
(IU −P)−1 =

∑∞
k=0 P

k and IU −P is invertible. As a con-

sequence, by defining Ã−1
0 A = IU − P and assuming that

limk→∞(IU − Ã−1
0 A)k = 0U×U , we have

A−1Ã0 = (Ã−1
0 A)−1 =

∑∞
k=0(IU − Ã−1

0 A)k,

which can be rewritten to the accelerated Neumann series
in (4), since Ã−1 was assumed to be full rank.

A.2 Proof of Lemma 4

We start by rewriting the residual error term as a function of
A−1

0 . We have the following identities:

eKmax
= ỹKmax

−A−1yMF = (Ã−1
Kmax

−A−1)yMF

=
(
−
∑∞

k=Kmax+1(IU − Ã−1
0 A)kÃ−1

0

)
yMF

= −(IU − Ã−1
0 A)Kmax+1A−1yMF.

By using basic properties of induced norms, we get the follow-
ing inequality:

‖eKmax
‖ ≤ ‖IU − Ã−1

0 A‖Kmax+1‖ỹ‖,

where we define ỹ = A−1yMF.



Implicit vs. Explicit Approximate Matrix Inversion for Wideband Massive MU-MIMO Data Detection 15

A.3 Derivation of Initialization 1

We start by noting that squaring both sides in (5) results in

the equivalent sufficient condition ‖IU − Ã−1
0 A‖2 < 1. Fur-

thermore, by assuming the spectral norm (which is a consistent

norm), we have ‖IU − Ã−1
0 A‖2 ≤ ‖IU − Ã−1

0 A‖2F , which
enables us to obtain a more restrictive sufficient condition
that allows the design of efficient initializers:

‖IU − Ã−1
0 A‖2F < 1. (17)

The initialization method developed next9 is of the form
Ã−1

0 = SD−1, where S is a diagonal scaling matrix that is
designed to meet condition (17). Let W contain the diagonal
part of D−1A and Q the off-diagonal part. We define

f = ‖IU − SD−1A‖2F = ‖IU − S(W + Q)‖2F
= ‖IU − SW‖2F + ‖SQ‖2F , (18)

and seek a diagonal scaling matrix S that minimizes f .
We define the diagonal scaling matrix to have the form S =

α I, which leads to f =
∑U

i=1 |1− αWi,i|2 + |α|2‖Q‖2F . We
now find the optimum scaling parameter αopt by computing
∂f/∂α∗ = 0 and solving for α. Standard manipulations yield

αopt =
(∑U

i=1W
∗
i,i

)
‖D−1A‖−2

F ,

where W∗i,i are the complex conjugates of the diagonal entries

of W. Since W = IU , we get αopt = U‖D−1A‖−2
F . Conse-

quently, the first initialization matrix is Ã−1
0 = αoptD−1.

A.4 Derivation of Initialization 2

For the second initialization method, we follow the derivation
in Appendix A.3 but with a more general diagonal scaling
matrix of the form S = diag (α1, . . . , αU ). We obtain

f =
∑U

i=1 |1− αiWi,i|2 + |αi|2‖ri‖22,

where ri corresponds to the ith row of Q. To find the optimal
scaling parameters αi, i = 1, . . . , U , we set ∂fi/∂α∗i = 0 and
solve for αi. Standard manipulations yield

αopt
i = W∗i,i/(|Wi,i|2 + ‖ri‖22), i = 1, . . . , U,

and we use the fact that Wi,i = 1, ∀i. Consequently, the
second initialization matrix is

Ã−1
0 = diag(αopt

1 , . . . , αopt
U )D−1.
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