
1

Decentralized Baseband Processing
for Massive MU-MIMO Systems

Kaipeng Li, Rishi Sharan, Yujun Chen, Tom Goldstein,
Joseph R. Cavallaro, and Christoph Studer

Abstract—Achieving high spectral efficiency in realistic massive
multi-user (MU) multiple-input multiple-output (MIMO) wireless
systems requires computationally-complex algorithms for data
detection in the uplink (users transmit to base station) and
beamforming in the downlink (base station transmits to users).
Most existing algorithms are designed to be executed on central-
ized computing hardware at the base station (BS), which both
results in prohibitive complexity for systems with hundreds or
thousands of antennas and generates raw baseband data rates
that exceed the limits of current interconnect technology and chip
I/O interfaces. This paper proposes a novel decentralized base-
band processing architecture that alleviates these bottlenecks by
partitioning the BS antenna array into clusters, each associated
with independent radio-frequency chains, analog and digital mod-
ulation circuitry, and computing hardware. For this architecture,
we develop novel decentralized data detection and beamforming
algorithms that only access local channel-state information and
require low communication bandwidth among the clusters. We
study the associated trade-offs between error-rate performance,
computational complexity, and interconnect bandwidth, and we
demonstrate the scalability of our solutions for massive MU-
MIMO systems with thousands of BS antennas using reference
implementations on a graphic processing unit (GPU) cluster.

Index Terms—Alternating direction method of multipliers
(ADMM), conjugate gradient, beamforming, data detection,
equalization, general-purpose computing on graphics processing
unit (GPGPU), massive MU-MIMO.

I. INTRODUCTION

MASSIVE multi-user (MU) multiple-input multiple-output
(MIMO) is among the most promising technologies for

realizing high spectral efficiency and improved link reliability
in fifth-generation (5G) wireless systems [3], [4]. The main
idea behind massive MU-MIMO is to equip the base-station

K. Li, Y. Chen, and J. R. Cavallaro are with the Department of Electrical and
Computer Engineering, Rice University, Houston, TX (e-mail: kl33@rice.edu;
yujun.chen@rice.edu; cavallar@rice.edu).

R. Sharan was with Cornell University, Ithaca, NY, and is now at MITRE,
McLean, VA (e-mail: rrs72@cornell.edu)

T. Goldstein is with the Department of Computer Science, University of
Maryland, College Park, MD (e-mail: tomg@cs.umd.edu).

C. Studer is with the School of Electrical and Computer Engineering, Cornell
University, Ithaca, NY (e-mail: studer@cornell.edu).

The work of K. Li, Y. Chen, and J. R. Cavallaro was supported by the US
NSF under grants CNS-1265332, ECCS-1232274, ECCS-1408370. The work
of R. Sharan and C. Studer was supported by the US NSF under grants ECCS-
1408006 and CCF-1535897, and by Xilinx Inc. The work of T. Goldstein was
supported in part by the US NSF under grant CCF-1535902 and by the US
Office of Naval Research under grant N00014-17-1-2078.

Parts of this paper have been presented at the 2016 GlobalSIP Conference [1]
and the Asilomar Conference on Signals, Systems, and Computers [2]. The
present paper contains a new ADMM-based data detection algorithm and a
generalized ADMM-based beamforming algorithm, as well as corresponding
implementations on a GPU cluster for the uplink and downlink.

(BS) with hundreds or thousands of antenna elements, which
increases the spatial resolution and provides an energy-efficient
way to serve a large number of users in the same time-
frequency resource. Despite all the advantages of this emerging
technology, the presence of a large number of BS antenna
elements results in a variety of implementation challenges. One
of the most critical challenges is the excessively high amount of
raw baseband data that must be transferred from the baseband
processing unit to the radio-frequency (RF) antenna units at
the BS (or in the opposite direction). Consider, for example,
a 128 BS-antenna massive MU-MIMO system with 40MHz
bandwidth and 10-bit analog-to-digital converters (ADCs). For
such a system, the raw baseband data rates from and to the
RF units easily exceed 200Gbit/s. Such high data rates not
only pose severe implementation challenges for the computing
hardware to carry out the necessary baseband processing tasks,
but the resulting raw baseband data stream also exceeds the
bandwidth of existing high-speed interconnects, such as the
common public radio interface (CPRI) [5].

A. Challenges of Centralized Baseband Processing

Recent testbed implementations for massive MU-MIMO,
such as the Argos testbed [6], [7], the LuMaMi testbed [8],
and the BigStation [9], reveal that the centralized baseband
processing required for data detection in the uplink (users
communicate to BS) and downlink (BS communicates to
users using precoding) is extremely challenging with current
interconnect technology. In fact, all of the proposed data
detection or beamforming algorithms that realize the full
benefits of massive MU-MIMO in systems with realistic (finite)
antenna configurations, such as zero-forcing (ZF) or minimum
mean-square error (MMSE) equalization or beamforming [10],
rely on centralized baseband processing. This approach requires
that full channel state information (CSI) and all receive/transmit
data streams are available at a centralized node, which processes
and generates the baseband signals that are received from and
transmitted to the radio-frequency (RF) chains. To avoid such a
traditional, centralized baseband processing approach, existing
testbeds, such as the Arogs testbed [6], rely on maximum-ratio
combining (MRC), which enables fully decentralized channel
estimation, data detection, and beamforming directly at the
antenna elements. Unfortunately, MRC significantly reduces the
spectral efficiency for realistic antenna configurations compared
to that of ZF or MMSE-based methods [10], which prevents
the use of high-rate modulation and coding schemes that fully
exploit the advantages of massive MU-MIMO.

2

u
p

li
n

k
 c

h
a
n

n
e
l

.
.
.

.
.
.

d
e
co

d
e
r

detector
m

a
p
.

F
E

C

RF
m

a
p
.

F
E

C

RF

.
.

.

RF

RF

CHEST

.
.

.

d
o

w
n

li
n

k
 c

h
a
n

n
e
l

.
.
.

.
.
.

D
e
t.

D
e
c.

RF

D
e
t.

D
e
c.

RF

base station (BS) base station (BS)
users users

detectorRF

RF CHEST

F

.
.
.

.
.
.

.
.
.

.
.
.

F
E

C

CHEST

F

CHEST

RF

RF

.
.
.

.
.
.

RF

RF

.
.
.

.
.
.

beamformer

beamformer

.
.

.

.
.

.

Fig. 1. Overview of the proposed decentralized baseband processing (DBP) architecture. Left: Massive MU-MIMO uplink: U single-antenna users communicate
to the base station (BS). The B BS antenna elements are divided into C clusters, which independently perform channel estimation (CHEST) and decentralized
data detection. Right: Massive MU-MIMO downlink: The BS performs decentralized beamforming; each of the C clusters only uses local channel state
information. In both scenarios, only a minimum amount of consensus information is exchanged among the clusters (indicated by the dashed green lines).

B. Decentralized Baseband Processing (DBP)
In this paper, we propose a decentralized baseband pro-

cessing (DBP) architecture as illustrated in Figure 1, which
alleviates the bottlenecks of massive MU-MIMO caused by
extremely high raw baseband data rates and implementation
complexity of centralized processing. We partition the B BS
antennas into C independent clusters, each having Bc antennas
for the cth cluster so that B =

∑C
c=1Bc. For simplicity, we will

assume clusters of equal size and set S = Bc which implies
SC = B. Each cluster is associated with local computing
hardware, a so-called processing element (PE), that carries
out the necessary baseband processing tasks in a decentralized
fashion. A central fusion node (“F” in Figure 1) processes
a small amount of consensus information that is exchanged
among the clusters and required by our decentralized baseband
algorithms (the dashed green lines in Figure 1).

Throughput the paper, we focus on time-division duplex-
ing (TDD), i.e., we alternate between uplink and downlink
communication within the same frequency band. In the uplink
phase, U users communicate with the BS. First, CSI is acquired
via pilots at the BS and stored locally at each cluster. Then,
data is transmitted by the users and decoded at the BS. In
the downlink phase, the BS transmits data to the U users. By
exploiting channel reciprocity, the BS performs decentralized
beamforming (or precoding) to mitigate MU interference (MUI)
and to focus transmit power towards the users. As for the uplink,
the C decentralized beamforming units only access local CSI.

The key features of the proposed DBP architecture can be
summarized as follows: (i) DBP reduces the raw baseband data
rates between each cluster and the associated RF chains. In
addition, the I/O bandwidth of each PE can be reduced signif-
icantly as only raw baseband data from a (potentially small)
subset of antennas must be transferred on and off chip. (ii) DBP
lowers the computational complexity per PE by distributing
and parallelizing the key signal-processing tasks. In addition
to decentralizing channel estimation (CHEST), data detection,
and beamforming, DBP enables frequency-domain processing
(e.g., fast Fourier transforms for orthogonal frequency-division
multiplexing) as well as impairment compensation (e.g., for
carrier frequency and sampling rate offsets, phase noise, or I/Q

imbalance) locally at each cluster. (iii) DPB enables modular
and scalable BS designs; adding or removing antenna elements
simply amounts to adding or removing computing clusters and
the associated RF elements, respectively. (iv) DPB allows one
to distribute the antenna array and the associated computing
hardware over multiple buildings—an idea that was put forward
recently in the massive MU-MIMO context [11].

C. Relevant Prior Art
The literature describes mainly three methods that are related

to DBP: coordinated multipoint (CoMP), cloud radio access
networks (C-RAN), and testbeds that perform distributed base-
band processing across frequencies. The following paragraphs
discuss these results.

1) Coordinated multipoint (CoMP): Coordinated multipoint
(CoMP) is a distributed communication technology to eliminate
inter-cell interference, improve the data rate, and increase the
spectrum efficiency for cell-edge users [12]. CoMP distributes
multiple BSs across cells, which cooperate via backhaul
interconnect to perform distributed uplink reception and down-
link transmission. CoMP has been studied for cooperative
transmission and reception [13]–[15] in 3GPP LTE-A, and is
widely believed to play an important role in 5G networks [16]
along with other technologies, such as massive MU-MIMO [17].
Several algorithms for distributed beamforming with CoMP
have been proposed in [18]–[20]. The paper [18] proposes a
distributed precoding algorithm for multi-cell MIMO downlink
systems using a dirty-paper coding. The papers [19], [20]
propose distributed beamforming algorithms based on Gauss-
Seidel and alternating direction method of multipliers (ADMM).
These methods assume that the BSs in different cells have
access to local CSI and coordinate with each other with limited
backhaul information exchange. While these results are, in
spirit, similar to the proposed DBP approach, our architecture (i)
considers a decentralized architecture in which the computing
hardware is collocated to support low-latency consensus
information exchange, (ii) takes explicit advantage of massive
MU-MIMO (the other results in [18]–[20] are for traditional,
small-scale MIMO systems), and (iii) proposes a practical
way to partition baseband processing that is complementary to

3

CoMP. In fact, one could integrate DBP together with CoMP
to deal with both intra-cell multi-user interference and inter-
cell transmission interference more effectively, and to realize
decentralized PHY layer processing using our DBP and higher
layer (MAC layer, network layer, etc.) resource allocation and
coordination with CoMP schemes. In addition, we propose
more sophisticated algorithms that enable superior error-rate
performance compared to the methods in [19], [20].

2) Cloud radio access networks (C-RAN): The idea behind
C-RAN is to separate the BS into two modules, a remote radio
head (RRH) and a baseband unit (BBU), which are connected
via high-bandwidth interconnect. The RRHs are placed near
the mobile users within the cell, the BBUs are grouped into
a BBU pool for centralized processing and located remotely
from RRH [21]–[23]. C-RAN and CoMP both coordinate data
transmission among multiple cells but with different physical
realizations. CoMP integrates each pair of radio heads with
associated BBU together and allows low-latency data transfer
between each radio head and its corresponding BBU. Different
BBUs are separately placed across multiple cells, entailing long
latency on coordination among BBUs. C-RAN, in contrast,
shifts the BBU coordination latency in CoMP to the data
transfer latency between RRHs and BBUs, since BBUs are now
grouped in a pool and can coordinate efficiently. Therefore,
whether CoMP or C-RAN is more appropriate depends on
whether BBU coordination or RRH-BBU data transfer is more
efficient in a real-world deployment. Analogously to CoMP,
we could integrate DBP together with C-RAN to exploit the
benefits of both technologies. For example, each RRH now
can be a large-scale antenna array (requiring higher RRH-BBU
interconnection bandwidth). The associated BBU itself may
rely on DBP and perform our algorithms to resolve intra-cell
multi-user interference, while coordinating with other BBUs
for inter-cell interference mitigation.

3) Distributed processing across frequencies: Existing
testbeds, such as the LuMaMi testbed [8], [24] and the
BigStation [9], distribute the baseband processing across
frequencies. The idea is to divide the total frequency band
into clusters of subcarriers in orthogonal frequency-division
multiplexing (OFDM) systems where each frequency cluster is
processed concurrently, enabling high degrees of parallelism [8],
[9], [24]. Unfortunately, each frequency cluster still needs
access to all BS antennas, which may result in high interconnect
bandwidth. Furthermore, the frequency band must somehow
be divided either using analog or digital circuitry, and fre-
quency decentralization prevents a straightforward use of other
waveform candidates, such as single-carrier frequency-division
multiple access (SC-FDMA), filter bank multi-carrier (FBMC),
and generalized frequency division multiplexing (GFDM) [25].
In contrast, our DBP architecture performs decentralization
across antennas, which is compatible to most waveforms and
requires data transmission only between a subset of antennas
and the clusters. We emphasize, however, that DBP can be
used together with frequency decentralization—in fact, our
reference GPU implementation results shown in Section VI
exploit spatial decentralization and frequency parallelism.

D. Contributions

We propose DBP to reduce the raw baseband and chip I/O
bandwidths, as well as the signal-processing bottlenecks of
massive MU-MIMO systems that perform centralized baseband
processing. Our main contributions are as follows:
• We propose DBP, an novel architecture for scalable, FDD-

based massive MU-MIMO BS designs, which distributes
computation across clusters of antennas.

• We develop two decentralized algorithms for near-optimal
data detection in the massive MU-MIMO uplink; both
algorithms trade off error-rate performance vs. complexity.

• We develop a decentralized beamforming algorithm for
the massive MU-MIMO downlink.

• We perform a simulation-based tradeoff analysis between
error-rate performance, consensus data rate, and compu-
tational complexity for the proposed decentralized data
detection and beamforming algorithms.

• We present implementation results for data detection and
beamforming on a GPU cluster that showcase the efficacy
and scalability of the proposed DBP approach.

Our results demonstrate that DBP enables modular and scalable
BS designs for massive MU-MIMO with thousands of antenna
elements while avoiding excessively high baseband and I/O
data rates and significantly reducing the high computational
complexity of conventional centralized algorithms.

E. Notation

Lowercase and uppercase boldface letters designate column
vectors and matrices, respectively. For a matrix A, we indi-
cate its transpose and conjugate transpose by AT and AH

respectively. The M ×M identity matrix is denoted by IM
and the M ×N all-zeros matrix by 0M×N . Sets are denoted
by uppercase calligraphic letters; the cardinality of the A is
denoted by |A|. The real and imaginary parts of a complex
scalar a are <{a} and ={a}, respectively. The Kronecker
product is ⊗ and E[·] denotes expectation.

F. Paper Outline

The rest of the paper is organized as follows. Section II
details the DBP architecture and introduces the associated
uplink and downlink system models. Section III proposes two
decentralized data detection algorithms. Section IV proposes
the decentralized beamforming algorithm. Section V provides
performance and complexity results. Section VI summarizes
our GPU cluster implementation results. We conclude in
Section VII. All proofs are relegated to Appendix A.

II. DBP: DECENTRALIZED BASEBAND PROCESSING

We now detail the DBP architecture illustrated in Figure 1
and the system models for the uplink and downlink. We
consider a TDD massive MU-MIMO system and we assume
a sufficiently long coherence time, i.e., the channel remains
constant during both the uplink and downlink phases. In
what follows, we focus on narrowband communication; a
generalization to wideband communication is straightforward.

4

A. Uplink System Model and Architecture

1) Uplink system model: In the uplink phase, U single-
antenna1 user terminals communicate with a BS having B ≥ U
antenna elements. Each user encodes its own information
bit stream using a forward error correction (FEC) code and
maps the resulting coded bit stream to constellation points in
the set O (e.g., 16-QAM) using a predefined mapping rule
(e.g., Gray mappings). At each user, the resulting constellation
symbols are then modulated and transmitted over the wireless
channel (subsumed in the “RF” block in Figure 1). The transmit
symbols su, u = 1, . . . , U , of all U users are subsumed in the
uplink transmit vector su ∈ OU . The baseband-equivalent input-
output relation of the (narrowband) wireless uplink channel is
modeled as yu = Husu+nu, where yu ∈ CB is the received
uplink vector, Hu ∈ CB×U is the (tall and skinny) uplink
channel matrix, and nu ∈ CB is i.i.d. circularly-symmetric
complex Gaussian noise with variance N0 per complex entry.
The goal of the BS is to estimate the transmitted code bits
given (approximate) knowledge of Hu and the received uplink
vector yu. This information is then passed to the decoder,
which computes estimates for the data bits of each user.

2) Decentralized architecture: Consider the left-hand side
(LHS) of Figure 1. The proposed DBP architecture partitions2

the receive vector y into C clusters so that (yu)T =
[(yu1)

T , . . . , (yuC)
T] with yuc ∈ CBc and B =

∑C
c=1Bc.

As mentioned in Section I-B, we assume clusters of equal
size and set S = Bc. By partitioning the uplink channel
matrix (Hu)T = [(Hu

1)
T , . . . , (Hu

c)
T] row-wise into blocks of

dimension Hu
c ∈ CBc×U , c = 1, . . . , C, and, analogously, the

noise vector as (nu)T = [(nu1)
T , . . . , (nuC)

T], we can rewrite
the uplink input-output relation at each cluster as follows:

yuc = Hu
c s
u + nuc , c = 1, . . . , C. (1)

The goal of DBP in the uplink is to compute an estimate for
su in a decentralized manner: each cluster c only has access
to yuc , Hu

c , and consensus information (see Section III).
As shown in LHS of Figure 1, each antenna element is

associated to local RF processing circuitry; this includes analog
and digital filtering, amplification, mixing, modulation, etc. As
a consequence, all required digital processing tasks (e.g., used
for OFDM processing) are also carried out in a decentralized
manner. Even though we consider perfect synchronization and
impairment-free transmission (such as carrier frequency and
sampling rate offsets, phase noise, or I/Q imbalance), we note
that each cluster and the associated RF processing circuitry
would be able to separately compensate for such hardware
non-idealities with well-established methods [26]. This key
property significantly alleviates the challenges of perfectly
synchronizing the clocks and oscillators among the clusters.

3) Channel estimation: During the training phase, each
cluster c must acquire local CSI, i.e., compute an estimate
of Hu

c . To this end, U orthogonal pilots are transmitted from the
users prior to the data transmission phase. Since each cluster c

1A generalization to multi-antenna user terminals is straightforward but
omitted for the sake of simplicity of exposition.

2Other partitioning schemes may be possible. A study of alternative
partitioning schemes is left for future work.

has access to yuc , it follows from (1) that the associated local
channel matrix Hu

c can be estimated per cluster. The estimate
for the channel matrix (as well as yuc) is then stored locally at
each cluster and not made accessible to the other clusters; this
prevents a bandwidth-intensive broadcast of CSI (and receive
vector data) to all clusters during the training phase.

4) Data detection: During the data transmission phase,
decentralized data detection uses the receive vector yuc , the
associated CSI Hu

c , and consensus information to generate an
estimate of the transmitted data vector su. This estimate is
then passed to the decoder which computes estimates for the
information bits of each user in a centralized manner; suitable
data detection algorithms are proposed in Section III.

B. Downlink System Model and Architecture

1) Downlink system model: In the downlink phase, the B
BS antennas communicate with the U ≤ B single-antenna user
terminals. The information bits for each user are encoded
separately using a FEC. The BS then maps the resulting
(independent) coded bit streams to constellation points in
the alphabet O to form the vector sd ∈ OU . To mitigate
MUI, the BS performs beamforming (BF), i.e., computes a BF
vector xd ∈ CB that is transmitted over the downlink channel.
Beamforming requires knowledge of the (short and wide)
downlink channel matrix Hd ∈ CU×B and the transmit vector
sd ∈ OU to compute a BF vector that satisfies sd = Hdxd (see
Section IV for the details). By assuming channel reciprocity,
we have the property Hd = (Hu)T [3], [4], which implies
that the channel matrix estimated in the uplink can be used in
the downlink. The baseband-equivalent input-output relation
of the (narrowband) wireless downlink channel is modeled as
yd = Hdxd + nd, where yd ∈ CU is the receive vector at all
users and nd ∈ CU is i.i.d. circularly-symmetric complex
Gaussian noise with variance N0 per complex entry. By
transmitting xd over the wireless channel, the equivalent input-
output relation is given by yd = sd+nd and contains no MUI.
Each of the users then estimates the transmitted code bits from
ydu, u = 1, . . . , U . This information is passed to the decoder,
which computes estimates for the user’s data bits.

2) Decentralized architecture: Consider the right-hand
side (RHS) of Figure 1. Since the partitioning of the BS
antennas was fixed for the uplink (cf. Section II-A), the
BF vector x must be partitioned into C clusters so that
(xd)T = [(xd1)

T , . . . , (xdC)
T] with xdc ∈ CBc . By using

reciprocity and the given antenna partitioning, each cluster c
has access to only Hd

c = (Hu
c)
T . With this partitioning, we

can rewrite the downlink input-output relation as follows:

yd =
∑C
c=1 H

d
cx

d
c + nd (2)

The goal of DBP in the downlink is to compute all local
BF vectors xdc , c = 1, . . . , C in a decentralized manner: each
cluster c has access to only s, Hd

c , and consensus information
(see Section IV for more details).

As shown in the RHS of Figure 1, each antenna element is
associated to local RF processing circuitry. Analogously to the
uplink, the required analog and digital signal processing tasks
(e.g., used for OFDM modulation or impairment compensation)

5

can be carried out in a decentralized manner, which alleviates
the challenges of perfectly synchronizing the clusters.

3) Beamforming: In the downlink phase, decentralized BF
uses the transmit vector s, decentralized CSI Hd

c , and consensus
information in order to generate BF vectors xdc that satisfy s =∑C
c=1 H

d
cx

u
c . This ensures that transmission of the vectors xdc

removes MUI; a suitable algorithm is detailed in Section IV.

III. DECENTRALIZED UPLINK: DATA DETECTION

We now propose two decentralized data detection algorithms
for the massive MU-MIMO uplink. We start by discussing
the general equalization problem and then, detail our novel
ADMM and CG-based data detection algorithms. To simplify
notation, we omit the uplink superscript u in this section.

A. Equalization-Based Data Detection

In order to arrive at computationally efficient algorithms for
decentralized data detection, we focus on equalization-based
methods. Such methods contain an equalization stage and a
detection stage. For the equalizations stage, we are interested
in solving the following equalization problem

(E0) x̂ = arg min
s∈CU

g(s) + 1
2‖y −Hs‖22

in a decentralized manner. Here, the function g(s) is a convex
(but not necessarily smooth or bounded) regularizer, which
will be discussed in detail below. For the detection stage, the
result x̂ of the equalization problem (E0) can either be sliced
entry-wise to the nearest constellation point in O to perform
hard-output data detection or used to compute approximate
soft-output values e.g., log-likelihood ratio (LLR) values [27].

For zero-forcing (ZF) and minimum mean-squared error
(MMSE) data detection, we set the regularizer to g(s) = 0
and g(s) = N0/Es‖s‖22, respectively, where Es = E[|s|2] is
the expected per-user transmit energy.3 The generality of the
equalization problem (E0) also encompasses more powerful
data detection algorithms. In particular, we can set g(s) =
χ(s ∈ C), where χ(s ∈ C) is the characteristic function that
is zero if s is in some convex set C and infinity otherwise.
Specifically, to design data-detection algorithms that outperform
ZF or MMSE data detection, we can use the convex polytope
around the constellation set O, which is given by

C =
{∑|O|

i=1 αisi | (αi ≥ 0,∀i) ∧
∑|O|
i=1 αi = 1

}
.

For QPSK with O = {±1± i}, the convex set C is simply a
box with radius 1 (i.e., side length of 2) centered at the origin.
In this case, (E0) corresponds to the so-called box-constrained
equalizer [28] which was shown recently to (often significantly)
outperform ZF or MMSE data detection [29]. In addition, box-
constrained equalization does not require knowledge of the
noise variance N0, which is in stark contrast to the traditional
MMSE equalizer. The decentralized equalization algorithm
proposed next enables the use of such powerful regularizers.

3For the sake of simplicity, we assume an equal transmit power at each
user. An extension to the general case is straightforward.

B. Decentralized Equalization via ADMM

To solve the equalization problem (E0) in a decentralized
fashion, we make use of the ADMM framework [30]. We first
introduce C auxiliary variables zc = s, c = 1, . . . , C, which
allow us to rewrite (E0) in the equivalent form

(E0′) x̂ = arg min
s∈CU , zc=s, c=1,...,C

g(s) +
∑C
c=1

1
2‖yc −Hczc‖22 .

Note that the added constraints in (E0′) enforce that each local
vector zc agrees with the global value of s. As detailed in [30],
these constraints can be enforced by introducing Lagrange
multipliers {λc}Cc=1 for each cluster, and then computing a
saddle point (where the augmented Lagrangian is minimal for s
and z, and maximal for λ) of the so-called scaled augmented
Lagrangian function, which is defined as

L(s, z,λ) = g(s)

+
∑C
c=1

{
1
2‖yc −Hczc‖22 +

ρ
2‖s− zc − λc‖22

}
for some fixed penalty parameter ρ > 0. Here, we stack all
C auxiliary variables into the vector zT = [zT1 · · · zTC] and
stack all C scaled Lagrange multiplier vectors into the vector
λT = [λT1 · · · λTC], where zc,λc ∈ CU .

The saddle-point formulation of (E0′) is an example of
a global variable consensus problem [30, Sec. 7.1] and can
be solved using ADMM. We initialize s(1) = 0U×1 and
λ
(1)
c = 0U×1 for c = 1, . . . , C, and carry out the following

iterative steps:

(E1) z(t+1)
c = arg min

zc∈CU

1
2‖yc−Hczc‖22 +

ρ
2

∥∥s(t)−zc−λ(t)
c

∥∥2
2

(E2) s(t+1) = arg min
s∈CU

g(s) +
∑C
c=1

1
2

∥∥s− z
(t+1)
c − λ

(t)
c

∥∥2
2

(E3) λ(t+1)
c = λ(t)

c − γ
(
s(t+1) − z(t+1)

c

)
for the iterations t = 1, 2, . . . until convergence or a maximum
number Tmax of iterations has been reached. The parameter
ρ > 0 controls the step size and γ = 1 is a typical choice that
guarantees convergence. See [31] for a more detailed discussion
on the convergence of ADMM.

Steps (E1) and (E2) can be carried out in a decentralized
manner, i.e., each cluster c = 1, . . . , C only requires access
to local variables and local channel state information, as well
as the consensus vectors s(t) and s(t+1). Step (E2) updates
the consensus vector. While the vectors {z(t+1)

c } and {λ(t)
c }

for every cluster appear in (E2), it is known that this can
be computed using only the global average of these vectors,
which is easily stored on a fusion node [30]. The architecture
proposed in Section II can compute these averages and perform
this update in an efficient manner. We next discuss the key
details of the proposed decentralized data detection algorithm.

C. ADMM Algorithm Details and Decentralization

1) Step (E1): This step corresponds to a least-squares (LS)
problem that can be solved in closed form and independently
on each cluster. For a given cluster c, we can rewrite the

6

minimization in Step (E1) in more compact form as

z(t+1)
c = arg min

zc∈CU

∥∥∥∥[yc√
ρ(s(t) − λ

(t)
c)

]
−
[

Hc√
ρ IU

]
zc

∥∥∥∥2
2

,

which has the following closed-form solution:

z(t+1)
c = yreg

c + ρB−1c (s(t) − λ(t)
c). (3)

Here, yreg
c = B−1c HH

c yc is the regularized estimate with
B−1c = (HH

c Hc + ρIU)
−1. To reduce the amount of recurrent

computations, we can precompute B−1c and reuse the result
in each iteration. For situations where the cluster size S is
smaller than the number of users U , we can use the Woodbury
matrix identity [32] to derive the following equivalent update:

z(t+1)
c = yreg

c + (IU −HH
c A−1c Hc)(s

(t) − λ(t)
c). (4)

Here, yreg
c = HH

c A−1c yc is a regularized estimate of the
transmit vector with A−1c = (HcH

H
c + ρIS)

−1. This requires
the inversion of an S×S matrix, which is more easily computed
than the U × U inverse required by (3). We note that whether
(3) or (4) leads to lower overall computational complexity
depends on U , S, and the number of ADMM iterations (see
Section V-A).

2) Step (E2): This step requires gathering of local compu-
tation results, averaging the sum in a centralized manner, and
distributing the averaged consensus information. To reduce the
data that must be exchanged, each cluster only communicates
the intermediate variable w

(t)
c = z

(t+1)
c + λ

(t)
c , and only the

average of these vectors is used on the fusion node. This
simplification is accomplished using the following lemma; a
proof is given in Appendix A-A.

Lemma 1. The problem in Step (E2) simplifies to

s(t+1) = arg min
s∈CU

g(s) + C
2

∥∥s− v(t)
∥∥2
2

(5)

with v(t) = 1
Cw

(t) = 1
C

∑C
c=1 w

(t)
c and w

(t)
c = z

(t+1)
c +λ

(t)
c .

Computation of (5) requires two parts. The first part
corresponds to a simple averaging procedure to obtain v(t),
which can be carried out via sum reduction in a tree-like
fashion followed by centralized averaging. The second part is
the minimization in (5) that is known as the proximal operator
for the function g(s) [33]. For ZF, MMSE, and box-constrained
equalization with QAM alphabets, the proximal operator has
the following simple closed-form expressions:

(E2-ZF) s(t+1) = v(t)

(E2-MMSE) s(t+1) = CEs

N0+CEs
v(t)

(E2-BOX) s(t+1)
u = sgn(<{v(t)u })min{|<{v(t)u }|, r}

+ i sgn(={v(t)u })min{|={v(t)u }|, r}

for u = 1, . . . , U . Here, (E2-BOX) is the orthogonal projection
of the vector v(t) onto the hypercube with radius r that
covers the QAM constellation. For BPSK, the proximal
operator corresponds to the orthogonal projection onto the line
[−r,+r] given by s

(t+1)
u = sgn(<{v(t)u })min{|<{v(t)u }|, r},

u = 1, . . . , U .
After computation of (5), the consensus vector s(t+1) needs

Algorithm 1 Decentralized ADMM-based Data Detection
1: Input: yc, Hc, c = 1, 2, . . . , C, ρ, γ, N0, and Es

2: Preprocessing:
3: if S ≤ U then
4: A−1

c = (HcH
H
c + ρ−1IS)

−1

5: yreg
c = HH

c A−1
c yc

6: else
7: B−1

c = (HH
c Hc + ρ−1IU)

−1

8: yreg
c = B−1

c HH
c yc

9: end if
10: ADMM iterations:
11: Init: λ(1)

c = 0, z
(1)
c = yreg

c , s
(1) = (N0

Es
+ C)−1(

∑C
c=1 z

(1)
c)

12: for t = 2, 3, . . . , Tmax do
13: λ

(t)
c = λ

(t−1)
c + γ(z

(t−1)
c − s(t−1))

14: if S ≤ U then
15: z

(t)
c = yreg

c +(s(t−1)−λ
(t)
c)−HH

c A−1
c Hc(s

(t−1)−λ
(t)
c)

16: else
17: z

(t)
c = yreg

c + ρB−1
c (s(t−1) − λ

(t)
c)

18: end if
19: w

(t)
c = z

(t)
c + λ

(t)
c

20: w(t) =
∑C

c=1 w
(t)
c // Consensus

21: s(t) = (N0/Es + C)−1w(t)

22: end for
23: Output: x̂ = s(Tmax)

to be distributed to all C clusters. In practice, we distribute w(t)

as soon as it is available, and the scaling steps to get s(t+1)

from w(t) are computed locally on each cluster after it
receives w(t). This way no cluster waits for the computation of
s(t+1) on a central/master worker (fusion node) before ADMM
iterations proceed.

3) Step (E3): This step can be carried out independently in
each cluster after s(t+1) has been calculated.

We summarize the resulting decentralized ADMM procedure
for MMSE equalization in Algorithm 1. The equalization output
is simply the consensus vector s(Tmax). Note that Algorithm 1
slightly deviates from the procedure outlined in Section III-B.
We will analyze the algorithm complexity4 in Section V-A; a
GPU cluster implementation will be discussed in Section VI.

D. Decentralized Equalization via Conjugate Gradients

If the regularization function g(s) of (E0) is quadratic, as
in the case for MMSE equalization where g(s) = N0/Es‖s‖22,
then we can solve (E0) with an efficient decentralized conjugate
gradient (CG) method [34]–[36]. Our method builds on the
CG algorithm used in [34] for centralized equalization-based
data detection in massive MU-MIMO systems. Our idea is to
break all centralized computations that rely on global CSI and
receive data (i.e., H and y) into smaller, independent problems
that only require local CSI and receive data (Hc and yc). The
centralized CG-based detector in [34] involves two stages: a
preprocessing stage for calculating the MRC output yMRC and
a CG iteration stage to estimate x̂.

4The operataion HH
c A−1

c Hc on line 15 of Algorithm 1 could be computed
once in a preprocessing stage to avoid recurrent computations during the
iterations. Instead, in Algorithm 1 we directly compute HH

c A−1
c Hc(s(t−1)−

λ
(t)
c) in each iteration because this approach requires only three matrix-vector

multiplications per iteration; precomputing HH
c A−1

c Hc requires two costly
matrix-matrix multiplications. Hence, our complexity analysis in Section V-A
refers to the procedure detailed in Algorithm 1.

7

Algorithm 2 Decentralized CG-based Data Detection
1: Input: Hc, c = 1, . . . , C, and yc, and ρ
2: Preprocessing:
3: yMRC

c = HH
c yc // Decentralized

4: yMRC =
∑C

c=1 y
MRC
c // Centralized

5: CG iterations:
6: Init: r(0) = yMRC,p(0) = r(0),x(0) = 0
7: for t = 1, . . . , Tmax do
8: Decentralized (each cluster c performs the same operation):
9: w

(t)
c = HH

c Hcp
(t−1)

10: Centralized (consensus on a centralized processing unit):
11: w(t) =

∑c
c=1 w

(t)
c // Consensus

12: Decentralized (each cluster c performs the same operations):
13: e(t) = ρp(t−1) +w(t)

14: α = ‖r(t−1)‖2/((p(t−1))He(t))
15: x(t) = x(t−1) + αp(t−1)

16: r(t) = r(t−1) − αe(t−1)

17: β = ‖r(t)‖2/‖r(t−1)‖2
18: p(t) = r(t) + βp(t−1)

19: end for
20: Output: x̂ = x(Tmax)

In the preprocessing stage, we rewrite the MRC vector
yMRC = HHy as yMRC =

∑C
c=1 H

H
c yc, which decentralizes

the preprocessing stage. Specifically, each cluster computes
HH
c yc; the results of each cluster are then summed up in a

centralized manner to obtain the MRC output yMRC.
For the CG iteration stage, we need to update the estimated

transmit vector and a number of intermediate vectors required
by the CG algorithm (see [34] for the details). While most
operations are not directly dependent on global CSI H but on
intermediate results, the update of the following vector

e(t) =
(
ρI+HHH

)
p(t−1), (6)

requires direct access to the global channel matrix H and
thus, must be decentralized. Here, ρ = N0/Es for MMSE
equalization and ρ = 0 for zero-forcing equalization. It is key
to realize that the Gram matrix can be written as HHH =∑C
c=1 H

H
c Hc. Hence, we can reformulate (6) as

e(t) = ρp(t−1) +
∑C
c=1 H

H
c Hcp

(t−1). (7)

Put simply, by locally computing w
(t)
c = HH

c Hcp
(t−1) at each

antenna cluster, we can obtain the result in (7) by performing
the following centralized computations that do not require
global CSI: w(t) =

∑C
c=1 w

(t)
c and e(t) = ρp(t−1) +w(t).

The decentralized CG-based data detection algorithm is
summarized in Algorithm 2. The computations of e(t), x(t),
r(t), and p(t) do not require access to the (global) channel
matrix H and can be carried out in a centralized processing
unit. We must, however, broadcast the vector p(t) to each
antenna cluster before the decentralized update of w

(t+1)
c in

the next iteration can take place. Alternatively, we can directly
broadcast the consensus vector w(t), so that each antenna
cluster can simultaneously compute their own copy of e(t),
x(t), r(t), and p(t) in a decentralized manner to ensure the local
existence of p(t) for updating w

(t+1)
c . With this alternative

approach, we can completely shift the complexity from the
centralized processing unit to the local processing units, leaving
the calculation of w(t) as the only centralized computation in
a CG iteration. This approach also enables the concatenation

of data gathering and broadcasting, which can be implemented
using a single message-passing function (Section VI).5

IV. DECENTRALIZED DOWNLINK: BEAMFORMING

We now develop a decentralized beamforming algorithm
for the massive MU-MIMO downlink. We start by discussing
the general beamforming (or precoding) problem, and then
detail our ADMM-based beamforming algorithm. To simplify
notation, we omit the downlink superscript d.

A. Beamforming Problem

We solve the following beamforming problem

(P0) x̂ = arg min
x∈CB

‖x‖2 subject to ‖s−Hx‖2 ≤ ε.

which aims at minimizing the instantaneous transmit energy
while satisfying the precoding constraint ‖s−Hx‖2 ≤ ε. By
defining the residual interference as e = s − Hx̂, we see
that transmission of the solution vector x̂ of (P0) leads to
the input-output relation y = s + e + n with ‖e‖2 ≤ ε.
Hence, each user only sees their dedicated signal contaminated
with Gaussian noise n and residual interference e, whose
energy can be controlled by the parameter ε ≥ 0. By setting
ε = 0, this problem has a well-known closed-form solution
and corresponds to the so-called zero-forcing (ZF) beamformer,
which is given by x̂ = HH(HHH)−1s assuming that U ≤ B
and H is full rank. Our goal is to develop an algorithm that
computes the solution of (P0) in a decentralized fashion.

B. Decentralized Beamforming via ADMM

By introducing C auxiliary variables zc = Hcxc, c =
1, . . . , C, we can rewrite (P0) in the following equivalent form:

(P0′) x̂ = arg min
x∈CB

‖x‖2 subject to
∥∥s−∑C

c=1 zc
∥∥
2
≤ ε

and zc = Hcxc, c = 1, . . . , C.

Here, Hc is the downlink channel matrix at cluster c. The
solution to the constrained precoding problem (P0′) corresponds
to a saddle point of the scaled augmented Lagrangian function:

L(s, z,λ) = 1
2‖x‖

2
2 +

∑C
c=1

ρ
2‖Hcxc − zc − λc‖22 + X (z) ,

where X (z) is the characteristic function for the convex
constraint of the precoding problem (P0), i.e., X (z) = 0
if ‖s −

∑C
c=1 zc‖2 ≤ ε and X (z) = ∞ otherwise. The

problem (P0) corresponds to a sharing consensus problem
with regularization [30, Sec. 7.3].

In order to arrive at a decentralized precoding algorithm,
we now use the ADMM framework to find a solution to (P0′).
We initialize6 z

(1)
c = max{U/B, 1/C}s. We then perform the

5The Gram matrix Gc = HH
c Hc can be precomputed to avoid recurrent

computations (line 9 in Algorithm 2). However, practical systems only need a
small number of CG iterations, and HH

c Hcp(t−1) at line 9 is computed using
two matrix-vector multiplications, which avoids the expensive matrix-matrix
multiplication needed to form Gc.

6This initializer is a properly-scaled version of the MRC beamforming
vector and exhibits excellent error-rate performance in practice.

8

following three-step procedure until convergence or a maximum
number of iterations has been reached:

(P1) x(t+1)
c =arg min

xc∈CS

1
2‖xc‖

2
2 +

ρ
2

∥∥Hcxc − z
(t)
c − λ

(t)
c

∥∥2
2

(P2) z(t+1)=arg min
zc∈CU

C∑
c=1

ρ
2

∥∥Hcx
(t+1)
c −zc−λ(t)

c

∥∥2
2
+X (z)

(P3) λ(t+1)
c =λ(t)

c − γ
(
Hcx

(t+1)
c − z(t+1)

c

)
.

Here, zc is the local beamforming output and z is the consensus
solution of (P2). The parameter ρ > 0 affects the step size
and γ = 1 ensures convergence of the algorithm. While both
the Steps (P1) and (P3) can efficiently be computed in a
decentralized manner, it is not obvious how Step (P2) can be
decentralized. We next show the details to transform Step (P2)
into a form that requires simple global averaging.

C. ADMM Algorithm Details and Decentralization

1) Step (P1): Analogous to Step (E1), this step corresponds
to a LS problem that can be solved in closed form and
independently in every cluster. For a given cluster c = 1, . . . , C,
we can rewrite the minimization in (P1) as

x(t+1)
c = arg min

xc∈CS

∥∥∥∥[√ρ(z(t)c + λ
(t)
c)

0S×1

]
−
[√

ρHc

IS

]
xc

∥∥∥∥2
2

,

which has the following closed-form solution:

x(t+1)
c = A−1c HH

c (z(t)c + λ(t)
c).

Here, A−1c = (HH
c Hc + ρ−1IS)

−1 requires the computation
of an S × S matrix inverse. If the cluster size S is larger than
the number of users U , then we can use the Woodbury matrix
identity [32] to derive the following equivalent update:

x(t+1)
c = HH

c B−1c (z(t)c + λ(t)
c).

Here, B−1c = (HcH
H
c + ρ−1IU)

−1 requires the computation
of an U×U matrix inverse. We note that U , S, and the number
of iterations can determine which of the two x

(t+1)
c variations

leads to lower overall computational complexity.
2) Step (P2): The presence of the indicator function X (z)

makes it non-obvious whether this step indeed can be carried
out in a decentralized fashion. The next results shows that a
simple averaging procedure—analogously to that used in Step
(E1) for decentralized data detection—can be carried out to
perform Step (E2); the proof is given in Appendix A-B.

Lemma 2. The minimization in Step (P2) simplifies to

z(t+1)
c = w

(t)
c +max

{
0, 1− ε

‖s−v(t)‖2

}(
1
C s− v(t)

)
(8)

with v(t) = 1
Cw

(t) = 1
C

∑C
c=1 w

(t)
c ;w

(t)
c = Hcx

(t+1)
c − λ

(t)
c .

For ε = 0, we get an even more compact expression

z(t+1)
c = w(t)

c + 1
C s− v(t), c = 1, . . . , C

Evidently (8) only requires a simple averaging procedure, which
can be carried out by gathering local computation results from
and broadcasting the averaged consensus back to each cluster.

Algorithm 3 Decentralized ADMM-based Beamforming
1: Input: s, Hc, c = 1, 2, . . . , C, ρ, and γ
2: Preprocessing:
3: if S ≤ U then
4: A−1

c = (HH
c Hc + ρ−1IS)

−1

5: else
6: B−1

c = (HcH
H
c + ρ−1IU)

−1

7: end if
8: ADMM iterations:
9: Init: z(1)c = max{U/B, 1/C}s, λ(1)

c = 0

10: x
(1)
c = A−1

c HH
c z

(1)
c (S ≤ U) or HH

c B−1
c z

(1)
c (S > U)

11: for t = 2, 3, . . . , Tmax do
12: m

(t−1)
c = Hcx

(t−1)
c

13: w
(t−1)
c = m

(t−1)
c − λ

(t−1)
c

14: w(t−1) =
∑C

c=1 w
(t−1)
c // Consensus

15: z
(t)
c = w

(t−1)
c + C−1(s−w(t−1))

16: λ
(t)
c = λ

(t−1)
c − γ(m(t−1)

c − z
(t)
c)

17: if S ≤ U then
18: x

(t)
c = A−1

c HH
c (z

(t)
c + λ

(t)
c)

19: else
20: x

(t)
c = HH

c B−1
c (z

(t)
c + λ

(t)
c)

21: end if
22: end for
23: Output: x̂ = [x

(Tmax)
1 ;x

(Tmax)
2 ; · · · ;x(Tmax)

C]

3) Step (P3): This step can be performed independently in
each cluster after distributing w(t) and getting local z(t+1)

c .
The resulting ADMM-based decentralized beamforming

procedure is summarized in Algorithm 3, where we assume
ε = 0. To facilitate implementation of the decentralized
beamforming algorithm, we initialize z

(1)
c ,λ

(1)
c ,x

(1)
c and then

update the variables in the order of z
(t)
c ,λ

(t)
c ,x

(t)
c realizing

that the final output of the local beamformer is simply x
(Tmax)
c .

Note that Algorithm 3 slightly deviates from the step-by-step
precoding procedure in Section IV-B. We will analyze the
algorithm complexity7 in Section V-A and show the reference
implementation of Algorithm 3 in Section VI.

Remark 1. Although we propose a decentralized scheme
using CG for uplink data detection in Section III-D, a similar
decentralization method of CG is not applicable in the downlink.
Since we partition the uplink channel matrix H row-wise into C
blocks, we should similarly partition the downlink channel
matrix column-wise into blocks due to the channel reciprocity;
this prevents an expansion analogously to (7). Consequently,
we focus exclusively on ADMM-based beamforming.

V. RESULTS

We now analyze the computational complexity and consensus
bandwidth of our proposed algorithms. We also show error-rate
simulation results in LTE-like massive MU-MIMO uplink and
downlink systems. We investigate the performance/complexity
trade-offs and show practical operating points of our decentral-
ized methods under various antenna configurations, providing
design guidelines for decentralized massive MU-MIMO BSs.

7The matrices Pc = A−1
c HH

c or Pc = HH
c B−1

c could be precomputed
to avoid recurrent computations within the ADMM iterations (at line 18 or
20 in Algorithm 3). Instead, we directly compute A−1

c HH
c (z

(t)
c + λ

(t)
c) or

HH
c B−1

c (z
(t)
c +λ

(t)
c), which only requires two matrix-vector multiplications;

precomputing Pc requires costly matrix-matrix multiplications. Hence, our
complexity analysis in Section VI refers to Algorithm 3.

9

A. Computational Complexity

In Table I, we list the number of real-valued multiplications8

of our decentralized ADMM-based downlink beamforming
(ADMM-DL), ADMM-based uplink detection (ADMM-UL)
and CG-based uplink detection (CG-UL) algorithms. We also
compare the complexity to that of conventional, centralized ZF
downlink precoding (ZF-DL) and MMSE uplink detection
(MMSE-UL). For all decentralized algorithms and modes,
for example, the “S × S mode” when S ≤ U and the
“U × U mode” when S > U , we show the timing (TM)
complexity and arithmetic (AR) complexity. We assume that
the centralized computations take place on a centralized PE
while decentralized computations are carried out on multiple
decentralized PEs. For the centralized computations, both the
TM and AR complexities count the number of real-valued
multiplications on the centralized PE. For the decentralized
operations, the TM complexity only counts operations that take
place on a single local processing unit where all decentralized
local processors perform their own computations in parallel
at the same time, thus reflecting the latency of algorithm
execution; in contrast, the AR complexity counts the total
complexity accumulated from all local processing units, thus
reflecting the total hardware costs. The complexity of our
methods depends on the number of clusters C, the number of
users U , the number of BS antennas S per antenna cluster,
and the number of iterations Tmax to achieve satisfactory error-
rate performance. We also divide the complexity counts into
three parts: preprocessing before ADMM or CG iterations, first
iteration, and subsequent iterations. The complexity in the first
iteration is typically lower as many vectors are zero.

Table I reveals that preprocessing for ADMM exhibits
relatively high complexity, whereas CG-based detection is
computationally efficient. The per-iteration complexity of
ADMM is, however, extremely efficient (depending on the
operation mode). Overall, CG-based data detection is more
efficient than the ADMM-based counterpart, whereas the latter
enables more powerful regularizers. Centralized ZF or MMSE
beamforming or detection, respectively, require high complexity,
i.e., scaling with U3, but generally achieve excellent error-
rate performance [4]. We will analyze the trade-offs between
complexity and error-rate performance in Section V-D.

B. Consensus Bandwidth

The amount of data passed between the centralized process-
ing unit and the decentralized local units during ADMM or CG
iterations scales with the dimension of the consensus vector
w(t). For a single subcarrier, w(t) is a vector with U complex-
valued entries. If we perform detection or precoding for a total
of NCR subcarriers, then in each ADMM or CG iteration, we
need to gather U × NCR complex-valued entries from each
local processing unit for consensus vectors corresponding to
NCR subcarriers, and broadcast all NCR consensus vectors to
each local processor afterwards. Such a small amount of data
exchange relaxes the requirement on interconnection bandwidth

8We ignore data-dependencies or other operations, such as additions, division,
etc. While this complexity measure is rather crude, it enables fundamental
insights into the pros and cons of decentralized baseband processing.

among decentralized PEs, and avoids the large data transfer
between the entire BS antenna array and BS processor in a
conventional centralized BS. However, as we will show with
our GPU cluster implementation in Section VI, the interconnect
latency of the network critically effects the throughput of DBP.

C. Error-Rate Performance

We simulate our decentralized data detection and beamform-
ing algorithms in an LTE-based large-scale MIMO system.
For both the uplink and downlink simulations, we consider
OFDM transmission with 2048 subcarriers in a 20 MHz
channel, and incorporate our algorithms with other necessary
baseband processing blocks, including 16-QAM modulation
with Gray mapping, FFT/IFFT for subcarrier mapping, rate-5/6
convolutional encoding with random interleaving and Viterbi-
based channel decoding. We generate the channel matrices
using the Winner-II channel model [37] and consider channel
estimation errors, i.e., we assume a single orthogonal training
sequence per user and active subcarrier.

In Figure 2, we show the coded bit error-rate (BER)
performance against average SNR per receive antenna for
decentralized ADMM detection (Figure 2(a)), for decentralized
CG detection (Figure 2(b)) in the uplink, and for decentralized
ADMM beamforming (Figure 2(c)) in the downlink. We
consider various antenna configurations. We fix the number
of users U = 16, and set S = 8 (for S ≤ U case) or S = 32
(for S > U case), and scale the total BS antenna number
B = S × C from 64 to 512 by choosing C = 8 and C = 16.

We see that for all the considered antenna and cluster
configurations, only 2-to-3 ADMM or CG iterations are
sufficient to approach the performance of the linear MMSE
equalizer. For the S > U case, even a single ADMM
iteration enables excellent BER performance for detection and
beamforming without resulting in an error floor. We note that
the amount of consensus information that must be exchanged
during each ADMM or CG iteration is rather small. Hence,
our decentralized data detection and beamforming algorithms
are able to achieve the BER of centralized solutions without
resulting in prohibitive interconnect or I/O bandwidth—this
approach enables highly scalable and modular BS designs with
hundreds or thousands of antenna elements.

D. Performance/Complexity Trade-off Analysis

Figure 3 illustrates the trade-off between error-rate perfor-
mance and computational complexity of our proposed methods.
As a performance metric, we consider the minimum required
SNR to achieve 1% BER; the complexity is characterized by
the TM complexity and depends on the number of ADMM or
CG iterations (the numbers next to the curves). As a reference,
we also include the BER performance of centralized MMSE
data detection and ZF beamforming (dashed vertical lines).

For the uplink, Figures 3(a) and 3(b) show the trade-offs for
ADMM-based and CG-based data detection, respectively. We
see that only a few CG iterations are sufficient to achieve near-
MMSE performance whereas ADMM requires a higher number
of iterations to achieve the same performance. CG-based data
detection exhibits the better trade-off here, and is the preferred

10

TABLE I
COMPUTATIONAL COMPLEXITY OF CENTRALIZED AND DECENTRALIZED DATA DETECTION AND BEAMFORMING.

Algorithm Mode Preprocessing 1st iteration Subsequent iterations (each)

ADMM-DL
S × S TM 2US2 + 10

3
S3 − 1

3
S 4SU + 4S2 8SU + 4S2 + 6U + 1

AR C(2US2 + 10
3
S3 − 1

3
S) C(4SU + 4S2) C(8SU + 4S2 + 2U) + 4U + 1

U × U TM 2SU2 + 10
3
U3 − 1

3
U 4SU + 4U2 8SU + 4U2 + 6U + 1

AR C(2SU2 + 10
3
U3 − 1

3
U) C(4SU + 4U2) C(8SU + 4U2 + 2U) + 4U + 1

ADMM-UL
S × S TM 2US2 + 10

3
S3 + 4US + 4S2 − 1

3
S 2U 8SU + 4S2 + 4U

AR C(2US2 + 10
3
S3 + 4US + 4S2 − 1

3
S) 2U C(8SU + 4S2 + 2U) + 2U

U × U TM 2SU2 + 10
3
U3 + 4SU + 4U2 − 1

3
U 2U 4U2 + 6U

AR C(2SU2 + 10
3
U3 + 4SU + 4U2 − 1

3
U) 2U C(4U2 + 4U) + 2U

CG-UL TM 4SU + 2U 8SU + 6U 8SU + 12U
AR 4CSU + 2U C(8SU + 4U) + 2U C(8SU + 10U) + 2U

Centralized ZF-DL 6CSU2 + 10
3
U3 + 4CSU − 4

3
U

MMSE-UL 6CSU2 + 10
3
U3 + 4CSU − 1

3
U

method. However, for scenarios such as U < S, ADMM-based
detection exhibits no error floor, even for a single iteration,
while CG-based data detection performs rather poorly at one
iteration. In addition, our ADMM-based method supports more
sophisticated regularizers (such as the BOX regularizer).

For the downlink, Figure 3(c) shows our proposed ADMM-
based beamformer. We see that only a few iterations (e.g., 2 to
3 iterations) are necessary to achieve near-optimal performance.
In addition, for small antenna cluster sizes (e.g., S = 8), the
complexity is comparable to CG-based detection; for large
antenna cluster sizes, the complexity is only 2× higher.

VI. GPU CLUSTER IMPLEMENTATION

General purpose computing on GPU (GPGPU) is widely
used for fast prototyping of baseband algorithms in the context
of reconfigurable software-defined radio (SDR) systems [35],
[38], [39]. We now present reference implementations of
the proposed decentralized data detection and beamforming
algorithms on a GPU cluster. We consider a wideband scenario,
which enables us to exploit decentralization across subcarriers
and in the BS antenna domain. For all our implementations,
we use the message passing interface (MPI) library [40] to
generate C independent processes on C computing nodes in
the GPU cluster, where each process controls a GPU node for
accelerating local data detection or beamforming using compute
unified device architecture (CUDA) [41]. Data collection and
broadcasting among GPUs nodes is realized by MPI function
calls over a high-bandwidth Cray Aries [42] and Infiniband [43]
interconnect. We benchmark our implementations for a variety
of antenna and cluster configurations to showcase the efficacy
and scalability of DBP to large antenna arrays with decentral-
ized computing platforms.

A. Design Mapping and Optimization Strategies

We next discuss the implementation details and optimizations
that achieve high throughput with our decentralized algorithms.

1) Optimizing kernel computation performance: The local
data detection and beamforming computations in each cluster
are mapped as GPU kernel functions, which can be invoked
with thousands of threads on each GPU node to realize

inherent algorithm parallelism and to exploit the massive
amount of computing cores and memory resources. All of
our decentralized algorithms mainly require matrix-matrix
and matrix-vector multiplications. The ADMM methods also
involve an explicit matrix inversion step. Such computations
are performed efficiently using the cuBLAS library [44], a
CUDA-accelerated basic linear algebra subprograms (BLAS)
library for GPUs. We use the cublasCgemmBatched
function to perform matrix-matrix multiplications and matrix-
vector multiplications, and use cublasCgetrfBatched
and cublasCgetriBatched to perform fast matrix in-
versions via the Cholesky factorization followed by forward-
backward substitution [45]. For these functions, “C” implies that
we use complex-valued floating point numbers and “Batched”
indicates that the function can complete a batch of computations
in parallel, which are scaled by the batchsize parameter of
the function with a single function call. Since the local data
detection or beamforming problems are solved independently
for each subcarrier, we can group a batch of subcarriers
and process them together to achieve high GPU utilization
and throughput. For each data detection or beamforming
computation cycle, we define Nsym OFDM symbols, each
including Nsc subcarriers, as the total workload to be processed
by such Batched kernel function calls. We assume that the
channel remains static for Nsym symbols.

For the preprocessing stage, the matrix-matrix multiplications
and matrix inversions, which only depend on Hc, can be
calculated with batchsize = Nsc for Nsc subcarriers in
an OFDM symbol, and then broadcast to all Nsym symbols
inside GPU device memory to reduce complexity. For the
matrix-vector multiplications, we invoke cuBLAS functions
with batchsize=Nsc ×Nsym, because these computations
depend on transmit or receive symbols as well.

For all other types of computations, such as vector ad-
dition/subtraction and inner product calculations, we use
customized kernel functions. In this way, we can combine
several vector computation steps into a single kernel, and
take advantage of local registers or shared memories to
store and share intermediate results instead of using slower
GPU device memories and multiple cuBLAS functions. Vector

11

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C8-B64

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C16-B128

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S32-C8-B256

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

Bi
t e

rr
or

-r
at

e
U16-S32-C16-B512

MMSE
MRC
ADMM-D:Iter1
ADMM-D:Iter2
ADMM-D:Iter3
ADMM-D:Iter4
ADMM-D:Iter5

(a) Error-rate performance of decentralized ADMM uplink data detection.

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C8-B64

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C16-B128

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S32-C8-B256

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

Bi
t e

rr
or

-r
at

e

U16-S32-C16-B512

MMSE
MRC
CG-D:Iter1
CG-D:Iter2
CG-D:Iter3
CG-D:Iter4
CG-D:Iter5

(b) Error-rate performance of decentralized CG uplink data detection.

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C8-B64

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C16-B128

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S32-C8-B256

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

Bi
t e

rr
or

-r
at

e

U16-S32-C16-B512

ZF
MRC
ADMM-B:Iter1
ADMM-B:Iter2
ADMM-B:Iter3
ADMM-B:Iter4
ADMM-B:Iter5

(c) Error-rate performance of decentralized ADMM downlink beamforming.

Fig. 2. Bit error-rate (BER) performance of decentralized data detection and beamforming; we use the notation U − S − C −B (representing the number of
users U , antennas per clusters S, clusters C, and BS antennas B) as subtitle of each figure to indicate the corresponding antenna and cluster configuration.

addition/subtraction for Nsc × Nsym number of U -element
vectors exposes explicit data parallelism and can proceed with
Nsc ×Nsym × U GPU threads in parallel. However, the inner
product for each pair of U -dimensional vectors requires internal
communication among a group of U threads, each thread
controlling an element-wise multiplication, to be reduced to a
sum. A typical way for such a reduction is to resort to the shared
memory, an on-chip manageable cache with L1 cache speed,
where a certain group of U threads associated with a vector
sums up their element-wise multiplication results to a shared
variable atomically, for example, using the atomicAdd CUDA
function call. However, shared memory typically suffers from
higher latency (compared to that of local registers) and also
from possible resource competition among multiple threads.
In the CG-based data detector, we utilize the warp shuffle
technique, which is supported by Kepler-generation GPUs
for efficient register-to-register data shuffling among threads
within a thread warp, for faster parallel reduction. We use the
__shfl_xor(var,laneMask) intrinsic, which retrieves
the register value of variable var from a certain thread
with lane ID source_id for the calling thread with lane ID
dest_id within the same warp, where source_id satisfies:
source_id XOR dest_id = laneMask, XOR indicating
bitwise exclusive or. In this way, the parallel sum reduction

for the inner product of two U -element vectors can be realized
by var=__shfl_xor(val,laneMask)+var in log2(U)
iterations on a reduction tree with initial laneMask = U , and
laneMask reduced to half in each iteration. Finally, each of
the U threads will have a copy of the inner-product result stored
in its own var, i.e., the above process is actually an operation
of allreduce rather than reduce, which facilitates downstream
computations in which each thread requires the value of the
inner product. Here, we assume that the number of user
antennas satisfies U ≤ warpsize = 32 and is a power of two,
for example, U = 8 or U = 16. Otherwise, we can resort to the
alternative vector inner product solution by atomicAdd using
shared memory. The optimizations described above enable the
computation of each iteration using Nsc ×Nsym × U threads
using fast on-chip memory resources and efficient inter-thread
communication schemes that avoid blocking.

2) Improving message passing efficiency: Message passing
latency is critical to the efficiency of our design. For our
decentralized algorithms, the consensus operations require data
collection and sharing among C GPU nodes. This can be
realized by MPI collective function calls for inter-process
communication among C controlling processes with messages
of size Nsc ×Nsym × U complex samples. More specifically,
we choose the MPI_Allreduce function to sum (and then

12

-5 0 5 10 15
0

1

2

3

4

5 x 104

iter2
iter3iter4

iter5

iter2
iter3

iter4
iter5

iter1iter2iter3iter4iter5

iter1iter2iter3iter4iter5

Minimum SNR [dB] to achieve 1% BER

Ti
m

in
g

(T
M

) C
om

pl
ex

ity

MMSE S8-C8
ADMM-D S8-C8
MMSE S8-C16
ADMM-D S8-C16
MMSE S32-C8
ADMM-D S32-C8
MMSE S32-C16
ADMM-D S32-C16

(a) UL ADMM-based data detection.

-5 0 5 10 15
0

1

2

3

4

5 x 104

iter3iter4iter5

iter2iter3iter4iter5

iter2

iter3

iter4

iter5

iter2

iter3

iter4

iter5

Minimum SNR [dB] to achieve 1% BER

Ti
m

in
g

(T
M

) C
om

pl
ex

ity

MMSE S8-C8
CG-D S8-C8
MMSE S8-C16
CG-D S8-C16
MMSE S32-C8
CG-D S32-C8
MMSE S32-C16
CG-D S32-C16

(b) UL decentralized CG-based data detection.

-5 0 5 10 15
0

1

2

3

4

5

6 x 104

iter2iter3iter4iter5

iter2iter3iter4iter5

iter1

iter2

iter3

iter4

iter5

iter1

iter2

iter3

iter4

iter5

Minimum SNR [dB] to achieve 1% BER

Ti
m

in
g

(T
M

) C
om

pl
ex

ity

ZF S8-C8
ADMM-B S8-C8
ZF S8-C16
ADMM-B S8-C16
ZF S32-C8
ADMM-B S32-C8
ZF S32-C16
ADMM-B S32-C16

(c) DL ADMM-based beamforming.

Fig. 3. Performance/complexity trade-off of decentralized data detection and beamforming in an LTE-like massive MU-MIMO system with U = 16 users.

average) vectors across nodes. We then broadcast the resulting
consensus vector w to all local nodes within this single collec-
tive MPI function call. Typically, MPI_Allreduce operates
on the CPU’s memory and requires GPU arrays to be copied
into a CPU memory buffer before calling MPI_Allreduce.
To eliminate redundant memory copy operations, we take
advantage of CUDA-aware MPI [46] and GPUDirect remote
device memory access (RDMA) techniques [47], which enable
the MPI function to explicitly operate on GPU memories
without using a CPU intermediary buffer. This results in
reduced latency and higher bandwidth.

B. Implementation Results

We implemented our algorithms on a Navy DSRC Cray
XC30 cluster [48] equipped with 32 GPU nodes connected by
a Cray Aries network interface. Each node has a 10-core Intel
Xeon E5-2670v2 CPU and an Nvidia Tesla K40 GPU with 2880
CUDA cores and 12 GB GDDR5 memory. The hybrid MPI and
CUDA designs are compiled by Nvidia’s nvcc compiler and
the Cray compiler, and linked with CUDA’s runtime library,
the cuBLAS library and Cray MPICH2 library. We benchmark
the latency (in milliseconds) and throughput (in Mb/s) of our
implementations based on CPU wall-clock time.

Table II summarizes the latency and throughput performance
of ADMM-based data detection, CG-based data detection,
and ADMM-based beamforming, depending on the number
of iterations Tmax. We consider a scenario with 64-QAM, a
coherence interval of Nsym = 7 symbols, and Nsc = 1200
active subcarriers, which reflects a typical slot of a 20 MHz
LTE frame. We fix the number of users to U = 16 and show
results for two scenarios: (i) U ≥ S with S = 8, and (ii) U ≤ S
with S = 32. For each scenario, we vary the number of BS
antennas as B = CS for different cluster sizes C ∈ {8, 16, 32}.

We see that by increasing the number of clusters C, and
hence the total number of BS antennas B, the achieved through-
put degrades only slightly; this demonstrates the excellent
scalability of DBP to large antenna arrays. Furthermore, we
see that for a given number of clusters C, the throughput
for the S = 32 case is smaller than that of the S = 8
case. The reason for this behavior is the fact that having
a large number of antennas per cluster S leads to a higher

complexity associated with larger Gram matrix multiplications
in each local processing unit while supporting more total BS
antennas. For example, for C = 32 and S = 32, we have
B = 1024 BS antennas and achieve relatively high throughput.
We also see that the CG detector has comparable or higher
performance than the ADMM detector for most cases due to
its lower complexity. Interestingly, the ADMM beamformer
can enable even higher performance than both ADMM and
CG detectors. In the S = 8 case, for example, over 1Gb/s
of beamforming throughput can be achieved using a single
ADMM iteration. This is because a single ADMM beamformer
iteration (Algorithm 3) only requires local computations but
no message passing, while ADMM and CG detectors require
message passing. This indicates that, despite the optimizations
described above, message passing latency still has a crucial
effect on performance and further improvements in messaging
may yield even higher data rates.

Remark 2. We emphasize these GPU cluster implementations
serve as a proof-of-concept to showcase the efficacy and
design scalability of DBP to large BS antenna arrays. The
achieved throughputs are by no means high enough for 5G
wireless systems, which is mainly a result of the relatively
high interconnect latency. Nevertheless, we expect to achieve
throughputs in the Gb/s regime on FPGA or ASIC platforms
which offer higher computing efficiency and significantly lower
interconnect latency (e.g., using Xilinx’s GTY [49] or Aurora
protocols [50]) than that of the considered GPU cluster.

VII. CONCLUSIONS

We have proposed a novel decentralized baseband processing
(DBP) architecture for massive MU-MIMO BS designs that
mitigates interconnect and I/O bandwidth and complexity
bottlenecks. DBP partitions the BS antenna array into in-
dependent clusters which perform channel estimation, data
detection, and beamforming in a decentralized manner by
exchanging only a small amount of consensus information. The
proposed data detection and beamforming algorithms achieve
near-optimal performance at low complexity. Furthermore,
our simple consensus algorithms have minimal bandwidth
requirements. Our GPU cluster implementation shows that
the proposed method scales well to BS designs with thousands

13

TABLE II
LATENCY (L) IN [MS] AND THROUGHPUT (T) IN [MB/S] FOR DECENTRALIZED DATA DETECTION AND BEAMFORMING (U = 16).

S 8 8 8 32 32 32
C 8 16 32 8 16 32
B 64 128 256 256 512 1024

Iter. L / T L / T L / T L / T L / T L / T

ADMM-based data detection

1 2.371 / 340.1 2.472 / 326.2 2.549 / 316.4 4.672 / 172.6 4.767 / 169.2 4.832 / 166.9
2 6.207 / 129.9 6.493 / 124.2 6.696 / 120.4 8.313 / 97.00 8.606 / 93.70 8.802 / 91.62
3 9.875 / 81.66 10.34 / 77.99 10.70 / 75.36 11.99 / 67.25 12.45 / 64.77 12.80 / 63.00
4 13.53 / 59.60 14.19 / 56.83 14.67 / 54.97 15.67 / 51.46 16.26 / 49.59 16.76 / 48.11
5 17.20 / 46.88 18.04 / 44.70 18.66 / 43.22 19.31 / 41.76 20.19 / 39.94 20.76 / 38.84

CG-based data detection

1 4.163 / 193.7 4.367 / 184.7 4.505 / 179.0 4.655 / 173.2 4.845 / 166.4 4.984 / 161.8
2 6.168 / 130.7 6.457 / 124.9 6.661 / 121.1 6.650 / 121.3 6.930 / 116.4 7.150 / 112.8
3 8.161 / 98.81 8.544 / 94.38 8.810 / 91.53 8.651 / 93.21 9.021 / 89.39 9.314 / 86.58
4 10.17 / 79.29 10.63 / 75.86 10.94 / 73.71 10.63 / 75.86 11.12 / 72.52 11.45 / 70.43
5 12.14 / 66.43 12.73 / 63.35 13.12 / 61.46 12.62 / 63.90 13.19 / 61.14 13.61 / 59.25

ADMM-based beamforming

1 0.747 / 1079.5 0.747 / 1079.5 0.749 / 1076.6 2.790 / 289.0 2.791 / 289.0 2.799 / 288.1
2 2.930 / 275.2 3.032 / 266.0 3.106 / 259.6 5.053 / 159.6 5.154 / 156.5 5.232 / 154.1
3 4.964 / 162.4 5.153 / 156.5 5.289 / 152.5 7.101 / 113.6 7.284 / 110.7 7.411 / 108.8
4 7.006 / 115.1 7.244 / 111.3 7.473 / 107.9 9.096 / 88.65 9.392 / 85.86 9.599 / 84.01
5 9.021 / 89.39 9.380 / 85.97 9.648 / 83.58 11.11 / 72.58 11.51 / 70.06 11.79 / 68.39

of antenna elements, and demonstrates that DBP enables the
deployment of modular and scalable BS architectures for
realistic massive MU-MIMO systems.

There are many avenues for future work. A rigorous error-
rate performance analysis of the proposed algorithms is an open
research topic. The development of decentralized algorithms
for other 5G waveform candidates, such as SC-FDMA, FMBC,
or GFDM, is left for future work. Finally, an implementation of
DBP algorithms on architectures with low interconnect latency,
such as FPGA or ASIC clusters, is part of ongoing work.

APPENDIX A
PROOFS

A. Proof of Lemma 1

We start by reformulating Step E2 as follows:

s(t+1) = arg min
s∈CU

g(s) +
∑C
c=1

1
2

∥∥∥s−w
(t)
c

∥∥∥2
2
, (9)

where we use the shorthand w
(t)
c = z

(t+1)
c + λ

(t)
c . Let v(t) =

1
Cw

(t) = 1
C

∑C
c=1 w

(t)
c . Then, we can complete the square in

the sum of the objective function of (9), which yields∑C
c=1

∥∥∥s−w
(t)
c

∥∥∥2
2
=C‖s‖22 − sHCv(t) − (v(t))HCs

+
∑C
c=1

∥∥∥w(t)
c

∥∥∥2
2
= C

∥∥s− v(t)
∥∥2
2
+K,

where we define the constant K =
∑C
c=1

∥∥∥w(t)
c

∥∥∥2
2
−C

∥∥v(t)
∥∥2
2
.

Since K is independent of the minimization variable s in (9),
we obtain the equivalent minimization problem in (5).

B. Proof of Lemma 2
We start by reformulating Step (P2) as follows:

z(t+1) = arg min
z∈CUC ,‖s−Dz‖2≤ε

1
2

∥∥∥w(t)
all − z

∥∥∥2
2
, (10)

where we define D = 11×C ⊗ IU , zT = [zT1 · · · zTC], and
(w

(t)
all)

T = [(w
(t)
1)T · · · (w(t)

C)T] with w
(t)
c = Hcx

(t+1)
c −λ

(t)
c .

Now, observe that the minimization problem (10) is the orthog-
onal projection of w

(t)
all onto the constraint ‖s−Dz‖2 ≤ ε.

We have the following closed-form expression for z(t+1) [51]:

w
(t)
all +max

{
0, 1− ε

‖s−Dw
(t)
all‖2

}
DH(DDH)−1(s−Dw

(t)
all).

We can simplify this expression using the identity

(DDH)−1 = ((11×C ⊗ IU)(11×C ⊗ IU)
H)−1

= (C ⊗ IU)
−1 = C−1IU

and DHD = 1C×C ⊗ IU . With these expressions, we obtain
the following equivalent formula for z(t+1)

w
(t)
all +max

{
0, 1− ε

‖s−Dw
(t)
all‖ 2

}
(1
CD

Hs− 1
C (1C×C ⊗ IU)w

(t)
all),

which can be written using the per-cluster variables as

z(t+1)
c = w

(t)
c +max

{
0, 1− ε

‖s−v(t)‖2

}(
1
C s− v(t)

)
with v(t) = 1

Cw
(t) = 1

C

∑C
c=1 w

(t)
c ;w

(t)
c = Hcx

(t+1)
c −λ

(t)
c .

REFERENCES

[1] K. Li, R. Sharan, Y. Chen, T. Goldstein, J. R. Cavallaro, and C. Studer,
“Decentralized Beamforming for Massive MU-MIMO on a GPU Cluster,”

14

in Proc. of IEEE Global Conf. on Signal and Information Processing,
Dec. 2016.

[2] K. Li, R. Sharan, Y. Chen, T. Goldstein, J. R. Cavallaro, and C. Studer,
“Decentralized data detection for massive MU-MIMO on a Xeon Phi
cluster,” in Proc. of Asilomar Conf. on Signals, Systems, and Computers,
Oct. 2016.

[3] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
Overview of Massive MIMO: Benefits and Challenges,” IEEE J. Sel.
Topics in Sig. Proc., vol. 8, no. 5, pp. 742–758, Oct. 2014.

[4] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Commun. Mag., vol.
52, no. 2, pp. 186–195, Feb. 2014.

[5] http://www.cpri.info, Common public radio interface.
[6] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong,

“Argos: Practical Many-antenna Base Stations,” in Proc. of the 18th
Annual Intl. Conf. on Mobile Computing and Networking, Aug. 2012,
pp. 53–64.

[7] C. Shepard, H. Yu, and L. Zhong, “ArgosV2: A Flexible Many-antenna
Research Platform,” in Proc. of the 19th Annual Intl. Conf. on Mobile
Computing and Networking, Aug. 2013, pp. 163–166.

[8] J. Vieira, S. Malkowsky, K. Nieman, Z. Miers, N. Kundargi, L. Liu,
I. Wong, V. Öwall, O. Edfors, and F. Tufvesson, “A flexible 100-antenna
testbed for Massive MIMO,” in 2014 IEEE Globecom Workshops, Dec.
2014, pp. 287–293.

[9] Q. Yang, X. Li, H. Yao, Ji. Fang, K. Tan, W. Hu, J. Zhang, and Y. Zhang,
“BigStation: Enabling Scalable Real-time Signal Processing in Large
MU-MIMO Systems,” in Proc. of the ACM Conference on SIGCOMM,
Aug. 2013, pp. 399–410.

[10] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL
of Cellular Networks: How Many Antennas Do We Need?,” IEEE J. Sel.
Areas in Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[11] http://www.ni.com/white paper/52382/en/, 5G Massive MIMO Testbed:
From Theory to Reality.

[12] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H. P.
Mayer, L. Thiele, and V. Jungnickel, “Coordinated multipoint: Concepts,
performance, and field trial results,” IEEE Commun. Mag., vol. 49, no.
2, pp. 102–111, Feb. 2011.

[13] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno,
“Coordinated multipoint transmission/reception techniques for LTE-
advanced,” IEEE Wireless Commun., vol. 17, no. 3, pp. 26–34, June
2010.

[14] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata,
and K. Sayana, “Coordinated multipoint transmission and reception in
LTE-advanced: deployment scenarios and operational challenges,” IEEE
Commun. Mag., vol. 50, no. 2, pp. 148–155, Feb. 2012.

[15] J. Lee, Y. Kim, H. Lee, B. L. Ng, D. Mazzarese, J. Liu, W. Xiao, and
Y. Zhou, “Coordinated multipoint transmission and reception in LTE-
advanced systems,” IEEE Commun. Mag., vol. 50, no. 11, pp. 44–50,
Nov. 2012.

[16] V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow,
M. Sternad, R. Apelfrojd, and T. Svensson, “The role of small cells,
coordinated multipoint, and massive MIMO in 5G,” IEEE Commun.
Mag., vol. 52, no. 5, pp. 44–51, May 2014.

[17] C. Choi, L. Scalia, T. Biermann, and S. Mizuta, “Coordinated multipoint
multiuser-MIMO transmissions over backhaul-constrained mobile access
networks,” in IEEE 22nd Int. Symp. on Personal, Indoor and Mobile
Radio Communications (PIMRC), Sep. 2011, pp. 1336–1340.

[18] W. W. L. Ho, T. Q. S. Quek, S. Sun, and R. W. Heath, “Decentralized
Precoding for Multicell MIMO Downlink,” IEEE Trans. on Wireless
Commun., vol. 10, no. 6, pp. 1798–1809, June 2011.

[19] T. M. Kim, F. Sun, and A. J. Paulraj, “Low-Complexity MMSE Precoding
for Coordinated Multipoint With Per-Antenna Power Constraint,” IEEE
Signal Processing Letters, vol. 20, no. 4, pp. 395–398, April 2013.

[20] C. Shen, T. H. Chang, K. Y. Wang, Z. Qiu, and C. Y. Chi, “Distributed
Robust Multicell Coordinated Beamforming With Imperfect CSI: An
ADMM Approach,” IEEE Trans. on Sig. Proc., vol. 60, no. 6, pp.
2988–3003, June 2012.

[21] M. Peng, Y. Li, Z. Zhao, and C. Wang, “System architecture and key
technologies for 5G heterogeneous cloud radio access networks,” IEEE
Network, vol. 29, no. 2, pp. 6–14, Mar. 2015.

[22] C. Liu, K. Sundaresan, M. Jiang, S. Rangarajan, and G. K. Chang,
“The case for re-configurable backhaul in cloud-RAN based small cell
networks,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 1124–1132.

[23] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann, “Cloud RAN for Mobile Networks - A
Technology Overview,” IEEE Commun. Surveys Tutorials, vol. 17, no.
1, pp. 405–426, 2015.

[24] S. Malkowsky, J. Vieira, K. Nieman, N. Kundargi, I. Wong, V. Owall,
O. Edfors, F. Tufvesson, and L. Liu, “Implementation of Low-latency
Signal Processing and Data Shuffling for TDD Massive MIMO Systems,”
in IEEE Workshop on Sig. Proc. Systems, Oct. 2016.

[25] E. N. Tunali, M. Wu, C. Dick, and C. Studer, “Linear large-scale
MIMO data detection for 5G multi-carrier waveform candidates,” in
49th Asilomar Conf. on Signals, Systems, and Computers, Nov. 2015,
pp. 1149–1153.

[26] T. M. Schmidl and D. C. Cox, “Robust frequency and timing
synchronization for OFDM,” IEEE Trans. on Commun., vol. 45, no. 12,
pp. 1613–1621, Dec. 1997.

[27] C. Studer, S. Fateh, and D. Seethaler, “ASIC Implementation of Soft-
Input Soft-Output MIMO Detection Using MMSE Parallel Interference
Cancellation,” IEEE J. of Solid-State Circuits, vol. 46, no. 7, pp. 1754–
1765, July 2011.

[28] Peng Hui Tan, L. K. Rasmussen, and Teng Joon Lim, “Box-constrained
maximum-likelihood detection in CDMA,” in Proc. of Intl. Zurich
Seminar on Broadband Communications. Accessing, Transmission, Net-
working, 2000, pp. 55–62.

[29] C. Thrampoulidis, E. Abbasi, W. Xu, and B. Hassibi, “BER analysis of
the box relaxation for BPSK signal recovery,” in Proc. IEEE Intl. Conf.
on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2016, pp.
3776–3780.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1,
pp. 1–122, Jan. 2011.

[31] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating
direction method of multipliers,” Math. Programming, pp. 1–35, 2016.

[32] Nicholas J Higham, Accuracy and stability of numerical algorithms,
Siam, 2002.

[33] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge Univ.
Press, 2004.

[34] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “Conjugate gradient-based
soft-output detection and precoding in massive MIMO systems,” in 2014
IEEE Global Communications Conference, Dec 2014, pp. 3696–3701.

[35] K. Li, B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “Accelerating
massive MIMO uplink detection on GPU for SDR systems,” in IEEE
Dallas Circuits and Systems Conf. (DCAS), Oct. 2015.

[36] Tom Goldstein and Simon Setzer, “High-order methods for basis pursuit,”
UCLA CAM Report, pp. 10–41, 2010.

[37] WINNER Phase II Model.
[38] K. Li, M. Wu, G. Wang, and J. R. Cavallaro, “A high performance

GPU-based software-defined basestation,” in Proc. 48th Asilomar Conf.
on Signals, Systems and Computers, Nov. 2014, pp. 2060–2064.

[39] M. Wu, S. Gupta, Y. Sun, and J. R. Cavallaro, “A GPU implementation
of a real-time MIMO detector,” in IEEE Workshop on Sig. Proc. Systems,
Oct. 2009, pp. 303–308.

[40] https://computing.llnl.gov/tutorials/mpi, Message passing interface.
[41] http://docs.nvidia.com/cuda, Nvidia CUDA programming guide.
[42] Bob Alverson, Edwin Froese, Larry Kaplan, and Duncan Roweth, “Cray

XC Series Network,” Cray Inc., White Paper WP-Aries01-1112 (2012).
[43] https://en.wikipedia.org/wiki/InfiniBand, infiniband.
[44] http://docs.nvidia.com/cuda/cublas, Nvidia cuBLAS library.
[45] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed, The

Johns Hopkins Univ. Press, 1996.
[46] https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware mpi/,

CUDA-aware MPI.
[47] http://docs.nvidia.com/cuda/gpudirect rdma, GPU Direct RDMA.
[48] https://navydsrc.hpc.mil, Navy DSRC, Cray XC30 User Guide.
[49] Xilinx High Speed Serial.
[50] Xilinx Aurora Protocol.
[51] C. Studer, T. Goldstein, W. Yin, and R. G. Baraniuk, “Democratic

Representations,” arXiv preprint: 1401.3420, Apr. 2015.

