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ABSTRACT
In the massive multi-user multiple-input multiple-output (MU-
MIMO) downlink, traditional centralized beamforming (or
precoding), such as zero-forcing (ZF), entails excessive com-
plexity for the computing hardware, and generates raw base-
band data rates that cannot be supported with current inter-
connect technology and chip I/O interfaces. In this paper, we
present a novel decentralized beamforming approach that parti-
tions the base-station (BS) antenna array into separate clusters,
each associated with independent computing hardware. We
develop a decentralized beamforming algorithm that requires
only local channel state information and minimum exchange
of consensus information among the clusters. We demonstrate
the efficacy and scalability of decentralized ZF beamforming
for systems with hundreds of BS antennas using a reference
implementation on a GPU cluster.

1. INTRODUCTION

Massive MU-MIMO is believed to be a key technology for
realizing high spectral efficiency and link reliability in 5G
wireless systems [1]. In the massive MU-MIMO downlink,
data is transmitted from a base-station (BS) with hundreds or
thousands of antennas to tens of user terminals simultaneously
and in the same frequency band [2,3]. In the downlink, the BS
must perform beamforming to mitigate multi-user interference
(MUI), which can be accomplished with linear beamforming
algorithms that use channel state information acquired in the
uplink (users transmit pilot signals to the BS).

1.1. Limits of Centralized Baseband Processing

Existing algorithms that realize the full benefits of massive
MU-MIMO in systems with realistic antenna configurations,
such as zero-forcing (ZF) beamforming [4], rely on centralized
baseband processing. This approach requires that all channel
state information must be available at a centralized processing
node where a beamforming algorithm computes all baseband
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signals that are transmitted to the radio-frequency (RF) chains.
Such a traditional centralized processing approach poses sig-
nificant practical challenges for massive MU-MIMO systems.

Consider a 128 BS antenna system with 40MHz band-
width. For such a system, the raw baseband data rates to
be transmitted from the centralized processing node to the
RF chains easily exceed 200Gb/s. Such high data rates not
only pose severe implementation challenges for the computing
hardware that carries out the beamforming algorithms, but
the resulting baseband data stream also exceeds the I/O band-
width of integrated circuits and of high-speed interconnects,
such as the common public radio interface (CPRI) [5]. In
fact, existing massive MU-MIMO testbeds, such as the Argos
testbed [6], have shown that centralized baseband processing
required for ZF beamforming is infeasible with current com-
puting hardware and interconnect technology. Hence, existing
testbeds use maximum ratio combining (MRC), which enables
fully decentralized beamforming at the antenna elements at
significantly reduced spectral efficiency [4].

1.2. Contributions

This paper proposes a novel, decentralized beamforming ar-
chitecture for massive MU-MIMO systems. Our method parti-
tions the BS antennas into independent clusters, which perform
beamforming using the alternating direction method of multi-
pliers (ADMM) [7,8] in a decentralized manner. Each antenna
cluster performs beamforming locally for the associated RF
elements, with only little information exchange between the
clusters. Furthermore, each cluster only needs access to local
channel state information. To demonstrate the efficacy of our
approach, we provide reference implementation results on a
GPU cluster. Our results show that throughputs in the Gb/s
regime can be achieved in a decentralized architecture, while
providing superior error-rate performance compared to MRC.

2. DECENTRALIZED BEAMFORMING

2.1. Downlink System Model

We consider a massive MU-MIMO OFDM downlink system,
where the BS is equipped with B antennas and serves U ≤ B
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Fig. 1: Proposed decentralized beamforming architecture.

users. The BS performs beamforming to mitigate MUI and
computes x ∈ CB on each OFDM subcarrier using the associ-
ated transmit data symbol s ∈ OU where O is a constellation
(e.g., 16-QAM). The beamformed signal x is then transmitted
over the downlink channel, which is modeled as y = Hx+ n
per subcarrier. Here, H ∈ CU×B is the downlink channel ma-
trix, which is the transpose of the uplink channel matrix and
acquired via training; the vectors y ∈ CU and n ∈ CU contain
the received signals at each user and noise, respectively.

2.2. Decentralized Beamforming Architecture

We solve the following beamforming (or precoding) problem:

x̂ = argmin
x∈CB

‖x‖2 subject to s = Hx, (1)

which minimizes the instantaneous energy of the transmit
signal x̂ while satisfying the so-called beamforming constraint
s = Hx̂. By transmitting x̂, the equivalent downlink input-
output relation is given by y = s + n, which contains no
interference across users. We note that (1) is the well-known
ZF beamformer, which can be computed in closed form by
x̂ = HH(HHH)−1s assuming that H is full rank.

To avoid a centralized computation of x̂, we propose to
compute the solution to (1) in a decentralized fashion. Figure 1
shows the proposed architecture. We partition the BS antenna
array intoC clusters of equal size, such thatB = CS, where S
is number of BS antennas associated with each cluster. Each of
the C clusters performs decentralized beamforming using only
local1 channel state information Hc ∈ CU×S , c = 1, 2, . . . , C,
where H = [H1 H2 · · ·HC ], and with a minimum amount of
consensus information exchange across the clusters.

2.3. Decentralized Beamforming via ADMM

By introducing C auxiliary variables zc = Hcxc, c =
1, 2, . . . , C, we can rewrite the beamforming problem (1) as

x̂ = argmin
x∈CB

‖x‖2 subject to s =
∑C

c=1 zc. (2)

1Each cluster performs independent channel estimation in the uplink and
channel state information remains at each cluster and will not be distributed.

Algorithm 1 Decentralized Beamforming Algorithm
1: Input: s, Hc, c = 1, 2, . . . , C, ρ, γ
2: if S ≤ U then
3: A−1

c = (HH
c Hc + ρ−1IS)

−1

4: Qc = A−1
c HH

c , Pc = HcQc

5: else
6: B−1

c = (HcH
H
c + ρ−1IU )

−1

7: Qc = HH
c B−1

c , Pc = HcQc

8: Init: z(1)c = max{U/B, 1/C}s, λ(1)
c = 0, x

(1)
c = Qcz

(1)
c

9: for t = 2, 3, . . . , T do /* T = max. iteration number */
10: mc = Pc(z

(t−1)
c + λ

(t−1)
c )

11: wc = mc − λ
(t−1)
c

12: w =
∑C

c=1 wc /* Consensus */
13: z

(t)
c = wc + C−1(s−w)

14: λ
(t)
c = λ

(t−1)
c − γ(mc − z

(t)
c )

15: x
(t)
c = Qc(z

(t)
c + λ

(t)
c )

16: Output: x = [x1;x2; · · · ;xC ]

The solution to (2) corresponds to a saddle point of the so-
called scaled augmented Lagrangian function [9] defined as

L(s, z,λ) = 1

2
‖x‖22 +

C∑
c=1

ρ

2
‖Hcxc − zc − λc‖22 + X (z), (3)

where ρ > 0 is a regularization parameter, the vector λ =
[λ1;λ2; · · · ;λC ] contains C Lagrange multipliers, and X (z)
is the characteristic function for the affine constraint in (2),
i.e., X (z) = 0 if s =

∑C
c=1 zc and X (z) =∞ otherwise.

To solve (3) in a decentralized fashion, we use the ADMM
framework [9]. We initialize z

(1)
c = max{U/B, 1/C}s and

λ(1)
c = 0, c = 1, 2, . . . , C. We then perform the following

three-step procedure for the iterations t = 1, 2, . . . until con-
vergence or a maximum number of iterations has been reached:

x(t+1)
c = argmin

xc∈CS

c=1,...,C

1

2
‖xc‖22 +

ρ

2
‖Hcxc − z(t)c − λ(t)

c ‖22 (4)

z(t+1) = argmin
zc∈CU

c=1,...,C

C∑
c=1

ρ

2
‖Hcx

(t+1)
c − zc − λ(t)

c ‖22+X (z) (5)

λ(t+1)
c = λ(t)

c − γ
(
Hcx

(t+1)
c − z(t+1)

c

)
, c = 1, . . . , C. (6)

Here, z is the consensus vector defined as z = [z1; z2; · · · ; zC ],
and γ > 0 is a suitably-chosen stepsize parameter.

Equation (4) is a least-squares problem that can be solved
independently in every cluster in closed-form as follows:

x(t+1)
c = A−1c HH

c (z(t)c + λ(t)
c ), (7)

where A−1c = (HH
c Hc + ρ−1IS)

−1, which requires the com-
putation of an S × S matrix inverse. To reduce the amount
of recurrent computations, we can precompute A−1c HH

c and
reuse the result during the algorithm iterations. For situations
where the cluster size S is larger than the number of users U ,
we can perform an alternative update that requires the inver-
sion of a smaller matrix. In particular, we have the following
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Fig. 2: Symbol error-rate (SER) performance of decentralized beamforming (DB); we use the notation (C × S)× U .

equivalent update:

x(t+1)
c = HH

c B−1c (z(t)c + λ(t)c ). (8)

Here, B−1c = (HcH
H
c + ρ−1IU )

−1, which requires the com-
putation of an U × U matrix inverse.

Equation (5) can be carried out efficiently in our decen-
tralized architecture, but requires the exchange of consensus
information. To show this, we rewrite (5) as follows:

z(t+1) = argmin
z∈CUC ,s=Dz

1
2‖w − z‖22, (9)

where we define D = 11×C ⊗ IU with the Kronecker prod-
uct ⊗, and wT = [wT

1 · · · wT
C ] with wc = Hcx

(t+1)
c − λ(t)

c .
The problem (9) denotes the orthogonal projection of w onto
the constraint s = Dz, which has a closed-form solution [10]:

z(t+1) = w +DH(DDH)−1(s−Dw). (10)

Since (DDH)−1 = C−1IU and DHD = 1C×C ⊗ IU , we
have the following equivalent result

z(t+1) = w + (C−1DHs− C−1(1C×C ⊗ IU )w), (11)

which can be rewritten using per-cluster variables as

z(t+1)
c = wc +

(
C−1s− v

)
(12)

with v = C−1
∑C

c=1 wc and wc = Hcx
(t+1)
c − λ(t)

c . Evi-
dently, (12) only involves simple averaging across the clusters,
which will be carried out in the consensus phase.

Equation (6) is straightforward and can be carried out
independently at every cluster.

The resulting decentralized beamforming procedure is
summarized in Algorithm 1. To arrive at an efficient imple-
mentation of the above decentralized beamforming algorithm,
we compute the initial values of z(1)c ,λ(1)

c ,x
(1)
c and perform

ADMM iterations in the order of zc,λc,xc considering xc

is the final output of the local beamformer. To avoid redun-
dant computations during ADMM iterations, we also compute
intermediate variables Pc and Qc defined at lines 4 and 7.

2.4. Simulation Results

We simulate the symbol error-rate (SER) of the proposed de-
centralized beamformer (DB) in a massive MIMO system
with 128 total BS antennas and 8 user antennas with 16-QAM
modulation. Figure 2 compares the SER for different algo-
rithm iterations and various antenna configurations. We also
compare DB with centralized ZF beamforming and fully de-
centralized MRC beamforming as a baseline. We see that our
DB achieves near-optimal SER performance for a very small
number of iterations for various combinations ofC and S, even
with the fully distributed configuration (C = 128, S = 1). For
larger cluster sizes, e.g., S = 32, a single iteration is sufficient
to approach the performance of centralized ZF beamforming.
These results demonstrate the effectiveness of our approach.

3. IMPLEMENTATION ON A GPU CLUSTER

We now describe an implementation of Algorithm 1 on a GPU
cluster for the architecture shown in Figure 1. Here, we gener-
ate C total processes on the GPU cluster, with each controlling
a node for accelerating local beamforming computations on the
GPU using compute unified device architecture (CUDA) [11].
Those GPU nodes are connected with high-bandwidth net-
working interfaces and communicate using the message pass-
ing interface (MPI) [12] among their controlling processes
for local information collection and consensus sharing. Our
software-defined implementation demonstrates the potential
data-rate performance and design scalability of decentralized
beamforming on modern hardware platforms.

3.1. Accelerating Kernel Computation

We implement the local beamforming computations cor-
responding to S local BS antennas by GPU kernel func-
tions, which can be launched with thousands of parallel
threads on thousands of GPU computing cores within a
certain node for acceleration. As shown in Algorithm 1,
the dominant computations are matrix-matrix or matrix-
vector multiplications and matrix inversions, which can
be efficiently implemented using the cuBLAS library—a



CUDA-based basic linear algebra subprograms (BLAS)
library [13] targeting GPUs, with automatically tuned num-
ber of threads and thread-blocks according to computing
workloads. Specifically, we use cublasCgemmBatched
function for fast matrix-matrix or matrix-vector multiplica-
tions and use cublasCgetrfBatched function followed
by cublasCgetriBatched function for fast matrix inver-
sion based on the Cholesky decomposition. Here, we select
the Batched version of cuBLAS so that the function call can
perform the computation for a batch of matrix computations,
which, for example, corresponds to a batch of subcarriers
considering that the local beamforming is performed on a
per-subcarrier basis, in order to achieve high utilization of
GPU resources and to enable high throughput.

We define Nsym OFDM symbols, each including Nsc sub-
carriers, as the total local beamforming workload in each exe-
cution of beamforming kernel flow. As mentioned before, to
avoid redundant computations in ADMM iterations, we calcu-
late matrix Pc and Qc (line 4 or 7 of Algorithm 1) as interme-
diate results before the iteration starts. By assuming that the
channel Hc is static across every Nsym symbols within chan-
nel coherence time, we can calculate matrix Pc and Qc, which
depend on Hc, only for Nsc subcarriers in an OFDM symbol
using the above cuBLAS functions with batchsize = Nsc,
and then, broadcast the results to Nsym OFDM symbols in-
side GPU device memory to save computing complexity and
latency. We note, however, that for batched matrix-matrix or
matrix-vector multiplications during ADMM iterations (line
9-15 of Algorithm 1), we must launch cuBLAS functions with
batchsize = Nsc × Nsym since those computations are
dependent not only on Hc, but also on the transmit symbols.

The parameter update procedure during each ADMM iter-
ation requires some other types of local computations such as
vector addition, subtraction and scaling. Instead of resorting
to cuBLAS functions and exchanging results in between via
slow GPU device memory, we design customized kernel func-
tions, where we can combine several steps of computation, for
example, the vector operations on lines 13-15 of Algorithm 1,
into a single par update kernel, to utilize local registers
to store and share intermediate results. We launch the cus-
tomized kernels with Nsc × Nsym × U threads to perform
those vector operations during ADMM iteration in parallel
under a per-sample basis to exploit the data-level parallelism.

3.2. Reducing Message Passing Overhead

During the ADMM iteration, C MPI processes running on
the GPU cluster need to perform collective communication
with message size of Nsc × Nsym × U complex samples
on each node, for gathering local wc from C GPU nodes,
summing up to consensus w, and broadcasting w back to
all the nodes. Those three steps can be realized by a single
MPI function call, MPI Allreduce with sum operation, or
equivalently by MPI Reduce for gathering and summing up

Table 1: Latency (L) and throughput (T) performance.

U=16 C=8, B=64 C=16, B=128 C=32, B=256

Iter. L(ms) / T(Mb/s) L(ms) / T(Mb/s) L(ms) / T(Mb/s)

1 0.747 / 1079.5 0.747 / 1079.5 0.749 / 1076.6
2 2.930 / 275.2 3.032 / 266.0 3.106 / 259.6
3 4.964 / 162.4 5.153 / 156.5 5.289 / 152.5
4 7.006 / 115.1 7.244 / 111.3 7.473 / 107.9

followed by MPI Bcast for broadcasting [12]. Those MPI
functions typically operate on the CPU’s memory, requiring
extra GPU-to-CPU memory copy before function call and
extra CPU-to-GPU memory copy afterwards. Here, to reduce
the message passing overhead, in our design, we utilize CUDA-
aware MPI [14] and GPUDirect remote device memory access
(RDMA) [15] techniques, where MPI functions, for example,
MPI Allreduce, can operate on GPU memories to realize
direct GPU-to-GPU memory copy via modern high bandwidth
network interfaces, such as Infiniband, or Cray Aries [16],
etc., eliminating unnecessary GPU-to-CPU and CPU-to-GPU
memory copy operations and reducing the total latency.

4. PERFORMANCE RESULTS

We implemented our design on a Cray XC30 cluster [17],
hosted by the Navy DoD Supercomputing Resource Cen-
ter, which has a total of 32 GPU nodes. The GPU nodes
are connected with Cray Aries network interface, and each
node includes a 10-core Intel Xeon E5-2670v2 CPU and an
Nvidia Tesla K40 GPU card with 2880 CUDA cores and 12GB
GDDR5 memory, running with Cray Linux OS. The hybrid
CUDA and MPI source code is compiled with the Nvidia nvcc
compiler and the Cray compiler, linked with CUDA’s runtime
library, cuBLAS library and Cray MPICH2 library. Timing
characteristics are measured by CPU wall-clock time with
necessary synchronization of CPU timer and GPU kernels.

Table I summarizes latency and throughput performance
for different configurations with 64-QAM modulation and
beamforming workload of Nsym = 7 and Nsc = 1200 corre-
sponding to a “slot” of a 20 MHz LTE frame. We can scale
up the total number of BS antennas B = CS by increasing
the value of C. Here, we record the data rate performance for
C = 8, C = 16, andC = 32 cases at various ADMM iteration
numbers. As it can be seen, our GPU cluster implementation
achieves over 1.075Gb/s at 1 iteration, and over 255Mb/s at 2
iterations, which is sufficient for near-optimal error-rate perfor-
mance as discussed in Section 2.4. Interestingly, by increasing
the number of clusters C, our design suffers only from very
little throughput degradation, demonstrating that our decen-
tralized architecture provides scalability on modern hardware
platforms to support hundreds to thousands of BS antennas in
practice. We conclude by noting that the throughput of our ap-
proach can potentially be increased by an order of magnitude
with decentralized FPGA or ASIC implementations.
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