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Abstract. We develop a novel sparse low-rank block (SLoB) signal recovery framework that simultaneously
exploits sparsity and low-rankness to accurately identify peptides (fragments of proteins) from biological samples
via tandem mass spectrometry (TMS). To efficiently perform SLoB-based peptide identification, we propose two
novel recovery algorithms, an exact iterative method and an approximate greedy algorithm, and provide analytical
recovery guarantees. Using experiments with synthetic and real-world TMS data, we demonstrate that the proposed
framework and algorithms are capable of substantially outperforming existing sparse signal recovery techniques.

Key words. Sparse signal recovery; nuclear norm; convex optimization; recovery guarantees.

1. Introduction. We consider the identification of peptides (fragments of proteins) in biolog-
ical samples from data collected with a new tandem mass spectrometry (TMS) technique developed
at the IMSB, ETH Zurich, Switzerland [6, 7]. The identification of peptides is key for understand-
ing which proteins are present in biological samples. Moreover, since proteins control the processes
of the body, their understanding and identification is a fundamental area of research, including
(but not limited to) the fight against cancer [10] and Alzheimer’s disease [8]. The measurement
process of [6, 7] first fragments the peptides and then, passes the resulting mixture into a mass
spectrometer (MS). The mass spectrometer counts the number of particles that have a particular
mass-per-charge, or short m/z, over multiple measurement instants. Since the same fragment types
can have different charges, a fragment will have a mass spectrum that is non-zero at a number of
m/z values and measurement instants. Put simply, given a list of peptides and possible fragments,
our challenge is to detect which of these peptides occur in the sample, at what time instants, and
with which intensity.

2. System model and recovery problem. To model the MS measurement process of [6,7],
we assume that the m/z spectrum of a precursor (or peptide fragment) can be represented as a
vectodr in Rm, where each entry of the vector corresponds to the number of particles measured in
a particular m/z interval. Assume that we also have a list of n peptides (and their fragments) that
we are interested in detecting. The spectra of many peptides are known and can, e.g., be found

in a database such as the PeptideAtlas [5]. Let the ith peptide have m/z spectrum d
(0)
i (where we

use 0 to denote that this is the parent peptide) and its fi − 1 fragments will have spectra d
(j)
i ,

j = 1, . . . , fi − 1, where each vector dj is normalized to have unit `2 norm. Then, form the m× fi
dictionary Di =

[
d
(0)
i · · · d(fi−1)

i

]
, which characterizes the spectrum of the ith peptide and all its

fragments. Now, let Sj be the set of all precursors that are present at measurement instant tj , so
that the observation zj at MS measurement instant j is given by

zj =
∑
`∈Sj D`xj [`] + nj =

∑n
i=1 Dixj [i] + nj , (2.1)

∗The authors would like to thank R. Aebersold, L. Gillet, and G. Rosenberger for making their data available
and H. Bölcskei for his support. An extended version of this paper will appear in Chapter 4 of the Ph.D. Thesis of
G. Pope, “Structured Sparse Signal Recovery in General Hilbert Spaces”, ETH Zurich, Switzerland, Feb. 2013 [12].
†Dept. IT & EE, ETH Zurich, Switzerland; e-mail: gpope@nari.ee.ethz.ch
‡Dept. ECE, Rice University, Houston, TX; e-mail: studer@rice.edu
§Dept. of Biology, ETH Zurich, Switerland; e-mail: navarro@imsb.biol.ethz.ch
¶Dept. ECE, Rice University, Houston, TX; e-mail: richb@rice.edu

1



2

where xi[`] ∈ Rf` denotes how much of each fragment ion of the ith peptide is present at measure-
ment j. The vector nj models additive measurement noise. Since we observe j = 1, . . . , T spectra
over multiple measurement instants, we can rewrite (2.1) as

Z =
∑n
i=1 DiXi + N, (2.2)

with Z ∈ Rm×T , Xi ∈ Rfi×T and N ∈ Rm×T are matrices containing as columns the vectors zj ,
xj [i], and nj as appropriate. We are now interested in the following question: Given a collection
of observations Z and the dictionary blocks Di, how can we accurately and efficiently recover the
Xi, for i = 1, . . . , n, which correspond to the peptides that are present?

A straightforward way is to formulate the recovery problem as a combination of a multiple-
measurement vector (MMV) problem with block sparsity. Specifically, instead of taking the `2,1-
norm of the (vector) blocks (occurring in both the (MMV) and block-sparse recovery problem), we
take the Frobenius norm of the matrix blocks Xi. That is, we solve

(B-MMV)

{
minimize
X̂1,...,X̂n

∑n
i=1 ‖X̂i‖F

subject to ‖Z−
∑n
i=1DiX̂i‖F 6 ε,

where the parameter ε > 0 needs to be chosen larger than the Frobenius norm of the noise.
We emphasize that the (B-MMV) problem makes no assumption about the data in any of the

blocks Xi. However, for real-world measurements, each of these blocks will—at least ideally—be
rank one, and so that we can write Xi = σiuiv

T
i where ui contains the ratio of the fragmented

ions and vi can be regarded as a vector describing the flow rate of a precursor over time and all
of its fragment ions. The scalar σi then gives the intensity after ui and vi are normalized to unit
`2-norm. However, since a rank constraint is non-convex, we relax it to the nuclear norm [1, 3], to
obtain the following convex sparse low-rank block (SLoB) recovery problem:

(N-MMV)

{
minimize
X̂1,...,X̂n

∑n
i=1 ‖X̂i‖∗

subject to ‖Z−
∑n
i=1DiX̂i‖F 6 ε.

This SLoB recovery problem will be our key focus in the remainder of the paper.

3. Recovery guarantees. In order to gain insight into the recovery performance of (B-MMV)
and (N-MMV), we start by defining an appropriate notion of coherence. Assuming that each
block Di is normalized to have σmin(Di) = 1, we obtain a coherence parameter µD defined as

µD = max
k,` : k 6=`

sup
X 6=0

‖D∗kD`X‖∗
‖X‖∗

= max
k,` : k 6=`

σmax(D∗kD`). (3.1)

With this notion of coherence, we can deploy [12, Thm. 2.6] to prove the following theorem stating
when (B-MMV) and (N-MMV) perfectly recover the blocks Di from the noiseless observations Z.1

Theorem 1 (B-MMV and N-MMV uniqueness). Let Z =
∑n
i=1 DiXi and s ≤ n be the

number of non-zero blocks Xi, i = 1, . . . , n. If

s <
1

2

(
1 +

1

µD

)
, (3.2)

1Note that by following the approach of [2], the Theorem 1 can be extended to the case of stable recovery of the
blocks Di with arbitrary (but bounded) noise, given that (3.2) is satisfied.
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then the solutions of (B-MMV) and (N-MMV) using ε = 0 are both unique.
We emphasize that the results for synthetic and real-world data shown in Section 5 demonstrate

that (N-MMV) significantly outperforms (B-MMV) in most situations. However, there is no
dependence on the rank of the individual blocks in (3.2) of Theorem 1. The reason for this is the
fact that both optimization problems suffer from the same worst-case signals for which (3.2) is “just
violated.” Specifically, one can create particular instances of blocks Xi that are either full-rank
or rank one, which both (B-MMV) and (N-MMV) cannot distinguish (see [12, Sec. 4.3] for the
details). In order to obtain rank-dependent recovery conditions, one needs further assumptions on
the signals; the corresponding analysis of such conditions is ongoing work. Nevertheless, Theorem 1
provides insight into the mass/charge spectra of peptides (and their fragments) that can be recovered
via the SLoBs framework. In particular, Theorem 1 states that the dictionary blocks Di must be
sufficiently incoherent to enable perfect recovery from the MS measurements contained in Z.

4. Recovery algorithms. In this section, we briefly outline two different methods for solving
(N-MMV). The first method is an iterative algorithm that exactly solves the convex optimization
problem (N-MMV); the second method is a greedy algorithm that finds an approximate solution
in an efficient manner.

4.1. Iterative algorithm. The iterative algorithm outlined next relies on the alternating
direction method of multipliers (ADMM) [4, 11]; the algorithm in full detail can be found in [12,

Sec. 4.4.1]. We start by reformulating (N-MMV) and introduce the auxiliary matrices: Ŷi = X̂i,

i = 1, . . . , n, and Ŵ = Z−
∑n
i=1 DiX̂i. To arrive at an efficient way of solving N-MMV, we form

the augmented Lagrangian as follows:

minimize
X̂i,Ŷi,∀i,Ŵ

∑n
i=1 ‖X̂i‖∗ + β1

2

∑n
i=1 ‖X̂i − Ŷi −Λi‖2F + β2

2 ‖Ŵ − Z +
∑n
i=1 DiŶi −Ω‖2F

subject to ‖Ŵ‖F 6 ε,

which is an instance of the Douglas-Rachford variable splitting method [11]. The terms β1 and β2 as
well as the matrices Λi ∈ Rfi×T , i = 1, . . . , n, and Ω ∈ Rm×T correspond to Lagrange multipliers.

The resulting recovery algorithm consists of two nested loops. In the inner loop, we iteratively
minimize the objective function for the matrices X̂i, Ŷi, for i = 1, . . . , n, and Ŵ individually;
this requires singular-value shrinkage operations for X̂i, least-squares procedures for Ŷi, and a
projection onto the Frobenius-norm ball for Ŵ. After convergence of the inner loop, the Lagrange
multipliers Λi and Ω are updated in the outer loop of the algorithm. The algorithm continues with
the inner loop and then again the outer loop, repeating until it converges.

4.2. Greedy algorithm. We now outline a greedy alternative to solving the convex (N-MMV)
problem, which relies on the principles of orthogonal matching pursuit (OMP) [13]; the algorithm
in full detail can be found in [12, Sec. 4.4.2]. Concretely, the (N-OMP) algorithm operates as

follows. Assume that at the beginning of the ith iteration we have a solution {X̂(i)
1 , . . . , X̂

(i)
n } with

r
(i)
j = rank(X

(i)
j ) and i =

∑n
j=1 r

(i)
j . Then, we seek to

1. Identify the block X` in which we want to increment the rank, then set r
(i+1)
` = r

(i)
` + 1

and r
(i+1)
j = r

(i)
j for all j 6= `.

2. Find the matrices {X̂(i+1)
1 , . . . , X̂

(i+1)
n } that solve the following optimization problem:

minimize
X̃1,...,X̃n

∥∥∥Z−∑n
j=1DjX̃j

∥∥∥
F

subject to rank(X̃j) 6 r
(i+1)
j ∀j. (4.1)
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Figure 5.1. Empirical phase transition plots showing the region we can recover at least 99% of the signals with
Gaussian i.i.d. blocks. Each block Xi has dimension 10 × 10. Exploiting the low-rank structure via (N-OMP) and
(N-MMV-L) significantly outperforms the (B-MMV) based algorithms.

3. Update the residual by setting R(i+1) = Z−
∑n
k=1 DkX̂

(i+1)
k .

The first two steps are non-trivial and contrary to first appearances, the solution to (4.1) is not
just given by a singular value decomposition. Our own experiments have shown that selecting the
dictionary block Di most correlated to the residual is an effective strategy.

Our approach to solving (4.1) is based on the Wiberg algorithm [14]. To apply this method to

our problem, let UjΣjV
∗
j be the singular value decomposition of X̂j (which has rank rj) and set

Ũj = UjΣj and Ṽj = VjΣj . Then
∑n
i=1 DjXj =

∑n
i=1 DjUjΣjV

∗
j , and furthermore, for each j

we have [9, Sec. 4.3]

vec(DjXj) = vec(DjUjΣjV
∗
j ) = (IT ⊗DjŨj) vec(V∗j ) = (Ṽj ⊗Dj) vec(Uj).

Therefore, by fixing each of the Uj and Σj , for j = 1, . . . , n, we solve the linear least-squares
minimization problem

minimize
V1,...,Vn

∥∥∥vec(Z)−
[
IT ⊗(D1Ũ1) · · · IT ⊗(DnŨn)

] [
vec(V1)T · · · vec(Vn)T

]T∥∥∥
2
, (4.2)

to obtain an updated set of right-singular vectors {Vj}nj=1. Note that these problems can be solved
efficiently using conjugate gradient methods. Similarly, we can isolate Uj , j = 1, . . . , n, to get a
linear least-squares problem in the Uj . We then alternate between minimizing the set of matrices
{Vj}nj=1 and the set of matrices {Uj}nj=1 to arrive at the minimizer of (4.1).

5. Results. We now apply the two SLoB recovery algorithms to synthetic and real data and
examine their respective performance for a number of scenarios.

5.1. Synthetic results. We begin by presenting empirical phase transition plots in Figure 5.1.
Here we show the regions in which the algorithms are able to recover at least 99% of the tested
signals. We generate the ith rank-r (for r = 1, . . . , 10) block of size di × T by multiplying together
two matrices A ∈ Rdi×r and B ∈ Rr×T with i.i.d. Gaussian entries. We set n = 64, fi = 10
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Figure 5.2. Right singular vectors for one block. For the (B-OMP) solution, the dominant singular vector is
shown in black and the red line is the singular vector (corresponding to the 6th largest singular value) that most re-
sembles the (N-OMP) solution. We see that the rank-aware (N-OMP) method accurately recovers the time/intensity
behavior of the true solution, which is in stark contrast to (B-OMP) that ignores the low-rank structure.

(for all i) so that N = 640 and we take T = 10. We then sweep M from 80 to 640, and vary s,
which is the number of non-zero matrices Xi, from 4 to 64. We refer to M/d as the number of
block-measurements. We also compare these results to solving the same problem via (B-OMP)
and (B-MMV), which exhibited virtually no rank dependence. More specifically, both of these
methods achieved the same recovery performance regardless of the rank of each block.

Figure 5.1 clearly demonstrates that when dealing with low-rank blocks, our nuclear-norm
minimization approach is able to recover many more blocks, especially when the rank of the blocks is
close to one, than by solving (B-MMV) or using (B-OMP), a greedy variant to find an approximate
solution to (B-MMV). Intuitively this makes sense, since fewer parameters are required to specify a
rank-one matrix. Hence, we require fewer equations to uniquely specify the solution. Consequently,
by exploiting the low-rank structure, we can accurately recover many more non-zero blocks.

5.2. Hybrid real/synthetic experiments. To test our approach, we first create “synthetic
experiments” by using a real dictionary and creating an artificial set of observations Z, by randomly
generating the Xi (see [12, Sec. 4.5.2] for the details). We generated a dictionary from the molecular
description of the peptides, with an average of 51 fragments per peptide (the block-length). We then
quantized the dictionary and observations uniformly from 200 Th to 1000 Th in steps of 0.025 Th,
where Th refers to Thomsons (an m/z measure unit).

Let us take a closer look at a matrix Xi returned by (N-OMP) and (B-OMP), shown in
Figure 5.2. The solution returned by (N-OMP) is rank 1 and we see that the right singular vector,
corresponding to the flow rate, matches the true solution. However, the right singular vectors of
the (B-OMP) solution bear no resemblance to the true solution. The reason for this discrepancy
between the dominant singular vector of the (B-OMP) solution and the original solution stems
from the fact that each Di, despite being a tall matrix, is ill-conditioned. So although (B-OMP) is
able to identify the present peptides in the mixture, it cannot accurately decompose the sample into
its constituents. However, (N-OMP) imposes more structure into its solution, which enables us to
cope with ill-conditioned blocks and thus, returns a solution that is much closer to the original.

5.3. Experiments with real-world proteomics data. In this section, we test the SLoB
framework and recovery methods on actual proteomics data and analyzing three different samples
of peptides consisting of 342 known peptides, acquired from the Institute for Molecular Systems
Biology at ETH Zurich [6] and measured using the process described in [7] over a period of about 2
hours. Our calculations were performed across T = 1500 consecutive time-steps and the dictionary
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Table 5.1
Number of peptides identified via (B-OMP) and (N-OMP).

Sample # peptides (B-OMP) (N-OMP)

L120224 342 140 (41%) 317 (93%)
L120225 342 156 (46%) 321 (94%)
L120227 342 140 (41%) 319 (93%)

from Section 5.2. The results can be seen in Table 5.1 where we give: the number of peptides
in the sample, and the number of peptides identified using (B-OMP) and (N-OMP). We clearly
see that by exploiting the low-rank structure of the acquired MS measurements we are capable
of successfully recovering a significantly higher percentage of the peptides present, i.e., (N-OMP)
substantially outperforms (B-OMP) for real-world proteomics data.

6. Conclusion. We have have developed a novel sparse low-rank block (SLoB) framework
and corresponding recovery algorithms that are able to identify a large number of peptides in
real-world biological samples—significantly more than by using a näıve sparsity-based approach.
Our experimental results show that we can successfully distinguish overlapping peptides, even with
significantly fewer time measurements used. This suggests that we can analyze more complicated
samples and reduce the physical measurement time, which are key advantages in the field of pro-
teomics. We finally emphasize that the proposed SLoB framework is also applicable hyper-spectral
imaging. In particular, one can decompose a material into its constituent parts, i.e., the left singular
vectors would describe the mixture of materials and the right, the spatial locality. Investigating the
capabilities of SLoBs for hyper-spectral imaging is an interesting research direction.
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