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Identifying collaboration between learners in a course is an important challenge in education for two rea-
sons: First, depending on the courses’ rules, collaboration can be considered a form of cheating. Second, it
helps one to more accurately evaluate each learner’s competence. While such collaboration identification is
already challenging in traditional classroom settings consisting of a small number of learners, the problem
is greatly exacerbated in the context of both online courses or massively open online courses (MOOCs)
where potentially thousands of learners have little or no contact with the course instructor. In this work,
we propose a novel methodology for collaboration-type identification, which both identifies learners who are
likely collaborating and also classifies the type of collaboration employed. Under a fully Bayesian setting,
we infer the probability of learners’ succeeding on a series of test items solely based on graded response
data. We then use this information to jointly compute the likelihood that two learners were collaborating
and what collaboration model (or type) was used. We demonstrate the efficacy of the proposed methods on
both synthetic and real-world educational data; for the latter, the proposed methods find strong evidence
of collaboration among learners in two non-collaborative take-home exams.

Additional Key Words and Phrases: Bayesian model selection, cheating, collaboration identification, hy-
pothesis testing, online education, sparse factor analysis (SPARFA).

1. INTRODUCTION
1.1. Today’s challenges in identifying collaboration

A well-known challenge for educators is identifying collaboration among learners (or stu-
dents) in a course, test, or exam [Frary 1993; Wesolowsky 2000]. This task is important for
a number of reasons. The first and most obvious reason is that there are many educational
scenarios in which collaboration is prohibited and considered a form of cheating. Identifying
collaboration, in this instance, is important for maintaining fairness and academic integrity
in a course. The second reason is that collaboration among learners complicates the accurate
evaluation of a learner’s true level of competence. If, for example, a group of learners work
together on a set of homework problems, then it is difficult to evaluate the competence of
each individual learner as opposed to the competence of the group as a whole. This aspect
is especially important in scenarios where learners are simply copying the responses of a
single peer. In such a scenario, a series of correct answers among collaborative group mem-
bers could lead to the conclusion that all learners have mastered the material when—in
reality—only one learner in the group achieved proficiency.
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Manually identifying collaboration among learners is difficult enough when the class size
is moderately small, say 20-30 learners, where an instructor may have a reasonable knowl-
edge about the aptitudes and habits of each particular learner. The problem is exacerbated
as the class size increases to university-level classes with hundreds of learners. In the setting
of online education, such as massive open online courses (MOOCs), a manual identification
of learner collaboration (or cheating-through-collaboration) becomes infeasible, as poten-
tially thousands of learners may be enrolled in a course, without ever having face-to-face
interaction with an instructor [Pappano 2012|.

1.2. Automated collaboration identification

An alternative to manually identifying learners that collaborate is to rely on statistical
methods that sift through learner response data automatically. Such data-driven methods
look for patterns in learner answer data in order to identify potential collaborations. A
naive approach for automated identification of collaboration in educational datasets, such
as multiple-choice tests, would consist of simply comparing the answer patterns between
all pairs of learners and flagging learner pairs that exhibit a high degree of similarity. This
approach, however, is prone to fail, as it ignores the aptitude of the individual learners,
as well as the intrinsic difficulty of each test item or question [Levine and Donald 1979;
Wesolowsky 2000].

In order to improve on such a naive approach, a wealth of prior work exists on
developing statistically principled methods of collaboration detection. Many of these
methods focus on detecting the case of simple answer copying and a variety of statistical
tests have been derived for this use case [Wollack 2003; Sotaridona and Meijer 2002;
2003; Wesolowsky 2000]. The proposed methods typically involve two steps: First, they
estimate the probability that each learner will provide the correct response to each
question by fitting models to both learners and questions. Second, they examine the
actual answers provided by learners and compute a statistical measure on how likely
the learner response patterns are to have arisen by chance. While such methods for col-
laboration identification have led to promising results, they possess a number of limitations:

e The first limitation of prior work in statistical collaboration detection is the overwhelming
focus on multiple-choice testing. While multiple-choice exams are a fact of life in many
settings, they are very limiting. For example, creating useful multiple choice questions is
non-trivial and requires careful thought and planning [Haladyna et al. 2002; Rodriguez
1997]; this is especially true when creating effective wrong answers (lures) [Butler and
Roediger 2008]. Additionally, the type of knowledge that can be tested on multiple
choice exams is quite limited. This is especially true in fields such as STEM (science,
technology, engineering, and mathematics) as well as economics [Becker and Johnston
1999]. Hence, automated collaboration identification methods should be able to analyze
more general forms of learner response data.

e The second limitation is in the explanatory weakness of the methods used in the
existing collaboration identification literature for predicting the success of each learner
on each question. Learning analytics (LA) is concerned with jointly estimating learner
ability and question difficulty and using these estimates to predict future observations.
More advanced LA methods have the potential to further improve the performance of
automated collaboration identification.

e The third limitation is the use of simplistic models for how collaborative behavior

between learners manifests in learner response data. Concretely, these methods are
primarily concerned with the case of one learner copying the answers of another
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Fig. 1: Block diagram for our proposed methodology for collaboration-type identification.
The methodology consists of (i) learning analytics (Section 2) that model the success proba-
bilities between learners and questions from learner response data, (ii) collaboration models
(Section 3) for various types of real-world collaborative behavior, and (iii) collaboration
detection algorithms (Section 4) that jointly identify collaboration and classify it accord-
ing to one of the collaboration models. The collaboration graph summarizes the result of
the collaboration detection algorithm graphically. In this example, the collaboration graph
depicts collaboration on a final exam for an undergraduate electrical engineering course.
Collaboration was detected among three groups of learners. In two cases, collaboration is
classified as symbiotic (denoted by solid, dark blue lines). In the other case, collaboration
was classified as parasitic copying (denoted by the dashed, green line). Further details of
this real-world application example are given in Section 5.

learner. The method of [Wesolowsky 2000], for example, proposed the combination of
point-estimates of the learner’s success probability (which are estimated directly from
multiple-choice test results) and a basic model on the number of correspondences that
should arise between learners based on these success probabilities. However, this method
does not take into account the variety of complex ways that learners could collaborate,
ranging from simple copying to symbiotic collaboration. By employing a variety of
models for different types of collaborative scenarios, one could hope to improve overall
identification performance as well as provide valuable information to educators.

1.3. Contributions

This paper develops a novel methodology for collaboration-type identification, which jointly
identifies which learners engaged in collaboration and classifies the type of collaboration
employed. A block diagram of our methodology is shown in Figure 1. Our approach
overcomes the limitations of existing approaches described in Section 1.2. Concretely, we
make the following four contributions, each one corresponding to one of the four blocks
shown in Figure 1.

e Generic learner response data: Our methodology relies only on simple right/wrong
response data as opposed to multiple-choice responses (which usually contain multiple
options per question). This response model enables our approach to be applied to a
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much broader range of educational datasets than existing methods.

e Improved learning analytics: Our methodology utilizes the recently proposed SPARFA
(short for SPArse Factor Analysis) model proposed in [Lan et al. 2013], which has
been shown to have state-of-the-art performance for LA. We note, however, that the
algorithms employed are not tied to any particular LA method. In fact, any LA method
that estimates success probabilities for each learner—question pair can be utilized.
Furthermore, the LA method used in combination with our approach can either provide
point estimates or full posterior distributions of the success probabilities.

e Improved models for collaboration type: Our methodology proposes four novel models for
describing collaboration in real-world educational scenarios. By employing these models,
our methodology provides superior performance and increased flexibility in representing
real-world collaborative behavior.

e Nowel algorithms for collaboration-type identification: Our methodology provides two
novel algorithms for collaboration-type identification that fuse LA and collaboration
models. These algorithms have superior performance compared to state-of-the-art
algorithms for detecting collaboration in educational datasets.

1.4. Organization of the paper

The remainder of this paper is devoted to detailing our methodology for collaboration-
type identification as depicted in Figure 1. In Section 2, we review existing algorithms for
learning analytics, including a Bayesian variant of the approach of Rasch [Rasch 1993] as
well as the SPARFA framework [Lan et al. 2013|. In Section 3, we develop probabilistic
models for various types of collaborative behavior between pairs of learners. In Section 4,
we develop two novel algorithms for collaboration-type identification that make direct use of
LA and collaboration models to search for likely pairs of learners engaged in collaboration.
To demonstrate the efficacy of the proposed methodology, we validate our algorithms on
both synthetic and real-world educational data in Section 5. We conclude in Section 6. The
computational details of our methods are relegated to Appendices A, B, and C.

2. STATISTICAL APPROACHES FOR LEARNING ANALYTICS

As discussed above, naive methods for collaboration identification that simply compare
the pattern of right/wrong learner responses are prone to fail because they do not take
into account the ability of each learner and the difficulty of each question. We use the
term learning analytics (LA) to refer to methods that estimate the probability that a given
learner will be successful on a given question. LA is typically accomplished by specifying
models on both the learner abilities and the question difficulties. By fusing these, one
can formulate a statistical model and develop corresponding algorithms for estimating the
success probability of a given learner for each question. Recent approaches to LA enable
us to distinguish scenarios where two learners have highly similar response patterns due to
active collaboration as opposed to simply having similar abilities or a set of very easy/hard
questions, where learners jointly succeed/fail with high probability.

The collaboration identification methodology developed in this work is generic in that
one may use an arbitrary LA algorithm. In this section, we briefly summarize two of our
preferred approaches to LA, namely Bayesian Rasch and SPARFA. We will assume that the
datasets consist of learner response data for N learners and () questions. These questions can
be administered in a variety of settings, such as during an exam or as a series of homework
problems. For the sake of simplicity of exposition, we further assume that our data is fully
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observed; that is, each learner responds to every question. Extending our methods to the
case of partially observed data is straightforward.

2.1. Bayesian Rasch learning analytics

The Rasch model [Rasch 1960; 1993] is a simple, yet powerful approach to LA. This model
assumes that each learner can be adequately characterized by a single latent ability param-

eter, ¢; € R;e = 1,..., N. Large positive values of ¢; indicate strong abilities, while large
negative values indicate weak ability. Questions are also modeled by a single parameter
p; €R,j5=1,...,Q, with large positive values indicating easy questions and large negative

values indicating difficult questions. By defining the slack variables
Zij = ci+p, VisJ,

the Rasch model expresses the probability of user i answering question j correctly (with
Y;;j = 1) or incorrectly (with Y; ; = 0) using

Yvi’j ~ BET'(q)(ZiJ»7 VZ,]

Here, Ber(z) denotes a Bernoulli distribution with mean x, while the function ® denotes a
link function that maps the slack variable Z; ; into a probability in [0, 1]. The conventional
Rasch model deploys the inverse logistic link function defined as

exp(z)

(I)log(l') = m

Alternatively, one can use the inverse probit link function defined as

Bpua(e) = [ oxp(-22 /2.

An advantage of the inverse probit link function (over the inverse logistic link) is that,
when coupled with suitable prior probability distributions (i.e., Gaussian distributions) for
each parameter, it enables efficient Markov chain Monte-Carlo (MCMC) methods based on
Gibbs’ sampling [Gelman et al. 1995]. In what follows, we exclusively make use the inverse
probit link function and use the simplified notation ®(z) = ®pyo(z).

MCMC methods enable us to sample from the posterior distribution of each Rasch pa-
rameter of interest in a computationally tractable manner. Among these parameters is the
latent success probability p; ; = ®(Z; ;), which denotes the probability of user j correctly
responding to question ¢. Such a Rasch MCMC sampler will produce a series of samples from
the posterior distribution of p; ; that will be useful when developing the collaboration-type
detection algorithms in Section 4. We reserve the treatment of the full sampling details of
the Rasch MCMC sampler for Appendix A.

2.2. Sparse factor analysis (SPARFA) learning analytics
Like the Rasch model, SPARFA [Lan et al. 2013] characterizes the success probability
of a set of learners across multiple questions. In contrast, however, the SPARFA model
assumes that there are K latent factors, referred to as concepts, that govern the learners’
responses to these questions. In particular, SPARFA deploys the following model for the
graded right/wrong response data:

)/7;7‘7. ~ BGT((I)(ZZ‘J)) with Zi,j = WiTCj + iy VZ,] (].)
Here, the vector c; € RE, j=1,..., N, represents the concept mastery of the j learner,

with its k*™® entry representing the learner’s mastery of concept k. The vector w; € R¥
models the concept associations, i.e., encodes how question i is related to each concept. The
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scalar p; models the intrinsic difficulty of question i, where positive large values indicate
easy questions (as in the Rasch model).

Retrieving the parameters cj, w;, and p; from the set of graded learner responses Y ;
in (1) is, in general, an ill-posed inverse problem. To enable tractable inference, SPARFA
assumes that the number of concepts K is small compared to both the number of learners
and questions, i.e., K < N,Q. Furthermore, to both enable interpretability and allevi-
ate problems with model identifiability, SPARFA imposes non-negativity and sparsity on
the question—concept vectors w;. These assumptions are imposed on the SPARFA model
through the selection of the prior distributions for each parameter of interest.

The SPARFA MCMC sampler extracts samples from the posterior distribution of each
parameter of interest, with the primary concern for collaboration detection being the sam-
ples of p; j; = ®(Z; ;). As with the Rasch approach, we reserve the treatment of the full
sampling details for the SPARFA MCMC sampler for Appendix B.

3. STATISTICAL MODELS FOR REAL-WORLD COLLABORATIVE BEHAVIOR

Learners in real-world educational settings typically use a variety of strategies for providing
responses to questions. In many cases, learners simply work independently (i.e., without any
collaboration). In other cases, weaker learners may simply copy the responses of a stronger
classmate. In yet other cases, learners may work together collaboratively such that every
learner within the group both participates and benefits. Learners may also defer to one
trusted learner’s answer, regardless of whether or not the trusted learner is actually correct.
The fact that learners may collaborate on only a subset of questions further complicates
automated collaboration identification.

By explicitly modeling collaboration type, one could hope to both provide valuable infor-
mation regarding collaboration as well as to improve detection of collaborating learners. To
this end, we propose four statistical collaboration models that capture a range of different
scenarios. We use the notation M,, for m = 1,...,4 to refer to each model. We express
our models probabilistically for a given pair of learners, i.e., learner v and learner v, and
model the joint probability distribution of observing the set of answers (Y; ,,Y; ). This
joint distribution naturally depends first on the prior success probabilities p; , and p;, of
both learners. In practice, these probabilities can be estimated via an LA approach such as
the Bayesian Rasch model (see Section 2.1) or SPARFA (see Section 2.2). All models (with
the exception of the independence model) are parameterized by a scalar variable ¢; € [0, 1],
which characterizes the probability that two learners will choose to collaborate on a given
question. This parametrization enables us to capture the fact that learners might only col-
laborate on a subset of all ) questions. Additionally, two of the collaboration-type models
we propose will utilize a second parameter, €5 € [0, 1]; the meaning of this parameter is
model specific and will be explained when applicable. To simplify notation, we will use the
following definitions &, = 1—¢; and &, = 1—eg,aswell as p; o, =1 — P and P = 1 —p; -

3.1. Collaborative Models

Independence model M. Under the independence model, a pair of learners is not collab-
orating. Instead, each learner answers the assigned questions independently. Hence, there
are no parameters € for this model. The probability of observing any answer sequence for
two learners working independently is simply given by the product of the individual prior
probabilities. For example, the graded response pair (1,0) is achieved if learner u provides
a correct response to the i*" question, while learner v provides an incorrect response. This
case occurs with probability p; .p; .. The likelihoods for each of the four possible observed
set of responses under the independence model for a given question are given in Table I.

Parasitic model My. Under the parasitic model of collaboration, only one of the two
learners under consideration attempts to solve the question while the other learner simply
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Table I: Independence model M; Table II: Parasitic model My
i/i,u Y;,v ‘ P(Yi,in,v |pi,uzpi,v751752) Y;,u Yvi,v ‘ P(X/i,uy Kl,v ‘pi,uypi,'UyEl:EQ)
0 0 PiubDiv 0 0 Di,ubi,w€1 + €1(Ps,u€2 + Di,u€2)
0 1 Pi,uPiv 0 1 Pi,uPi,v€l
1 0 Piubi,v 1 0 Piubi,w€l
1 1 Pi,uPiv 1 1 pi,upi,'ugl + El(pi,u€2 + pi,uEQ)
Table III: Dominance model M3z Table IV: OR model My
%,u Y;,v ‘ P(m,uvm,v |pi,u7pz',v751152) }/i,u Y;,v ‘ P(S/z’,uv}/z’,v |pi,u7pi,v751:52)
0 0 DiuPi,v + Di,uPi,w€1€2 + Pi uPivE1€2 0 0 Diubi,v
0 1 ﬁi,upi,'ugl 0 1 ﬁi,upi,vél
1 0 pi,uﬁi,ve_l 1 0 pi,upi,ve_l
1 1 PiuPi,v T Di,uPi,w€1€2 + Pi uPivE1E2 1 1 PiuPiv + Di,uPiw€l + Pi ubiv€l

copies the solution. The parasitic model is a two-parameter model with parameters £; and e5.
The first parameter €1 models the rate of collaboration, with a value of e; = 1 denoting
that the learner pair collaborates on every question; €1 = 0 denotes that the learners will
never collaborate (thus, collapsing to the independence model). The second parameter 9
denotes to the probability that each learner will be selected to answer the question. A value
of e5 = 0 denotes that learner u will always be the one selected to solve the question, while
€2 = 1 denotes that learner v will always be the one selected. For example, observing the
graded response pair (0,0) occurs in the event that (i) both learners do not collaborate
on the question and both provide incorrect responses independently or (ii) both learners
are collaborating on the question and that the learner chosen to solve the question does
so incorrectly. The probability of this event is given by p; i v&1 + €1(Pi,u€2 + Pi,uc2). The
likelihood table for each of the four possible observed set of responses under the parasitic
model is given in Table II.

Dominance model M. Under the dominance model, each learner works a question in-
dependently, after which each pair of learners discusses which of the two answers will be
used. Under this model, each of the two learners attempts to convince the other to accept
their response. The parameter ¢, denotes the probability that the pair will collaborate on
a given question (analogous to the parasitic model), while the second parameter o de-
notes the probability that learner u will convince learner v to adopt their response. For
example, eo = 1 implies that learner v will always convince learner v, while €5 = 0 in-
dicates the opposite scenario. Under this model, observing the graded response pair (0, 0)
occurs in either the event that (i) both learners get the incorrect response (regardless of
which learner dominates) or (ii) only one learner produces an incorrect responses, but con-
vinces the other learner to accept the response. The probability of this event is given by
DiuDi,v+DiubivE1€2+Di uDive1€2. The likelihood table for each of the four possible observed
set of responses under the dominance model is given in Table III.

OR model M. Under the OR model, each learner may not be able to provide the correct
response to a given question. However, they can identify the correct response if at least
one of them is able to provide it. Thus, the learner pair will jointly provide the correct
response if at least one of the learners succeeds. The name of this model derives from the
Boolean OR function, which is 1 if either one or both inputs to the function are 1 and 0
otherwise. This model only uses a single parameter €1, which denotes the probability that
the pair will collaborate on a given question (analogous to the Models Ms and M3). As
an example, the graded response pair (1,1) occurs if (i) both learners produce the correct
response (regardless of whether or not they are collaborating on the question) or (ii) only

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 A. Waters, C. Studer and R. G. Baraniuk

one learner produces the correct response and the pair is actively collaborating on the given
question. This probability of this scenario is given by p; upi.v + DiuPiv€1 + DiuPiwel. The
likelihood table for each of the four possible observed sets of responses under the OR model
for question i is given in Table IV.

3.2. Discussion of pairwise collaboration models

Many more models can be developed to emulate various collaboration types. Such new
models can be easily integrated into our methodology. We further note a number of corre-
spondences that exist between the collaboration models detailed above. For example, the
models Mz, M3, and M, are equivalent to M; whenever €; = 0, i.e., with the collabora-
tion probability equal to zero. Further, models My and My are equivalent under the same
value of €1 and whenever 5 is either 0 or 1.

One limitation of the collaboration models proposed above is that we have entirely de-
coupled the collaboration rate parameter ¢; from the success probabilities p;, and p; ..
In real educational scenarios, learners might choose to collaborate when they perceive a
large potential benefit. Learners may, for example, be less likely to collaborate on questions
that they are likely to answer correctly (i.e., p;u,Di» are large) and more likely to collab-
orate on questions that they are likely to answer incorrectly (i.e., p; ., pi» are small). The
development of such collaboration models is an interesting topic for future work.

4. ALGORITHMS FOR COLLABORATION-TYPE INDENTIFICATION

We now develop two novel algorithms for pairwise collaboration-type identification. Both
algorithms jointly utilize learner-response data, an LA method, and a set of collaboration
models to jointly detect and classify different types of collaboration in educational datasets
(recall Figure 1).

The first algorithm, referred to as sequential hypothesis testing (SHT), uses a Bayesian
hypothesis test first introduced in [Waters et al. 2013]. This algorithm examines the joint
answer sequence of a pair of learners and evaluates the likelihood that such patterns would
arise independently (under model M) or under one of the other collaboration model (Mo,
Ms, or My). The second algorithm, referred to as collaborative model selection (CMS), uses
Bayesian model selection [Hoff 2009] in order to jointly compute posterior distributions on
the probability of learner response data arising under various collaboration models.

4.1. Sequence hypothesis testing (SHT)

SHT compares two hypotheses. The first hypothesis H; corresponds to the case where
learner v and v collaborate under a pre-defined collaboration-type model M,,,m # 1,
given the LA parameters. The second hypothesis Ho of SHT assumes that the number of
agreements between the graded responses of learner u and v are a result of the independence
model My, given the LA parameters.

4.1.1. Collaboration hypothesis. We start by defining the first hypothesis 1, which models
the situation of observing the given pair of graded responses sequences for learner v and v
under the chosen collaboration model M,,, m # 1. Note that the SHT method can be
utilized with any of the collaborative models introduced in Section 3. The model proposed
here relies on the individual probabilities p; ,, and p; ,, which are the probabilities of learner
u and v succeeding in question i given the LA parameters. For ease of exposition, we will
proceed with our derivation for a two-parameter model such as My or M3 with parameters
¢1 and e9; the reduction to a single parameter model (such as the OR model) or the extension
to a model with additional parameters is straightforward.
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Assuming uniform priors on £; and €5 over the range [0, 1] our collaboration hypothesis
for a given model M,, is simply given by

Hl‘M // HPY;“7ijv|p1u7p1’U7€13€27Mm)d€1d627 (2)

which corresponds to the probability of observing the pair of sequences of graded responses
for all @ questions under the collaboration model M,,,. The quantity in (2) can be computed
efficiently via convolution; we reserve the computation details for Appendix C.

4.1.2. Independence hypothesis. The probability of the second hypothesis Ho for SHT cor-
responds to the probability of the observed pair of graded response sequences, given the
success probabilities p; ,, and p; , obtained under the independence model My, i.e.,

7 u—(l Yl u) EW—(l E,W)
leu plu pzv pzv . (3)

Given the probabilities (2) and (3) for the hypotheses H; and Ha, respectively, we can
finally compute the log Bayes factor' for SHT for a given pair of learners as follows:

LBF = 1og(§§Z3) : (4)

A log Bayes factor greater than 0 indicates more evidence for the collaborative hypothesis
(under the chosen model M,,,) than the independent hypothesis, while a log Bayes factor
smaller than 0 indicates the reverse scenario. In general, however, a large value of the log
Bayes factor is required when asserting that the evidence of collaboration is strong.

4.1.3. Discussion of SHT. The primary advantage of the SHT method is computational
efficiency and flexibility. It can be used with simple point estimates of the learner success
probabilities. Thus, it can be easily incorporated into classical approaches for LA, such as the
standard (non-Bayesian) Rasch model [Rasch 1993] or item-response theory (IRT) [Bergner
et al. 2012]. When utilized in this way, the log Bayes factor needs only be computed once
for each pair of students, making it computationally very efficient.

SHT can also be used with a fully Bayesian LA approach (such as those detailed in
Section 2 that provide full posterior distributions of the learner success probabilities). This
is done by adding the computation of (4) as an additional sampling step of the MCMC
sampler. Concretely, we compute (4) at each iteration of the MCMC sampler given the
current estimates of p; ,, and p; ,,, Vi, u, v. The log Bayes factor can be equivalently converted
to a posterior probability for each hypothesis, from which we can sample the hypotheses
directly as part of the MCMC sampler. This approach has the advantage of improving the
robustness of our inference over classical approaches, albeit at higher computational cost.

One restriction of our method is that SHT compares the independence model M; against
exactly one other collaboration model M,,. One could, however, consider testing multiple
models simultaneously by using a form of Bonferroni correction to control the family-wise
error rate [Westfall et al. 1997]. The approach proposed in the next section avoids such
necessary corrections by means of Bayesian model selection.

4.2. Fully Bayesian Collaborative Model Selection

We now turn to a collaboration-type indentification method based on Bayesian model se-
lection [Hoff 2009]. This method allows us to jointly explore multiple collaboration models

1Under a uniform prior, the log Bayes factor is called the log likelihood ratio (LLR) in the statistical signal
processing community.
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Fig. 2: Graphical model for collaborative model selection (CMS).

(types) and to extract the associated model parameters in an efficient way in order to find
configurations that best explain the observed data. The result will provide estimates of the
full posterior distributions for each collaboration model and each parameter of interest. We
dub this method collaborative model selection (CMS).

4.2.1. Generative model for CMS. We first present the complete generative model for the
pairwise collaborative model and state all necessary prior distributions. This will enable
efficient MCMC sampling methods for estimating the relevant posterior distributions.

The full generative model is illustrated in Figure 2 for the case of the SPARFA LA model
(the equivalent Rasch-based model is obtained by removing the node W and replacing C
with the vector c¢). By symmetry of the proposed collaboration models, collaboration be-
tween each pair of N learners can be specified with D = (N? — N)/2 total models and
corresponding sets of the associated model parameters. We will use the quantity My to
denote the random variable that indexes the collaboration model for learner pair d; the
notation €4 denotes the random vector of model parameters for learner pair d. For the
collaborative model index My we assume a discrete prior mp, ¢4 such that an:l Tm,d = 1
for all d. For the elements of the parameter vector €4, we assume a Beta-distributed prior
Beta(ae, B:). Generation of the latent variables in Z is done for either the Rasch or SPARFA
LA model as discussed in Sections 2.1 and 2.2, respectively. Finally, the observed learner—
response matrix Y for learner v and v is generated jointly as detailed in Section 3 given the
model type index M, and the associated model parameters €.

4.2.2. MCMC sampling for collaboration type detection. Given the graded response data ma-
trix Y along with the prior distribution on M, and &4, we wish to estimate the posterior
distribution of each model index along with its respective parameters for each pair of learn-
ersd =1,...,D. Doing this will allow us to infer (i) which pairs of learners are collaborating,
(ii) what type of collaborative model are they using, and (iii) how strong the evidence is
for these assertions.

We use Bayesian model selection techniques [Hoff 2009] to efficiently search the space
of possible models and model parameters for configurations that best explain the observed
data Y. Full conditional posteriors for the models and model parameters, however, are
not available in closed form, rendering Gibbs’ sampling infeasible. Thus, we make use of a
suitable Metropolis-Hastings step [Gelman et al. 1995]. Specifically, assume that at itera-
tion ¢t of the MCMC sampler and for a specific pair of learners d, we have a model sample
M, parametrized by €. The Metropolis-Hastings step proceeds by proposing a new model
Mfl+1 with parameters t—:th via some proposal distribution q(Mé+1,etd+1|Mé7sﬁl). We will
utilize a proposal distribution of the following form:

a(M e MY €f) = qe (e MY MY, ef)qn (MM €])

= QE(€§+1|M;+17 Mfr€§)QM(Mf+1|MZ)

In words, we (i) split the proposal into a model component and model parameters component
and (ii) make use of a proposal for the model M, that is independent of the model parame-
ters €4. We implement this proposal in two steps: First, we propose M;“ ~ qM(MéJrl |M)).
Note that there are many choices for this proposal; we will make use of the following simple
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one given by

v, if ML= M?
t+1 t+1 t __ i\
p(Md =M ‘Md =M ) = { |/3/l_|117 if MitL # M. (5)

Here, v € (0,1) is a user-defined tuning parameter. In words, with probability v the MCMC

sampler will retain the previous model; otherwise, one from the remaining |M| — 1 models

is proposed uniformly. The proposal for the parameters E?f;_l takes the following form:

do, it MITE = M,y
(e ML MY et) = { qa(eb ME, ME, et if METT = MY, 6)
e (elae, Be), otherwise,

where dp corresponds to a point-mass at 0; the distribution gz corresponds to a random
walk proposal on the interval [0, 1] defined by

qp(alb) = Beta(cb, c(1 — b)), (7)
where ¢ > 0 is a tuning parameter. In words, the sampling of EZH (i) is performed via
a random walk when the model remains unchanged, (ii) is drawn directly from the prior
me(€lae, B:) when a new model non-independent model is proposed, and (iii) is set to 0
when the model changes to the independence model (since this model has no parameters
g, it is simply set to 0 for convenience). Note that it can be shown that the mean of the
2 (b=b?)
c24c+1?

proposal distribution gg is simply b (the previous value used) while the variance is
which tends to zero as b approaches either 0 or 1.

After proposing the new model {M:"! 71} via (5)—(7) we accept the proposal with a
probability r as

= min POYIME e m(ME (el e, Be)a- (e MY, M;+17e3+1>qM<Ms|M;“>>}
POY MG, €f)m (M) (ehlac, 5o)a- (el M, MY, ebyans (MET M)

The accept/reject decision is computed individually for each learner pair d = 1,...,D.

4.2.3. Discussion of CMS. The primary advantage of CMS is that it can jointly search across
all collaborative models for each pair of learners in the dataset. This comes at the price of
additional computational complexity, as a new set of models and model parameters must
be proposed at each iteration of the MCMC.

We note that while our fully Bayesian method for collaboration detection uses the success
probability matrix ®(Z) when exploring new collaboration models, those models do not
influence the sampling of Z itself. This is due to the structure of the model we have proposed,
as Y separates the LA portion of the MCMC from the CMS portion. This assumption is
similar to the work in [Wesolowsky 2000] which computes success probabilities for each
learner—question pair based only on the data Y regardless of the evidence of collaboration.

The model depicted in Figure 2 could be augmented in a way that enables us to propose a
new posterior distribution for Z where the current belief about the collaborative models will
influence our beliefs about learner ability. For example, such a model could be accomplished
by proposing an additional latent variable for the answer that a learner would have provided
had they not been in collaboration; this would enable us to automatically temper our beliefs
about learner ability in the event that we believe that they are involved in collaboration.
We will leave such an approach for future work.
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5. EXPERIMENTS

We now validate the performance our proposed methodology. We first examine the iden-
tification capabilities using synthetic data with a known ground truth. Following this, we
showcase the capabilities of our methods on several real-world educational datasets.

5.1. Synthetic experiments

We first validate the performance of our methodology using synthetic test data using
both the SHT and CMS algorithms. We furthermore compare against two other meth-
ods. The first is the state-of-the-art method collaboration identification method developed
in [Wesolowsky 2000], which was designed specifically for handling responses to multiple
choice exams, where one is interested in the specific option chosen by the pair of learners.
Since we are interested in detecting collaboration given only binary (right/wrong) graded
responses, we need to first modify the method [Wesolowsky 2000] accordingly. Concretely,
we set their term v; indicating the number of wrong options for question 7 to 1, meaning
that all wrong answers are treated equally. The remaining aspects of this method are left
unchanged. The second method that we compare against is the agreement hypothesis testing
method proposed in [Waters et al. 2013], which we will call AHT for short. This method
utilizes a Bayesian hypothesis test similar to SHT that compares the likelihood of the inde-
pendence model M relative to a simple collaboration model in which two learners choose
to agree in their answer patterns with some arbitrary probability §. We refer the interested
reader to [Waters et al. 2013] for further details.

5.1.1. Performance metrics. In order to evaluate collaboration identification performance,
we will examine how well the considered methods identify learners who collaborate
relative to learners who work independently. Each of the four methods naturally outputs a
collaboration metric related to the probability of collaboration between each pair of learners:

e Bayesian Hypothesis Tests (AHT and SHT): For each learner pair, the collaboration
metric is given by the log Bayes’ factor.

e Bayesian Model Selection (CMS): For each learner pair, we first threshold on the
posterior probability that two learners worked under a collaborative model and then, we
rank them according to the posterior mean of ¢;.

o Wesolowsky’s Method: For each learner pair, the collaboration metric is given by the
Z-score (see |[Wesolowsky 2000] for the details).

By sorting the output metrics in ascending order, a course instructor can easily see which
pairs of learners in a class are most likely engaging in collaborative behavior. To this end,
let £ denote the output vector of pairwise metrics for each learner pair for a given algorithm.
Sorting the entries of £ from smallest to largest, we can compute a normalized percentile
ranking for each pair of learners. Let Z; denote the index of learner pair d in this sorted
vector. The normalized percentile ranking is then given simply by
Zq
Pi=—,d=1,...,D, 8

i= 2 (%)
with larger values of Py denoting higher likelihood of collaboration relative to the rest of
the entire learner population.

5.1.2. Algorithm comparison on synthetic data. As a first synthetic experiment, we consider a
class of N = 30 learners (with D = 435 unique learner pairs) answering Q@ = 50 questions.
Learner abilities are initially generated via the SPARFA model. We select three pairs of
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Fig. 3: Normalized percentile ranking performance for all four collaboration methods with
a synthetic dataset consisting of N = 30 learners and Q = 50 questions. Three learner
pairs are engaged in collaboration, one for each of the collaborative models, with a per-
question collaboration probability e; = 0.75. Larger values indicate better identification
performance. The CMS method achieves the best collaboration identification performance,
followed by SHT, Wesolowsky’s method (denoted by “Wes.”), and AHT, respectively.

learners who will work together collaboratively, one pair for each model My, M3, and M, as
defined in Section 2. Each pair has a per-question collaboration probability e; = 0.75, while
the value for g5 for each of the two-parameter models is set to 0 for simplicity. The answers
for the collaborating learners are generated according the appropriate collaboration model.
The remainder of the learner pairs work independently, and their answers are generated
according to the SPARFA model via (1). We then deploy CMS, SHT, Wesolowsky’s method
(denoted by “Wes.” in Figure 3), and AHT, and we compute the normalized percentile
ranking for each learner pair according to (8). We repeat this experiment over 100 trials
and present the normalized percentile ranking statistics for the collaborating learner pairs
for each collaboration model and each algorithm as a box-whisker plot.

From Figure 3, we see that CMS outperforms all other methods, both in the average
and standard deviation of the normalized percentile ranking. CMS is followed by SHT,
Wesolowsky’s method, and AHT. Since our proposed CMS method shows the best collab-
oration identification performance, we focus exclusively on this method in the remaining
synthetic experiments.

5.1.3. Performance evaluation for CMS over multiple parameters. We now examine the perfor-
mance trends of the CMS method for a varying number of questions as well as the collabora-
tion probability 1. First, we generate data for N = 50 learners with ) = 50 questions and
sweep the collaboration probability e; € {0.25,0.5,0.75,1.0} and repeat this experiment
over 100 trials. We again examine performance using the normalized percentile ranking
(8) and display the results in Figure 4(a). We can see that the performance is excellent for
collaboration probabilities as low as €1 = 0.5, meaning that learners were expected to collab-
orate on only every-other question. Second, we fix £; = 0.5 and sweep @ € {25,50, 75, 100}.
The result is displayed in Figure 4(b). We see that the proposed CMS method achieves
excellent identification performance for ) > 50 questions.
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Fig. 4: Collaboration-type identification performance for the collaborative model selection
(CMS) approach with a synthetic N = 50 learner dataset. (a) impact of varying collabora-
tion probabilities £; € {0.25,0.5,0.75,1.0} for @ = 50 questions; (b) impact of numbers of
questions for @ € {25,50, 75,100} with collaboration probability e; = 0.5.

5.2. Real-world experiments

We now turn to two real-world educational datasets. Specifically, we analyze datasets taken
from undergraduate courses in electrical and computer engineering administered on Open-
Stax Tutor.?

5.2.1. Undergraduate signal processing course. We first identify collaboration on homework
assignments in the course up to the first midterm examination. One interesting aspect of
this course is that learners were encouraged to work together on all homework assignments,
albeit with some restrictions. Concretely, each learner was assigned into a group of 2-to-4
learners with whom they were allowed to actively collaborate on homework assignments.
Learners within each group were free to discuss each homework problem as well as its
solution with any members of their group, though each learner was required to submit
their own homework solutions for final grading. Learners were, however, not required to
collaborate; the only restriction was that any collaboration with other learners was to be
confined to the assigned homework group. Collaborating outside of the assigned homework
group was considered cheating.

This particular setting presents an interesting test case for our method since we have a
rough ground truth with which to compare our results. We examine the performance of
CMS and the method of Wesolowsky on all homework assignments up to the first midterm
exam; a total of Q = 50 questions and N = 38 learners. We further include all question—
responses to the midterm (14 additional responses) in extracting the SPARFA parameters,
though these questions were excluded from the collaboration detection algorithm. The data
is especially challenging since learners were given ample time to solve and discuss homework
problems. Because of this, most responses given on homework problems were correct. As a
consequence, an extremely high degree of similarity between answer patterns is required for
collaboration to be considered probable.

For CMS we posit collaborative connections between learner pairs for whom M, # 1 (i.e.,
from which the independence model M is excluded) in more than 90% of MCMC itera-
tions and for whom the posterior mean of €; was greater than 0.4. The Z-score threshold
for Wesolowsky’s method was adjusted manually to provide the best match to the ground

2http:/ /www.openstaxtutor.org

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



Collaboration-Type Identification in Education Datasets A:15

Fig. 5: Collaboration-type identification result for the Bayesian model selection method for
the first set of homework assignments in the undergraduate signal processing class dataset.
The data consists of 38 learners answering 50 homework questions plus 14 midterm exam
questions. Grey ellipses designate the assigned homework groups. Dashed green lines denote
parasitic collaborations, while solid blue lines denote symbiotic collaborations detected by
CMS. Dotted red lines denote the connections found using Wesolowsky’s method, which, in
general, finds fewer ground truth connections than the CMS method.

truth. We display the corresponding results in Figure 5. Dotted red lines denote connec-
tions detected under Wesolowsky’s method. For the Bayesian model selection method, blue
solid lines denote detections under symbiotic (OR) model, whereas dashed green lines show
detections under the parasitic model.

Most collaborative types found using CMS for this dataset are of the OR type. An ex-
ception is the group {9,10,12}, for which the parasitic copying model was proposed most
frequently. Examination of the answer pattern for these learners show that while the joint
answer patterns for these learners are very similar on the homework assignments, Learners
10 and 12 perform poorly on the midterm relative to Learner 9. Thus, the algorithm as-
sumes that their success in the homework is more a consequence of copying the responses
of Learner 9 rather than because of their mastery of the subject material. We additionally
note the collaborative connection between Learners 9 and 24 as well as between Learn-
ers 10 and 14. These connections arise due to high similarity in the homework answering
patterns which are also quite different from the rest of the collaborative group. Interest-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 A. Waters, C. Studer and R. G. Baraniuk

Fig. 6: Collaboration-type identification result for a take-home exam in an undergraduate
electrical engineering course consisting of 38 learners answering 24 questions. The connected
nodes correspond to learners for which the collaboration hypothesis. Manual inspection of
the open-form responses provided by Learners 14 and 38 further strengthens the collabora-
tion hypothesis.

ingly, Wesolowsky’s method also found strong evidence of collaborations between Learners
9 and 24; this method, however, failed to reveal three of the intra-group collaborations
found by our proposed CMS method. In the following, we omit further comparisons with
Wesolowsky’s method for the sake of brevity.

As a second experiment with the same undergraduate signal processing course, we con-
sider collaboration identification on the final exam, which was administered as a take-home
test. During this examination, learners were instructed not to collaborate or discuss their
results with any other learners in the class. The final exam consisted of 24 questions. We de-
ploy CMS using all questions in the course (a total of 147 questions) to extract the SPARFA
parameters and search for collaboration only on the questions on the final exam. We jointly
threshold on the posterior mean of €; and the proportion of MCMC samples that indicated
a non-independent collaborative model for each learner pair to arrive at the collaboration
graph of Figure 6. We find strong evidence of collaboration between the learner pair {14, 38}
under the symbiotic collaboration model. Interestingly, Learner 14 was also detected in the
previous experiment as a learner working outside of his collaborative group on the course
homework assignments. Both learners provided correct responses to each question on the
final exam, although their previous performance in the course would lead one to expect
otherwise. To prevent false accusations (see, e.g., [Chaffin 1979] for a discussion on this
matter), we examined their open form responses available in OpenStax Tutor and found a
remarkable similarity in the text of their answers; this observation further strengthens our
belief about their collaboration.

5.2.2. Final exam of an undergraduate computer engineering course. This course consists of 97
learners who completed the course answering a total of 203 questions, distributed over var-
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Fig. 7: Collaboration identification result for a take-home exam in an undergraduate elec-
trical engineering course consisting of 97 learners answering 38 questions. The connected
nodes correspond to learners identified by CMS to be collaborating, with dashed green lines
denoting one-side copying and solid blue lines denoting symbiotic collaboration. Manual
inspection of the open-form responses provided by Learners 1 and 88 (highlighted by a gray
oval) reveals obvious collaboration.

ious homework assignments and three exams. We examine collaboration among learners in
the final exam, which consists of 38 questions. As was the case with the signal processing
final exam, the computer engineering final exam was administered as a take-home examina-
tion where learners were instructed not to collaborate with their peers. In order to extract
the SPARFA parameters, we use all questions administered during the entire course and
then use CMS to extract the posterior distributions for each pair of learners on the subset
of questions corresponding to the final exam. We jointly threshold the posterior probability
of non-independent collaboration as well as the posterior mean of 1. We display the result
in Figure 7, where dashed green lines correspond to parasitic collaboration (Ms) and solid
blue lines denoting symbiotic collaboration (M,). Note that no collaborations were detected
under the dominance model (M3).

All three groups of learners in Figure 7 for whom we identify collaboration have identical
answer patterns. The group {10,92, 62,73} provides the correct response to every question
on the exam. The group {5,34,90} jointly miss only one question which is estimated by
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Table V: Selected responses of Learners 1 and 88 in the non-collaborative take-home exam.
Answer similarities are highlighted in black. The last response was wrong for both learners.

Learner 1 Learner 88

double char integral double cannot be used to base a switch deci-
sion int and char can be used as they are of
integral type

When the name field is defined. student.name would correctly access the name
field if the name of the student struct object
declared is student.

A This prints the ASCII character associated
with the decimal value 65, which is A

5 The value of x would be 5 ; it would truncate
the digits right of the decimal point.

—2147483648 12147483647 Its potential range is —2,147,483,648—
+2,147,483,647 (using the typical 32 bit rep-
resentation).

SPARFA to be in the mid to high range of difficulty. The group {1, 88} jointly miss the same
two questions, one of these being found by SPARFA to exhibit low intrinsic difficulty. We
manually inspected the open-form responses available in OpenStax Tutor of all learners in
the identified groups to prevent false accusations. We found that there is some diversity in
the responses provided by the group {10, 62,73,92}. This, coupled with the fact that each
of the learners have only managed to perform slightly better than what SPARFA would
predict, allows us to reasonably exclude this group from further scrutiny. By contrast, the
answer patterns for the other groups reveal strong evidence of collaboration due to very
similar wording and grammar. This is especially true for the pair {1,88}; as it can be seen
from Table V, Learner 1 consistently provides a shortened version of the responses provided
by Learner 88, including those answered incorrectly.?

6. CONCLUSIONS

We have developed new methods for pairwise collaboration-type identification in large ed-
ucational datasets, where the objective is to both identify which learners work together
and classify the type of collaboration employed. Our framework combines sophisticated
approaches to learning analytics (LA) with new models for real-world collaboration and
employs powerful algorithms that fuse the two to search for active collaborations among
all pairs of learners. We have validated our methodology on both synthetic and real-world
educational data and have shown that they significantly outperform the state-of-the-art
methods available in the open literature. Additionally, we detected several cases of non-
permissible collaboration (which is considered cheating) on both homework assignments
and examinations in two undergraduate-level courses.

The collaboration rankings that our method provides can greatly facilitate collaboration
identification as it provides a good (and small) set of candidates that need to be evaluated
in greater depth (with respect to collaborative behavior) by an instructor. This advantage
reduces the instructor’s workload and promotes fairness in educational settings.

One interesting avenue for future work involves modeling more complicated social groups
among learners. In particular, extending the capability of collaboration detection methods

3We analyzed the same computer engineering dataset using a different collaboration detection framework
in [Waters et al. 2013]. We omitted two learners in this work due to their failure to submit all homework
assignments. Thus, learner indices in these two papers differ. As an example, Learners 1 and 88 in this work
thus correspond to Learners 1 and 90 in [Waters et al. 2013].
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beyond pairwise collaboration is useful in real-world educational scenarios in which learners
often work in larger groups with complicated social dynamics. Another avenue for future
work consists of using collaboration detection methods to “denoise” or, more colloquially,
“decollaborate” LA. Such an application is crucial in the deployment of intelligent tutoring
systems [Nwana 1990], as it could use its beliefs about collaboration to estimate the true
learner ability (i.e., without collaboration).

Additionally, fusing data across different modalities is an open problem that could de-
liver impressive results. Concretely, in addition to the learner’s answer patterns, we often
possess a wealth of side information, such as their open-form responses. Incorporating this
side information directly into our collaboration detection approach has the potential to dra-
matically improve the identification of collaborative behavior, as well as reduce the rate of
false detections that can arise when only the answer patterns themselves are considered.

A. DERIVATION OF THE MCMC SAMPLER FOR BAYESIAN RASCH APPROACH TO
LEARNING ANALYTICS

Here, we derive the sampling steps for the Rasch MCMC sampler. Recall that the generative
model for the data Y under the Rasch approach is given by

)/ivj ~ BET’(@(ZZ'J)) Wlth Zi,j = C; —+ i, VZ,]
It can be shown (see, e.g., [Chib and Greenberg 1998|) that this model is equivalent to
Yij ~ sign(®(Z; ;) with Z] ;= ci+ p; + e 5, Vi, j.

where sign(-) is the signum function and e; ; ~ N(0,1). This latter representation is more
convenient for the purposes of MCMC.
By specifying the following prior distributions

m(cj) ~ N(0,02) and m(w;) ~ N(O,Ui),

we can perform Gibbs’ sampling on each of the variables c;, u; by augmenting with the
latent variable Z{J-. The sampling steps at each MCMC iteration are given by

(1) Foralli=1,...,Q and j = 1,..., N sample Z] ; ~ N(c; + p;, 1), truncating above 0
if Y; ; = 1, and truncating below 0 if ¥; ; = 0.
1

(2) Foralli=1,...,Q sample p; ~ N(57, Z;V:l(ZZ(J —¢;),07), where 67 = (%ﬁ +N) .
(3) For all j =1,..., N sample ¢; ~ N (52 vazl(Z{Vj — i), 02), where 62 = (ﬁ + Q)_l.

By repeating this sampling scheme over several iterations, we assemble a set of samples from
the posterior distribution of the Rasch parameters c;, Vj and p;, Vi. In addition, the values
of pij = ®(c; + pi) are samples of the probability of learner j answering item 4 correctly,
which are then used by the collaboration-type identification algorithms of Section 4.

B. DERIVATION OF THE MCMC SAMPLER FOR THE SPARFA APPROACH TO LEARNING
ANALYTICS

Here, we discuss the sampling scheme for the SPARFA-based MCMC sampler. Like the
Rasch MCMC sampler of Appendix A, we can introduce the latent variable Z’ and use the
equivalent generative model

Yij~ 519”(@(21{,3‘)) with Zz(,j =w}c;+ i+ e, Vi, j.

where ¢; ; ~ N(0, 1) as with the Rasch MCMC.
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In order to comply with the constraints discussed in Section 2.2, Bayesian SPARFA
imposes the following prior distributions

Wik ~ i Exp(Ag) + (1 — 7g) b0, Ak ~ Gala, 8), and ry ~ Beta(e, f)
Cj NN<07V)7 V ~ IW<VO7h)a and g~ N(,LL[),'U”),

it can be shown that the posterior samples can be computed via a Gibbs’ sampler with the
following updates

oralle=1,...,Q and 7 =1,..., N, sample Z, . ~ i + i, 1), truncating

1) Forall i =1 Qand j =1 N le Z} ; ~ N((WC);; 1 i
above 0 if Y; ; = 1, and truncating below 0 if ¥; ; = 0.

(2) For all i = 1,...,Q, draw p; ~ N(mgv) with v = (v,;' + N)™', my = po +
v i 4) (2] —wle)).

(3) For all j = 1,...,N, draw ¢; ~ N(m;,M;) with M; = (V7! + WIW)~1, and
m; = M;W7(z; — u), where z; denotes the 5 column of Z.

(4) Draw V ~ IW(Vy + CCT N + h).

(5) Foralli=1,...,Q and k= 1,..., K, draw Wz’,k ~ Rikar(Mivk, Si,k) + (1 — Ri,k)(SOa
where N7 (a,b) is a rectified Normal distribution [Schmidt et al. 2009] and:

Nr(o|ﬁi),c,§i),c,>\k)

R —Fmg  (LTR)
(a) Ri’k = p(Wivk = O|Z/a Ca “) = NT(O\ﬁfky(g:/\k}i)%k) ’
W(lfﬁc)+rk
= S (Bl =)= S Wanr Car ) Crs
(b) M = j Z(i,.ﬂkcz{j =, and
a -1
(c) Sik= (Z(i,j) C%J.)
(6) For all k =1,..., K, let by, define the number of active (i.e., non-zero) entries of wy.

Draw M\ ~ Ga(a + by, 8+ Elel Wi k).
(7) Forall k =1,..., K, draw ry ~ Beta(e + by, f + Q — by), with by defined as in Step 6.

We refer the interested reader to the work in [Lan et al. 2013] for further details regarding
the derivation of these sampling steps.

C. NUMERICAL EVALUATION OF (2)

Here, we detail the efficient numerical evaluation of the SHT collaboration hypothesis (2).
We do this specifically for the case of a two-parameter collaboration model such as My or
M3. Reduction to a single parameter model such as M, or to the extension to a model
with additional parameters is straightforward.

First, it is important to notice that the product term in (2) is a polynomial in the
variables €1 and e5 of the form

Q
1Pk, Yie|pikpic e1, 2, My) =

i=1
go705?sg + go,legsé 4+ ...+ gO7Q€(1)€§? + 91706%68 + ...+ gQ7Q€?€2Q. 9)

The coefficients g4 5 of the polynomial expansion in (9) can be evaluated efficiently using
a 2-dimensional convolution. In particular, consider the matrix expansion

Q
G = @Gi(Yi,k,Yi,z|Pi,k,pi,e,€1,€2a/\/lj)a (10)
=1

?
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where @ is the (2-dimensional) convolution operator. The term G;(-) € R?*? is a matrix
polynomial in the variables €; and &5 of the form

o Gha
Gi() = ~i7 ~i7 b
1,0 G111
where éfl,b is the coefficient associated with e%€} corresponding to the i*" question
P(Y; 1, Yi | Pikspires €1, €2, Mj). For example, G;(0,0|p; , pie, M2) is given by
DikDie —Di,kDie + Dik
Gi(0,0| pig, pie, Ms) = Di kDie pl,lfpz,ﬁ ~ i,
z( ‘pz,k Die 2) |: 0 —Pik + Die
The result of (10) is a matrix G € R(@TVX(Q+Y) where G, = gap- Since
Ga,b
e%5dede
//9 B CERCEN
we can evaluate (2) by computing

where the entries of the matrix F correspond to F,; = and o denotes the

@)
Hadamard (element-wise) matrix product. Simply put, P(H?) is given by the sum of all
elements in the matrix H= G o F

It is important to note that finite precision artifacts in the computation of (10) and (11)
become non-negligible as () becomes large, i.e., if () exceeds around 35 items with double-
precision floating-point arithmetic. In order to ensure numerical stability while evaluating
of (10) and (11) for large @, we deploy specialized high-precision computation software
packages. Specifically, for our experiments, we used Advanpix’s Multiprecision Computing
Toolbox for MATLAB.*
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