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ABSTRACT

In this paper, we present a novel algorithm to learn phase-
invariant dictionaries, which can be used to efficiently approx-
imate a variety of signals, such as audio signals or images.
Our approach relies on finding a small number of generat-
ing atoms that can be used—along with their phase-shifts—to
sparsely approximate a given signal. Our method is inspired
by the K-SVD algorithm, but imposes an extra constraint that
the dictionaries we learn are phase-invariant. We show that
the learned dictionaries achieve competitive approximation
performance compared to that of state-of-the-art methods for
audio signals and images, while substantially reducing the
storage requirements and computational complexity.

Index Terms— Dictionary learning, K-SVD, sparse ap-
proximation, phase-invariant and shift-invariant dictionaries.

1. INTRODUCTION

Dictionary learning (DL) [1–3] was shown to be very effec-
tive for sparsity-based denoising [3–5], audio and music anal-
ysis [6], super-resolution [7,8], and inpainting [9], by relying
on sparse representations of the given signals using a specif-
ically trained dictionary (overcomplete and standardized ma-
trix). In many applications, such as audio and image process-
ing, the entire signal is decomposed into small patches (or
segments) by exploiting the fact that these patches tend to be
self-similar (see, e.g., [10]) and admit a sparse representation
using a learned dictionary. In many cases, when computing
a sparse representation of a signal, the same dictionary el-
ements (atoms) are used to represent different patches, but
which may have entirely different phase shifts.

1.1. Phase-invariant dictionaries

Phase-invariant (PI) dictionaries are an effective way of rep-
resenting signal patches, using the same atoms, but with dif-
ferent phase shifts. Specifically, a PI dictionary D} consists
of all the circularly shifted versions of a (small) set of gen-
erating elements, where each circular shift corresponds to a
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phase change of the signal. Let c be a patch or segment of
a signal, for instance of an audio signal, c ∈ Rm1 , and for
images, c ∈ Rm1×m2 . More generally, assume that we have
a patch c ∈ Rm with m = m1 × · · · × md. Then we can
circularly shift (or rotate) c in all dimensions, thereby gener-
ating m − 1 circularly shifted-versions of c. We say that c
generates C ∈ Rm×m if each column of C is the vectorized
version of a differently shifted version of c. In a slight abuse
of notation, we will say that the matrix C is circulant, which
is, strictly speaking, only the case for d = 1. Then, given a
set of unit `2-norm vectors c`, ` = 1, . . . , p, that generate the
circulant matrices C`, D} = [C1, . . . ,Cp] is a PI dictionary.
And we call the vectors c` the generating atoms of D}.

Although one could learn a PI dictionary by first using
standard DL methods [1–3] and then constructing a PI dictio-
nary by incorporating all possible phase shifts of the learned
dictionary elements, we will show that incorporating this par-
ticular structure in the DL procedure itself results in a num-
ber of advantages. Concretely, such phase-invariant dictio-
naries achieve competitive approximation performance com-
pared to dictionaries obtained through state-of-the-art meth-
ods, like K-SVD [3], while significantly reducing the storage
requirements, as well as the computational complexity of both
dictionary learning and signal representation/reconstruction.

As an example of the advantage of PI dictionaries, con-
sider a periodic audio signal a1, a2, a3, a4, a1, a2, a3, a4, . . .,
which we want to approximate using a single dictionary el-
ement (atom). In this case, the atom c = (a1, a2, a3, a4)T

would be a suitable choice. However, if one takes a chunk of
this periodic sequence starting at an arbitrary sample index,
e.g., a3, a4, a1, a2, it cannot be represented efficiently by c.
But by allowing the use of circularly shifted versions of c,
any patch can be efficiently represented.

1.2. Contributions and outline

In what follows, we present a novel DL algorithm (Sec. 3),
which is able to learn phase-invariant dictionaries D}, which
consist of the concatenation of p “circulant” matrices, i.e.,
D} = [C1, . . . ,Cp]. The proposed algorithm is inspired by
the K-SVD algorithm [3] (Sec. 2), and replaces the singular-
value decomposition step with a dictionary update procedure
relying on the fast Fourier transform, which reduces the com-



plexity of the proposed DL algorithm. We finally demonstrate
the advantages (in terms of storage requirements, learning
complexity, and representation accuracy) of PI dictionaries
and our DL algorithm over existing methods (Sec. 4).

1.3. Relevant prior work

There exists a large body of related results on learning of shift-
invariant dictionaries [11–18]. Concretely, the publications
in [11–14] consider a single “long” signal as training data and
then attempt to find “small” patches to approximate the entire
signal. In these papers, the shifts are generally not allowed to
be circulant, unlike in our setting, where we explicitly con-
sider circularly shifted dictionary elements. Consequently,
these methods are ill suited to handle the case with dictio-
naries consisting of a concatenation of circulant matrices.

Circulant shifts are considered in [15], but their algorithm
only allows a single phase-shift to be used per generating el-
ement, i.e., for each C`, at most one column can contribute
to the sparse representation. Consequently, they need to learn
much larger dictionaries than required by our generalized ap-
proach. In [16] they take a slightly different route and aim to
learn a dictionary that is, in general, not circulant, but where
the training signals contain all possible shifts of the training
patches. To deal with the potentially very large training sets,
a subspace clustering method is used for DL. The method de-
scribed in [11] is based on the earlier work of [1] and uses
a shift-invariant generative model that describes the signal as
a sparse linear combination of atoms and of all their shifted
versions. The parameters of this model are then learned us-
ing maximum likelihood estimation and a stochastic gradi-
ent descent method to update the dictionary, as in [17, 18],
where, in contrast, our update method is given in closed form.
Seemingly similar results have been developed in [19]. There,
however, a single circulant matrix is learned, that—when sub-
sampled—is incoherent to a sparsity basis; this problem dif-
fers from our goal as it amounts to designing good measure-
ment matrices for compressive sensing [20, 21].

2. DICTIONARY LEARNING VIA K-SVD

DL algorithms attempt to find a matrix D = [d1, . . . ,dn] ∈
Rm×n with unit `2-norm columns that can be used to sparsely
represent a collection of training data Y = [y1, . . . ,yT ] ∈
Rm×T . That is, for each j = 1, . . . , T , we want to find a
vector xj that is sparse and satisfies yj ≈ Dxj . The problem
is then, given Y ∈ Rm×T , learn a dictionary D ∈ Rm×n

and a sparse matrix X ∈ Rn×T so that ‖Y −DX‖F is small.
More formally, we seek to solve the following problem:

(DL)

{
minimize

D,X
‖Y −DX‖2F

subject to ‖xj‖0 6 S,∀j, ‖d`‖2 = 1,∀`,

where ‖xj‖0 designates the number of non-zero entries in xj .

The K-SVD algorithm [3] is designed to efficiently com-
pute an approximate to the (DL) problem. After initializing
D with random or well-defined data, the K-SVD algorithm
performs the following two steps at each iteration:

1) Sparse update: In this step the dictionary D is held
constant and the columns of X are updated. Since we can
rewrite the objective of (DL) as

‖Y −DX‖2F =
∑T

j=1 ‖yj −Dxj‖22 ,

each column xj of X can be updated individually by solving
the primal sparse approximation problem (PSAP) [22]

(PSAP) minimize ‖yj −Dxj‖2 subject to ‖xj‖0 6 S,

which can be approximated using orthogonal matching pur-
suit (OMP) [22] or other sparse signal recovery methods.

2) Dictionary update: After updating the matrix X, the
dictionary D and the non-zero entries of X are jointly up-
dated. To do this, the K-SVD algorithm isolates a single col-
umn of D as follows:

‖Y−DX‖2F = ‖Y−
∑n

`=1 d`[X]`‖
2

F = ‖Ek−dk[X]k‖2F ,

where Ek = Y−
∑

` 6=k d`[X]` and [X]` denotes the `th row
of X. Now let Ωk be the support of [X]k. To update dk and
[X]k, one sets ER

k to be the matrix obtained by taking only the
columns of Ek with indices in Ωk, [X]Rk to be the row vector
[X]k restricted to the entries with indices in Ωk. Then mini-
mize

∥∥ER
k − dk[X]Rk

∥∥
F with respect to dk and [X]Rk , which

amounts to finding the best rank-one approximation to ER
k ,

given by its singular value decomposition. Thus, dk is set to
the dominant left singular vector and [X]Rk to the dominant
singular value times the dominant right singular vector.

3. LEARNING PHASE-INVARIANT DICTIONARIES

A straightforward way of using K-SVD to generate phase-
invariant dictionaries is to first learn a dictionary D ∈ Rm×p

and then, to generate a new dictionary DC ∈ Rm×mp con-
sisting of all the atoms of D and their circular shifts1. To
achieve substantially better performance than the straightfor-
ward method outlined above (see Sec. 4), our aim is to directly
learn a phase-invariant dictionary D} from Y.

3.1. Algorithm

Adapting the sparse update step of the K-SVD algorithm us-
ing OMP is straightforward, as there is nothing to change.
The dictionary update step, however, must be designed from
scratch. Concretely, a column-wise update is no longer possi-
ble as the columns of D} are no longer independent. Hence,
one needs to perform a block update step by solving

minimize
Ck circulant

‖Ek −CkX[k]‖2F , (1)

1We refer to this approach as “circularizing D.”



where Ek = Y−
∑

` 6=k C`X[`] and X[k] is the submatrix of
X consisting of the rows m(k− 1) + 1 to mk of X. Unfortu-
nately, there is no obvious way of solving (1) directly.

The key observation for solving the problem in (1) is that
we can diagonalize the circulant submatrices Ck using the
discrete Fourier transform (DFT) and thus, isolate the indi-
vidual generating elements ck. Let a column of Ck be the
vectorized form of a m1 × · · · × md patch in d-dimensions
so that m = m1 · · ·md and let Fn be the n× n DFT matrix.
Then, the matrix F = Fm1

⊗ · · · ⊗ Fmd
diagonalizes each

C`, that is Λ` = F∗C`F is a diagonal matrix.2 Hence, the
dictionary to be learned takes the form D} = F∗Λ(Im ⊗ F)
with the matrix Λ = [Λ1, . . . ,Λp] having a single non-zero
entry per column. Thus, the problem we want to solve is

minimize
X,D}

∥∥Y −D}X
∥∥

F

subject to D} = [F∗Λ1F, . . . ,F
∗ΛpF] with Λk diagonal,

‖xj‖0 6 S, ∀j,
∥∥d}

`

∥∥
2

= 1, ∀`.

We can rewrite this problem as follows:

(PI-DL)


minimize
X,Λ1,...,Λp

‖Y − F∗[Λ1, . . . ,Λp](Im ⊗ F)X‖F

subject to Λk is diagonal, k = 1, . . . , p

‖xj‖0 6 S, ∀j,
∥∥d}

`

∥∥
2

= 1,∀`,
D} = F∗[Λ1, . . . ,Λp](Im ⊗ F).

In order to solve (PI-DL), we follow the alternating opti-
mization approach used in the classical K-SVD algorithm [3].
In the first stage, we update the matrix X and in the second
stage we update the dictionary D}.

1) Sparse update: To update the jth column of X, find
the best S-sparse approximation to yj using FΛ(Im ⊗F) by
solving the following PSAP [22]

minimize
x

‖yj − FΛ(Im ⊗ F)x‖2 subject to ‖x‖0 6 S,

which can be approximated using OMP (cf. Sec. 2).
2) Dictionary update: To update the diagonal matrices

Λk in PI-DL, we again isolate each column (which contains
only a single non-zero entry), and then find the value which
minimizes the objective function.

More specifically, let λ`,k be the `th diagonal element
of Λk, and let X[k] ∈ Rm×T be the submatrix of X consist-
ing of the rows m(k− 1) + 1 to mk of X. Since the matrix F
is unitary, we have that

‖Y − F∗Λ(Im ⊗ F)X‖2F = ‖FY −Λ(Im ⊗ F)X‖2F
= ‖FY −

∑p
k=1 ΛkFX[k]‖2F = ‖Z` −Λ`FX[`]‖2F , (2)

where Z` = FY −
∑

k 6=` ΛkFX[k]. Decomposing (2) row-
wise then yields

‖Y − F∗Λ(Im ⊗ F)X‖2F =
∑m

j=1‖[Z`]j−λj,` [FX[`]]j‖22,
2The operator ⊗ corresponds to the Kronecker product.

Table 1: Properties of the smallest dictionary required to
get an SNR exceeding 20 dB. DoF is the degrees of freedom
which is the number of entries required to specify the dictio-
nary, Gen. is the number of generating atoms (if applicable),
and L.T. is the time required to learn the dictionary.

Atoms Gen. DoF L.T. SNR

K-SVD 129 – 8, 192 133s 20.8dB
K-SVD } 1, 025 16 1, 024 92s 20.0dB
PI-DL } 321 5 320 88s 20.4dB
SI-DL 193 – 12, 288 304s 20.6dB

where [FX[`]]j is the jth row of FX[`]. We can now mini-
mize the above expression by differentiating it with respect to
λi,` and setting the result equal to zero. Thus, for each i, we
compute the following expression:

λi,` = [Z`]i [FX[`]]
∗
i × ‖[FX[`]]i‖

−2
2
.

After calculating D} from the updated Λk matrices, we nor-
malize each column of D} by setting di = di/ ‖di‖2 and
then multiplying the ith row of X by ‖di‖2 as put forward
in [4]. Note that for signals with non-zero mean, it is often
useful to append an atom of all ones to the resulting dictio-
nary followed by normalizing it to unit `2-norm.

3.2. Storage and implementation speed

A significant feature of PI dictionaries is that they have low
storage requirements, as only the p generating atoms need
to be stored. This is of particular importance when storage
and memory access comes with a premium, as, e.g., in hard-
ware implementations [23]. Alternatively, for the same stor-
age capacity as unstructured dictionaries, the reconstruction
performance is improved as the circularized dictionary con-
tains more columns while only storing the generating ele-
ments. In addition, for streaming applications, the incoming
data is typically divided into small patches, which can then be
processed independently. Such small patches are more likely
to contain phase-shifted versions of the dictionary atoms.

Another advantage of PI dictionaries is that matrix-vector
multiplications can be efficiently implemented using the fast
Fourier transform (FFT). For anm×n PI dictionary D} with
p = n/m generating atoms, the matrix-vector multiplication
D}x can be performed withO(n logm) operations, whereas
for a non-PI dictionary of the same size it requires O(mn)
operations. This complexity gain is of particular importance
for algorithms such as BP [21] or AMP [23], which make
heavy use of this matrix-vector multiplication step.

4. RESULTS AND APPLICATION EXAMPLE

4.1. Synthetic results

We now assess the performance and complexity of PI-DL us-
ing synthetic experiments, comparing to K-SVD [3] and shift-



64 256 512 768 1,024

15

20

25

total number of atoms, n

SN
R

K-SVD
K-SVD }
PI-DL }
SI-DL
SI-DL }

Fig. 1: 8-sparse approximation error for audio data. } de-
notes that the dictionary is phase-invariant.

invariant DL, (SI-DL), [14].3 Since the implementation of SI-
DL4 was only available for audio signals, we consider an au-
dio signal approximation application. Thus we learn the fol-
lowing m×n dictionaries, with m = 64 and p = (n− 1)/m,
from a piece of music5 with

(i) n atoms using K-SVD [3] and SI-DL [14]
(ii) p generating atoms using K-SVD, PI-DL, or SI-DL.

If we learn p generating vectors, we circularize the dictio-
nary, i.e., we include all the shifted versions of the gener-
ating atoms. We include a column of ones in the learned
dictionary and try to learn the best dictionary whilst using
an 8-sparse representation of the training data. We then
approximate a random segment from the remainder of the
movement using these dictionaries to get the SNR, defined by
20 log10(‖y‖2 / ‖y − ŷ‖2), where y is the original data and
ŷ the 8-sparse approximation with the learned dictionary.6

From Fig. 1, we see that the circularized PI-DL approach
gives the best SNR out of all the circularized methods. K-
SVD and SI-DL can perform better than PI-DL, but this is
unsurprising since the resulting dictionary has 64× more de-
grees of freedom than the PI-DL dictionary. For large values
of n, PI-DL outperforms both SI-DL and K-SVD algorithm;
this is mainly because SI-DL and K-SVD are overfitting their
dictionaries to the training data.

In Tab. 1 we compare the times taken to generate the
smallest dictionary that gives an SNR of at least 20 dB.7

Although PI-DL } requires a large dictionary, it is in fact
specified by the smallest number of parameters, as we only
need to store the 5 generating vectors. It is also considerably
faster than the other methods. Thus, PI-DL learns a smaller
dictionary, faster than the other approaches, and results in a
better sparse representation of the data.

3We also implemented the MoTIF algorithm [12], but SI-DL performed
substantially better and hence, for brevity, we omit the MoTIF results.

4Available at: http://code.soundsoftware.ac.uk/projects/

siksvd/repository
5Precisely, we use a random patch selection from the first 10 s of Mozart’s

K452 Largo - Allegro moderato, as training data.
6All simulations were performed on a i7 2.2GHz laptop computer with

8GB RAM and running Matlab R2012a.
7Note that for SI-DL }, we were not able to achieve this error rate, hence

the results are not shown.

(a) Original image (b) Corrupted image (SNR=7 dB)

(c) PI-DL (SNR=28.0 dB) (d) K-SVD (SNR=28.2 dB)

Fig. 2: Reconstructed images using PI-DL and K-SVD. 12
generating vectors were learned for PI-DL (n = 769), taking
105s and for K-SVD, n = 257, taking 739s to learn.

Fig. 3: The p = 12 generating atoms learned using PI-DL.

4.2. Application example

We now compare PI-DL to K-SVD for a simple inpainting
example. Here, we use a picture of a turtle as training data
to generate a dictionary and attempt to reconstruct a different
turtle picture that is missing 30% of its pixels. In Fig. 2 we
show the corrupted image and the reconstructed images. In
Fig. 3 we show the 12 generating atoms learned by PI-DL.
Similar to the audio data, PI-DL learns a dictionary 7× faster
and specified by 20× fewer parameters, for the same recon-
struction performance. Hence, PI-DL is much more efficient
from a complexity and storage requirement perspective.

5. CONCLUSION

We have shown that phase-invariant (PI) dictionaries can give
the same or better reconstruction performance as regular (un-
structured) dictionaries, but require much less time to gener-
ate and need much less storage space. This feature is particu-
larly important for hardware implementations, where memory
access and storage comes at a premium. PI dictionaries are
suitable for many applications including audio/image denois-
ing and inpainting. In addition, their combination of low stor-
age requirements and fast implementation renders them par-
ticularly attractive for the use in hardware implementations.
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