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Abstract—In this paper, we present novel probabilistic recovery
guarantees for sparse signals subject to sparse interference,
covering varying degrees of knowledge of the signal and in-
terference support. Our results assume that the sparsifying
dictionaries are characterized by coherence parameters and we
require randomness only in the signal and/or interference. The
obtained recovery guarantees show that one can recover sparsely
corrupted signals with overwhelming probability, even if the
sparsity of both the signal and interference scale (near) linearly
with the number of measurements.

I. INTRODUCTION

We consider the problem of recovering the sparse signal
vector x ∈ Cna with support set X (containing the locations
of the non-zero entries of x) from m linear measurements [2]

z = Ax+Be. (1)

Here, A ∈ Cm×na and B ∈ Cm×nb are given (and known)
dictionaries, i.e., matrices that are possibly over-complete and
whose columns have unit Euclidean norm. The vector e ∈ Cnb

with support set E represents the sparse interference. We
investigate the following models for x and e, and their support
sets X and E :
• The interference support set E is arbitrary, i.e., E ⊆
{1, . . . , nb} can be any subset of cardinality ne. In
particular, E may depend upon the sparse signal vector x
and/or the dictionary A, and hence, may also be chosen
adversarially. The support set X of x is chosen uniformly
at random from all subsets of {1, . . . , na} with cardinal-
ity nx.

• The support set E of the sparse interference vector e
is chosen uniformly at random from all subsets of
{1, . . . , nb} with cardinality ne. The support set X is
assumed to be arbitrary and of cardinality nx.

• Both X and E , the support sets of the signal and of
the interference with cardinality nx and ne, respectively,
are chosen uniformly at random from all subsets of
{1, . . . , na} and {1, . . . , nb} with sizes nx and ne, re-
spectively.
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In addition, for each model on X and E we may or may not
know either of the support sets prior to recovery.

As discussed in [2], recovery of x from the corrupted
observation z in (1) is relevant in a large number of practical
applications. In particular, the restoration of saturated signals
or signals impaired by impulse noise is captured by the input-
output relation (1). Furthermore, (1) enables one to investigate
sparsity-based super-resolution and in-painting, as well as
signal separation. Hence, identifying the fundamental limits
on the recovery of x (and e if appropriate) from the sparsely
corrupted observation z is of significant practical interest.

Recovery guarantees for sparsely corrupted signals have
been partially studied in [2]–[9]. In particular, [2], [3] investi-
gated coherence-based recovery guarantees for both support
sets X and E being arbitrary and for varying levels of
support-set knowledge; [4] analyzed the special case where
both support sets are unknown, but one is chosen arbitrarily
and the other at random. The recovery guarantees in [5]
require a random matrix A and that B is unitary, whereas
the results in [6]–[9] characterize A by the restricted isometry
property (RIP), which is difficult to verify in practice. The
specific models and assumptions underlying the results in [5]–
[9] reduce their utility for the applications outlined above.

A. Contributions

In this paper, we focus exclusively on results where the
randomness is in the signal and/or the interference but not in
the dictionaries A or B. Furthermore, the dictionaries will
be characterized only by their coherence parameters, their
dimensions, and their spectral norms. Our results refine or
improve upon the recovery guarantees in [2]–[4], [10] and
cover novel cases for varying degrees of knowledge of the
signal and interference support sets. In particular, we present
novel recovery guarantees for the situations where the support
sets X and/or E are chosen at random, and for the cases
where knowledge of neither, one, or both support sets is
available prior to recovery. We furthermore show that `1-
norm minimization is able to recover the vectors x and e
with overwhelming probability, even if the number of non-
zero entries in both scales (near) linearly with the number of
measurements.

A summary of all the cases studied in this paper is given
in Table I; the theorems highlighted in dark gray indicate



TABLE I
SUMMARY OF THE RECOVERY GUARANTEES FOR SPARSELY CORRUPTED
SIGNALS; THE SETTING WITH X CHOSEN ARBITRARILY AND E CHOSEN

UNIFORMLY AT RANDOM FOLLOWS ANALOGOUSLY

X , E arbitrary X rand., E arb. X , E rand.

X , E Case 1a Case 1b Case 1c
known [2, Thm. 3] Thm. 1 Thm. 1

E known Case 2a Case 2b Case 2d
[2, Thm. 4] Thm. 2 Thm. 3

X known Case 2a Case 2c Case 2d
[2, Cor. 6] Thm. 4 Thm. 3

neither Case 3a Case 3b Case 3c
known [4, Thms. 2, 3] Thm. 5, [4, Thm. 6] Thm. 6

novel results, light gray indicates refined results. The cases
shown in italics follow by reversing the roles of x and e in
the appropriate symmetric case.

B. Notation
Lowercase and uppercase boldface letters stand for column

vectors and matrices, respectively. For the matrix M, we
denote its transpose, adjoint, and (Moore–Penrose) pseudo-
inverse by MT , MH , and M†, respectively; the spectral
norm of M is ‖M‖2,2, and the ith column of M is mi.
Sets are designated by upper-case calligraphic letters; the
cardinality of the set S is |S|. The support set of v is given
by supp(v). The matrix MS is obtained from M by retaining
the columns of M with indices in S; the vector vS is obtained
analogously from v. We define 1[µ 6= 0] to be equal to 1 if
µ 6= 0 and 0 otherwise. Throughout the paper, X = supp(x)
and E = supp(e) with cardinality nx and ne, respectively.
We furthermore define D = [A B ], DX ,E = [AX BE ],
s = [xT eT ]T , and sX ,E = [xTX eTE ]

T . For two functions
f and g we write f ∼ g to indicate that f(n)/g(n) → 1 as
n→∞, and we say that “f scales with g.”

II. RELEVANT PRIOR WORK

We next summarize relevant prior work on sparse signal
recovery and sparsely corrupted signals.

A. Coherence-Based Recovery Guarantees
During the last decade, numerous deterministic and prob-

abilistic guarantees for the recovery of sparse signals from
linear (and non-adaptive) measurements have been developed,
e.g., [10]–[14]. These results give sufficient conditions as to
when one can reconstruct the sparse signal vector x from the
(interference-less) observation y = Ax by solving

(P0) minimize
x̂

‖x̂‖0 subject to y = Ax̂,

or its convex relaxation, basis pursuit, defined as

(BP) minimize
x̂

‖x̂‖1 subject to y = Ax̂.

In particular, in [11], [12] it is shown that if ‖x‖0 6 nx for
some nx < (1 + 1/µa)/2 with the coherence parameter

µa = max
i,j,i 6=j

|〈ai,aj〉| , (2)

then (P0) and (BP) are guaranteed to perfectly recover the
sparse signal vector x. Such coherence-based recovery guar-
antees are, however, subject to the “square-root bottleneck,”
so that recovery is only guaranteed for sparsity levels scaling
as nx ∼

√
m [10]. In order to overcome the square-root

bottleneck, one must either resort to a RIP-based analysis,
e.g., [13], [14], which typically requires randomness in the
dictionary A to show that a certain RIP holds, or a proba-
bilistic analysis that considers randomness only in the vec-
tor x. Probabilistic and coherence-based recovery guarantees
that overcome the square-root bottleneck have been derived
in [10]. The corresponding results, however, do not exploit the
structure of the problem (1), i.e., the fact that we are dealing
with two dictionaries and that knowledge of X and/or E may
be available prior to recovery.

B. Recovery Guarantees for Sparsely Corrupted Signals

Guarantees for the recovery of sparsely corrupted signals as
modeled by (1) have been developed recently in [2]–[4]. The
references [2], [3] consider deterministic and coherence-based
results for several cases which arise in different applications:
1) X = supp(x) and E = supp(e) are known prior to
recovery, 2) only one of X and E is known, and 3) neither X
nor E are known. For case 1), the non-zero entries of both the
signal and interference vectors can be recovered by [2]

sX ,E = D†X ,Ez, (3)

if the recovery guarantee in [2, Thm. 3] is satisfied. For case 2),
recovery is performed by using modified versions of (P0) and
(BP); the associated recovery guarantees can be found in [2,
Thm. 4 and Cor. 6]. For case 3), recovery guarantees for the
standard (P0) or (BP) algorithms are given in [4, Thms. 2
and 3]. However, all these recovery guarantees suffer from
the square-root bottleneck, as they guarantee recovery for all
signal and all interference vectors satisfying the given sparsity
constraints. A notable exception for case 3) was discussed
in [4, Thm. 6]. There, e is assumed to be random, but x is
assumed to be arbitrary, which significantly improves upon the
corresponding deterministic (and coherence-based) recovery
guarantees in [4, Thms. 2 and 3]. To overcome the square-
root bottleneck for various degrees of support-set knowledge,
we next propose a generalization of the probabilistic signal
models developed in [4], [10] for the cases 1), 2), and 3)
outlined above.

III. MAIN RESULTS

The recovery guarantees developed next rely upon the mod-
elsM(P0) andM(BP) summarized in Model 1 and Model 2,
respectively. In addition to these models, our results require
the coherence parameters of the dictionaries A ∈ Cm×na

and B ∈ Cm×nb , i.e., the coherence µa of A in (2), the
coherence µb of B given by µb = maxi,j,i 6=j |〈bi,bj〉|,
and the mutual coherence µm between A and B, defined
as µm = maxi,j |〈ai,bj〉|. Our main results for the cases
highlighted in Table I are detailed next.



Model 1 M(P0)
• Let x ∈ Cna and e ∈ Cnb have support set X and E ,

respectively, of which at least one is chosen uniformly at
random from all subsets of {1, . . . , na} and {1, . . . , nb}
with sizes nx and ne, as appropriate. If a support set is
chosen at random, then assume that the corresponding
non-zero entries of the associated vector are drawn from
a continuous distribution.

• The observation z is given by z = Ax+Be.

Model 2 M(BP)
• The conditions of M(P0) hold.
• If X or E is chosen at random, then assume that the

corresponding non-zero entries of the associated vector(s)
are drawn from a continuous distribution, where the
phases of the individual components are independent and
uniformly distributed on [0, 2π).

A. Cases 1b and 1c: X and E Known

We start with the case where both support sets X and E are
known prior to recovery. The following theorem guarantees
recovery of x and e from z using (3), with high probability.

Theorem 1 (Cases 1b and 1c): Let x and e be signals sat-
isfying the conditions of M(P0), assume that both X and E
are known, and choose β > log(nx). If X is chosen uniformly
at random, E is arbitrary, and if

δe−
1
4 > ‖A‖2,2 ‖B‖2,2

√
nx
na

+ 12µa
√
βnx + (ne − 1)µb

+ 1[µa 6= 0]
2nx
na
‖A‖22,2 + 3µm

√
2βne (4)

holds with1 δ = 1, then we can recover x and e using (3)
with probability at least 1− e−β .

If both X and E are chosen at random and if

δe−
1
4 > 12

√
β (µa

√
nx + µb

√
ne) + 1[µa 6= 0]

2nx
na
‖A‖22,2

+ 1[µb 6= 0]
2ne
nb
‖B‖22,2 +min

{
3µm

√
2βnx

+

√
ne
nb

∥∥AHB
∥∥
2,2
, 3µm

√
2βne +

√
nx
na

∥∥AHB
∥∥
2,2

}
(5)

holds with δ = 1 and β > max{log(nx), log(ne)}, then we
can recover x and e using (3) with probability at least 1−e−β .

Proof: The proof can be found in [1].

B. Cases 2b and 2d: E Known

Consider the case where only the support set E of e is
known prior to recovery. In this case, recovery of x (and the
non-zero entries of e) from z can be achieved by solving2

(P0, E)
{

minimize
x̂,êE

‖x̂‖0 + ‖êE‖0
subject to z = Ax̂+BE êE ,

1Later, we will require (4) to hold for different values of δ.
2Note that since E is known, the norm ‖êE‖0 in (P0, E) can be omitted.

or its convex relaxation3

(BP, E)
{

minimize
x̂,êE

‖x̂‖1 + ‖êE‖1
subject to z = Ax̂+BE êE .

The following theorems guarantee the recovery of x and e
from z, using (P0, E) or (BP, E), with high probability.

Theorem 2 (Case 2b): Let x and e be signals satisfying the
conditions ofM(P0), assume that E is known prior to recovery
and chosen arbitrarily, and assume that X is unknown and
drawn uniformly at random. Choose β > log(nx). If (4) holds
for some 0 < δ < 1 and if

nxµ
2
a + neµ

2
m < 1− δ, (6)

then we can recover x and e using (P0, E) with probability at
least 1− e−β .

Moreover, if x and e are signals satisfying the conditions
of M(BP), and, in addition to (4) if

nxµ
2
a + neµ

2
m <

(1− δ)2
2(log(na) + β)

(7)

holds then we can recover x and e using (BP, E) with
probability at least 1− 3e−β .

Proof: The proof can be found in [1].
Theorem 3 (Case 2d): Let x and e be signals satisfying

the conditions of M(P0), assume that E is known but X is
unknown prior to recovery, and assume that both X and E
are drawn uniformly at random. If (5) and (6) hold for some
0 < δ < 1 and β > max{log(nx), log(ne)}, then we can
recover x and e using (P0, E) with probability at least 1−e−β .

Moreover, if x and e satisfy the conditions of M(BP) and
if (7) holds in addition to (5) and (6), then we can recover x
and e using (BP, E) with probability at least 1− 3e−β .

Proof: The proof can be found in [1].

C. Case 2c: X Known

The case where X is random and known, and E is unknown
and arbitrary, differs slightly to the case where X is random
and unknown, and E is arbitrary and known (covered by
Thm. 2). Hence, we need to consider the two cases separately.
The recovery problems (P0,X ) and (BP,X ) required here are
defined analogously to (P0, E) and (BP, E).

Theorem 4 (Case 2c): Let x and e be signals satisfying the
conditions of M(P0), assume that X is known and chosen
uniformly at random, and assume that E is unknown and
arbitrary. If

δe−
1
4 > ‖A‖2,2 ‖B‖2,2

√
ne
nb

+ 12µb
√
βne + (nx − 1)µa

+ 1[µb 6= 0]
2ne
nb
‖B‖22,2 + 3µm

√
2βnx (8)

holds for some 0 < δ < 1 and β > log(ne), and if

nxµ
2
m + neµ

2
b < 1− δ, (9)

3Note that we consider a slightly different convex optimization problem to
that proposed in [2] for the case where E is known prior to recovery.



then we can recover x and e using (P0,X ) with probability
at least 1− e−β .

Moreover, if x and e are signals satisfying the conditions
of M(BP), and, in addition to (8), if

nxµ
2
m + neµ

2
b <

(1− δ)2
2(log(nb) + β)

(10)

holds then we can recover x and e using (BP,X ) with
probability at least 1− 3e−β .

Proof: The proof can be found in [1].

D. Cases 3b and 3c: No Support-Set Knowledge

Recovery guarantees for the case of no support-set knowl-
edge, but where one support set is chosen at random and the
other arbitrarily can be found in [4]. The theorem shown next
refines the result in [4, Thm. 6]. The refinements are due to
the following facts: i) We allow for arbitrary 0 < δ < 1,
whereas δ = 1/2 in [4, Thm. 6], ii) we do not use a global
coherence parameter µ = max{µa, µb, µm}, but rather exploit
the individual coherence parameters µa, µb, and µm of A and
B, and iii) the indicator functions in our recovery conditions
improve our results in the cases where A and/or B are unitary.

Theorem 5 (Case 3b): Let x and e be signals satisfying the
conditions of M(P0), assume that X is chosen uniformly at
random, and assume that E is arbitrary. If (4), (6), and (9) hold
for some 0 < δ < 1 and β > log(nx), then

(P0∗) minimize
x̂,ê

‖x̂‖0 + ‖ê‖0 subject to z = Ax̂+Bê,

recovers x and e with probability at least 1− e−β .
Moreover, if x and e satisfy the conditions of M(BP) and

if (7) and (10) hold in addition to (4), (6), and (9), then

(BP∗) minimize
x̂,ê

‖x̂‖1 + ‖ê‖1 subject to z = Ax̂+Bê,

recovers x and e with probability at least 1− 3e−β .
Proof: The proof can be found in [1].

The last theorem considers the case where neither support-
set is known and both are chosen uniformly at random.

Theorem 6 (Case 3c): Let x and e be signals satisfying
the conditions of M(P0) and assume that X and E are both
unknown and chosen uniformly at random. If (5), (6), and (9)
hold for some 0 < δ < 1 and β > max{log(nx), log(ne)},
then (P0∗) recovers x and e with probability at least 1− e−β .

Moreover, if x and e are signals fromM(BP) and if (7) and
(10) hold in addition to (5), (6), and (9), then (BP∗) recovers
x and e with probability at least 1− 3e−β .

Proof: The proof can be found in [1].

IV. DISCUSSION OF THE RECOVERY GUARANTEES

We now briefly discuss a subset of the theorems presented
in Sec. III. A detailed discussion of all recovery guarantees
can be found in the journal version of the paper [1].

In what follows, we assume A and B are unitary, i.e.,
na = nb = m and µa = µb = 0, and maximally incoherent,
i.e., µm = 1/

√
m. For example, A could be the discrete

Fourier transform matrix and B the identity matrix. We
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Fig. 1. Comparison of the recovery conditions for the case where only
E is known prior to recovery. A and B are assumed to be unitary with
m = na = nb = 108 and µm = 1/

√
m.

furthermore set β = log(m), so that recovery is guaranteed
with probability at least 1−1/m and 1−3/m when solving the
`0-norm and `1-norm-based recovery problems, respectively.

A. Recovery Guarantees

1) Only E known: Fig. 1 shows the recovery conditions
from Theorems 2 and 3 for the cases where only E is known
prior to recovery (the case of only X known behaves analo-
gously). We see that for a random X and random E successful
recovery at high probability is guaranteed for significantly
larger nx and ne compared to the case where one or both
support sets are arbitrary. Hence, allowing for randomness in
the support sets leads to less restrictive recovery conditions.

2) No support-set knowledge: Fig. 2 shows the recovery
conditions for (BP∗) for the case of no support-set knowledge.
We see that for random X and E , successful recovery is guar-
anteed for significantly larger nx and ne compared to the case
where one or both support sets are assumed to be arbitrary. As
a comparison, we also show the recovery conditions derived in
[4, Thm. 6] and the condition from [10], which does not take
into account the structure of the problem (1). We see that the
recovery conditions derived in Theorems 5 and 6 guarantee the
successful recovery for a larger number of nonzero coefficients
in both the sparse signal vector x and the sparse interference e.

B. Asymptotic Behavior of the Recovery Conditions

We now compare the asymptotic behavior of probabilistic
and deterministic recovery conditions, i.e., we study the scal-
ing behavior of nx and ne. To this end, we are interested in
the largest nx for which recovery of x (and e) from z can be
guaranteed with high probability. In particular, we consider
the following models for the sparse interference vector e:
i) constant sparsity, i.e., ne = 103, ii) sparsity proportional
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Fig. 2. Comparison of the recovery conditions for the case of no support-set
knowledge. A and B are assumed to be unitary with m = na = nb = 108

and µm = 1/
√
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to the square root of the problem size, i.e., ne =
√
m, and

iii) sparsity proportional to the problem size, i.e., ne = m/105.
Fig. 3 shows the largest nx (for a given ne) for which

recovery can be guaranteed using (BP, E). Here, E is assumed
to be known and arbitrary and X is unknown and chosen either
at random or arbitrarily. Note that the other cases of support-
set knowledge and arbitrary/random exhibit the same scaling
behavior. We see from Fig. 3 that for a constant interference
sparsity (i.e., ne = 103), the probabilistic and deterministic
results show the same scaling behavior. For the cases where
ne scales with

√
m or m, however, the deterministic thresholds

developed in [2] result in worse scaling, while the behavior of
the probabilistic guarantees derived here remains unaffected.

We now investigate the scaling behavior observed in Fig. 3
analytically. Again, we only consider the case where X is
unknown and chosen at random and E is known and chosen
arbitrarily; an analysis of the other cases yields similar results.
From Thm. 2, the recovery of x from z using (BP, E)
is guaranteed with probability at least 1 − 3/na (i.e., for
β = log(na)) for maximally incoherent and unitary A and
B (i.e., µa = µb = 0, na = nb = m, and µm = 1/

√
m) if for

some δ ∈ (0, 1), both δe−1/4 >
√
nx/na + 3µm

√
2βne and

2neµ
2
m(log(na) + β) < (1− δ)2 hold, that is, if

e−
1
4
√
m >

√
nx + (3

√
2 + 2e−

1
4 )
√
ne log(m). (11)

Hence, if nx ∼ m and ne ∼ m/ log(m), the condition (11)
can be satisfied. Consequently, recovery of x (and of e) is
guaranteed with probability at least 1−3/m even if nx scales
linearly in the number of (corrupted) measurements m and ne
scales near-linearly (i.e., with m/ log(m)) in m.

We finally note that the recovery guarantees in [5] also allow
for the sparsity of the interference vector to scale near-linearly
in the number of measurements. The results in [5], however,
require the matrix A to be random and B to be orthogonal,
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Fig. 3. Maximum signal sparsity nx that ensures recovery of x for E known
and arbitrary. We assume ne = 103, ne =

√
m, and ne = m/105. The

probability of successful recovery is set to be at least 1− 10−15.

whereas the recovery guarantees shown here are for arbitrary
pairs of dictionaries A and B (characterized by the coherence
parameters) and for varying degrees of support-set knowledge.
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