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ABSTRACT
Checkpointed Early Resource Recycling (Cherry) is a
recently-proposed micro-architectural technique that aims at
improving critical resource utilization by performing aggres-
sive resource recycling decoupled from instruction retire-
ment, using a checkpoint/rollback mechanism to recover from
occasional incorrect execution. In this paper, we explore
correctness and performance issues that arise when Cherry-
enabled processors are used in chip multiprocessor architec-
tures. We propose mechanisms to address cache coherence,
memory consistency, and forward progress issues in such en-
vironments. We also provide quantitative insight on the per-
formance impact of the Cherry mechanism on parallel pro-
cessing.

1 INTRODUCTION
Today’s out-of-order processors confront the growing dis-
crepancy of processor and memory speed in part by sup-
porting a large number of in-flight instructions. The hope
is to overlap useful computation with long-latency memory
accesses. Traditionally, such support is realized largely by
increasing the size of pertinent resources such as the register
file or the load/store queues. Unfortunately, many such re-
sources cannot scale up arbitrarily without adversely affect-
ing the clock cycle, the pipeline depth, or both. As a result,
processors are eventually unable to compensate for the speed
gap, and performance suffers. This, compounded with ram-
pant power consumption and design cost problems, makes
monolithic microprocessor architectures increasingly unap-
pealing.

In light of this upsetting trend, researchers and industry are
moving toward multicore solutions that rely on explicit paral-
lelism to attain new levels of performance. Yet the success of
these architectures in many fronts still depends critically on
the ability to deliver high single-thread performance.

Checkpointed Early Resource Recycling (Cherry) [23] is a
recently-proposed micro-architectural technique that seeks to
improve critical resource utilization by decoupling resource
recycling from instruction retirement, aggressively recycling
resources that are not needed to support branch mispredic-
tions and memory replay traps. To support precise exceptions
on instructions whose resources have been recycled, Cherry
relies on periodic checkpointing of the processor’s architec-
tural registers.

Cherry is a promising technique that can (a) provide higher
levels of performance without unduly enlarging critical mi-
croprocessor resources, or (b) maintain a certain level of per-
formance while reducing the size of such resources. This
allows Cherry to deliver higher single-thread performance

in CMPs with relatively small cores. Unfortunately, Cherry
(and other recent checkpoint-based microprocessor propos-
als [5, 8, 11, 20, 23, 24, 30]) do not generally explore integra-
tion in chip multiprocessors (CMP). However, if mechanisms
like Cherry are to make an impact in these architectures, it is
imperative that their integration be addressed.

In this paper, we explore the integration of Cherry-enabled
processors in CMP architectures. We propose mechanisms
to address cache coherence, memory consistency, and for-
ward progress issues in such an environment. We also provide
quantitative insight on the performance impact of Cherry on
parallel processing.

This paper is organized as follows: Section 2 provides
background information on Cherry. Section 3 discusses archi-
tectural extensions to provide correct parallel execution using
Cherry-enabled processors. Section 4 describes the experi-
mental setup and presents an evaluation of the performance
impact of Cherry on parallel processing. Section 5 discusses
related work. Finally, Section 6 presents our conclusions.

2 BACKGROUND: CHERRY
Cherry is a micro-architectural technique that speculatively
recycles critical resources such as physical registers and
load/store queue entries. A processor enters Cherry mode
by taking a checkpoint of the architectural registers. Once
in Cherry mode, the processor recycles resources that are not
needed to recover from (relatively frequent) branch mispre-
dictions or memory replay traps. To restrict recycling in this
way, the ROB entry of the oldest instruction that can suf-
fer from a memory replay trap or a branch misprediction is
identified as the Point of No Return (PNR) (Figure 1). In-
structions older than the PNR constitute the irreversible set at
each point in time, and only resources associated with such
irreversible instructions may be recycled early. Depending
on the target resource, the PNR is a function of the oldest
address-unresolved load (whose ROB entry is denoted by
UL), address-unresolved store, (ROB entry called US), and
unresolved branch (UB).

To support (relatively infrequent) precise exceptions on ir-
reversible instructions, Cherry relies on its checkpoint sup-
port. On such an exception, the processor rolls back to the
checkpoint and re-executes in non-Cherry mode until the ex-
ception is again raised, at which point it can be handled nor-
mally. Then (or if the exception does not re-occur) the pro-
cessor can continue execution in Cherry mode. Because roll-
backs are limited to exception handling on irreversible in-
structions, they are relatively rare. Nevertheless, to limit the
penalty of a potential rollback, a Cherry-enabled processor
exits Cherry mode and renews its checkpoint periodically.
Each period is called a Cherry Cycle. To exit Cherry mode,
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Figure 1: Cherry ROB with Point of No Return (PNR)

a processor freezes the PNR and allows all instructions in the
irreversible set to retire. Once the ROB head catches up with
the PNR, the processor can renew its checkpoint. We call this
process collapse step. Exceptions on instructions not in the
irreversible set, and all interrupts in general, are handled in
this way as well, without requiring a rollback.

2.1 Speculative Memory Updates
Memory updates in Cherry mode must be temporarily
buffered so that, in the event of a rollback to the checkpoint,
the original memory contents can be recovered by simply dis-
carding such speculative updates. For this purpose, during
Cherry execution, memory updates are kept in the processor’s
local cache hierarchy. Speculatively updated cache lines are
marked Volatile (one additional bit per cache line) to distin-
guish them from nonspeculative ones. Volatile cache lines
cannot be evicted to memory. On a processor rollback, all
cache lines marked Volatile are gang-invalidated and Volatile
bits gang-cleared. On the other hand, on a successful col-
lapse, Volatile bits are gang-cleared, effectively committing
all speculatively updated data.

In case a speculative update overwrites nonvolatile dirty
data, the data are first written back to memory to ensure avail-
ability in the event of a rollback.

Finally, notice that it may be possible that a cache miss find
no victims in the corresponding cache set (all lines marked
Volatile in that set). This can compromise forward progress if
completion of the memory access is needed for the processor
to collapse its irreversible set. To minimize the chances of
this scenario, a victim cache at the bottom of the local cache
hierarchy captures evicted volatile cache lines, and once the
number of such cache lines exceeds a certain threshold, the
victim cache informs the processor that it ought to renew its
checkpoint. In the rare event that the victim cache fills up
with Volatile entries and a new replacement cannot take place,
the processor rolls back to the checkpoint and re-executes in
non-Cherry mode.

2.2 Early Resource Recycling
2.2.1 Load/Store Queue
Modern processors typically incorporate separate load and
store queues [10, 34]. These CAM structures hold entries
for every in-flight memory instruction in program order, and
are used for data forwarding (either load refill or store-to-load
forwarding) and, importantly, for enforcing correct memory
ordering. Entries are typically allocated at decode/rename,
filled with address and data values as these become ready,
and released at retirement. In Cherry, however, load and
store queue entries are released as soon as they are deemed
no longer needed.

Load Queue
Some loads may speculatively issue out of order with respect
to previous address-unresolved stores. However, when one
such older store later resolves to an overlapping address, the
premature load and its dependent instructions are squashed
and replayed. This we call a store-load replay trap, and the
situation is typically detected by inspecting the load queue for
matching addresses on resolving a store address. (The second
time around, the store queue typically forwards the new value
on request.)

Cherry’s early load queue recycling is enabled by dividing
the load queue into two parts: Load Data Queue (LDQ) and
Load Reorder Queue (LRQ). LDQ provides the memory refill
functionality of the conventional load queue; LRQ supplies
the associative address checking functionality. LDQ entries
are shortlived relative to LRQ entries, and thus early recycling
in Cherry is applied to the latter. A LRQ entry can be recycled
as soon as it is known that the corresponding load is free of
replay traps. In a uniprocessor setup that occurs when all its
previous stores are address resolved; therefore, PNR for load
queue recycling can be defined to be US .

Store Queue
Early store queue recycling is achieved by allowing stores to
issue to memory ahead of commit, and recycling the corre-
sponding store queue entry. When recycling in this way, it
must be known that the previous value in the memory system
is not needed anymore. This is guaranteed if (1) no older load
is pending address disambiguation, (2) no older load is sub-
ject to replay trap, and (3) the store is not subject to squash
due to branch misprediction. Based on these three condi-
tions, the PNR for store queue recycling can be defined as
oldest(UL, US , UB). (Notice that recycling is still performed
in program order, to ensure in-order updates to the same ad-
dress.)

2.2.2 Register Recycling
Typically, a physical register holding an architectural value
is reclaimed when a subsequent instruction that renames to
the corresponding logical register retires. Cherry, on the
other hand, recycles physical registers as soon as their val-
ues are not needed by subsequent instructions. This hap-
pens when (1) the producing and all consuming instructions
are executed, free of replay traps and not subject to branch
mispredictions, and (2) there is a superseding producing in-
struction that is also not subject to misspeculation. Accord-
ingly, the PNR for register recycling is defined as oldest(US,
UB). (Still, registers superseded by the instructions in the ir-
reversible set are recycled only when it is also known that all
consumers have executed. To achieve this, some small per-
register bookkeeping support is needed.)

3 CHERRY-MP
Generally speaking, in the absence of any interprocessor
communication (for example, when executing independent
single-threaded applications), each processor should be able
to execute in and out of Cherry mode at its leisure. When
sharing of (potentially volatile) data occurs, however, non-
trivial correctness and performance issues arise. Furthermore,
Cherry’s early release of load and store queue entries (and the
associated data in the case of stores) poses additional memory
consistency challenges.



In this section we present Cherry-MP, a mechanism to in-
tegrate Cherry in CMP architectures so that it can operate on
parallel runs. We address Cherry-MP in the context of a bus-
based shared-memory multicore organization. First, we dis-
cuss data sharing and cache coherence; then, we deal with
issues related to both strict and relaxed memory consistency
models.

3.1 Data Sharing
Data sharing in Cherry-equipped CMP architectures is differ-
ent from conventional architectures in that some of the data
held in caches may be volatile—that is, subject to rollback.
Consider, for example, a case in which processor P0 requests
a data value v produced speculatively by processor P1, which
executes in Cherry mode. If P0 also executes in Cherry mode,
allowing such an exchange is possible in principle, as both
processors are already operating with volatile data. However,
to ensure correctness, P0’s fate must be bound to P1’s from
that point on: If P1 later rolls back, so does P0, since it has
consumed a value that is now stale. Therefore, P0’s copy
must be marked volatile as in P1 to be able to invalidate the
data on a rollback. Only when P1 commits its volatile state
(and thus v) to memory can P0 also collapse and fall back to
non-Cherry mode.

An alternative solution is to force the processor receiving
the request out of Cherry mode prior to the data exchange.
This, however, may undermine Cherry’s effectiveness, by
shortening the time processors spend in Cherry mode. Worse
still, it may cause a deadlock if, for example, the request is
by a memory operation in the requester’s irreversible set, and
the receiver requires data held by the requester to complete
its Cherry collapse step (which would now require the re-
quester to collapse as well). In general, deadlock may occur
whenever two or more processors trying to collapse form a
dependency cycle on irreversible memory operations. These
situations generally require nontrivial support for deadlock
detection and recovery.

Thus, we opt to introduce hardware support to allow shar-
ing of volatile data. (As we explain later, the required sup-
port to allow this is in fact quite modest.) Recall, however,
that Cherry-equipped processors may execute in non-Cherry
mode for a variety of reasons, most commonly to attend pre-
cise exceptions, interrupts, or I/O. Thus, if and when data
are shared among multiple processors, a subset of them may
be executing in non-Cherry mode. In our example, it is also
possible that P0 be in non-Cherry mode at the time of the ex-
change (with P1 still in Cherry mode). In this case, P0 cannot
simply consume v without further precaution: If P1 later rolls
back to its checkpoint, P0 will be unable to undo the compu-
tation associated with v. It is conceivable that P0 be forced
to enter Cherry mode at the time it requests a copy of v from
P1, which effectively derives in the scenario described earlier.
This, however, is contrary to Cherry’s principle of executing
in non-Cherry mode in order to guarantee progress in critical
situations like the ones mentioned. For this reason, as a gen-
eral rule, a processor should not be forced into Cherry mode
externally. On the other hand, a processor can be forced out
of Cherry mode, as it happens when, for example, the pro-
cessor receives an external interrupt (Section 2). Thus, in our
example, it may be possible for P0 to read v off P1 if P1 is
forced to collapse prior to handing a copy of v over to P0, and
thus the exchange occur with both processors in non-Cherry
mode.

The case of P0 reading v off P1 with P1 in non-Cherry
mode at the time of the exchange (or in Cherry mode, but
v updated nonspeculatively before P1 entered Cherry mode)
can be handled largely as a conventional access: Indeed, be-
cause v is part of the memory’s architectural state (not marked
Volatile), it can be read in by P0 conventionally. In this case,
similarly to Cherry for uniprocessors, even if P0 is in Cherry
mode the cache line need not be marked Volatile, as it has not
been updated speculatively.

Therefore, generally speaking, the specific data sharing
mechanism between two processors must consider whether
one or both of them execute in Cherry mode during the time
the exchange takes place. This is further complicated by the
fact that processors may try to get in and out of Cherry mode,
or even rollback during such exchanges. We address all these
cases in detail in this section.

Coherence Protocol
A natural choice for a baseline cache coherence protocol
on which to build Cherry-MP support is a MOESI proto-
col [1, 32, 33]. In an n-processor system, MOESI allows sev-
eral copies of a cache line across processors that are possibly
incoherent with the copy in memory. Among those copies,
the Owned (O) copy is responsible for (1) providing a copy
to any new sharer, and (2) writing back the copy if it replaces
the cache line. The other copies remain in Shared (S) state.
Because Cherry requires to keep volatile data off memory,
MOESI is convenient in order to share speculatively modi-
fied data across processors safely. Table 1 compiles MOESI’s
states; the rightmost column indicates whether the state is apt
to hold volatile data. Notice that, in the case of Shared state,
it is only possible to hold volatile data if there is an Owned
copy elsewhere in the system—otherwise, the data must be
necessarily consistent with memory. This is precisely the fi-
nal state for v in the earlier example of P0 reading v off P1,
with both processors in Cherry mode and v marked volatile
in P1: P0 Shared, P1 Owned.

Can be
State Cache-line’s State Description volatile?
Invalid Invalid data No
Shared Valid data, possibly inconsistent with memory Yes
Exclusive Valid data, consistent with memory, No

present only in one cache
Owned Valid, dirty data, possibly shared Yes
Modified Valid, dirty data, present only in one cache Yes

Table 1: Summary of MOESI protocol states and whether they can
hold volatile data.

The extended MOESI state transition diagram to support
Cherry-MP is given in Figure 2. By leveraging MOESI’s
Owned state, we accommodate Cherry’s buffering of volatile
data without introducing many significant changes to the pro-
tocol. We largely follow the labeling convention in [12]. For
the sake of brevity, we only discuss the changes introduced to
the baseline protocol. They are:

• Speculative writes always mark the writer’s cache line
Volatile, similarly to the case of Cherry for uniproces-
sors. Speculative writes on nonvolatile dirty cache lines
(Modified or Owned state) must force a writeback of
the original contents to main memory, in case a roll-
back later undoes the speculative update. The specu-
lative write may be initiated by a local processor (iden-
tical case to Cherry for uniprocessor), or by a remote
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Figure 2: Extended MOESI state transition diagram, where shaded
elements are protocol extensions to enable Cherry-MP. Requests
that trigger state transitions and any consequent actions appear as
Trigger/Action. Trigger requests may be handled differently de-
pending on certain conditions, and these are shown immediately
after the request label. Multiple actions are separated by comma
(X,Y), and (X=>Y) indicates that Y is performed only if condition
X holds. Some abbreviations used: (S): speculative bus request;
(S’): nonspeculative bus request; S: speculative processor request;
(Sh): shared snoop result asserted; (Sh’): shared snoop result not as-
serted; V: volatile cache line; V’: nonvolatile cache line; (V): incom-
ing data is volatile; WB: writeback; flush: provide data on the bus.

processor through a BusRdX (general case) or a BusUp-
grd (case of request from processor in Shared state to
processor in Owned state).

To prompt a writeback in the case of a remote specula-
tive update, the requester must assert on the bus that the
access is speculative, lest the current owner may forward
the cache line and hand off ownership without updating
memory (the default outcome in conventional MOESI).
Moreover, as in conventional write-invalidate MOESI,
on a remote speculative write request, the original cache
line is ultimately invalidated.

On the other hand, speculative writes on volatile dirty
cache lines must not result in a write back to main
memory in any case. If the cache line is marked
Volatile+Dirty elsewhere, the protocol simply forwards
the cache line to the requester, if needed, and invalidates
the old copy. Notice, however, that if the writer later
rolls back, it is not possible to recover the older volatile
version of that cache line, and thus the original owner
should be rolled back as well. How to bookkeep these
and other necessary relations is explained later.

• Speculative reads mark the reader’s cache line Volatile,
but only if the original copy was a cache line already
marked Volatile. This is so that, in the event of a rollback
(collapse), all live copies of the speculatively updated
value are properly discarded (committed). To support
this, on a miss, the supplier of the value must put on
the bus its cache line’s Volatile bit as part of its snoop
response. Notice that, volatile, clean cache lines can be
silently dropped by the reader, provided there exists a
mechanism to roll back the reader if the producer does
so. In the earlier example where P0 reads v off P1, both
processors in Cherry mode, a rollback in P1 should drag

P0 with it. If at that point P0 still holds a copy of the
cache line, it is necessarily marked Volatile, and thus
gang-invalidated. The specific mechanism to track the
rollback/collapse relations between Cherry producer and
consumer processors is explained later.

• A (remote) nonspeculative read request (a BusRd or a
BusRdX) on a cache line marked Volatile (necessarily in
either Modified or Owned state, since we restrict cache-
to-cache transfers to these) forces the processor receiv-
ing the request to collapse. (The requester must assert
on the bus that the access is nonspeculative.) This is the
case in the earlier example of P0 reading v off P1 with
P0 and P1 in non-Cherry and Cherry mode, respectively.
Importantly, the request is rejected, with the understand-
ing that the reader will retry after some time (if still in-
terested). This is to allow the owner time to collapse and
avoids potential deadlock conditions. Once the proces-
sor collapses, it can service the request as a conventional
read request on nonvolatile data. (If the requester enters
Cherry mode in between retries, handling defaults to the
case explained above.) Notice that, if collapse is unsuc-
cessful (i.e., the owner suffers from a rollback), the next
attempt by the reader is still able to find the correct copy
elsewhere.

As in the case of Cherry for uniprocessors, on a rollback by
a processor, any cache line marked Volatile in its local cache
hierarchy is gang-invalidated regardless of its MOESI state;
on a collapse of a processor, volatile status of all its cache
lines marked volatile are gang-cleared. For simplicity, these
are not reflected in Figure 2.

3.2 Sharing History
Because sharing of volatile data between processors in Cherry
mode is permitted, we ought to make sure that rollback
and collapse operations by one processor drag all proces-
sors whose sharing with the first one (including false sharing)
binds them for that particular operation. Given two proces-
sors i, j operating in Cherry mode, we say that processor i
is bound by rollback (collapse) to processor j, and we de-
note it by j → i, if a rollback (collapse) by j should cause i
to roll back (collapse) as well. Notice that these relations are
directional. In this section we explain all rollback/collapse re-
lations in detail, then describe possible hardware mechanisms
to track such relations at runtime.

3.2.1 Rollback and Collapse Relations
On a bus request by processor i, if the controller deter-
mines from the snoop responses that the data involved re-
side Volatile+Dirty in processor j, rollback relations between
i and j are formed at that time as follows:

• Case of read request (BusRd): One rollback relation is
formed: i must roll back if j does so later on, since i has
consumed a value that was produced during the com-
putation by j that has now been undone. Therefore, i
becomes bound by rollback to j.

• Case of read exclusive request (BusRdX): Two rollback
relations are formed: (1) i must roll back if j does so
later on, since the read-exclusive request ultimately al-
lows i to read any value produced by j in that cache line
as the case before; (2) j must roll back if i does so later
on, since on a rollback by i the data originally produced



by j cannot be recovered, making it impossible for j to
use it or commit it in a subsequent collapse. Therefore,
i and j become bound by rollback to each other.

• Case of upgrade request (BusUpgrd, data necessarily in
Owned state in j): One rollback relation is formed: j
must roll back if i does so later on, since on a rollback
by i the data originally produced by j cannot be recov-
ered. Notice that relation (1) in the read-exclusive case
does not apply here, since i already has read access to an
identical copy of the cache line at the time of the request.
(If the copy was obtained through a read request with
both processors in Cherry mode, then relation (1) was
established at that point.) Therefore, only j becomes
bound by rollback to i.

Collapse relations are symmetric to rollback relations; they
are formed as follows:

• Case of read request (BusRd): One collapse relation is
formed: j must collapse if i does later on, since i is com-
mitting a cache line potentially containing values origi-
nally produced speculatively by j. Therefore, j becomes
bound by collapse to i.

• Case of read-exclusive request (BusRdX): Two collapse
relations are formed: (1) j must collapse if i does so later
on, since i is committing a cache line with values poten-
tially produced speculatively by j as before; (2) i must
collapse if j does so later on, since the read-exclusive
by i makes it impossible for j to commit the cache line
without i’s complicity (the cache line is no longer in j’s
cache). Therefore, i and j become bound by collapse to
each other.

• Case of upgrade request (BusUpgrd, data necessarily in
Owned state in j): One collapse relation is formed: i
must collapse if j does so later on, since a collapse by
j requires i’s help in committing that cache line. No-
tice that relation (1) in the read-exclusive case does not
apply here, since i already has read access to an identi-
cal copy of the cache line at the time of the request. (If
the copy was obtained through a read request with both
processors in Cherry mode, then relation (1) was estab-
lished at that point.) Therefore, only i becomes bound
by collapse to j.

Overall, directional relations are formed whenever a pro-
cessor in Cherry mode puts a request on the bus that finds the
data marked Volatile+Dirty in another processor, and each
type of request derives in different (and always symmetric)
rollback and collapse relations. Table 2 summarizes this dis-
cussion.

Operation Rollback Relation Collapse Relation
BusRd Owner → Requester Requester → Owner
BusRdX Owner → Requester Requester → Owner

Requester → Owner Owner → Requester
BusUpgrd Requester → Owner Owner → Requester

Table 2: Rollback and collapse relations formed as a result of bus
requests by a processor in Cherry mode (Requester) that finds the
data owned speculatively by another processor (Owner).

3.2.2 Hardware Support
To successfully implement sharing across Cherry-enabled
processors, the hardware must abide by the rollback/collapse

relations described above. Perhaps the simplest way to han-
dle sharing history properly in all cases is to assume all-to-all
relations at all times. That is, a rollback (collapse) by any
processor derives in a global rollback (collapse) by all pro-
cessors. The main drawback of this approach is that any roll-
back/collapse affects all processors, which may impact per-
formance and scalability, as many affected processors may
have no sharing history (directly or indirectly) with the initia-
tor.

We would like to track sharing history across processors so
that the number of processors involved in a rollback/collapse
operation be minimized (within the constraints imposed by
the rollback/collapse relations). Unfortunately, the coherence
protocol alone is not designed to track sharing over time—
e.g., did P0 ever read something produced by P1 since the
last time they entered Cherry mode? Instead, we opt to add
dedicated hardware to track sharing history across processors.

To track sharing history across processors, we extend the
bus controller to keep a sharing history table. A sharing his-
tory table for n processors can keep track of rollback and
collapse relations using two n × n matrices R and C, re-
spectively. Element rij (cij) indicates whether processor j
should roll back (collapse) following processor i’s rollback
(collapse). Thus, on a rollback (collapse) of processor i, it is
sufficient to index row i of matrix R (C) to find all processors
that should also roll back (collapse) as a result.

The real estate to support this sharing history table is mod-
est at one bit per matrix cell, which adds up to a meager 8B
per matrix for eight processors, or 128B per matrix for 32
processors. (We later show that these two matrices can in fact
fold into one, by exploiting the symmetry of rollback and col-
lapse relations, thus further reducing the history table’s over-
all size.) The main reason for such modest size is that sharing
history is kept at the processor level, without regard to the
actual amount or purpose of the data exchanged.

R and C matrices are initially set to the unit matrix, which
trivially relates each processor with itself. Incorporating a
relation i → j to matrix R (C) is easily accomplished, by
OR-ing row j into each row k for which cell rki (cki) is set.

Figure 3 is a four-step example of forming relations among
four processors. Assume this to be matrix R, and that all pro-
cessors are in Cherry mode. In snapshot 1, no relations exist.
If, for example, P2 reads data speculatively updated by P1,
a rollback by P1 later on should result in P2 rolling back as
well, since P2 has consumed an uncommitted value originally
produced by P1 that no longer exists. This is recorded in ma-
trix R by OR-ing row 2 into every row k with cell rk1 set—
only row 1 in this case—, resulting in snapshot 2. Some time
later, if for example P3 reads volatile data off P2 (not nec-
essarily the same as before), it becomes bound to roll back if
either P2 or (by transitive property) P1 does so. This time row
3 is OR-ed into rows 1 and 2, both of which have their bit for
P2 set. The end result is snapshot 3, which not only reflects
the P2→P3 relation, but also the P1→P3 formed indirectly.
Finally, snapshot 4 shows the matrix contents after P2 reads
some volatile data off P4.

Recall from Section 3.2.1 that the formation of collapse re-
lations is symmetric to that of rollback relations in every case.
It can be shown that the collapse matrix C is the transpose of
matrix R at all times, and thus only one matrix is needed to
handle both rollbacks and collapse steps, using row (column)
i to identify processors bound by rollback (collapse) to i.
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Figure 3: Tracking sharing history: Example of a four-step se-
quence involving four processors. Solid and dashed arrows represent
relations formed directly and indirectly, respectively.

3.2.3 Bounding Rollback Relations
In a large system, as a result of forming rollback relations, a
rollback by one processor can cause rollbacks in an elevated
number of processors. Consider the extreme case in which all
processors are bound by rollback to processor i, and proces-
sor i suffers an exception on an irreversible instruction. The
ripple effect of this exception would reach every processor
in the system, and a potentially very large amount of com-
putation would be discarded. To limit the cost of a potential
rollback, it is conceivable to introduce mechanisms to bound
relations. One possibility is to limit the total number of roll-
back relations in the system (total number of set bits in the
history table). Another possibility is to limit the number of
processors that are dependent by rollback on any particular
processor (total number of set bits in any one row of the his-
tory table).

Whichever the limit imposed, once reached, the system
may force a collapse of all or some processors in order to
disintegrate some rollback (and collapse) relations. The par-
ticular trigger mechanism and collapse actions depend on fac-
tors such as the probabilistic distribution of exceptions, the
topology formed by rollback relations, and the overhead as-
sociated with a collapse step. It is out of the scope of this
paper to delve into such details.

3.3 Transition Operations
3.3.1 Entering Cherry Mode
As in the case of Cherry for uniprocessors, we want pro-
cessors to continue executing uninterrupted when entering
Cherry mode. At the time a processor i decides to enter
Cherry mode, there may be one or more (depending on the
consistency model implementation) unperformed stores by
the processor. These stores are necessarily nonspeculative,
since they issue to memory from the processor at commit.

If the PNR is allowed to advance at this point, a deadlock
situation may arise as follows: One such nonspeculative store
may be to a cache line marked Volatile elsewhere in processor
j. Per coherence rules (Section 3.1), j is forced to collapse
before it can service a nonspeculative request. Suppose, how-
ever, that i establishes (possibly indirectly) a collapse rela-
tion with j, and is instructed to collapse as a result. Further-
more, assume there is a load operation in i’s irreversible set
to the same address as the incomplete nonspeculative store
(thus waiting at the MSHR). A deadlock cycle then forms as
follows: The nonspeculative store cannot be serviced until j
collapses; j may not collapse until all processors in its group
do so—including i; i may not collapse until the load in its
irreversible set completes; and the load may cannot complete
until the nonspeculative store brings the data back.

To break this kind of deadlocks, we impose the restriction
that processors entering Cherry mode may not initiate early
recycling until all outstanding nonspeculative memory opera-
tions (stores, since outstanding loads are considered specula-
tive from the point of entering Cherry) complete. This guar-
antees a zero-size irreversible set in the example before, and
thus the irreversible load cannot possibly exist.

3.3.2 Leaving Cherry Mode
Collapsing a processor and the processors that relate to it (ob-
viously related by collapse) is typically a two-step process as
follows: When a processor initiates a collapse, it puts a spe-
cial collapse request on the bus. The bus controller picks up
the request and, using the history table’s column for that pro-
cessor, it determines the processor list that relates to this pro-
cessor by collapse, and instructs those processors to initiate
collapse as well.

As processors collapse their irreversible set, they notify
the bus controller. Such processors need not stall execu-
tion, however they remain in Cherry mode (although with no
early recycling taking place) until they are acknowledged by
the bus controller. Notice also that, as a result of uninter-
rupted execution, new relations may be formed, in particular
with this group. In that case, the bus controller promptly in-
structs those new members to collapse as well. Once all pro-
cessors involved in a group have collapsed their irreversible
set, the controller puts a complete-collapse command on the
bus, and processors gang-clear their Volatile bits and release
their checkpoint, effectively completing the collapse step and
falling back to non-Cherry mode. Finally, the bus controller
resets the nondiagonal cells of all rows and columns that per-
tain to the collapsed processors.

The procedure for collective rollback is analogous, except
that the processor list is determined by indexing the history
table’s row for the initiator, and that it is a one step process.
Therefore, a rolled-back processor need only wait for the bus
controller to clear its row and column to restart execution
from the checkpoint.

3.4 Enforcing Memory Consistency
To successfully build multicore hardware out of Cherry-
equipped processors, it is important to ensure that Cherry’s
early recycling and collapse/rollback mechanisms do not in-
terfere with the underlying memory consistency model. In
this section we discuss the integration of Cherry in multipro-
cessors that use both relaxed (e.g., release consistency) and
strict (e.g., sequential consistency) memory consistency mod-
els.

3.4.1 Relaxed Consistency
Relaxed consistency models [2, 12], such as weak or release
consistency [17], distinguish between ordinary and synchro-
nizing memory operations. Ordinary memory operations to
different addresses are generally allowed to perform out of
program order. If the programmer or the compiler wishes
to impose certain ordering restrictions between memory op-
erations (for example, across boundaries of a critical sec-
tion), synchronizing memory operations are used. Synchro-
nizing memory operations restrict ordering of memory ac-
cesses across them, most notably:

• Fences (weak consistency), which do not allow memory
operations to perform out of program order with respect
to the fence itself.



• Acquires (release consistency), which do not allow
memory operations after the acquire operation in pro-
gram order to perform until the acquire itself has per-
formed.

• Releases (release consistency), which do not allow the
release itself to perform until all memory operations be-
fore the release operation in program order have per-
formed.

It is important that entering and leaving Cherry mode
(whether by collapse or by rollback) do not affect the correct-
ness of synchronized code. Consider, for example, the case
of a processor that acquires a lock in non-Cherry mode, en-
ters Cherry mode within the critical section, and then releases
the lock. If the processor now rolls back to the checkpoint, is
the execution semantically equivalent to some conventional
and correct execution in which the processor executes up to
the checkpoint? Fortunately, the answer to this question is
Yes. The key lies in the fact that (1) processors in non-Cherry
mode cannot consume volatile data (including volatile syn-
chronization variables) until the owner collapses and commits
all data, and (2) on a rollback, all volatile-data-dependent pro-
cessors roll back as well (Section 3.2).

It is also important that early resource recycling do not in-
terfere with the memory consistency model. Aggressive re-
laxed consistency implementations, based on executing cer-
tain memory operations speculatively in violation of the
memory consistency mechanism, have been proposed in the
past. Most notably, Gharachorloo et al. [16] propose that
loads in a critical section execute speculatively ahead of fence
or acquire operations, and be replayed if prior to performing
the fence/acquire, another processor expresses a conflicting
interest in the same data, or the cache line is selected for evic-
tion. In invalidation-based coherence protocols, conflicting
accesses by other processors typically result in an invalidation
or intervention message sent to the speculative processor, and
thus can be detected by performing an associative search on
the load queue at the time the invalidation/intervention is re-
ceived. To support the ability to detect such conflicts, and
to replay the affected loads and dependent instructions, in
Cherry-equipped processors we must disable early recycling
past an incomplete fence or acquire operation. Therefore, in
this scenario, we further restrict the PNR to not advance past
an incomplete fence or acquire operation.

Likewise, the store queue entry of a fence/release opera-
tion should not be recycled until all prior memory operations
are complete, since recycling store queue entries in Cherry
implies issuing their stores to memory (subject to contention
of course). Therefore, the PNR for store queue entries should
also not advance past fence/release operations until all prior
memory operations are complete.

Load-Load Replay Traps
In relaxed consistency models, a special situation appears
when a load executes speculatively ahead of an older load
(in program order) whose address is unresolved. If the older
load’s address later resolves and as a result the accessed loca-
tion overlaps with that of the speculative load, there is a risk
of incorrect execution if a store by another processor, again to
an overlapping location, takes place in between. If left uncor-
rected, the older and newer loads (in program order) end up
with the newer and older version of the data, respectively—
clearly an incorrect outcome. To resolve this, at the time the
address of the older load resolves, the load queue is inspected,

and if a conflict is found, the newer load and its dependent in-
structions are replayed. This we call a load-load replay trap.
The original Cherry proposal [23] addresses load-load replay
traps, by adding UL to the PNR definitions. Thus, we adopt
this additional restriction as well.

3.4.2 Strict Consistency
For the sake of brevity, and without loss of generality, we
restrict our discussion to sequential consistency. Sequential
consistency [2, 12] is the most conservative memory con-
sistency model. It requires that the result of any execution
be the same as if memory operations in each processor per-
formed in strict program order. However, existing proces-
sors such as the MIPS R10000 [37] implement an aggressive
(i.e., speculative) version of sequential consistency. As in the
case of speculative loads past acquire operations in relaxed
consistency models [16], loads are issued out of program or-
der without waiting for all previous accesses to complete,
but cache replacements and external invalidation/intervention
messages are monitored. On an indication that a speculative
access is going to result in a violation of sequential consis-
tency, the load operation and dependent instructions are re-
played.

The additional requirements to early recycling in this sce-
nario are a generalization of those for relaxed consistency
models. We define OL as the ROB entry of the oldest load for
which previous memory operations have not all performed.
This corresponds to the oldest load that can be subject to con-
sistency replays. Then, the PNR for early recycling of load
queue entries becomes oldest(US,OL). Likewise, the PNR
for early recycling (and thus issue to memory) of store queue
entries becomes oldest(UB,US,OL). Stores must perform in
order in all cases. Finally, the PNR for early register recycling
generally becomes oldest(UB,US ,OL). However, if consis-
tency replays are infrequent, a more aggressive definition of
the PNR for register recycling is possible: oldest(UB,US),
with the understanding that, should a consistency replay oc-
cur in the irreversible set for this PNR, the processor must roll
back to the checkpoint, and make sure to re-execute in non-
Cherry mode at least past this point of the program execution.

3.5 Multiprogramming Issues
In general, a CMP may support the execution of threads
from multiple applications simultaneously, as well as context-
switching and thread migration over time. Cherry-MP blends
well with such support. Notice that any partitioning of the
processors across threads of different applications can be sup-
ported by the history table without any modification. This is
because threads from different applications generally do not
exchange data using the coherence protocol, which is the only
way for relations to form in the history table. Thus, at any
point in time, the rollback/collapse relations among threads
of one application are effectively tracked by the submatrix re-
sulting from deleting the rows and columns that correspond to
processors executing threads from other applications. There-
fore, no additional support is required.

To support thread scheduling, on a context switch or a
thread migration, the processor currently running the thread
(and, in the case of thread migration, the destination proces-
sor as well) is forced to collapse. Then, the thread may be
swapped out or migrated. Recall that, as result of a collapse,
all processors bound to this processor must collapse as well.
The estimated overhead of this operation, if required to make



a scheduling decision, could be derived using the history ta-
ble. However, we expect this requirement to be rare in most
environments. Notice that in no event does any processor re-
quire a rollback to its checkpoint as a result of introducing
support for multiprogramming.

Finally, our mechanism does not require gang-scheduling
of all threads of an application: Since unmapped threads can
be considered to be in non-Cherry mode for all practical pur-
poses, there is no need to track relations among them or with
mapped threads.

4 EVALUATION
In this section, we conduct a quantitative evaluation of
Cherry, by running a set of parallel applications on a num-
ber of Cherry-enabled CMP configurations. Our goal is not
to conduct a sensitivity study of the possible design choices
in implementing Cherry-MP itself, but rather to use a work-
ing Cherry-MP implementation to convey some measure of
the potential of integrating Cherry in a CMP.

Specifically, we look at the following three scenarios: (1)
For a given core design, how does Cherry impact parallel exe-
cution time, and how does this impact change as we increase
the number of processors? (2) As more transistors become
available, if used to build CMPs with larger cores, what is the
effect of Cherry on the parallel execution time? (3) Given a
transistor budget, how does Cherry impact the performance
trade-off between different CMP design points?

The rest of the section is organized as follows: First, we de-
scribe the simulation environment and the applications used
in this study. Then, we present and discuss the results.

4.1 Simulation Environment
We conduct cycle-accurate execution-driven simulations on
detailed models of bus-based, cache-coherent homogeneous
CMPs that feature out-of-order superscalar processor cores
and a state-of-the-art memory subsystem. Each simulated
CMP comprises up to eight cores, and we assume that each
application thread runs on a dedicated core. The details of the
baseline cores and memory subsystem are shown in Table 3.

Each processor has two levels of on-chip private caches,
and they all share a memory-side exclusive L3 cache that
is accessed in parallel to main memory. We use a modified
MOESI coherence protocol (Section 3.1) and enforce release
consistency. Processors communicate and access memory
through a shared, split-transaction system bus that runs at half
the processor speed and does not allow conflicting outstand-
ing bus requests. All latencies and resource occupancies are
modeled in detail.

We explore cores of three different sizes; architectural pa-
rameters that vary across cores are shown in separate columns
in Table 3. We calculate the load/store queue lookup and
register-file access delays, as well as all cache latencies, using
CACTI 3.2 [27] on a 90nm process technology. Making use
of the results and technology scaling trends presented else-
where [3, 13, 25], we estimate the rename/wakeup/scheduling
delays. We use the same clock frequency in all configura-
tions, however pipeline depth varies.

Following common practice for SPLASH-2, we scale
down cache sizes to account for the reduced nature of the
input sets provided in the benchmark suite [35]; however, we
maintain the latencies of the more realistically sized caches.

We implement Cherry-MP in detail. We do not inject
exceptions, however we do force processors to collapse

and renew their checkpoint periodically (baseline period is
5μs [23]), or as dictated by Cherry-MP’s collapse relations at
each point in time.

Processor Cores 2-issue 4-issue 6-issue
Frequency 3.2 GHz 3.2 GHz 3.2 GHz
Fetch/issue/commit width 2/2/3 4/4/6 6/6/9
Inst. window [(Int+Mem)/FP] 32/24 64/48 96/64
ROB entries 96 192 256
Int/FP registers 64/64 96/96 128/128
Int ALUs 2 4 6
Branch units 1 2 3
Int Mul/Div units 1/1 2/2 3/3
FP ALUs 2 3 5
FP Mul/Div units 1/1 2/2 4/4
Ld/St units 1/1 2/2 2/2
Ld/St queue entries 12/12 24/24 32/32
Branch penalty (cycles) 10 (min.) 10 (min.) 11 (min.)
Store forward delay (cycles) 2 3 3
Branch predictor, 8K-entry, 16K-entry, 32K-entry,
(Hybrid of GAg + Bimodal) 13b GHR 14b GHR 15b GHR
BTB size 1024 2048 4096
RAS entries 16 24 32
Memory Subsystem 2-issue 4-issue 6-issue
L1 Cache size 16K 32K 64K
L1 Cache size for SPLASH-2 8K 16K 32K
L1 Cache RT 3clk 3clk 3clk
L1 MSHR entries 8 16 24
L2 Cache size 256K 512K 1MB
L2 Cache size for SPLASH-2 32K 64K 128K
L2 Cache RT 10clk 11clk 13clk
L2 MSHR entries 8 16 24
L3 Cache size 8MB 8MB 8MB
L3 Cache size for SPLASH-2 2MB 2MB 2MB
L3 Cache RT 58clk 59clk 61clk
Writeback/Replacement policy WT/LRU L1, WB/LRU L2, L3
Cache associativity 4-way L1, 8-way L2, 16-way L3
Block size 64 bytes
Cache ports 2 L1, 2 L2, 1 L3
System bus 256 bits, 1/2 processor speed
Max. outstanding bus requests 96
Memory 8-channel Direct Rambus
Memory bus bandwidth 12.8 GB/s
Memory access time 161clk on page hit

289clk on page miss

Table 3: Summary of the baseline hardware modeled in this study.
In the table, GHR, MSHR, RAS, and RT stand for global history reg-
ister, miss status holding register, return address stack, and minimum
round-trip time from the processor, respectively. Cycle counts (clk)
refer to processor cycles.

4.2 Applications
To evaluate Cherry, we use two and ten applications from the
SPEC OMP [6] and the SPLASH-2 [35] application suites,
respectively. The application list and simulated problem sizes
are given in Table 4. We use MIPS binaries compiled at -O3
optimization level, and run all applications to completion af-
ter skipping initialization.

4.3 Cherry Performance and Scalability
Our first experiment seeks to quantify the benefit of using
Cherry on a particular CMP architecture, and the variation of
Cherry’s impact across CMPs with different transistor bud-
gets. (For simplicity, we use the same process technology
across all configurations.)

Each plot in Figure 4 shows, for every application un-
der study, the speedup obtained on a Cherry-enabled CMP
(Cherry) for one, two, four, and eight processors, relative to
the performance of a CMP with no Cherry support (Baseline)
and the same number of processors. From top to bottom, the



Appl. Description Problem size
Barnes Evolution of galaxies 16k particles
Cholesky Cholesky factorization kernel tk29.O
FFT FFT kernel 64k points
LU LU kernel 512×512 matrix,

16×16 blocks
Ocean Ocean movements 258×258 ocean
Radiosity Iterative hierarchical -room -ae 5000.0

diffuse radiosity method -en 0.05 -bf 0.1
Radix Integer radix sort kernel radix 32, 1M integers
Raytrace 3-D ray tracing car
Water-NSq Forces and potentials 512 molecules

of water molecules
Water-Sp Forces and potentials 512 molecules

of water molecules
Equake Earthquake modeling MinneSpec-Large [21]
SWIM Shallow water modeling MinneSpec-Large

Table 4: Applications and simulated problem sizes.

plots correspond to experiments done using CMP configura-
tions with two-, four-, and six-issue cores (Table 3).

As a reference point, we also provide the speedups ob-
tained by increasing register file, load queue, and store queue
sizes in the baseline by 16 entries each (Base+16), 32 entries
each (Base+32), and by as much as needed to remove the lim-
itations of these resources (Unlimited). These enlarged con-
figurations are useful to give an idea of how critical such re-
sources are for each application. For those applications where
the performance gap is significant, the quality of Cherry can
be quantified by how its speedup compares to those of the
enlarged configurations.

The results show across-the-board speedups for Cherry-
equipped CMP configurations. Specifically, Cherry achieves
1.13, 1.12, 1.12, and 1.10 average speedups for one, two, four,
and eight processors, respectively on the CMPs with two-
issue cores. In a few applications, the resource demand de-
creases as the number of processors scales up, largely due to
more memory and synchronization overheads. Accordingly,
the speedups obtained using Cherry in these cases decrease
as well. The majority, however, exhibit sustained speedups.

As we move to CMPs with four- and six-issue cores (Fig-
ure 4(b) and 4(c)), where the pressure on resources is higher,
Cherry is generally more beneficial. For example, average
speedup results in the CMP configuration with four-issue
cores are 1.16, 1.16, 1.14, and 1.11 for one, two, four, and
eight processors, respectively. (Results for six-issue configu-
rations are similar.)

When looking at “resource-hungry” applications, the re-
sults are even more encouraging. In the CMP configuration
with six-issue cores, for example, we may consider an appli-
cation to be resource-hungry if its single-processor run ex-
periences a 1.15 speedup or higher in the Unlimited config-
uration. All but four applications (Radix, Raytrace, Water-
NSquared, and Water-Spatial) fall into this category. Their
average speedups for the Cherry runs are 1.23, 1.22, 1.19,
and 1.14 for one, two, four, and eight processors, respec-
tively. These results are within five percent of the average
speedups for the corresponding Unlimited configuration in all
cases, thus highlighting Cherry’s effectiveness in improving
resource utilization.

However, we notice that Barnes (one of the resource-
hungry applications), despite delivering good speedups for
the Cherry configuration, falls quite short of the performance
achieved by the enlarged configurations. Our simulation data
shows that Barnes indeed exhibits high load and store queue
resource demand. However, while Cherry finds plenty of op-

portunities to reduce the pressure on the load queue (thus de-
livering some speedup), it generally fails to produce signifi-
cant savings on the store queue for this application. Further
scrutiny of Barnes’s run-time behavior reveals that Cherry’s
in-order store queue recycling policy (Section 2.2.1) hinders
store queue recycling for this application quite significantly,
despite achieving an acceptable irreversible set (Table 5).

Overall, as more transistors become available, we expect
Cherry in CMPs to maintain or even increase its performance
impact.

Appl. Used Irreversible Set Cherry Collapse
ROB (% of Used ROB) Init Step Step
(%) Reg LQ SQ (Cycles) (Cycles)

Barnes 56.06 29.23 77.87 29.23 65.23 87.37
Cholesky 70.63 80.04 82.14 80.04 364.52 157.4
Equake 74.49 44.34 78.66 44.34 32.58 105.22
FFT 60.97 74.36 83.63 74.36 184.7 329.71
LU 79.84 51.13 62.11 51.13 60.82 66.51
Ocean 69.88 68.49 98.36 68.49 1010.19 606.81
Radiosity 48.82 26.95 77.64 26.95 57.81 57.71
Radix 46.12 13.19 16.61 13.19 226.75 160.79
Raytrace 39.32 16.66 51.35 16.66 26.88 110.38
Swim 96.71 95.59 96.16 95.59 421.72 476.9
Water-NSq 45.81 17.76 56.68 17.76 41.88 32.35
Water-Sp 49.65 15.14 53.46 15.14 37.02 32.56
Average 61.53 44.41 69.56 44.41 210.84 185.31

Table 5: Cherry-MP statistics taken from four-processor runs on
the CMP configuration with six-issue cores (Table 3).

4.4 Area-Constrained Scalability
Given a limited transistor budget, one can design a CMP with
a few large cores, or with more, smaller cores. Whether the
configuration with more cores is preferable to run a particular
parallel application depends on whether the additional thread
parallelism (more cores) is able to compensate for the loss
in single-thread performance (smaller cores). In this experi-
ment, we try to assess the capacity of Cherry to compensate
for the loss in single-thread performance as a result of choos-
ing more, smaller cores.

For each of three different scaling scenarios (N=1→2 pro-
cessors, N=2→4 processors, and N=4→8 processors), we
conduct two sets of experiments, each comparing three dif-
ferent configurations that we reasonably assume to be area-
equivalent, by reducing the size of each core (Table 3) as
we increase N: (1) A CMP configuration with N six-issue
(four-issue) cores and no Cherry support (Baseline). (2) A
CMP configuration with 2N four-issue (two-issue) cores and
still no Cherry support (Constrained). (3) A CMP configu-
ration with 2N four-issue (two-issue) Cherry-equipped cores
(Constrained-Cherry).

Furthermore, to provide an optimistic “performance tar-
get” in each case, we also simulate an area-unconstrained
CMP configuration with 2N six-issue (four-issue) cores—that
is, twice the number of cores of Baseline but no core size
reduction—and no Cherry support (Unconstrained).

Figure 5 shows, for each design point, the speedups of
Constrained, Constrained-Cherry, and Unconstrained, rela-
tive to the corresponding Baseline.

The plots show that Constrained configurations outperform
Baseline in almost all cases. This is because practically all the
applications under study exhibit enough parallel efficiency to
compensate for the loss in single-thread performance. Never-
theless, this loss is severe enough to create a performance gap
with the corresponding Unconstrained configuration. This is
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Figure 4: Speedups of Cherry and enlarged Baseline configurations, relative to Baseline for one, two, four, and eight processors. Results are
shown for three different core types: two- (a), four- (b), and six-issue (c) configurations (Table 3).

particularly significant in the experiment with smaller cores
(Figure5(a)), indicating that the single-thread performance
loss of shrinking from a four- to a two-issue core is noticeably
greater than the loss resulting from downsizing from a six- to
a four-issue core (which our simulation data confirms).

The same trend shows in the Constrained-Cherry configu-
rations. In the experiments with smaller cores (Figure 5(a)),
although Cherry improves resource utilization—in fact com-
ing close to the optimum (Figure 4)—the opportunity for
speedups in two-issue processors through better resource uti-
lization is not enough to close the significant performance
gap between two- and four-issue core configurations. Conse-
quently, although the additional speedups from adding Cherry
support bring performance closer to our optimistic perfor-
mance target, a noticeable gap remains in most applications.

In the experiments with larger cores, however (Fig-
ure 5(b)), Constrained-Cherry configurations match or even
outperform the corresponding Unconstrained configuration in
most cases. This indicates that, when using slightly more ag-
gressive cores (but still area-constrained), adding Cherry can
effectively deliver the thread-level performance gains of dou-
bling the number of cores without giving up on single-thread
performance.

Overall, our area-constrained results show that Cherry is
helpful in simultaneously moving toward more, leaner cores,
and improving resource utilization in each core, ultimately
enabling these architectures to reap the best of both worlds:
higher thread-level parallelism (more cores) and instruction-
level parallelism (smaller, but more efficient cores).

5 RELATED WORK
Several micro-architectural mechanisms based on selective
checkpointing [5, 8, 11, 20, 23, 24, 30] have been pro-
posed recently to improve uniprocessor performance; how-
ever, they do not generally address integration in CMP ar-
chitectures. Galluzzi et al. [15], inspired by the potential of
kilo-instruction processors [11], present a limit study of the
performance impact of using kilo-instruction-sized proces-
sors on CC-NUMA multiprocessors. However, they do not
address the architectural issues of incorporating checkpoint-
based processors to a multiprocessor environment.

Backward error recovery (BER) schemes developed for
fault tolerance in general, and targeting shared-memory mul-
tiprocessors in particular [4, 7, 19, 26, 29, 36], also employ
a checkpointing and recovery mechanism. BER is an error-
recovery technique that periodically saves the state of the sys-
tem and restores it on error detection. Besides serving for
different purposes, there are functional differences between
these and Cherry-MP.

BER schemes continuously run in checkpointed execution.
On the other hand, in Cherry-MP, some processors may ex-
ecute in non-Cherry mode at any point in time. This re-
quires separate checkpoint allocation and commit processes,
as well as disallowing speculative data transfers from Cherry
to non-Cherry executions. Another difference is that Cherry-
MP faces specific consistency issues due to early recycling of
resources, whereas BER schemes generally do not face such
issues. Furthermore, the collapse step in Cherry requires ad-
ditional provisions to avoid deadlock/livelock scenarios.
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Figure 5: Speedups obtained when doubling the number of cores in three area-constrained scenarios: N=1→2 processors (left bars in each
group), N=2→4 processors (middle bars), and N=4→8 processors (right bars). To compensate for the increase in N , cores are shrunk (a) from
four- to two-issue and (b) from six- to four-issue sizes (Table 3).

Among BER schemes, the work by Banâtre et al. [7] pro-
poses the use of groups to involve the minimum possible
number of processors on a checkpoint commit or recovery
event. Groups are formed by tracking data sharing. Our pro-
posed Cherry-MP mechanism also relies on group formation.
However, there are significant conceptual and implementa-
tion differences. Apart from the several fundamental differ-
ences between Cherry-MP and BER, Cherry-MP differs from
Banâtre et al.’s mechanism [7] in that speculative data is not
allowed to update main memory, and thus requires no actions
in main memory on a recovery event. However, in the BER
scheme [7], speculative (current) and recovery data are kept
in separate regions of main memory, which requires copying
back the recovery data to the current-data region on a roll-
back. Furthermore, in Cherry-MP, collapsing a group is per-
formed without requiring the processors and caches to block
execution, whereas this BER scheme requires that all proces-
sors in the committing group flush their dirty data to memory,
blocking execution of the processors and caches.

There are memory system proposals that also hold and
manage speculative data in the caches [14, 18, 22]. However,
they are aimed for TLS-like execution models [9, 28, 31]. Un-
like the conventional parallel execution model where threads
are nonspeculative and there is a single correct version of a
memory location at a time, these TLS-like execution mod-
els have speculative threads extracted from a sequential pro-
gram that run on different processors, and there are multi-
ple correct versions of a memory location at a time. There-
fore, while their problem is to provide a thread with a correct
version and to establish sequential program memory order-
ing, our work tries to establish coherent sharing of specula-
tive (volatile) data across nonspeculative parallel threads. As
a result, these techniques are not applicable to our original
problem (although some of the hardware support may be).

6 CONCLUDING REMARKS
In this paper we have presented Cherry-MP, a mecha-
nism to integrate Checkpointed Early Resource Recycling
(Cherry) [23] in bus-based, shared-memory chip multipro-
cessors (CMPs). Our proposed mechanism comprises three

main components: (1) modest extensions to a MOESI co-
herence protocol to support speculative-data sharing across
Cherry-equipped processors; (2) a sharing history table that
accurately and efficiently tracks sharing history among pro-
cessors operating in Cherry mode, which is used to minimize
the impact of a rollback/collapse by one processor on others;
and (3) small changes to Cherry’s early recycling mechanisms
in order to comply with the underlying memory consistency
model (whether relaxed or strict). The resulting hardware is
modest in size, as is the added complexity, and allows correct
and efficient integration of Cherry in CMP architectures.

We have conducted detailed simulation-based studies that
reassert the efficacy of Cherry in CMPs. Our results show
that Cherry-MP is an effective mechanism to increase per-
formance in homogeneous chip multiprocessors composed
of either leaner or larger cores, delivering across-the-board
speedups for a variety of parallel applications and scaling
points.

Furthermore, as more transistors become available and we
are able to build same-scale CMPs with larger cores, Cherry
exploits the extra opportunity that larger, more aggressive
cores provide, delivering higher speedups.

Moreover, when trading off CMP scale and core sizes, con-
figurations with more, leaner cores can use Cherry to recoup
part of the “lost” instruction-level parallelism per core, and at
the same time reap the benefits of being able to execute the
parallel application at a higher scale.

Overall, our proposed Cherry-MP mechanism has the po-
tential to provide a timely and beneficial shift in the archi-
tectural trade-offs in current and upcoming CMP designs. By
utilizing processor resources more efficiently, Cherry-MP can
allow a smoother ride of Moore’s law on the CMP front, en-
joying better instruction- and thread-level parallelism.
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