
Workload Characterization of Interactive Cloud
Services on Big and Small Server Platforms

Shuang Chen∗, Shay GalOn†, Christina Delimitrou∗, Srilatha Manne†, José F. Martı́nez∗
∗Computer Systems Laboratory, Cornell University, Ithaca, NY 14853, USA

{sc2682, delimitrou, martinez}@cornell.edu
†Cavium Inc, San José, CA 95131, USA
{shay.galon, bobbie.manne}@cavium.com

Abstract—Key-value stores (e.g., Memcached) and web servers
(e.g., NGINX) are widely used by cloud providers. As interactive
services, they have strict service-level objectives, with typical
99th-percentile tail latencies on the order of a few milliseconds.
Unlike average latency, tail latency is more sensitive to changes
in usage load and traffic patterns, system configurations, and
resource availability. Understanding the sensitivity of tail latency
to application and system factors is critical to efficiently design
and manage systems for these latency-critical services.
We present a comprehensive study of the impact a diverse set of

application, hardware, and isolation configurations have on tail
latency for two representative interactive services, Memcached
and NGINX. Examined factors include input load, thread-level
parallelism, request size, virtualization, and resource partitioning.
We conduct this study on two server platforms with significant
differences in terms of architecture and price points: an Intel
Xeon and an ARM-based Cavium ThunderX server. Experimen-
tal results show that latency on both platforms is subject to
changes of several orders of magnitude depending on application
and system settings, with Cavium ThunderX being more sensitive
to configuration parameters.

I. INTRODUCTION

Warehouse-scale systems host many interactive online ser-

vices, including search, social networking, and online nav-

igation. These are hosted either as monolithic, single-tier

applications, or as part of multi-tier configurations, for ex-

ample consisting of a webserver front-end, a memory caching

middle-tier, and a database backend.

These services are typically compute-intensive, and operate

under strict service-level objectives (SLO). Rather than opti-
mizing for low average latency, SLOs are defined with respect

to tail latency, such as 95th, 99th, or 99.9th latency percentiles.
This makes interactive services much more sensitive both to

application parameters like the intensity of input load, or the

size of incoming requests, and to system parameters, such as

the underlying architecture, the availability of memory and

network resources, and the existence of effective isolation

mechanisms, in the presence of multi-tenancy. As resource

isolation techniques, such as cache and network bandwidth

partitioning, become integrated to more production datacenter

servers [1]–[3], and an increasing amount of research goes

towards low-power hardware for cloud services [4]–[6], it is

critical to quantify the impact these choices have on applica-

tion latencies.

In this paper, we present a detailed study of two representa-

tive interactive cloud services, focusing on the latency impact

of several application, hardware, and resource sharing con-

figuration parameters. With respect to application factors, we

study the sensitivity to input load, request and dataset size, and

thread-level parallelism. With respect to system parameters,

we study the sensitivity to hardware ISA, comparing an Intel

Xeon and a Cavium ThunderX server platform, as well as the

sensitivity to virtualization technologies, such as containers.

Finally, with respect to resource sharing, we study the latency

impact of a set of OS and hardware partitioning techniques in

the presence of multi-tenancy.

In terms of applications, we focus on NGINX and Mem-

cached. NGINX [7], a high-performance HTTP server, is one
of the most popular open-source web servers globally. It is

responsible for serving over 33% of online web requests [8] as

of August 2017, making it the second most popular web server

platform in production. It owes its popularity to its simplicity,

generality, high performance, and scalability. Memcached [9]
is a high-performance object caching system and it is used

for speeding up web requests by caching data and objects in

memory. Such distributed, in-memory key-value stores have

become a critical tier in modern cloud services, and directly

impact their throughput, latency, and efficiency [10]–[12].

Memcached is used extensively by several large companies,

such as Facebook, Twitter, and YouTube [13], [34].

These two applications are quite different: NGINX is de-

signed as a stateless front-end service, while Memcached is

a stateful middle-tier cache. NGINX requests involve more

user-space processing, while Memcached requests are much

simpler, and mostly processed in kernel-space. Their target

QoS is also different; NGINX typically targets a 99th latency
percentile of a few tens of milliseconds [5], while Memcached

has slightly more stringent requirements, in hundreds of mi-

croseconds up to a few milliseconds [11], [34].

Processors of specifications similar to those of Intel Xeon

have been traditionally used by cloud providers. More recently,

however, there has been renewed interest for chips with many,

relatively small cores, which target highly parallel workloads,

and can offer power, area, and price advantages, under the

right application and system conditions [14], [15].

In our study, we use a 22-core Intel Xeon server, and a

48-core Cavium ThunderX server, with simpler ARM cores.

978-1-5386-1233-0/17/$31.00 ©2017 IEEE 125

We show that, while latency on both platforms is influenced

by the examined application and system factors, the Cavium

ThunderX shows more sensitivity to application and resource

changes. For instance, the overhead of virtualization on Thun-

derX is 1.6-1.9x that of the Xeon server. Similarly, software
isolation mechanisms require 45% to 80% more time when

used on ThunderX.

II. RELATED WORK

Key-value stores have been studied in depth in recent years.

Atikoglu et al. [34] use traces from Facebook’s Memcached

deployment to analyze request composition in production

systems. Leverich et al. [11] analyze the system challenges

towards maintaining high throughput and low latency with

Memcached. They show that queueing delay, scheduling delay,

and load imbalance are three dominant factors for Mem-

cached’s latency. Li et al. [10] propose a hardware system

design for achieving a billion Memcached requests per second.

This prior work focuses on profiling Memcached on high-end

servers traditionally used by cloud providers.

Over the past decade there has been a renewed interest

in hosting cloud workloads on servers comprised of small,

low-power cores. Davis et al. [16] explore the performance of

multithreaded single- and super-scalar CMTs for commercial

workloads running in large-scale systems. They find that

single-scalar CMTs significantly outperform their superscalar

counterparts given the same area budget. The Niagara micro-

processor chip [17] makes the case for small cores to improve

the design efficiency and throughput of memory and I/O-

bounded workloads. Loghin et al. [18] study the performance

of big data applications on mobile ARM nodes. Reddi et al. [5]

present an in-depth evaluation of the impact of small cores on

a production web search service that uses a compute-intensive

machine learning engine, while Hölzle [19] states that brawny

cores still outperform wimpy cores when tail latency is the

metric of interest. Recent work has also explored special-

purpose acceleration units for datacenter workloads, such

as websearch indexing [20] and neural networks [21], [22];

although these designs improve both performance and power,

they require significant design effort, and are only applicable

for specific cloud services. In general, while these studies offer

useful insights on the impact of small cores on cloud services,

they are not directly applicable to workloads with microsecond

level QoS targets, like Memcached. In addition, these studies

are limited to dedicated resource instances, where a single

application has exclusive access to the underlying platform.

In Section V, we also study how resource partitioning and

isolation impact tail latency on each of the examined platforms

when two interactive services are co-scheduled.

III. EXPERIMENTAL SETUP AND METHODOLOGY

A. Experimental Platforms

Table I summarizes the two examined platforms.

Cavium’s ThunderX differs from Intel Xeon in several

ways [24]. The most fundamental difference is its ISA.

ThunderX implements the ARMv8 64-bit ISA, while Xeon

TABLE I
PROCESSOR SPECIFICATION

Intel Xeon Cavium ThunderX

Model E2699-v4 CN88XX NT

Sockets 2 2

Cores/socket 22 48

Threads/core 2 1

Frequency 2.2GHz 1.8 GHz

Process 14nm 28nm

L1 Inst/Data Cache 32/32KB 78/32KB

L2 256K None

Last-Level Cache 55M, 20 ways 16M, 16 ways

Cache line 64B 128B

uTLB 64 entries 32 entries

MTLB 1,536 entries 256 entries

Low Volume Pricing (Oct, 2016) $4,115 [23] $785 [24]

implements X86-64. ThunderX has 48 single-threaded ARM-

based cores, which support 48 hardware threads, while Xeon

E2699-v4 uses 22 dual-threaded cores to support 44 hardware

threads [25]. The ThunderX cores are mostly in-order with

some out-of-order execution of memory dependent operations,

as opposed to the fully out-of-order Xeon cores. The Thun-

derX also operates at a lower frequency, and has a smaller

last-level cache (LLC). However, its L1 instruction cache is

more than double that of the Xeon system. In addition, it has

a two-level cache hierarchy as opposed to a three-level for

Xeon. Both have 2 levels of TLBs, although the TLB sizes

are smaller for ThunderX. Smaller TLBs combined with a

smaller LLC implies potentially more page walks and higher

page walk latencies.

B. Application Deployment

We use Memcached 1.4.36 and NGINX 1.12.0, compiled

from their official sources on both platforms [7], [26]. We

install Memcached and NGINX on both bare metal and

containers. We use LXC (Linux containers) 2.0.7, and Ubuntu

16.04 with kernel 4.8.0 on both platforms.

ThunderX is a dual socket system, however, our test ma-

chine only has one socket. For fairness, we also use one socket

on the Xeon server. Eight cores are exclusively allocated to

network interrupts on both servers, one for each of their

8 network completion queues. Therefore, 14 and 40 cores

are available for the cloud services on Xeon and ThunderX

respectively.

Unless otherwise stated, the default service deployment is:

• Memcached: one 7-thread instance on LXC pinned to 7
different physical cores (hyper-threads on Xeon are not

used); 6.4 million items, each with a 30B key and a 200B

value; QoS target is set to 1ms for 99th percentile latency.
• NGINX: one instance with 7 worker processes on LXC
pinned to 7 physical cores; 100K static files, each file

is 4KB; Open file cache [27] is enabled for faster file

lookup. QoS is set to 20ms for 99th percentile latency.

We disable hyper-threads (HT) on Xeon to allow for a more

fair comparison as the ThunderX does not support HT; we

study hyper-threading in Section V-B2. We statically configure

126

10 20 30 40 50 60 70 80 90 100
Percentage of Max RPS

100

101

102

103

104

105

106
La
te
nc
y
(u
se
c)

AVG
99th %ile

(a) Memcached on Xeon

10 20 30 40 50 60 70 80 90 100
Percentage of Max RPS

10−1

100

101

102

103

104

La
te
nc
y
(m
se
c)

(b) NGINX on Xeon

10 20 30 40 50 60 70 80 90 100
Percentage of Max RPS

100

101

102

103

104

105

106

La
te
nc
y
(u
se
c)

(c) Memcached on ThunderX

10 20 30 40 50 60 70 80 90 100
Percentage of Max RPS

10−1

100

101

102

103

104

La
te
nc
y
(m
se
c)

(d) NGINX on ThunderX

Fig. 1. Latency with input load. max RPS is the maximum request injection rate as defined in Section III-B. At 7 physical cores, max RPS is 672K and 420K
for Memcached and NGINX respectively on the Xeon, and 128K and 84K for Memcached and NGINX respectively on the ThunderX server. Horizontal lines
show the target QoS for each application. The y-axis is logarithmic.

the number of threads at instantiation time, since NGINX and

memcached do not support dynamic thread spawning. This

also avoids overheads for synchronization, lock contention,

and load balancing. We instantiate 7 threads per server, as

some of the later experiments require running the two services

on different physical cores, and only 14 cores are available in

total on the Xeon platform.

The maximum achievable throughput (requests per second,

RPS) differs between the two platforms, when using the same

number of physical cores. We measure the maximum RPS that

seven physical cores can sustain in each architecture, such that

injecting higher rates will result in dropped requests. Xeon can

sustain 672K and 420K RPS with seven cores for Memcached

and NGINX, respectively; ThunderX can sustain 128K and

84K, respectively. The throughput per core on the ThunderX

system is lower due to the lower frequency, smaller caches

and TLBs (Section III-A), and because the system relies on

parallelism, as opposed to high single-thread performance to

provide good QoS at the socket level. (A back-of-envelope

whole-socket extrapolation would put ThunderX at 128K ×
40/7 = 731K RPS for Memcached, and 84K×40/7 = 480K
RPS for NGINX.) Socket-level comparisons for throughput

can be found in [24], [25].

C. Testing Strategy

We use open-loop workload generators as clients for both

Memcached and NGINX to ensure that latency measurements

at high load are accurate [28], [29]. For Memcached, we use an

in-house load generator, similar to mutilate [30]. For NGINX,

we modified a popular open-source generator, wrk2 [31], from

close- to open-loop. Clients run on one or several other Intel

Xeon processors, with 10Gbps network links to the Xeon

and ThunderX servers. We instantiate enough clients to avoid

client-side delay from saturation. Therefore, latencies reported

by clients are mostly due to server-side delays.

We use exponential distribution as requests’ inter-arrival

time distribution [11], to simulate a Poisson process, where

requests are sent continuously and independently at a constant

average rate. We use a Zipfian distribution for the request

popularity in NGINX [32], [33]. We only generate GET

requests as they statistically account for more than 95% of

all requests in production systems [34]. For each experiment,

we run the clients for 2 minutes (excluding time for warm-up

and cool-down), and record achieved throughput, and average

and 99th percentile latency.

IV. WORKLOAD CHARACTERIZATION IN ISOLATION

We explore how the average and tail (99th percentile) la-
tencies of Memcached and NGINX change with the following

factors. In terms of application parameters, we study input
load, thread parallelism, and request size. With respect to
system parameters, we evaluate the overhead of virtualization.
All studies are done on the two platforms described in Sec-

tion III-A. Hereafter, we use tail and 99th percentile latency
interchangeably, unless otherwise noted.

A. Input Load

Cloud servers are usually overprovisioned and lightly uti-

lized [1], [35]–[38]. Typical CPU utilization rarely exceeds

30%, with public clouds being even more underutilized than

private systems [39]. There are several reasons for this un-

derutilization, including the current reservation-based cluster

management interfaces, provisioning for diurnal patterns and

unpredictable load spikes, hardware heterogeneity, resource

interference, and planning for future growth [36], [40], [41].

We first study how latency is impacted by increasing load, to

determine whether overprovisioning is warranted in interactive

services. We progressively increase request injection from 10%

to 100% of the max RPS as determined in Section III-B, and

plot the average and tail at each input load level. Injection rates

per load level are kept stable, as discussed in Section III-C.

To understand the source of increased latencies, we further use

Systemtap [42], a system profiling tool that enables inserting

probe points in the Linux kernel.

Figure 1 plots the relationship between latency and input

load. We observe similar trends and thresholds on Xeon and

ThunderX. The maximum input load for which the server

still meets the target QoS is approximately 70% of the max

RPS for Memcached and 80% for NGINX. These load points

are significantly higher than current datacenter utilizations,

signaling that, excluding unexpected load spikes, resource

overprovisioning is not necessary to preserve tail latency QoS.

NGINX has a higher saturation point than Memcached,

mostly because of its more relaxed SLO, 20ms in our case,

which makes it possible to tolerate higher delays. Average

127

TABLE II
LATENCY BREAKDOWN OF MEMCACHED IN MICROSECONDS AT

DIFFERENT PERCENTAGE OF MAX RPS.

Xeon ThunderX

10% 90% 10% 90%

Network 6 6 14 14

Epoll 3 782 4 1,290

Libevent 1 1,009 5 1,650

Read 1 3 9 20

Memcached 1 1 7 7

Send 5 5 24 24

Total 20 1,806 67 3,005

latencies are smaller on ThunderX because requests take

longer to process on its smaller cores.

To understand the source of increased latencies, we further

use Systemtap [42], a system profiling tool that inserts probe

points at kernel level along the application’s control flow. A

Memcached request goes through the following stages on the

server side [11]:

1) Network: A request first arrives at the server’s NIC,
raising a hardware interrupt. Linux acknowledges the

interrupt, and further processes the packet in the softIRQ
context. The request then goes through the network

stack, including TCP/IP processing. The Memcached

process is then invoked to further handle this packet.

2) Epoll: Memcached uses the epoll wait syscall to queue
and receive new requests. epoll wait is called periodi-
cally at an interval defined by timeout. Requests coming
in the same timeout interval are received at the same
time, reducing the number of syscalls in the system.

However, if previous requests have not been propagated

to the later processing steps, new requests cannot be

received, increasing the queueing time at epoll wait.
3) Libevent: Received requests by epoll wait are then
forwarded to be parsed and processed. If requests are

received at high rates, they will again be subject to long

queueing delays before processing can commence.

4) Read: Memcached calls the read syscall to read the
socket with the new incoming request, which involves

unwrapping the network packet header and payload,

applying any priorities denoted in the header, and for-

warding the payload to the next stage for processing.

5) Memcached: Memcached requests are short and simple.
The server process first parses the request, then looks

up the key in its hash table, and retrieves a pointer to

the requested value.

6) Send: Finally, the obtained key-value pair is processed
by TCP/IP and sent to the NIC’s TX queue.

Note that request processing in the Memcached stage is
serialized. When request injection rates are high, this stage

becomes a bottleneck, increasing the queueing delays in the

Read phase, and especially in Libevent and Epoll. Depending
on buffer sizes, queueing delays vary across stages. Table II

shows the average latency breakdown at 10% and 90% of the

max RPS for each platform.

TABLE III
LATENCY BREAKDOWN OF NGINX IN MILLISECONDS AT DIFFERENT

PERCENTAGE OF MAX RPS.

Xeon ThunderX

10% 95% 10% 95%

Network 9 10 15 15

Epoll 13 10,230 38 12,364

Libevent 11 23,186 12 25,821

Read 1 3 8 19

Open 4 4 14 14

NGINX 12 12 46 46

Send 26 26 73 73

Total 76 33,471 206 38,353

When operating at the same percentage of max RPS, Thun-

derX experience a higher latency than Xeon. At 10% of max

RPS, both servers are underutilized, and there is negligible

queueing delay. The average latency of the Cavium server is

3.35x of the Intel platform because of the processor configu-

ration parameters discussed in Section III-A. When servers

are 90% loaded, batching in Epoll and Libevent result in
significant queueing delays on both platforms, which dominate

the total latency.

An NGINX request experiences the same stages of Network,
Epoll, Libevent, and Read as Memcached. After Read, its
control flow is the following:

1) Request parsing: The content of an NGINX request

is obtained after a Read. Unlike Memcached, NGINX
requests are more complex, and require additional time

for HTTP header formatting and processing. Therefore,

getting to the point of parsing and obtaining the request

type and body takes longer than in Memcached.

2) File lookup: Once a request is parsed, and the requested
file name is obtained, the server accesses the file system

(FS). Instead of incurring the long latencies associated

with FS accesses on every request, NGINX maintains

an open file cache (in ngx http core module [27]) that
holds previously-opened file metadata in memory to

accelerate file lookups. The file cache is maintained as

a red black tree indexed by file name. If the name does

not exist in the tree, it will be inserted upon first access

to speed up later accesses to the same file.

3) Open: The open syscall is then invoked to open and read
the file.

4) Postprocessing: Once the file content is obtained, there
is a second processing phase. This step is heavily depen-

dent on the specific NGINX configuration. For example,

if gzip on is enabled, the file content is compressed
in this step. If access log is enabled, NGINX records
execution traces in a log file.

5) Send: Finally, a response packet is formed, processed
by TCP/IP and sent to the NIC’s TX queue.

As Request parsing, File lookup and Postprocessing are all
user-space processing, and there is no batching in any of these

steps, we combine and denote them as NGINX. Table III shows
the average latency breakdown of NGINX at 10% and 95%

128

of the max RPS.

Under low load, Epoll, NGINX and Send contribute the
most to latency. The long Epoll latency comes from the time
spent waiting for new requests. NGINX involves more user-

level processing than Memcached, leading to the large NGINX
processing time. Send takes long because of the size of the
requested file (4KB as discussed in Section III-B). Under

high load on the other hand, most of the delay comes from

queueing, with the rest of the parts remaining the same.

1 4 8 12 16 20 24 28
Number of Threads

0

4

8

12

16

20

24

Th
ro
ug
hp
ut
N
or
m
al
iz
ed

to
1
Th
re
ad

ThunderX
Xeon

(a) Memcached

1 4 8 12 16 20 24 28 32 36
Number of Worker Processes

0

4

8

12

16

20

24

28

32

36
Th
ro
ug
hp
ut
N
or
m
al
iz
ed

to
1
W
or
ke
r

(b) NGINX

Fig. 2. Scalability when increasing the number of threads. Each thread
is pinned to a different physical core. Throughput is the maximum RPS
under QoS (99th percentile in 1ms for Memcached and 20ms for NGINX).
Results are normalized to throughput under a single thread on the same
machine. For Memcached, single thread throughput is 144K and 80K on Xeon
and ThunderX respectively. For NGINX, it is 110K and 50K on Xeon and
ThunderX respectively.

B. Scalability (Scale-Up versus Scale-Out)

Memcached and NGINX are both distributed applications

whose datasets are sharded across a large number of ma-

chines [43]. However, given that modern servers are equipped

with tens of cores, and interactive services can benefit from

efficient data sharing across threads of a single machine, we

want to first evaluate the scalability of the examined services

as we increase the number of threads per server (scale up).
Scaling up simplifies cross-thread data sharing, requires fewer

hardware resources, such as memory, and alleviates the issue

of sharding keys across instances for key-value stores like

Memcached. On the other hand, if an application does not

benefit from multithreading, launching multiple application

instances with one thread (or a small number of threads)

each can reduce lock contention, synchronization, and task

stealing among threads. In this case, scaling out is preferred
over scaling a single instance up.

Figure 2 shows the scalability of request throughput as we

increase the number of threads. We pin each thread to a distinct

physical core. We run this experiment on baremetal hardware

to avoid overheads induced by containers or VMs, which are

discussed in Section IV-D. For a given number of threads, we

plot the maximum throughput for which the target QoS is met.

The initial observation from Figure 2 is that ThunderX is

able to scale up further than Xeon. This is because the Xeon

server sustains higher throughput than the ThunderX for the

same number of threads. Therefore, Xeon suffers more from

the synchronization and contention issues discussed below.

The second observation is that both servers cannot fully utilize

the entire socket. Xeon and ThunderX cannot scale further than

16 and 36 cores respectively because they are bottlenecked by

the IRQ cores. The third observation is that NGINX shows

better scalability than Memcached. Memcached is only able

to scale linearly up to 20 threads on ThunderX, and up to 4

threads on Xeon, while NGINX stops scaling linearly after 28

workers on ThunderX and after 8 workers on Xeon. This is

because NGINX has little shared state across threads, allowing

each worker process to work independently.

After the thread count exceeds the thresholds above, further

scaling up does not produce higher throughput. Below we

discuss in more detail the reasons that hinder throughput

scalability when increasing the number of worker threads:

• Interrupt handling: Both servers support receive side
scaling (RSS) [44], which distributes network receive pro-

cessing across multiple hardware-based receive queues.

By configuring the IRQ affinity, traffic for different

queues can be processed on different physical cores. For

example, the NICs of the two test machines both have

8 queues. We therefore exclusively allocate cores 0-7

for network processing. As load increases, we observe

that the IRQ cores become saturated ahead of the cores

servicing regular application worker threads. While the

remaining unallocated cores can still become saturated

by non-network intensive batch jobs, the compute re-

sources needed for network interrupts limit the maximum

throughput for the examined interactive services. This

effect is more severe in Memcached than NGINX because

Memcached requests are simpler, thus its throughput is

higher which causes more burden in network processing.

• Load imbalance: When instantiating a multi-threaded
service, we run the risk of work not being evenly

distributed across the multiple threads. For instance,

Memcached naively allocates a new client connection to

threads in a round-robin way. Requests to different con-

nections are not guaranteed to require equal amounts of

processing. However, the behavior of clients is not known

while setting up connections. This requires rewiring the

way Memcached binds connections to worker threads.

• Lock contention: Memcached is a stateful service. All
the threads share the entire dataset and hash table. Each

item is associated with several counters, such as the

number of accesses, the number of hits and misses, etc.

Such counter accesses are guarded by locks. In NGINX,

locks should be acquired ahead of accessing files. With

more threads, there is a higher probability that several

threads access the same key or file at the same time,

contending for locks.

The issues above show that after the thread count exceeds

an application- and system-dependent threshold, it is more

beneficial to set up multiple instances with a smaller number

of threads each, i.e., scale out.

C. Request Size

Memcached and NGINX are widely deployed in both pri-

vate and public clouds. Request size distributions vary across

129

4 40 80 120 160 200 240
Key Size (B)

0

100

200

300

400

500

600

700

800

900

La
te
nc
y
(u
se
c)

AVG
99th %ile

(a) Xeon

4 40 80 120 160 200 240
Key Size (B)

0

100

200

300

400

500

600

700

800

900

La
te
nc
y
(u
se
c)

(b) ThunderX

Fig. 3. Impact of Memcached key size. Both Xeon and ThunderX operate at
70% of their respective max RPS.

20B 200B 2KB 20KB 200KB
Value Size

0

5000

10000

15000

20000

La
te
nc
y
(u
se
c)

AVG
99th %ile

(a) Xeon

20B 200B 2KB 20KB 200KB
Value Size

0

5000

10000

15000

20000

La
te
nc
y
(u
se
c)

(b) ThunderX

Fig. 4. Impact of Memcached value size. Both Xeon and ThunderX operate
at 70% of their respective max RPS.

use cases, and can result in substantially different throughput

and latency. Here we focus on the impact of the key and value

size, and the number of items for Memcached, and on the

impact of the file size, and number of files for NGINX.

1) Memcached:

• Key size: Figure 3 shows latencies when sweeping keys
in [4B, 240B]. Latency is barely influenced. Memcached
uses the highly optimized strcmp() function to compare
two keys. In addition, the maximum allowed key size is

restricted to 250B, which is not large enough to cause a

substantial difference in either throughput or latency. For

key sizes of over 200B there is a small increase in tail

latency due to the increased memory traffic.

• Value size: There is no limit for value sizes. Therefore,
we sweep values from 2B to 200KB. As shown in

Figure 4, latencies increase dramatically for larger value

sizes. Memory and network play an important role in this

case. Larger values result in more time spent in memory

copy when forming the response packets. They also lead

to larger network packets, which translates to higher

per packet latency both from processing and queueing,

and lower throughput when the link’s bandwidth limit

is reached. Using Systemtap, we find an increase in the

latency of the Send stage. This increase further leads to
higher queueing delays in Epoll and Libevent.

• Number of items: Figure 5 shows how latency changes
as the number of items increases. When there are only

64K items, with 30B keys and 200B values, the total

dataset size is around 15MB which is less than the LLC

size of both servers. When there are 6.4M items, the

dataset is over 1GB.

64K 1.28M 2.56M 3.84M 5.12M 6.4M
Number of Items

0

2000

4000

6000

8000

10000

La
te
nc
y
(u
se
c)

AVG
99th %ile

(a) Xeon

64K 1.28M 2.56M 3.84M 5.12M 6.4M
Number of Items

0

2000

4000

6000

8000

10000

La
te
nc
y
(u
se
c)

(b) ThunderX

Fig. 5. Impact of the number of Memcached items. Both Xeon and ThunderX
operate at 90% of their respective max RPS.

32B 4KB 6KB 8KB 10KB 12KB
File Size

0

500

1000

1500

2000

2500

3000

3500

4000

La
te
nc
y
(m
se
c)

AVG
99th %ile

(a) Xeon

32B 4KB 6KB 8KB 10KB 12KB
File Size

0

500

1000

1500

2000

2500

3000

3500

4000

La
te
nc
y
(m
se
c)

(b) ThunderX

Fig. 6. Impact of NGINX file size. Both Xeon and ThunderX operate at 80%
of their respective max RPS.

ThunderX is more sensitive to the number of items;

latencies increase with 2.56M items, while latency on

the Xeon server remains low. Cache utilization is linked

to this behavior. Each item is represented as an item

object, whose pointers are frequently used in hash table

lookups, LRU maintenance, item statistics update, etc.

Suppose there are 2.56 million items; we can roughly

estimate that approximately 20MB are needed to store

2.56M 8B pointers (in 64-bit systems). All the pointers

fit in the 55MB LLC of Xeon, but do not fit in the LLC

of ThunderX (16MB).

2) NGINX:
• File Size: Related work has shown that web file size
distributions have a long tail [45]; about 50% of web

files are less than 1KB, 95% are less than 64KB, and the

99th percentile is 32GB. The distribution is also greatly
influenced by the scope of the website. For example,

a personal website typically consists of small text files

and small image files. However, websites on photography

include thousands of multi-MB high-quality pictures.

Figure 7 shows the impact of file size on NGINX.

Similarly to Memcached, larger files lead to higher mem-

ory and network latencies. In addition, large files can

easily saturate the server’s network bandwidth, lowering

throughput. Therefore, for websites serving large static

files, high network bandwidth is more important than

compute resources.

• Number of files: When we only use 1K files, with
4KB each, the total dataset size is approximately 4MB,

which is less than the LLC size of both servers. In

comparison, when there are 300K items, the dataset is

130

1K 100K 150K 200K 250K 300K
Number of Files

0

1000

2000

3000

4000

5000

La
te
nc
y
(m
se
c)

AVG
99th %ile

(a) Xeon

1K 100K 150K 200K 250K 300K
Number of Files

0

1000

2000

3000

4000

5000

La
te
nc
y
(m
se
c)

(b) ThunderX

Fig. 7. Impact of the number of NGINX files. Both Xeon and ThunderX
operate at 90% of their respective max RPS.

over 1GB. As shown in Figure 7, the number of files

also has a great impact on NGINX latency because

of increased cache thrashing. The open file cache in
ngx http core module [27] can substantially help reduce
the end-to-end request latency for NGINX. The file cache

maintains a red-black tree that stores all file metadata

to speed up file lookups. When the number of files is

small, the entire tree with all its metadata fits in the cache.

However, if open file cache is disabled, the overhead of
frequent accesses to the file system prevents NGINX from

achieving high RPS while meeting QoS.

As with Memcached, latency increases earlier on Thun-

derX than Xeon because of the former’s smaller last-

level cache. Each tree node in the file cache contains

hundreds of bytes, including flags, integers, and strings

for the file path, file size, file descriptor ID, permission

access for files, etc. It also contains a set of pointers

for maintaining the tree structure. When 200K files are

frequently accessed, a tree with 200K nodes requires tens

of MB of space, which fits in the LLC of Xeon, but does

not fit in the LLC of the ThunderX server.

D. Virtualization

Resources in both private and public clouds are almost-

always virtualized [46]. Virtual machines (VM) [47] provide

full virtualization of hardware, and improve security in the

presence of multi-tenancy. Different VMs can also run differ-

ent operating systems (OS) in isolation. If multiple OSes are

not needed, a more lightweight option is OS-level virtualiza-

tion, where the kernel is shared. Linux containers (LXC) are

one of the most popular OS-level virtualization mechanisms.

Containers provide easier software packaging, and support a

variety of hardware as well as software isolation mechanisms

inherited from the Linux kernel. In this paper, we use LXC for

virtualization. To better observe the overhead of virtualization

compared to queueing delays, the CPU utilization of each

server is kept at 10%.

Figure 8 shows the average and 99th percentile tail latency
using containers, normalized to latency on baremetal. We find

that containers introduce high overheads: 1) to tail latency

more than average latency because virtualization creates more

unpredictability in request processing, which affects tail la-

tency more than average; 2) to NGINX more than Memcached

because NGINX involves heavier processing than Memcached;

Xeon ThunderX
1.0

1.1

1.2

1.3

1.4

1.5

1.6

N
or

m
al

iz
ed

 L
at

en
cy

 o
n

C
on

ta
in

er
s

AVG

(a) Memcached

Xeon ThunderX
1.0

1.1

1.2

1.3

1.4

1.5

1.6

N
or

m
al

iz
ed

 L
at

en
cy

 o
n

C
on

ta
in

er
s

(b) NGINX

Fig. 8. Latency when running on containers normalized to baremetal. Both
Xeon and ThunderX operate at 10% of their respective max RPS.

3) to ThunderX more than Xeon because the additional level

of indirection introduced by containers is more cumbersome

for the ThunderX’s weaker cores than for Xeon, as discussed

in Section III-A.

V. WORKLOAD CHARACTERIZATION UNDER

MULTI-TENANCY

Recent studies have proposed colocating latency-critical

(LC) workloads with best-effort tasks in datacenters [1], [2],

[48]. Though potentially improving server utilization, coloca-

tion can either cause LC workloads to suffer from resource

interference, or the performance of best-effort jobs to be

frequently sacrificed. This also prevents colocating two or

more high priority and/or interactive workloads. To address

this issue, it is critical to understand the resource needs of

interactive services. In this section, we use several hardware

and software isolation mechanisms to limit the amount of

allocated resources per-application, and study the impact on

latency. The examined isolation mechanisms are supported

by both platforms, although some operate differently. Apart

from the impact on latency, we also compare the overhead of

isolation mechanisms between the two platforms.

A. Isolation Mechanisms

We use three software and one hardware isolation mecha-

nisms [1]:

1) Software isolation: We use mechanisms provided by
the Linux kernel to partition cores, memory capacity,
and network bandwidth. We use cpuset cgroups to pin
each workload to a set of CPUs. We show that not

only the number, but also the location of CPUs matters

(see Section V-B). memory cgroup is used to restrict
memory capacity. qdisc [50] with hierarchical token
bucket queueing discipline is used to limit the outgoing

network bandwidth. These isolation mechanisms are the

same on the Xeon and ThunderX servers.

2) Hardware isolation: Cache partitioning requires

hardware support. Intel Cache Allocation Technology

(CAT) [51] supports a number of service classes; 16 in
our test machine. With 20 cache ways, each class corre-

sponds to a 20-bit cache way mask. Each CPU is then

bundled to one of the 16 classes. Because of hardware
limitations, the mask can only have consecutive 1s. e.g.,

131

5 6 7
Number of Cores

102

103

104

105
99
th

%
ile
La
te
nc
y
(u
se
c) #Threads=#Cores

7 Threads

(a) Xeon

5 6 7
Number of Cores

102

103

104

105

99
th

%
ile
La
te
nc
y
(u
se
c)

(b) ThunderX

Fig. 9. The relationship between the number of threads and cores for
Memcached. Both Xeon and ThunderX operate at 60% of their max RPS.

0x55555 is not allowed. CAT impacts both the cache

allocation and replacement policy.

Unlike Intel CAT, there is no indirection of service

classes on ThunderX. Each core is directly associated

with a way mask, so there can be 48 different cache

way allocations on a 48-core processor. There is no

restriction for consecutive 1s as in Intel CAT. In addition,

cache partitioning only influences cache replacement on

the Cavium board. This helps reduce the wasted cache

space. For example, if the working set of an application

fits in the cache, i.e., there are only compulsory misses,

it will not experience more cache misses with way

partitioning than it would experience without [52].

Way masks on both platforms can be accessed or

changed by reading or writing registers. There are

several tools for accessing hardware registers on X86

platforms, but not for ARM processors. To address this,

we designed a C++ program with inline assembly used

to change hardware registers on both platforms, which

is additionally 8x faster than existing register sampling

tools available for the Xeon server.

We further investigate the overhead of these isolation mech-

anisms by applying each mechanism 10K times. We also

study the overhead of frequent container instantiation and tear-

down. Table IV shows the average overhead of each isolation

mechanism the two platforms.

TABLE IV
OVERHEAD OF ISOLATION MECHANISMS

CPU Cache Memory Network Container Restart

Xeon 6.5ms 1.6ms 6.9ms 2.4ms 0.97s

ThunderX 11.7ms 2ms 11.9ms 3.5ms 1.55s

Except for container restart, all isolation mechanisms take

a few milliseconds. For Memcached whose SLO is in a few

milliseconds, any unnecessary or incorrect isolation decision

contributes to higher tail latency. Frequently killing and in-

stantiating containers, as in serverless settings, should also be

avoided unless necessary as its overhead is in the order of

seconds. In this study, we focus on static isolation before each

run to avoid interference from dynamic partitioning.

4 5 6 7
Number of Cores

100

101

102

103

99
th

%
ile
La
te
nc
y
(m
se
c) #Threads=#Cores

7 Threads

(a) Xeon

4 5 6 7
Number of Cores

100

101

102

103

99
th

%
ile
La
te
nc
y
(m
se
c)

(b) ThunderX

Fig. 10. The relationship between the number of threads and cores for
NGINX. Both Xeon and ThunderX operate at 60% of their max RPS.

TABLE V
HYPER-THREADING

Load Memcached Nginx

4–4 4–7 7–7 4–4 4–7 7–7

25% 904μs 253μs 242μs 3.6ms 3.1ms 3.0ms

50% - 696μs 524μs - 9.6ms 7.4ms

75% - - 992μs - 703.9ms 8.9 ms

B. Core Isolation

1) Number of threads VS Number of cores: We bring each
application to 60% of their max load. With 7 threads, the

aggregate CPU utilization is less than 500%. We sweep the

number of allocated cores, and examine whether five cores -

operating close to saturation - are sufficient.

Figures 9 and 10 show that fewer cores than the number

of threads result in SLO violations. When multiple threads

are mapped to the same physical core, only one thread can

get executed, increasing latencies of other threads, due to

context switching. We also plot the case of reducing the

number of threads when using fewer cores, which eliminates

the overhead of context switching. The comparison shows that

context switching is one of the dominant factors for latency,

and its overhead is more severe on ThunderX.

2) Benefits of Hyper-threading: The study above does not
make use of the Intel Hyper-Threading Technology, which

enables two threads to run on the same physical core [53].

Hyper-Threading is often disabled in datacenters to reduce

interference between logical cores [54]. We experiment with

the effect of hyper-threading by instantiating 7 threads on the

7 logical cores of 4 physical cores, and comparing against

using 7 logical cores on 7 physical cores. For this experiment,

we focus on Xeon, because hyper-threading is not available

of the ThunderX platform.

Table V compares different uses of hyper-threading. n−m
represents the configuration with n physical cores and m
logical cores. If the target throughput cannot be met, the

corresponding entry is –.

The table shows that Hyper-threading works well if load is

low. Compared to 4–4, configuration 4–7 avoids the overhead
of frequent context switching when sharing logical cores,

and makes better use of compute resources. In fact, Hyper-

threading is more useful when colocating different applications

132

10% 20% 30% 40% 50% 60% 70%

10% MN MN MN MN

20% MN MN MN

30% MN MN

40% MN N

50% N N

60% N

70%

(a) Same Logical Core

10% 20% 30% 40% 50% 60% 70%

10% MN MN MN MN MN MN M

20% MN MN MN MN MN M M

30% MN MN MN MN M M M

40% MN MN MN MN M M M

50% MN MN N N

60% N N N

70% N N

(b) Different Logical Cores

Fig. 11. QoS when colocating Memcached and NGINX with and without
Hyper-threading. In Figure 11a application are colocated on the same logical
cores of 7 physical cores. In Figure 11b they are colocated on different logical
cores of 7 physical cores. Each row is a load point of Memcached, and each
column a load point of NGINX. White cells signify that both applications meet
their target QoS. Light grey cells with M or N mean that only Memcached
or NGINX meets its QoS, respectively. Dark grey cells represent that neither
application can meet its target QoS.

TABLE VI
IMPACT OF INTERFERENCE WITH IRQ

Percentage of Max RPS Memcached Nginx

Xeon ThunderX Xeon ThunderX

25% 358μs 397μs 3.4ms 3.9ms

50% 6463μs 30136μs 9.11ms 10.2ms

75% - - 19.1ms 6640ms

on different logical cores of the same physical cores. Figure 11

shows the benefit of colocating Memcached and NGINX on

the same physical cores, but different logical cores. Though

still sharing the limited compute resources, the overhead of

context switching is eliminated.

3) Interference with SoftIRQ cores: As discussed in Sec-
tion IV-B, interrupt handling is an important part of interactive

workloads. A set of cores is usually exclusively reserved

for network interrupts. Using cpuset cgroup, we can further
study the impact of interference caused by interrupts when

workloads are colocated with them.

Table VI shows the tail latency after colocating the interac-

tive services with interrupt cores. We find that (1) Memcached

is more sensitive to interference with IRQ cores. This is

because Memcached usually achieves higher throughput than

NGINX because of its requests being simpler. IRQ cores then

handle more interrupts when running Memcached, creating

more interference. (2) ThunderX is more sensitive to IRQ

interference because of the higher impact of context switching.

C. Cache Sensitivity

The Xeon has a 55MB LLC with 20 cache ways, so the

minimum allocation granularity is 2.75MB. The ThunderX

platform has 16MB LLC with 16 cache ways, therefore cache

space can be controlled at 1MB increments.

Figure 12 shows how latency drops with larger cache

capacity for Memcached. We can infer that about 5MB of data

should be kept in the LLC. As discussed in Section IV-C,

Memcached benefits from LLC if all the item pointers can

be kept in cache. However, with 6.4 million items, all the

pointers take hundreds of MB. Therefore, the LLC is only

useful to keep data not related to Memcached items, including

Memcached statistics, pointers to Memcached LRU lists, etc.

2.75 5.5 8.25 11 13.75 16.5
LLC Capacity (MB)

0

5000

10000

15000

20000

La
te
nc
y
(u
se
c)

AVG
99th %ile

(a) Xeon

1 2 3 4 5 6 7 8 9 10
LLC Capacity (MB)

0

5000

10000

15000

20000

La
te
nc
y
(u
se
c)

(b) ThunderX

Fig. 12. Impact of the LLC capacity for Memcached. Both Xeon and
ThunderX operate at 70% of their max RPS.

5.5 8.25 11 13.75 16.5 19.25
LLC Capacity (MB)

102

103

104

La
te
nc
y
(m
se
c)

AVG
99th %ile

(a) Xeon

1 2 3 4 5 6 7 8 9 10111213141516
LLC Capacity (MB)

101

102

103

104

La
te
nc
y
(m
se
c)

(b) ThunderX

Fig. 13. Impact of the LLC capacity for NGINX. Both Xeon and ThunderX
operate at 80% of their max RPS.

Figure 13 shows the impact of cache capacity for NGINX.

Unlike Memcached, the turning points on Xeon and ThunderX

are quite different. On Xeon, we can infer that the working

set size of NGINX with 100K 4KB files is approximately

16.5MB, which is larger than the LLC of the ThunderX. Given

that the working set size does not fit in the LLC on ThunderX

to begin with and the access pattern is uniform and random,

NGINX is not sensitive to LLC allocation. Latency is higher

with 1-2 cache ways because of conflict misses, but beyond 2

cache ways, latency does not benefit further.

D. Memory Capacity and Network Bandwidth Isolation

Both Memcached and Nginx have a fixed requirement of

memory capacity if their datasets remain unchanged. The

memory needed by Memcached includes the space to store

all keys, values, and hash table entries, plus an additional

fudge factor caused by Memcached’s slab-based memory

management. The memory needed by NGINX includes the

space to store all the files and the open file cache.

Network bandwidth requirements are also fixed, and slightly

higher than throughput ∗ values or filesize, for given datasets
and load.

Neither workload benefits from memory capacities beyond

their dataset sizes, or higher network bandwidth than needed to

transfer response packets. Both services suffer significantly if

either memory capacity or network bandwidth are insufficient,

resulting in 1000x less throughput.

133

VI. CONCLUSIONS

We presented a detailed study of two representative interac-

tive services, Memcached and NGINX, on an Intel Xeon and

a Cavium ThunderX server platform. We study the impact of

a number of application and system parameters on the average

and tail latency of the two applications, and use resource

isolation mechanisms to study their sensitivity to different

hardware resource availabilities.

Comparisons between the two platforms show that Thun-

derX achieves lower throughput per core, and shows higher

latency and higher overhead to different isolation mechanisms,

due to overheads from context switching, virtualization, and

resource interference. However, ThunderX is still able to meet

the target QoS in most cases, and it shows better thread

scalability, in part because of its higher core count.

VII. ACKNOWLEDGEMENTS

This work was supported in part by a research contract with

Cavium, and by equipment donations from Cavium and Intel.

REFERENCES

[1] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in ISCA-42, 2015.

[2] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict
qos for latency-critical workloads,” in ASPLOS, 2014.

[3] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik: Fast
analytical power management for latency-critical systems,” in MICRO,
2015.

[4] X. Liang, M. Nguyen, and H. Che, “Wimpy or brawny cores: A
throughput perspective,” J. Parallel Distrib. Comput., 2013.

[5] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search
using mobile cores: Quantifying and mitigating the price of efficiency,”
in ISCA-37, 2010.

[6] K. Vaid, “Datacenter power efficiency: Separating fact from fiction,”
Workshop on Power Aware Computing and Systems, 2010.

[7] “Nginx official website,” http://nginx.org.
[8] “Usage statistics and market share of nginx for websites,” https://
w3techs.com/technologies/details/ws-nginx/all/all.

[9] B. Fitzpatrick, “Distributed caching with memcached,” in Linux Journal,
2004.

[10] S. Li, H. Lim, V. W. Lee et al., “Architecting to achieve a billion requests
per second throughput on a single key-value store server platform,” in
ISCA, 2015.

[11] J. Leverich and C. Kozyrakis, “Reconciling high server utilization and
sub-millisecond quality-of-service,” in EuroSys, 2014.

[12] J. Li, N. K. Sharma, and S. D. Ports, Dan RK Gribble, “Tales of the tail:
Hardware, OS, and application-level sources of tail latency,” in SoCC,
2014.

[13] M.-C. Lee, F.-Y. Leu, and Y.-P. Chen, “Cache replacement algorithms
for youtube,” in AINA-28, 2014.

[14] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt,
“Understanding and designing new server architectures for emerging
warehouse-computing environments,” in ACM SIGARCH Computer Ar-
chitecture News, 2008.

[15] M. Coppola, B. Falsafi, J. Goodacre, and G. Kornaros, “From embedded
multi-core socs to scale-out processors,” in DATE, 2013.

[16] J. D. Davis, J. Laudon, and K. Olukotun, “Maximizing cmp throughput
with mediocre cores,” in PACT-14, 2005.

[17] L. Geppert, “Suns big splash: Niagara multiprocessor chip,” IEEE
Spectrum, 2005.

[18] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and Y. M. Teo, “A
performance study of big data on small nodes,” VLDB, 2015.

[19] U. Hölzle, “Brawny cores still beat wimpy cores, most of the time,”
IEEE Micro, 2010.

[20] A. Putnam, A. M. Caulfield, E. S. Chung et al., “A reconfigurable fabric
for accelerating large-scale datacenter services,” in ISCA-41, 2014.

[21] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in ASPLOS-19, 2014.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in ISCA-44, 2017.

[23] “Specifications of Intel Xeon E5-2699 v4,” http://ark.intel.com/products/
91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2 20-GHz.

[24] Cavium Inc., “High performance memory caching using thunderx,”
Tirias Research, 2016.

[25] ——, “High performance nginx content delievery using thunderx,” Tirias
Research, 2016.

[26] “Memcached official website,” http://memcached.org.
[27] “Nginx documentation of http core module,” http://nginx.org/en/docs/

http/ngx http core module.html.
[28] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:

A cautionary tale.” in NSDI, 2006.
[29] Y. Zhang, D. Meisner, J. Mars, and L. Tang, “Treadmill: Attributing

the source of tail latency through precise load testing and statistical
inference,” in ISCA-43, 2016.

[30] “Memcached load generator,” https://github.com/leverich/mutilate.
[31] “Wrk2: A constant throughput, correct latency recording variant of wrk,”

https://github.com/giltene/wrk2.
[32] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet.”

Glottometrics, 2002.
[33] L. Ramaswamy, L. Liu, and A. Iyengar, “Cache clouds: Cooperative

caching of dynamic documents in edge networks,” in ICDCS-25, 2005.
[34] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,

“Workload analysis of a large-scale key-value store,” in SIGMETRICS,
2012.

[35] L. Barroso and U. Hoelzle, The Datacenter as a Computer: An Intro-
duction to the Design of Warehouse-Scale Machines, 2009.

[36] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-
Aware Cluster Management,” in ASPLOS-19, 2014.

[37] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: precise online
qos management for increased utilization in warehouse scale computers,”
in ISCA-40, 2013.

[38] J. Mars and L. Tang, “Whare-map: heterogeneity in ”homogeneous”
warehouse-scale computers,” in ISCA-40, 2013.

[39] “Host server cpu utilization in amazon ec2 cloud,” http://goo.gl/2LTx4T.
[40] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes, “Large-scale cluster management at google with borg,” ser.
EuroSys, 2015.

[41] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
EuroSys. 2013.

[42] D. Domingo and W. Cohen, “Systemtap 2.9 systemtap beginners guide,”
2013.

[43] M. Ferdman, A. Adileh, O. Kocberber et al., “Clearing the clouds:
A study of emerging scale-out workloads on modern hardware,” in
ASPLOS, 2012.

[44] I. S. Adapters, “Receive side scaling on intel network adapters.”
[45] A. S. Tanenbaum, J. N. Herder, and H. Bos, “File size distribution on

unix systems: then and now,” SIGOSR, 2006.
[46] R. W. Schmidt and S. Grarup, “Vapp: A standards-based container for

cloud providers,” SIGOSR, 2010.
[47] J. Smith and R. Nair, Virtual machines: versatile platforms for systems

and processes, 2005.
[48] H. Zhu and M. Erez, “Dirigent: Enforcing qos for latency-critical tasks

on shared multicore systems,” in ASPLOS-21, 2016.
[49] “Cgroups,” http://man7.org/linux/man-pages/man7/cgroups.7.html.
[50] M. A. Brown, “Traffic control howto,” http://linux-ip.net/articles/

Traffic-Control-HOWTO/.
[51] “Intel R©64 and IA-32 Architecture Software Developer’s Manual,

vol3B: System Programming Guide, Part 2, September 2014.”
[52] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-grain

cache partitioning,” in ISCA-38, 2011.
[53] D. Marr, F. Binns, D. Hill et al., “Hyper-threading technology in the

netburst R© microarchitecture,” HotChips, 2002.
[54] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server engineering

insights for large-scale online services,” IEEE Micro, 2010.

134

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

