
XChange: A Market-based Approach to Scalable Dynamic
Multi-resource Allocation in Multicore Architectures

Xiaodong Wang and José F. Martínez
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853 USA

http://m3.csl.cornell.edu/

ABSTRACT
Efficiently allocating shared on-chip resources across cores is
critical to optimize execution in chip multiprocessors (CMPs).
Techniques proposed in the literature often rely on global,
centralized mechanisms that seek to maximize system through-
put. Global optimization may hurt scalability: as more cores
are integrated on a die, the search space grows exponentially,
making it harder to achieve optimal or even acceptable oper-
ating points at run-time without incurring significant over-
heads.

In this paper, we propose XChange, a novel CMP resource
allocation mechanism that delivers scalable high through-
put and fairness. Through XChange, the CMP functions
as a market, where each shared resource is assigned a price
which changes over time, and each core seeks to maximize its
own utility, by bidding for these shared resources. Because
each core works largely independently, the resource alloca-
tion becomes a scalable, mostly distributed decision-making
process. In addition, by distributing the resources propor-
tionally to the bids, the system avoids unfairness, treating
each core in an unbiased manner.

Our evaluation shows that, using detailed simulations of
a 64-core CMP configuration running a variety of multipro-
grammed workloads, the proposed XChange mechanism im-
proves system throughput (weighted speedup) by about 21%
on average, and fairness (harmonic speedup) by about 24%
on average, compared with equal-share on-chip cache and
power distribution. On both metrics, that is at least about
twice as much improvement over equal-share as a state-of-
the-art centralized allocation scheme. Furthermore, our re-
sults show that XChange is significantly more scalable than
the state-of-the-art centralized allocation scheme we com-
pare against.

1. INTRODUCTION
Designing chip multiprocessors (CMPs) that scale to more

than a handful of cores is an important goal for the up-
coming technology generations. A challenge to scalability is
the fact that these cores will inevitably share hardware re-
sources, whether it be on-chip storage, memory bandwidth,
the chip’s power budget, etc. Studies have shown that allow-
ing cores to freely contend for shared resources can harm sys-
tem performance [3, 9, 10]. Therefore, allocating resources
efficiently among cores is key to achieving good behavior.

One challenge in resource allocation is that it is generally
not a problem separable by resource, as resource interactions

exist [3]. For example, increasing an application’s allocated
cache space may reduce its memory bandwidth demand, due
to the lower cache miss rate. Similarly, increasing an appli-
cation’s power budget could allow it to run at a higher fre-
quency, potentially demanding higher memory bandwidth.
As more and more cores are integrated on a single die, the
size of this multi-resource allocation space explodes, making
it harder to devise mechanisms to lock on a good alloca-
tion without incurring significant overheads. Although prior
knowledge of the applications from offline profiling may curb
some of the run-time overhead, this information is generally
not available.

An additional important consideration is the balance be-
tween throughput and fairness. Eyerman and Eeckhout [14]
argue that a good resource allocation scheme should be able
to maintain a balance between single-program performance
and overall system throughput. However, existing global
optimization solutions deal primarily with system through-
put [9, 10], potentially resulting in systems with poor fair-
ness. On the other hand, a recently proposed proportional
allocation technique by Zahedi and Lee focuses on guaran-
teeing strict game-theoretic fairness of the co-running appli-
cations [48], but its formulation may come in practice at a
cost in throughput, as we show in our results.

Contributions
In this paper, we propose XChange, a novel CMP multi-
resource allocation mechanism that is able to deliver scalable
high throughput and fairness. We formulate the problem
as a purely dynamic, largely distributed market, where the
“prices” of resources are adjusted based on supply and de-
mand. Cores dynamically learn their own resource-performance
relationship and bid accordingly; no prior knowledge of the
workload characteristics is assumed.

Our evaluation shows that, using detailed simulations of
a 64-core CMP configuration running a variety of multipro-
grammed workloads, the proposed XChange mechanism im-
proves system throughput (weighted speedup) by about 21%
on average, and fairness (harmonic speedup) by about 24%
on average, compared with equal-share on-chip cache and
power distribution. On both metrics, that is at least about
twice as much improvement over equal-share as a state-of-
the-art centralized allocation scheme [9]. Furthermore, our
results show that XChange is significantly more scalable
than the state-of-the-art centralized allocation scheme we
compare against: less than 0.5% overhead on a 5-million-
cycle allocation interval (approx. 1 ms) to reach an allo-

Appears in Intl. Symp. on High Performance Computer Architecture, San Francisco, CA, Feb. 2015

cation decision, for CMP sizes anywhere from four to 128
cores. In contrast, the state-of-the-art centralized scheme
we compare against takes over 30% of the allocation inter-
val to converge under a 64-core CMP, and it exceeds the
entire interval beyond 100 cores.

Although inspired by theoretical studies [16, 30, 46, 49],
XChange is nevertheless heuristic by design. We present
a comparison against a recently proposed, formally prov-
able market-based resource allocation mechanism [48], and
show that our heuristic approach delivers superior through-
put across the board for the configurations and workloads
studied.

This paper is organized as follows: Section 2 motivates
our approach in contrast to existing art. Section 3 describes
the general market framework that XChange is based on.
Section 4 and Section 5 present the implementation of our
proposed mechanism. Section 7 evaluates our proposal. Sec-
tion 8 validates our model. Section 9 shows the scalability
of our mechanism.

2. MOTIVATION OF OUR APPROACH
In the context of resource allocation of CMPs, researchers

have shown that using fine-grained management of the avail-
able resources to provide optimized utilization is highly de-
sirable as well as practical. Sanchez and Kozyrakis, for
example, show that fine-grained shared-cache cache parti-
tioning is feasible in a large-scale CMP system [36], yield-
ing greatly improved utilization. Similarly, multiple power-
oriented studies [6, 15, 23] show that fine-grained, per-core
DVFS regulation can greatly improve a CMP’s energy effi-
ciency. Intel has recently deployed a low-cost, fully-integrated
voltage regulator in Haswell [19], and other researchers are
making significant advances in supporting per-core DVFS [21,
38]. The obvious downside of fine-grained resource alloca-
tion in large-scale CMPs is that the number of potential op-
erating points can be large, making it more time-consuming
to search for optimal allocation points.

When it comes to multi-resource allocation, uncoordinated
solutions have been shown to be inefficient—even inferior to
static equal-share partitioning—, due to their inability to
model the interactions among resources [3]. A few solu-
tions have been proposed to address the fine-grained multi-
resource allocation problem. Approaches to estimate an allo-
cation’s performance have evolved, from simple trial runs [1,
10, 24], to behavior modeling based on artificial neural net-
works [3], or analytical models [9]. In all these cases, the
solutions are primarily centralized mechanisms that seek to
optimize system throughput by essentially exploring the re-
source allocation space sequentially. Unfortunately, coor-
dinated multi-resource allocation dramatically increases the
size of the this allocation space. As we will show in Sec-
tion 9, centralized approaches are likely to be unfeasible for
large-scale CMPs, as they may take too long to discover an
optimized operating point that can be exploited effectively.
Moreover, many of these techniques focus on throughput,
with less concern for fairness.

Our proposed XChange solution tackles scalability by adopt-
ing a market-based approach. In a market-based approach,
participants seek to optimize their resource assignment largely
independently of each other, and participants’ demands are
reconciled through a pricing mechanism. Under relatively
weak conditions (e.g., resources are priced equally for all
participants at each point in time), such competitive mar-

kets can converge iteratively to a Pareto-efficient equilib-
rium (i.e., no further trading is mutually beneficial) [27].
These two properties, namely largely distributed operation
and Pareto-efficient equilibrium, make a market approach
potentially attractive in our context.

In the computer systems domain, Sutherland is believed
to be the first one who created a market to manage Har-
vard University’s computing resources [45]. Since then, a
number of proposals have been put forward to allocate re-
sources in distributed systems and data centers [8, 16, 18,
33]. Recently, Guevara et al. [18] use a market model to
study the optimal configuration of heterogeneous data cen-
ters. They employ a “static market” view to allocate a sin-
gle resource (compute service units): Users volunteer the
amount of money each is willing to pay as a function of
allocated service units. The central market then allocates
the available computing resources so that monetary profit
is maximized. This static view of a market is not useful in
our context: To accomplish efficient multi-resource alloca-
tion, users should be able to adjust their bids dynamically
in response to the perceived global resource contention—
what is called the “price discovery” process. For example,
a user can lower its bid for what turns out to be a highly
contended resource (e.g., cache space) and bet on a different
resource more heavily (e.g., power budget), if it concludes
from supply-demand dynamics that it will get a better“bang
for the buck.”

Overall throughput is not the only concern to resource
allocators: A measure of fairness is also highly desirable
(e.g., to provide QoS). A recent proposal by Zahedi and
Lee [48] applies an “elasticity-proportional” (EP) CMP re-
source allocation mechanism to accomplish game-theoretic
fairness. Users’ true resource utility is profiled, and the re-
sulting profiles are curve-fitted to a log-linear function. The
EP allocation mechanism uses these curve-fitted utility func-
tions to provide an allocation with strong game-theoretic
fairness guarantees, such as sharing incentives, envy free-
dom, and Pareto efficiency. However, guaranteeing game-
theoretic fairness comes at a cost in system performance,
and Zahedi and Lee’s results indeed show that a fundamen-
tal trade-off exists between EP’s game-theoretic fairness and
achievable system throughput.

Our approach distances itself from pursuing provable game-
theoretic guarantees, instead focusing on heuristics that can
be practical and yield satisfactory levels of both throughput
and fairness. We do not confine user behavior to a curved-
fitted model, and hypothesize that a heuristic-based approx-
imation of utility in the CMP, coupled with a fail-safe mech-
anism for outliers, should be sufficient to provide good out-
comes. Intuitively, this is based in part on the fact that re-
source utility in CMPs, even if nonlinear, is monotonic (i.e.,
more of a resource yields equal or greater benefit)—a prop-
erty present in many problems for which market-based so-
lutions have been successful.1 We measure throughput and
fairness using metrics more conventionally found in the com-
puter architecture community, namely weighted speedups
and harmonic speedups.

Another limitation of Zahedi and Lee’s approach [48] is
that, although there seems to be no fundamental reason

1
Technically, it is possible that some resources may exhibit some kind

of Bélády’s anomaly, where a slightly increased resource allocation
actually hurts performance in certain cases. We did not find this to
be an issue in our experiments.

why the utility profiles could not be derived online some-
how, its evaluation is based on profiles obtained offline and
a priori. While it may be possible in data centers to pro-
file an application before dispatching it [11, 26], we believe
this assumption is unrealistic for general CMP-based sys-
tems. XChange approximates resource utilities dynamically
at run-time—no prior knowledge of the workload’s behavior
is necessary.

3. MARKET-BASED FRAMEWORK
Proper multi-resource allocation for CMPs presents the

challenge of optimizing and balancing two system objectives,
system throughput and fairness, as well as dealing with an
allocation space which grows rapidly with the number of
cores. To be truly practical, it also needs to be capable of
building a resource-performance model dynamically at run-
time, without the assistance of profiling or other sort of prior
knowledge.

In this section, we describe the general market framework
XChange is based on. We define the agents in the market
as the applications running on the CMP cores. We consider
the shared resources to be the chip’s power budget and the
last-level cache space. We regard the scheduling question of
what apps to run on the available cores as orthogonal to our
objective—after all, an agent would not spend any “money”
on resources if it didn’t get to run.

3.1 Overview
XChange operates as a market, where each processor in

the CMP can “purchase” shared resources from the system.
The pricing mechanism plays a central role in the market:
it conveys supply and demand information, reflects the true
value of the resources, and ultimately determines who gets
how much of each resource [27].

We adopt the price-taking mechanism proposed by Kelly [22]:
Assume Rj represents the total amount of resource j avail-
able, and bij is the amount of money agent i bids for resource
j. Then pj , the price of resource j, is computed as the to-
tal amount of money bid by all the agents on that resource,
divided by the number of resource units available:

pj =

∑
i bij

Rj
(1)

The resources are then distributed proportionally to the bids
each agent submits:

rij =
bij
pj

(2)

Here rij is the amount of resource j allocated to agent i.
Note that, because of the price-taking formulation, no part
of the resource is left unallocated.

At each point in time, because resource prices are readily
available to agents, the agents know exactly how much of
a resource they would get given the bids they place for it,
and therefore, these selfish agents are able to bid optimally
to maximize their own utilities. During the bidding process,
the prices will fluctuate. When prices become stable because
agents have no incentive to change their bids to improve
their utilities, the market has converged. This results in a
Pareto-efficient resource allocation.

In addition, to ensure market fairness, each agent is as-
signed a finite budget, and the total amount of its bids can-

not exceed that budget. We also do not allow agents to save
money: any unused budget is forfeited if the agents do not
use it. This is simpler than a situation where agents are
allowed to save money to later try to monopolize all the re-
sources, which probably hurts both convergence speed and
fairness.

The entire bidding process is described as follows:

1. Initially, each agent builds its local utility function—i.e.,
its resource-performance relationship model. It is also
assigned a budget to buy resources. Meanwhile, a global
resource arbiter posts the initial prices for all resources
to all agents. Under such prices, each agent places bids
to buy these resources. These bids are such that they
maximize the agent’s local utility.

2. After all agents have placed their bids, a global resource
arbiter collects the bids, and adjusts the prices of the re-
sources based on Equation 1. The price of highly sought-
after resources will be increased, and the price of unpop-
ular resources will be lowered to promote sales. This is a
quick process.

3. The resource arbiter posts the updated prices to all agents,
who then bid again under the new pricing. This pro-
cess repeats itself until the market converges—i.e., the
price remains stable across iterations (within 1%), and
the agents have no incentive to change their bids to im-
prove their local utility. (We discuss more about conver-
gence criteria in Section 4.3.2.) Finally, the resources are
allocated as shown in Equation 2.

Prices play a key role here, as a reflection of overall sys-
tem demand vs. supply. In other global optimization mech-
anisms for CMPs, only the marginal utility of each resource
(i.e., the preference for that resource) is considered by the
agents [9], regardless of whether it is highly contended or
not. In our market, for example, if the price for resource
A is high due to demand, an agent will start bidding more
money on a cheaper resource B, even though its marginal
utility for resource A may be higher, in an attempt to max-
imize its utility given the supply-demand circumstances.

Another major advantage of this process is that it is mostly
done in a decentralized manner. Indeed, a key aspect of
our market framework is that it takes advantage of individ-
ual wisdom: It allows the agents in the market to submit
bids to maximize their local utility under the current re-
source prices, rather than submitting their utility function
to a centralized entity that then performs a global search.
Compared to prior centralized schemes proposed [3, 9], this
process delegates the search effort to each individual agent.
The only centralized work done in the system is the pric-
ing mechanism shown in Equation 1, which is fairly simple
and can be done efficiently. In addition, the overhead of
collecting bids and posting prices is small.

One other interesting aspect of this market-based approach
is that the trade-off between system throughput and fairness
can be adjusted by assigning different budgets to different
agents: Intuitively, if the system prefers higher throughput,
it opts to assign higher budget to the agent with higher
marginal utility; if the system prefers fair allocation across
agents, it opts to assign equal budget. We discuss this issue
further later in Section 4.3.3.

0	

10	

20	

30	

40	

0	

0.2	

0.4	

0.6	

0.8	

	 	 	 	 	 1-‐way	 	 	 	 	 	 2-‐way	 	 	 	 	 	 3-‐way	 	 	 	 	 	 4-‐way	 	 	 	 	 	 6-‐way	 	 	 	 	 	 8-‐way	 	 	 	 	 12-‐way	 	 	 	 	 16-‐way	

IP
C	

(a) twolf

0	

40	

80	

120	

160	

200	

0	

0.05	

0.1	

0.15	

0.2	

0.25	

	 	 	 	 	 1-‐way	 	 	 	 	 	 2-‐way	 	 	 	 	 	 3-‐way	 	 	 	 	 	 4-‐way	 	 	 	 	 	 6-‐way	 	 	 	 	 	 8-‐way	 	 	 	 	 12-‐way	 	 	 	 	 16-‐way	

(b) mcf

0	

10	

20	

30	

40	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

	 	 	 	 	 1-‐way	 	 	 	 	 	 2-‐way	 	 	 	 	 	 3-‐way	 	 	 	 	 	 4-‐way	 	 	 	 	 	 6-‐way	 	 	 	 	 	 8-‐way	 	 	 	 	 12-‐way	 	 	 	 	 16-‐way	

M
is
se
s	 P

er
	 K
ilo

	 In
st
ru
c0
on

s	

IPC	

MPKI	

(c) soplex

Figure 1: IPC and cache miss rate under different cache allocation, running at highest possible frequency. The x axis is the
number of cache ways enabled. Section 6 describes our experimental setup.

3.1.1 Challenges of building the utility model
The market model requires each agent to construct an

accurate relationship between performance and resources—
i.e., its local utility model. One possible solution could be
to ask programmers or users to provide some “hint” to the
on-chip agent about the dynamic behavior of the applica-
tion. However, in general, programmers and users may pro-
vide the wrong incentive, primarily because they may be
unaware of the hardware details. Profiling is an option,
but this may not be feasible in practice, and in any case,
the applications will be running in a different environment
when it matters: different architectural configuration, com-
petition with applications with different characteristics, etc.
Notwithstanding these options, we propose to design an in-
telligent run-time monitoring mechanism, whose goal is to
determine each agent’s local utility model dynamically (and
concurrently).

4. MECHANISM: MARKET PARTICIPANTS
In this section, we describe how each individual agent dy-

namically models its relationship between performance and
resources, and its bidding strategy in reaction to the resource
price under our market framework.

All other things being equal, a simpler model is usually
preferable. Here we briefly discuss a linear model to provide
an intuition of how market participants operate in general.
As we will see shortly, when managing CMP resources the
reality is not so simple (but it is manageable).

ui =
∑
j

wij × rij (3)

where wij represents agent i’s marginal utility for resource
j, rij represents the allocation of resource j to agent i, and
ui represents the overall utility of the allocation of resources
for agent i. This linear utility function, where each agent’s
marginal utility for each resource is constant under all cir-
cumstances, is quite simple, and many bidding strategies
have been proposed in the literature. For example, PR-
dynamics, which is a bidding strategy based on the linear
utility model, is theoretically proven by Zhang to guarantee
fast market convergence, Pareto efficiency, and also game-
theoretic fairness [49].

When we attempted to use a linear market by curve-fitting
the utility functions of each application, and conducted a
PR-dynamics-like market, the results were poor. In order
to examine why the linear utility model is a poor fit to our
specific CMP resource allocation problem, we profile a few

applications with varying cache capacity. (See Section 6 for
details on the experimental setup.) Figure 1 shows the L2
cache miss rate (MPKI) of three representative applications
under different cache way allocation, and their correspond-
ing IPC. All the applications run at the same frequency. We
find that the cache-performance behavior of soplex and twolf
can fit into the linear model pretty well: soplex doesn’t ben-
efit from more L2 (flat curve), and twolf ’s IPC increases
almost linearly with more cache ways.

However, mcf shows a step function in IPC and cache
capacity: once it secures 12 ways (1.5MB), its working set
can fit into the cache, and its miss rate drops to almost
zero, showing a sudden 200% performance increase. Such
IPC-cache utility curve does not fit a linear utility curve
well—in fact, it is not even convex. The existing literature
does not provide easy game-theoretic guarantees for agents
that behave like mcf. We empirically observed that some
other applications have similar behavior (admittedly, mcf is
a bit extreme).

In XChange, we choose to abstain altogether from pur-
suing approaches with strong game-theory guarantees. Our
approach is inspired by the fact that the First Welfare Theo-
rem has relatively weak requirements to guarantee that any
market equilibrium is Pareto-efficient: XChange is a market
where agents are price-takers by design (i.e., they must ac-
cept the prices imposed by the market at each point in time);
agents in XChange exhibit monotonic utility (i.e., more of a
resource is better) by the nature of our problem; and agents
in XChange always put forward their best bid (the one that
they believe maximizes their utility given the current prices).

In the rest of this section we describe how we model XChange’s
utility function, in part by borrowing and combining suc-
cessful hardware estimation mechanisms from the existing
literature. As our evaluation will show, the model yields
very good results for the configurations and workloads stud-
ied (Section 7).2

4.1 Utility Model
Existing literature frequently characterizes workload be-

havior by dividing its total execution time into memory
phase (core stalled waiting for memory) and compute phase.
In XChange, we borrow this simple compute-vs.-memory
classification to characterize the impact of each of the shared
resources on application behavior. Cache and off-chip band-

2
The First Welfare Theorem states sufficient conditions for Pareto-

efficiency under any market equilibrium. Thus, even market equilibria
that do not strictly abide by such conditions may in principle be
Pareto- or quasi-Pareto-efficient.

width are mostly related to the length of the memory phase:
a larger L2 allocation will lower the cache miss rate, while
more memory bandwidth will mitigate the penalty of cache
misses. At the same time, a higher power budget allocation
will allow a core to run at a higher frequency, and thus the
compute phase will be scaled down proportionally [6, 28].

We define the agent’s utility as the workload’s execution
time, i.e., the sum of its compute and memory phase, mea-
sured in cycles at nominal frequency (4GHz in our setup).
We approximate compute and memory phases as being rel-
atively independent—e.g., changing the core’s power alloca-
tion should not affect the wait in the memory system due to
cache misses and bandwidth traffic. This is of course a sim-
plification: a lower clock frequency at the core, for example,
will make the core issue memory requests at a slower speed,
and thus affect the effective memory level parallelism, and
the length of memory phase. However, it allows for simpler
and faster models that, as our results will show, do deliver
solid gains.

4.1.1 Cache Utility
We now describe how we derive our utility model for

shared cache allocation, by combining two existing perfor-
mance estimation mechanisms. Miftakhutdinov et al. de-
velop a model to estimate the execution time of a program’s
memory phase [28]. In the model, a per-core memory crit-
ical path counter CPglobal is maintained. When a memory
request leaves the core and gets into the last-level cache, it
copies CPglobal to the its own counter CP local. After ∆t
cycles, the memory request is served, and the critical path
counter is set as CPglobal = max(CPglobal,CP local + ∆t).
The value of counter CPglobal reflects the length of the mem-
ory phase. (More details can be found in that paper.)

Unfortunately, this scheme is only able to estimate the
length of memory phase under the current cache and band-
width allocations. To estimate the cache’s marginal utility,
we need to be able to calculate the effect that a change in
cache allocation has on the memory phase. Qureshi and
Patt’s UMON sampled cache tag array [32] can be used to
predict the cache miss rate under all possible cache alloca-
tions, although is not able to directly predict the length of
memory phase.

Thus, we extend the technique developed by Miftakhut-
dinov et al. by incorporating UMON. The simplifying as-
sumption we make is that memory-level parallelism (MLP)
doesn’t change with different cache allocations, and there-
fore can be computed by dividing the aggregate service time
by the length of the memory phase:

MLP =
Nh × th +Nm × tm

CPglobal
(4)

where Nh and Nm are the number of hits and misses under
the current cache allocation, respectively, and th and tm are
the hit and miss latencies, respectively.

In order to predict the length of memory phase under j
cache ways, CPglobal(j), we compute the aggregate memory
service time without MLP, by using the prediction of the
number of hits and misses, Nh(j) and Nm(j) respectively,
from UMON.3 With MLP, the length of memory phase un-
der j cache ways can be computed as:
3
UMON with dynamic set sampling (DSS) is only able to predict

miss rate, but we can multiply miss rate by the total number of cache
accesses to obtain the number of hits and misses.

CPglobal(j) =
Nh(j)× th +Nm(j)× tm

MLP
(5)

Therefore, assuming an agent is allocated i ways of cache,
if it is given one less cache way, the increase in its execution
time can be computed as:

MU cache(i) = CPglobal(i− 1)− CPglobal(i) (6)

We define MU cache(i) as the agent’s marginal utility for
cache at i ways. (Note that lower CPglobal is better, thus
the order of the operands.)

4.1.2 Power Utility
The agent’s marginal utility for power can be modeled

based on the fact that the length of the compute phase tends
to scale linearly with the processor frequency. By reading
the appropriate hardware performance counters, the agent
can collect the statistics from the last interval: length of
compute phase texe, average operating frequency f0, energy
consumption E0, and operating voltage V0. Then the length
of compute phase texe(f) under new frequency f is:

texe(f) = texe ×
f0
f

(7)

The power is estimated as follows:

P (f) =

E0

V 2
0
× V 2

f

texe(f) + tmem
(8)

Here, Vf is the voltage under new frequency f , and tmem

is the length of memory phase under current cache partition.
Therefore, assume an agent is operating at frequency f,

we define its marginal utility for power as follows:

MU power(f + ∆f) =
texe(f)− texe(f + ∆f)

P (f + ∆f)− P (f)
(9)

where ∆f is the frequency increment of one DVFS step.

4.1.3 Bandwidth Utility
The marginal utility for memory bandwidth could be de-

rived similarly, by taking effective memory latency into ac-
count when computing the length of memory phase; however
in this paper for simplicity we assume an equal-share distri-
bution across cores. This allows us to compare in the eval-
uation directly against state-of-the-art schemes for multi-
resource allocation, which also allocate shared cache and
power budget simultaneously [9]. Note that other resources,
such as on-chip network bandwidth, can also be plugged
into our utility model, as long as their resource-performance
relationship can be accurately modeled.

4.2 Bidding Strategy
Agents in XChange conduct a simple local hill-climbing

algorithm to find their optimal bids. Because the agent is
working locally and independently, the complexity of this lo-
cal hill-climbing does not increase with the number of cores.
Notice that hill-climbing cannot generally guarantee the op-
timality of the solution, and thus the sufficient conditions of
the First Welfare Theorem cannot be formally guaranteed.
Nevertheless, again our experiments show that the bids pro-
duced in this way are of good quality.

We have established earlier in the paper that cache utility
is generally not convex. This may cause hill-climbing to
get stuck at a local optimum. For example, as is shown
in Figure 1b, mcf ’s marginal utility on allocating more cache
ways is zero almost everywhere except for one point (8 to
12 ways). If the hill-climbing search starts by purchasing
one cache way and the power consumption of the minimum
possible frequency (800 MHz), it is almost guaranteed that
the agent will bid heavily on power, because the marginal
utility on cache is virtually zero in that region.

On the other hand, there is generally no such “knee” in
the performance response to frequency (and thus power)
changes; plus, its marginal utility diminishes as frequency in-
creases, because power scales cubically with frequency, while
compute time scales linearly (see Equation 9). These two
“opposing” but otherwise monotonic behaviors enable us to
design a “guided” hill-climbing search, which starts search-
ing from the maximum affordable cache. Thus, our proposed
local hill-climbing algorithm works as follows:

1. The price of resources is broadcast to the agents.

2. Each agent starts by purchasing its bare-minimum power
(assuming the core is operating at 800 MHz), and
leaves all the remaining budget to cache.

3. The agent decreases its cache bid by one way, and uses
the saved money to buy extra power. By comparing
the marginal utilities, the agent can decide whether
the trade is worthwhile. If so, it accepts the trade and
this step is repeated; otherwise, the agent denies the
trade, and it submits the current bids to the market.

This algorithm should deal with mcf ’s “step-like” cache be-
havior very well. In Figure 1b, the step of mcf is at 12 ways.
Our hill-climbing starts from the maximum affordable cache.
Suppose mcf can at most buy 10 cache ways because it is
highly contended; then the algorithm will eventually end up
trading 9 cache ways for power, and will never really worry
about climbing up to 12 cache ways, simply because it is not
affordable. On the contrary, if mcf can afford more than 12
cache ways, it will iterate as described above to decide, at
each point, whether cache or power is more beneficial.

Our guided hill-climbing approach is efficient, because it
walks through the search space linearly. However, this is true
because only one resource in the system has a non-convex
utility (the cache). In a more general case where multiple
resources are not convex, more sophisticated algorithms such
as Qureshi and Patt’s Lookahead [32] would probably be
needed.

4.3 Design Issues
In this section, we discuss three practical issues that must

be addressed: bankruptcy, market convergence, and wealth
redistribution.

4.3.1 Bankruptcy
Sometimes, the price for power can be so high in the

market that an agent cannot even afford to buy the min-
imum power to operate at 800 MHz. In such an event, the
agent will file for “bankruptcy.” The agent will be excluded
from the bidding process, and it will be allocated the bare
minimum: one way of the cache, and allowed to operate at
800 MHz for the next interval. The other agents will bid for

the remaining resources. The bankrupt agent will re-join
the bidding process at the next interval.

4.3.2 Convergence
Many practical studies show that a market similar to ours

is likely to operate quite well [16, 40]. Still, we do experi-
mentally observe some circumstances where prices continue
to oscillate by more than 1% (our convergence criterion).
We could consider a market with a more relaxed conver-
gence threshold, e.g. 5% fluctuation. This may eliminate
some of the non-convergent cases, and also reduce the num-
ber of bidding iterations. However, it may lead to a less
optimal allocation. Other convergence criteria exist in the
literature; for example, utility fluctuation [16]. However,
we observed experimentally that there was no practical dif-
ference between this and our original criterion in terms of
system throughput or convergence rate.

One reason for continued oscillation is that cache alloca-
tion is done at the granularity of cache ways, and thus the
utility function is not continuous. Agents may be swing-
ing between two neighboring cache ways across iterations,
resulting in a non-trivial fluctuation in cache price.

There comment on two potential solutions to deal with
this situation. First, we can introduce a price-smoothing
mechanism, by incorporating the price in the last iteration
(plastj):

pj = α× plastj + (1− α)×
∑

i bij

Rj
(10)

In this way, the history of the price is factored in, which
helps agents to better understand the contention of the re-
source in the market. We empirically pick α to be 0.2, and
we observe that it can greatly improve the market conver-
gence rate.

Another option is to adopt a price-anticipating mecha-
nism [16] instead of our price-taking approach. In this mech-
anism, although an agent does not know how others will
change their bids, it realizes that the increase/decrease of
its bids will change the resource prices, according to Equa-
tion 1. Therefore, during the local search for optimal bids,
the agent will no longer consider the price to be a fixed num-
ber: it will factor in the impact of its changing bid on the
resource price when it tries to trade one cache way for power.

In our experimental setup, both solutions show similar
system throughput and convergence rate. Because price-
anticipating agents increase the complexity when bidding,
in the rest of the paper we adopt the price-smoothing tech-
nique.

In any case, if the market ultimately cannot converge af-
ter a while, we have to announce that our market fails to
converge. In XChange, we set the cut-off threshold to be
30 iterations; if the prices still fluctuate by more than 1%
at that point, we terminate the bidding process. In that
case, resources are allocated as follows: first, each agent es-
timates its utility under the current resource prices and its
bids; then, each agent estimates its utility under an equal-
share allocation. If one of the agent prefers equal share, we
enforce the system to fall back to equal-share allocation for
all agents. Otherwise, the resources are allocated accord-
ing to the agents’ last bids. In this way, such a “fail-safe”
mechanism virtually guarantees that the allocation decision
is at least as good as equal-share. In fact, our experiments
show that in most cases, agents prefer the market outcome

Component Quantity Width Bits
UMON shadow tag 16 × 64 28 28,672
UMON hit counter 16 32 512
DL1 CPglobal counter 1 32 32
Per request CPglobal counter 16 32 512
Total 29,728

Table 1: Per-core hardware overhead of online performance
modeling.

rather than equal-share. This is especially true if multiple
equilibria exist, and the market is simply oscillating among
them.

4.3.3 Wealth Redistribution
In our initial design, our market framework treats all agents

equally, by assigning to them the same initial budget. How-
ever, in our experiments, we find that an equal budget con-
straint might not be efficient enough from both a system and
a user perspective. For example, libquantum is easily satis-
fied with very few resources. Because it’s a highly memory-
intensive application, its core stalls most of the time. As a
result, it can operate at 4 GHz while consuming very little
power (much lower than an equal-share power allocation). In
addition, its working set can never fit into the shared cache,
and allocating more than one cache way to it does not bring
any significant benefit. But because it has the same bud-
get as the other agents, it is likely to disrupt the market by
preventing the other agents from obtaining resources that
would contribute to a higher system throughput.

We propose a simple heuristic, namely to assign to each
agent a budget proportional to its“potential” in performance
gains:

B ∝ (1− tmin

tmax
) (11)

where tmin is the estimated execution time when the appli-
cation is running alone (and thus enjoys all the chip’s power
and the maximum number of cache ways that UMON is able
to monitor—see Section 5), and tmax is the estimated exe-
cution time when the application is running with minimum
resources (one cache way and the lowest possible frequency).
These quantities are not measured, but rather computed us-
ing Equation 5 and Equation 7 at the beginning of each
partition interval; therefore, they do not lead to additional
overhead.

This wealth redistribution technique biases budgeting to-
ward the applications that have higher potential. As we dis-
cuss later in Section 7, this result in higher overall through-
put, at the expense of some fairness. In those circumstances
where fairness among cores are highly preferred, this wealth
redistribution mechanism can be easily turned off.

5. IMPLEMENTATION
We propose to implement XChange as a combination of

hardware and software. The hardware is responsible for per-
formance monitoring and modeling, and the software is re-
sponsible for conducting the market’s bidding and pricing
mechanism.

5.1 Hardware
Table 1 details the per-core hardware overhead of our

online performance modeling mechanism. As is discussed

in Section 4, XChange relies on UMON shadow tags to pre-
dict cache behavior of applications. We employ a dynamic
set sampling (DSS) technique [32] and sample 64 out of 2k
sets. We further limit the stack distance to 16, because we
empirically observe that no application can afford more than
4× its equal-share allocation. In addition, for the workloads
we study, we observe that their marginal utility for cache
is mostly zero beyond 16 ways. However, in more general
cases, a deeper stack distance may be needed to more ac-
curately characterize the workloads’ cache behavior, at the
cost of higher storage overhead.

On top of that, in order to track the length of critical mem-
ory path CPglobal, the L1 data cache of each core requires a
global critical path counter CPglobal, and each memory re-
quest needs a counter to save a copy of CPglobal (as a field of
DL1’s MSHR). Further, it needs each processor to keep track
of how much dynamic energy it consumes in the past inter-
val. Because modern processors already have this feature
built in [35], we exclude this from our hardware overhead.

In all, the per-core hardware overhead of XChange amounts
to about 3,700 bytes.

5.2 Software
We propose to implement XChange’s bidding-pricing mech-

anism as a part of an OS kernel module. In some Linux-
based SMP systems, all cores are simultaneously interrupted
by an APIC timer every 1 ms to conduct a kernel statistics
update routine. We propose to piggyback on this interrupt
to incorporate our market mechanism. We assume a shared-
memory model, and designate a master core to be respon-
sible for collecting the bids (reading shared variables) and
computing the price. The whole procedure works as follows:

1. Every 1 ms, after each core has finished its kernel up-
date routine, the master core posts an initial price.

2. All the cores start to search for their optimal bids us-
ing the local hill-climbing technique explained in Sec-
tion 4.2.

3. After a global barrier to ensure that all bids are com-
puted, the master core collects the bids, and computes
the price. If the prices do not change (within 1%) com-
pared to the previous iteration, the market converges,
and the resources are allocated using Equation 2. Oth-
erwise, repeat Step 2.

Because we are using a shared-memory model for the mar-
ket mechanism, no special hardware is needed for inter-core
communication. The execution time overhead of this proce-
dure is discussed in Section 9.

5.2.1 Priorities and Real-Time Issues
In a real system there may be applications with differ-

ent priorities. High-priority applications probably expect to
enjoy more CPU cycles and access to more of the on-chip
resources. Our market framework can handle this by as-
signing higher budgets to these applications, and therefore
increase their purchasing power. How exactly to calculate
the appropriate budgets is left for future work.

Another issue that high-priority or real-time applications
may face could be caused by the fact that our market frame-
work involves all the cores for the bidding-pricing procedure.
Although the overhead is small (Section 9), these types of

Table 2: System configuration.

Chip-Multiprocessor System Configuration
Number of Cores 8 / 64

Power Budget 80W / 640W a

Shared L2 Cache Capacity 4MB / 32MB

Shared L2 Cache Associativity 32 / 256 ways b

Memory Controller 2 / 16 channels
Core Configuration
Frequency 0.8 GHz - 4.0 GHz

Voltage 0.8V - 1.2 V
Fetch/Issue/Commit Width 4 / 4 / 4

Int/FP/Ld/St/Br Units 2 / 2 / 2 / 2 / 2
Int/FP Multipliers 1 / 1

Int/FP Issue Queue Size 32 / 32 entries
ROB (Reorder Buffer) Entries 128

Int/FP Registers 160 / 160
Ld/St Queue Entries 32 / 32

Max. Unresolved Branches 24
Branch Misprediction Penalty 9 cycles min.

Branch Predictor Alpha 21264 (tournament)
RAS Entries 32

BTB Size 512 entries, direct-mapped
iL1/dL1 Size 32 kB

iL1/dL1 Block Size 32 B / 32 B
iL1/dL1 Round-Trip Latency 2 / 3 cycles (uncontended)

iL1/dL1 Ports 1 / 2
iL1/dL1 MSHR Entries 16 / 16

iL1/dL1 Associativity direct-mapped / 4-way
Memory Disambiguation Perfect

a
We anticipate that the CMP systems with different number of cores

will not be fabricated under the same technology. For simplicity, in
our evaluation, we use a chip TDP of 10W per core. IBM’s Power8
reportedly consumes twice as much per core (it has 12 cores).
b
In the evaluation, we partition the shared last-level cache at the

granularity of cache ways [32]. In an actual implementation, any of
the fine-grained cache partition mechanisms proposed in the literature
could be used (e.g., PriSM [25], Vantage [36]).

applications may be affected undesirably. One way to han-
dle such cases may be to delegate the bidding on behalf of
such time-sensitive applications on low-priority cores. Other
solutions may be possible.

Yet another issue for real-time applications may be that
the resulting resource allocation may be insufficient to meet
hard deadlines. We propose address this by providing those
applications with enough resources, and then excluding them
from the market. (Their resource demands could be pro-
vided externally, or they could be estimated using the utility
model we described in Section 4.1.)

6. EXPERIMENTAL METHODOLOGY

6.1 Architectural Model
We evaluate XChange using a heavily modified version

of SESC [34]. The CMP configurations with 8 (small-scale)
and 64 (large-scale) cores, and the out-of-order core parame-
ters are shown in Table 2. We also faithfully model Micron’s
DDR3-1600 DRAM timing [20], shown in Table 3.

We use Wattch [4] and Cacti [37] to model the dynamic
power consumption of the processors and memory system.
The static power consumption is approximated as a fraction
of the dynamic power, and this fraction ratio is exponen-
tially dependent on the system temperature [7]. Intel has
adopted a similar approach for its Sandy Bridge power man-
agement [35]. We rely on Hotspot [39] integrated with SESC
to estimate the run-time temperature of our CMP system.

Our baseline CMP system is able to regulate three shared
on-chip resources: L2 cache, off-chip memory bandwidth,

Table 3: DRAM parameters.

Micron DDR3-1600 DRAM [20]
Transaction Queue 64 entries

Peak Data Rate 12.8 GB/s
DRAM Bus Frequency 800 MHz (DDR)

Number of Channels 2 / 16
DIMM Configuration Dual rank

Number of Banks 8 per rank
Row Buffer Size 1 KB

Address Mapping Page Interleaving
Row Policy Open Page

Burst Length 8
tRCD 10 DRAM cycles

tCL 10 DRAM cycles
tWL 7 DRAM cycles

tCCD 4 DRAM cycles
tWTR 6 DRAM cycles

tWR 12 DRAM cycles
tRTP 6 DRAM cycles

tRP 10 DRAM cycles
tRRD 6 DRAM cycles

tRTRS 2 DRAM cycles
tRAS 28 DRAM cycles

tRC 38 DRAM cycles
Refresh Cycle 8,192 refresh commands every 64 ms

tRFC 128 DRAM cycles

and power budget. We distribute the power budget across
the chip via per-core DVFS. When a processor exceeds its
allocated power, it is forced to slow down until its power con-
sumption drops within its share. We guarantee that each
core receives at least one cache way; the remaining cache
is distributed based on the resource allocation decision. Fi-
nally, we implement the Fair-Queue (FQ) memory scheduler
proposed by Nesbit et al. [29] to regulate off-chip memory
bandwidth. The service share rate will be designated at the
memory controller by the resource allocator.

Workload Construction
We use a mix of 25 applications from SPEC2000 [41] and
SPEC2006 [42] to evaluate our proposal. Each application is
cross-compiled to a MIPS executable, using gcc 4.6.1 at -O2
optimization level. The bundles of applications are executed
until every application has committed 200 million instruc-
tions (8 cores), or 50 million instructions (64 cores). When
an application finishes, we stop measuring its performance,
but continue executing and engaging it in global resource
allocation, to ensure that it continues to exert pressure on
the resources shared with other applications in the bundle.
For each application, we use Simpoints [5] to pick the most
representative program slice.

The multiprogrammed workloads we use are shown in Ta-
ble 4. We classify the 25 applications into Power-sensitive,
Cache-sensitive, and Memory-sensitive using profiling, and
then create bundles that constitute a varied mix of applica-
tions in each category. When the number of cores exceeds
the number of apps in a bundle, the bundle is replicated
across the chip. For example, 8 copies of VCUGXNTZ will
run to occupy all the cores in a 64-core CMP.

Our evaluation is based on multiprogrammed workloads
because we anticipate to allocate resources at the granularity
of applications. For multithreaded workloads, we can either
treat each thread as an individual agent in the market, or
combine all the threads of one app as one agent to bid and
share the resources.4

4
Skewing resources among threads in a multithreaded application

(e.g., to alleviate synchronization imbalance) is beyond our scope, can
be incorporated orthogonally to our approach, and has been studied
elsewhere [2, 13].

Table 4: Multiprogrammed workloads, combining cache-,
processor- and memory-sensitive applications.

ROAFLDGV
vpr - twolf - apsi - mcf C4

milc - GemsFDTD - gromacs - vortex M2P 2

XNIBDWFA
soplex - libquantum - leslie3d - bwaves M4

GemsFDTD - swim - mcf - apsi M2C2

MHKULBFP
gamess - hmmer - sixtrack - wupwise P 4

milc - bwaves - mcf - ammp M4

FOARLNBW
mcf - twolf - apsi - vpr C4

milc - libquantum - bwaves - swim M4

AZFPIBDW
apsi - bzip2 - mcf -ammp C4

leslie3d - bwaves - GemsFDTD - swim M4

XIDWCHAF
soplex - leslie3d - GemsFDTD - swim M4

calculix - hmmer - apsi - mcf P 2C2

NXLIGEOR
libquantum - soplex - milc leslie3d M4

gromacs - h264ref - twolf - vpr P 2C2

LNIBDWOT
milc - libquantum - leslie3d - bwaves M4

GemsFDTD - swim - twolf - art M2C2

ROPAFZXN
vpr - twolf - ammp - apsi C4

mcf - bzip2 - soplex - libquantum C2M2

LXNIBDRO
milc - soplex - libquantum - leslie3d M4

bwaves - GemsFDTD - vpr - twolf M2C2

VCUGXNTZ
vortex - calculix - wupwise - gromacs P 4

soplex - libquantum - art - bzip2 M2C2

Performance Metrics
A key issue in resource allocation is the figure of merit. Eye-
rman and Eeckhout propose that two metrics be reported for
a CMP system running multiprogrammed workloads: One
to represent a system perspective, which cares about system
throughput; and one to represent a user perspective, which
cares about the average turnaround time of an individual
job. The proposed metrics are weighted speedup and aver-
age slowdown of co-running applications (the reciprocal of
harmonic speedup), respectively:

Weighted Speedup =
1

N

N∑
i=1

IPC shared
i

IPC alone
i

(12)

Harmonic Speedup =
N∑

i

IPCalone
i

IPC shared
i

(13)

A system could achieve high throughput (i.e., weighted
speedup) by starving one or two applications while benefit-
ing all the others; however, system fairness (i.e., harmonic
speedup) would suffer as a result, providing a bad experi-
ence to some users. A side-by-side comparison of weighted
and harmonic speedups would expose this behavior. To iso-
late the fairness component, we also report separately the
ratio between maximum and minimum slowdowns across the
bundle [12]:

Slowdown Ratio =
maxi

IPC shared
i

IPCalone
i

mini
IPC shared

i

IPCalone
i

(14)

7. EVALUATION
Figure 2 reports system throughput (weighted speedup),

slowdown ratio, and fairness (harmonic speedup) for an equal-
share allocation (EqualShare), two competing mechanisms
(GHC [9] and REF [48]), as well as XChange with (-WR)
and without (-NoWR) wealth redistribution. System through-

-30.0% -20.0% -10.0% 0.0% 10.0% 20.0% 30.0%
Relative Error

0.0%

5.0%

10.0%

15.0%

20.0%

Pe
rc

en
ta

ge
 o

f S
am

ple
s

Figure 3: Accuracy of XChange in predicting the length of
memory phase.

put and harmonic speedup results are normalized to an un-
managed allocation (Unmanaged). Unmanaged adopts LRU
as the policy to manage shared cache, and full-chip DVFS
rather than per-core DVFS, to guarantee that the chip’s
power consumption does not exceed its TDP.

The results are obtained by modeling the allocation al-
gorithms faithfully, however the timing overhead of running
these algorithms is set to zero in all cases. In the next sec-
tion, we show that XChange’s actual overhead is absolutely
and relatively very low, and that it scales much better than
GHC as the number cores/apps increases. Furthermore, the
results for REF assume prior app profile knowledge [48].
Thus, any comparison with the competing mechanisms here
tends to favor those and go against XChange.

7.1 XChange vs. Unmanaged
We first compare XChange against the Unmanaged base-

line. Figure 2 shows that, on average, both XChange-NoWR
and -WR improve system throughput significantly—by 13.62%
(6.01%) and 18.30% (12.67%), respectively, for the 64 (8)
CMP configuration. Looking at each individual bundle, we
find that, although Unmanaged is almost universally infe-
rior to XChange in terms of weighted speedup, it modestly
outperforms XChange for ROPAFZXN in both the 8- and
the 64-core configurations. We now look at this case a bit
more closely.

Bundle ROPAFZXN has six out of eight cache-sensitive
applications. In Unmanaged, two of the cache-sensitive ap-
plications manage to hoard most of the cache space, letting
the other four starve. The market-based approaches with
built-in fairness (XChange but also REF and EqualShare)
naturally do not exhibit this behavior.

On the other hand, the XChange configurations yield clearly
superior slowdown ratio and harmonic speedup for that bun-
dle over Unmanaged, in fact at a level that the other fairness-
aware configurations fall well short of. On average across all
bundles, and for the 8-core configuration, XChange-NoWR
and -WR outperform Unmanaged in harmonic speedup (23.87%
and 31.74%, respectively), and also slowdown ratio (2.17 and
2.19, respectively, vs. 4.87). The results are similar for larger
64-core configuration.

Overall, XChange outperforms Unmanaged almost uni-
versally in all three metrics.

7.2 XChange vs. EqualShare
We now compare XChange against the equal-share allo-

85 %

90 %

95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

R
O
AFLD

G
V

XN
IBD

W
FA

LXN
IBD

R
O

XID
W

C
H
AF

R
O
PAFZXN

AZFPIBD
W

FO
AR

LN
BW

M
H
KU

LBFP

N
XLIG

EO
R

VC
U
G
XN

TZ

LN
IBD

W
O
T

G
eom

ean

W
e

ig
h
te

d
 S

p
e
e

d
u

p
 v

s
.

U
n

m
a
n

a
g

e
d

EqualShare
GHC
REF
Improved-NoWR
Improved-WR

(a) 8-core weighted speedup.

80 %

90 %

100 %

110 %

120 %

130 %

140 %

150 %

R
O
AFLD

G
V

XN
IBD

W
FA

LXN
IBD

R
O

XID
W

C
H
AF

R
O
PAFZXN

AZFPIBD
W

FO
AR

LN
BW

M
H
KU

LBFP

N
XLIG

EO
R

VC
U
G
XN

TZ

LN
IBD

W
O
T

G
eom

ean

W
e

ig
h
te

d
 S

p
e
e

d
u

p
 v

s
.

U
n

m
a
n

a
g

e
d

(b) 64-core weighted speedup.

1

2

3

4

5

6

7

8

R
O
AFLD

G
V

XN
IBD

W
FA

LXN
IBD

R
O

XID
W

C
H
AF

R
O
PAFZXN

AZFPIBD
W

FO
AR

LN
BW

M
H
KU

LBFP

N
XLIG

EO
R

VC
U
G
XN

TZ

LN
IBD

W
O
T

Average

S
lo

w
d
o

w
n

 R
a
tio

Unmanaged
EqualShare
GHC
REF
Improved-NoWR
Improved-WR

(c) 8-core slowdown ratio.

1.5

2

2.5

3

3.5

4

4.5

5

5.5

R
O
AFLD

G
V

XN
IBD

W
FA

LXN
IBD

R
O

XID
W

C
H
AF

R
O
PAFZXN

AZFPIBD
W

FO
AR

LN
BW

M
H
KU

LBFP

N
XLIG

EO
R

VC
U
G
XN

TZ

LN
IBD

W
O
T

Average

S
lo

w
d
o

w
n

 R
a
tio

(d) 64-core slowdown ratio.

70 %

80 %

90 %

100 %

110 %

120 %

130 %

140 %

150 %

160 %

R
O
AFLD

G
V

XN
IBD

W
FA

LXN
IBD

R
O

XID
W

C
H
AF

R
O
PAFZXN

AZFPIBD
W

FO
AR

LN
BW

M
H
KU

LBFP

N
XLIG

EO
R

VC
U
G
XN

TZ

LN
IBD

W
O
T

G
eom

ean

H
a

rm
o
n

ic
 S

p
e
e

d
u

p
 v

s
.

U
n

m
a
n

a
g

e
d

EqualShare
GHC
REF
Improved-NoWR
Improved-WR

(e) 8-core harmonic speedup.

80 %

90 %

100 %

110 %

120 %

130 %

140 %

150 %

R
O
AFLD

G
V

XN
IBD

W
FA

LXN
IBD

R
O

XID
W

C
H
AF

R
O
PAFZXN

AZFPIBD
W

FO
AR

LN
BW

M
H
KU

LBFP

N
XLIG

EO
R

VC
U
G
XN

TZ

LN
IBD

W
O
T

G
eom

ean

H
a

rm
o
n

ic
 S

p
e
e

d
u

p
 v

s
.

U
n

m
a
n

a
g

e
d

(f) 64-core harmonic speedup.

Figure 2: Comparison of system throughput (weighted speedup; higher is better), slowdown ratio (lower is better), and fairness
(harmonic speedup; higher is better) among EqualShare, GHC, REF, XChange-NoWR, and XChange-WR, under different
CMP configurations. System throughput and harmonic speedup results are normalized to Unmanaged.

cation (EqualShare). Figure 2 shows that, for the 64-core
configuration, both XChange-NoWR and XChange-WR im-
prove system throughput by 16.33% and 21.01% on average,
respectively. In fact, XChange is superior in all the experi-
ments. Results for the smaller 8-core configuration are sim-
ilarly significant.

Looking a bit more closely at a representative bundle
ROAFLDGV, we find that in XChange-NoWR, but more
so in XChange-WR, mcf is able to stay atop the “cache util-
ity step” and obtain 12 cache ways. In XChange-NoWR,
mcf spends most of its budget to accomplish this, and as
a result power is somewhat sacrificed, for an overall damp-
ened performance gain. On the other hand, XChange-WR
observes that mcf ’s potential is high compared to the other
apps, and consequently it assigns it a higher budget. Then,
mcf can afford to “purchase” more power to run faster (Sec-
tion 4.3.3), which results in higher speedups.

Notice that XChange-NoWR and -WR also yield supe-

rior fairness to EqualShare (2.24 and 2.88, respectively, vs.
3.0 average slowdown ratio). For example, libquantum is
both cache- and power-insensitive, and thus its slowdown
under any resource allocation is negligible. On the other
hand, applications that are power-hungry (e.g., calculix) or
cache-hungry (e.g., art, mcf) will experience a significant
slowdown in EqualShare. The allocations by the XChange
configurations are more balanced in that regard.

Overall, the combination of higher throughput and im-
proved fairness makes XChange-NoWR and -WR signifi-
cantly outperform EqualShare by 23.78% and 23.60%, re-
spectively, in average harmonic speedup.

7.3 XChange vs. GHC, REF
Configuration GHC corresponds to Chen and John [9]

with their online performance modeling, and REF corre-
sponds to Zahedi and Lee with prior app profile knowledge,
as evaluated in that work [48]. When compared against

GHC and REF, XChange-WR is superior in every metric,
and the all-out winner. This holds for 64- as well as 8-core
experiments. The harmonic speedup summarizes this well,
with XChange-WR’s 23.53% (31.74%) average easily outdo-
ing GHC’s 13.80% (19.80%) and REF’s 9.70% (17.03%) in
the 64 (8) setup.

When looking at REF more closely, we find that in many
cases it is usually too biased toward maintaining game-theoretic
fairness guarantees, and realized throughput gains suffer as
a result. Although these may generally translate into a bet-
ter user experience, our mechanism succeeds at making more
aggressive decisions to maximize system throughput, while
still striving for spreading fairly the impact across all appli-
cations’ execution times.

7.4 Overall Effect of Wealth Redistribution
As discussed in Section 4.3.3, we introduce a wealth redis-

tribution technique to further improve system throughput,
possibly at some expense of fairness. Our simulations prove
this intuition: XChange-NoWR achieves the best slowdown
ratio (2.23 and 2.17 for 64- and 8-core, respectively) over all
other techniques. In the meantime, XChange-WR achieves
the best weighted speedup, and is consistently 5% better
than XChange-NoWR. On the whole, XChange-WR slightly
outperforms -NoWR in harmonic speedup.

Section 7.2 describes an example where mcf benefits by
the budget redistribution. Let us briefly discuss another ex-
ample, XIDWCHAF, in the 8-core configuration. In XChange-
WR, the budget of cache- and power-sensitive apps such as
apsi and calculix are offered higher budget than memory-
bound apps, because their potential in deriving speedups
from resources is higher. As a result, XChange-WR’s weighted
speedup over Unmanaged is about three times higher than
XChange-NoWR’s (23.68% vs. 9.56%, respectively), but on
the other hand its slowdown ratio increases from 1.45 (XChange-
NoWR) to 2.39.

8. FIRST-ORDER MODEL VALIDATION
Although we have shown significant improvements for both

throughput and fairness, a measure of XChange’s model ac-
curacy is a useful insight. A key aspect of XChange’s utility
model is the estimation of the memory phase, which relies
on the simplifying assumption that MLP remains unchanged
across different cache allocations for any one application. To
validate this memory phase estimation, we run each applica-
tion alone with all possible cache allocations. Each run will
give us the real length of memory phase under that specific
cache capacity, and the estimates for length of all the others.

Figure 3 shows the accuracy of the estimation. The aver-
age error is 7.63%, indicating that our estimation is reason-
ably accurate. In general, we find that accuracy decreases
when predicting for cache allocations that are more distant
from the current allocation (e.g., predicting the length of
memory phase under one cache way when the core currently
owns eight cache ways).

We also find that another source of error is UMON: With
very limited L2 allocated cache size, L1 cache lines will be
more often invalidated due to replacements in the L2 cache.
As a result, for some applications, the L1 miss rate will
increase as L2’s allocation decreases, which is not captured
well by UMON.

cores 8 32 64 128 256
GHC

Cycles (K) 43 484 1,697 6,418 24,903
% interval 0.87% 9.69% 33.95% 128% 498%

XChange-WR
Cycles (K) 9.47 12.49 15.89 22.64 52.70
% interval 0.19% 0.25% 0.32% 0.45% 1.05%

Table 5: Search overhead for GHC and XChange-WR. In-
terval is 5 million cycles.

9. SCALABILITY
Our simulations so far have excluded from all the con-

figurations studied the overhead of searching through the
resource allocation space. In this section, we study the scal-
ability of XChange against GHC when that overhead is fac-
tored in. The hardware setup is as follows: an N -core CMP
consumes 10N W of power and holds a 4N -way, 0.5N MB
L2 cache. Memory bandwidth is set to equal-share with
FQ scheduling [29]. We limit the amount of cache that a
single core can appropriate to 16 ways (2 MB) due to the
UMON hardware overhead discussed in Section 5. The hard-
ware configuration is the same as the simulation described
in Section 6, and the synchronization/communication over-
head across cores is included in all cases.

Recall from Section 5.2 that we anticipate the resource
allocation mechanisms to be implemented in the kernel. We
actually implement GHC and XChange as programs that we
run on our simulation platform, and use the number of cycles
each algorithm takes to converge as the metric to measure
scalability.

As shown in Table 5, the total cycle count of GHC grows
essentially quadratically. Recall that GHC is inherently se-
quential: A single core is responsible for the entire search.
During the hill-climbing period, that core has to stop its
normal execution to make the resource allocation decision
on behalf of the entire CMP. With 64 cores on the chip,
it would take that core 34% of a 5-million-cycle interval to
come up an allocation decision. During that time, all the
other cores would be running in a obsolete, probably sub-
optimal operating point. Note that, even in cases in which
the performance of the old and new allocations for the inter-
val were similar, the overall performance would be no better
than the one reported earlier in the evaluation. For a CMP
with more than 64 cores, it is simply unfeasible to apply
GHC for the interval chosen.

In contrast, the XChange market-based mechanism comes
to an allocation decision much more quickly. This is mainly
for two reasons: (1) because most of the work is done concur-
rently across all cores; and (2) because the local allocation
space each core needs to search is relatively small.

Table 5 shows the average cycle count for XChange-WR
to converge, and the percentage of the partitioning interval
every core will diverge from normal execution to compute
allocation decision. For CMP systems with fewer than 128
cores, the system downtime of all market-based models is
less than 0.5%. Above 128 cores, the cycle count begins
to increase more or less linearly with the number of cores.
This is because the master core needs to collect and sum up
all the bids from the agents in the system to compute the
resource price, and this centralized step starts to dominate
the overall cycle count.

A potential way to alleviate this is to parallelize the price

computation, which is basically a reduction operation over
the bids from the agents, into a tree fashion. Another op-
tion is to make the partition interval longer (also for GHC),
but this may make the market too insensitive to application
phase changes. We leave these and other possible options as
future work.

10. RELATED WORK
Suh et al. [43] propose to distribute the L2 cache ways to

minimize its overall miss rate. Qureshi and Patt [32] predict
the marginal utility of additional cache ways for each appli-
cation. Xie and Loh instead manipulate the cache insertion
and promotion policy [47]. Vantage [36] and PriSM [25] pro-
pose fine-grained cache partitioning that scales well to large
CMP systems.

Isci et al. propose a dynamic model which is able to pre-
dict the execution time and power consumption of a core
under different operating frequencies. Based on this model,
they design a power management technique which optimizes
system throughput under a certain power budget [6]. Mif-
takhutdinov et al. improve upon that model by more accu-
rately predicting the execution time, and show good energy
savings under a given performance target [28].

However, uncoordinated resource allocation has been shown
to be inefficient, because it is unable to deal with interac-
tions among resources [3]. A few solutions have been pro-
posed to address the fine-grained multi-resource allocation
problem, primarily based on global optimization [1, 3, 10,
24]. XChange improves upon these works by applying a
purely dynamic, largely distributed technique, which is able
to deliver scalable system throughput and fairness in large
CMP systems.

Petrica et al. propose a reconfigurable architecture that
scales core resources down to efficiently utilize the limited
available power [31]. Ghasemi et al. improve upon this by
jointly scaling the core resources as well as the shared re-
sources [17].

Resource allocation for multithreading applications is an
interesting topic, because performance is not only limited
by allocated resources, but also by the interactions among
threads. Bhattacharjee and Martonosi propose a thread crit-
icality predictor to predict the critical threads of an applica-
tion, and giving more resources to them to rebalance com-
putation [2]. Ebrahimi et al. adopt a similar technique by
skewing memory bandwidth among threads [13]. Suleman et
al. propose a feedback mechanism to dynamically figure out
the most efficient number of threads an application should
spawn to maximize resource utilization [44].

11. CONCLUSION
We have proposed XChange, a market-based mechanism

to dynamically allocate multiple resources in CMPs. By
formulating the CMP as a market, where each core pur-
sues its own benefit, the system is able to maintain a good
balance between system throughput and fairness. Our eval-
uation shows that, compared against an equal-share alloca-
tion, our market-based technique improves system through-
put (weighted speedup) on average by 21%, and fairness
(harmonic speedup) on average by 24% in a 64-core CMP
system. Compared with a state-of-the-art centralized al-
location scheme [9], that is at least about twice as much
improvement over the equal-share allocation.

We have also shown that our market-based mechanism
is largely distributed, where agents concurrently strive to
maximize their individual utility. As a result, our approach
converges significantly faster than the state-of-the-art cen-
tralized optimization technique we compare against.

Acknowledgments
We are grateful to the anonymous reviewers for their thought-
ful feedback, which helped improve the paper. This work
was supported in part by NSF award CCF-0720773, and by
Intel’s Science and Technology Center for Embedded Com-
puting.

12. REFERENCES
[1] M. Becchi and P. Crowley. Dynamic thread assignment on

heterogeneous multiprocessor architectures. In Intl. Conf.
on Computing Frontiers (CF), 2006.

[2] A. Bhattacharjee and M. Martonosi. Thread criticality
predictors for dynamic performance, power, and resource
management in chip multiprocessors. In Intl. Symp. on
Computer Architecture (ISCA), 2009.

[3] R. Bitirgen, E. İpek, and J.F. Mart́ınez. Coordinated
management of multiple interacting resources in chip
multiprocessors: A machine learning approach. In Intl.
Symp. on Microarchitecture (MICRO), 2008.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. In Intl. Symp. on Computer Architecture
(ISCA), 2000.

[5] B. Calder, T. Sherwood, E. Perelman, and G. Hamerley.
Simpoint. http://www.cs.ucsd.edu/ calder/simpoint/, 2003.

[6] C. Isci, C.-Y. Cher, P. Bose, and M. Martonosi. An analysis
of efficient multi-core global power management policies:
Maximizing performance for a given power budget. In Intl.
Symp. on Microarchitecture (MICRO), 2006.

[7] P. Chaparro, J. González, and A. González.
Thermal-effective clustered microarchitectures. In Wkshp.
on Temperature-Aware Computer Systems, 2004.

[8] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat, and
R.P. Doyle. Managing energy and server resources in
hosting centers. In ACM Symp. on Operating Systems
Principles (SOSP), 2001.

[9] J. Chen and L.K. John. Predictive coordination of multiple
on-chip resources for chip multiprocessors. In Intl. Conf. on
Supercomputing (ICS), 2011.

[10] S. Choi and D. Yeung. Learning-based SMT processor
resource distribution via hill-climbing. In Intl. Symp. on
Computer Architecture (ISCA), 2006.

[11] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware
scheduling for heterogeneous datacenters. In Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013.

[12] E. Ebrahimi, C.J. Lee, O. Mutlu, and Y.N. Patt. Fairness
via source throttling: A configurable and high-performance
fairness substrate for multi-core memory systems. In Intl.
Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2010.

[13] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C.J. Lee,
J.A. Joao, O. Mutlu, and Y.N. Patt. Parallel application
memory scheduling. In Intl. Symp. on Microarchitecture
(MICRO), 2011.

[14] S. Eyerman and L. Eeckhout. System-level performance
metrics for multiprogram workloads. IEEE Micro,
28(3):42–53, 2008.

[15] S. Eyerman and L. Eeckhout. Fine-grained DVFS using
on-chip regulators. ACM Trans. on Architecture and Code
Optimization (TACO), 8(1), 2011.

[16] M. Feldman, K. Lai, and L. Zhang. A price-anticipating

resource allocation mechanism for distributed shared
clusters. In Intl. Conf. on Electronic Commerce (EC), 2005.

[17] H.R. Ghasemi and N.S. Kim. RCS: runtime resource and
core scaling for power-constrained multi-core processors. In
Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT), 2014.

[18] M. Guevara, B. Lubin, and B.C. Lee. Navigating
heterogeneous processors with market mechanisms. In Intl.
Symp. on High Performance Computer Architecture
(HPCA), 2013.

[19] P. Hammarlund, A.J. Martinez, A.A. Bajwa, D.L. Hill,
E. Hallnor, H. Jiang, M. Dixon, M. Derr, M. Hunsaker,
R. Kumar, R.B. Osborne, R. Rajwar, R. Singhal, R. D’Sa,
R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan,
S. Gunther, T. Piazza, and T. Burton. Haswell: The
fourth-generation Intel core processor. IEEE Micro,
34(2):6–20, 2014.

[20] 2Gb DDR3 SDRAM component data sheet: MT41J256M8.
http://www.micron.com/parts/dram/ddr3-
sdram/mt41j256m8da-125, July
2012.

[21] R. Jevtic, H.-P. Le, M. Blagojevic, S. Bailey, K. Asanovic,
E. Alon, and B. Nikolic. Per-core DVFS with
switched-capacitor converters for energy efficiency in
manycore processors. IEEE Trans. on Very Large Scale
Integration (TVLSI) Systems, 2014.

[22] F. Kelly. Charging and rate control for elastic traffic.
European Trans. on Telecommunications, 8(1), 1997.

[23] W. Kim, M.S. Gupta, G.-Y. Wei, and D. Brooks. System
level analysis of fast, per-core DVFS using on-chip
switching regulators. In Intl. Symp. on High Performance
Computer Architecture (HPCA), 2008.

[24] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, and
D.M. Tullsen. Single-ISA heterogeneous multi-core
architectures: The potential for processor power reduction.
In Intl. Symp. on Microarchitecture (MICRO), 2003.

[25] R. Manikantan, K. Rajan, and R. Govindarajan.
Probabilistic shared cache management (PriSM). In Intl.
Symp. on Computer Architecture (ISCA), 2012.

[26] J. Mars, L. Tang, R. Hundt, K. Skadron, and M.L. Soffa.
Bubble-up: Increasing utilization in modern warehouse
scale computers via sensible co-locations. In Intl. Symp. on
Microarchitecture (MICRO), 2011.

[27] A. Mas-Colell, M.D. Whinston, J.R. Green. Microeconomic
Theory. Oxford University Press New York, 1995.

[28] R. Miftakhutdinov, E. Ebrahimi, and Y.N. Patt. Predicting
performance impact of DVFS for realistic memory systems.
In Intl. Symp. on Microarchitecture (MICRO), 2012.

[29] K.J. Nesbit, N. Aggarwal, J. Laudon, and J.E. Smith. Fair
queuing memory systems. In Intl. Symp. on
Microarchitecture (MICRO), 2006.

[30] N. Nisan, T. Roughgarden, É. Tardos, and V.V. Vazirani.
Algorithmic Game Theory. Cambridge University Press,
2007.

[31] P. Petrica, A.M. Izraelevitz, D.H. Albonesi, and
C.A. Shoemaker. Flicker: A dynamically adaptive
architecture for power limited multicore systems. In Intl.
Symp. on Computer Architecture (ISCA), 2013.

[32] M.K. Qureshi and Y.N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches. In Intl. Symp. on
Microarchitecture (MICRO), 2006.

[33] O. Regev and N. Nisan. The POPCORN market. Online
markets for computational resources. Decision Support
Systems, 28(1):177–189, 2000.

[34] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic,
L. Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
SESC simulator. http://sesc.sourceforge.net, 2005.

[35] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and
E. Weissmann. Power-management architecture of the Intel
microarchitecture code-named Sandy Bridge. IEEE Micro,
32(2):0020–27, 2012.

[36] D. Sanchez and C. Kozyrakis. Vantage: Scalable and
efficient fine-grain cache partitioning. In Intl. Symp. on
Computer Architecture (ISCA), 2011.

[37] P. Shivakumar and N.P. Jouppi. CACTI 3.0: An integrated
cache timing, power, and area model. Tech. Rep., HP
Western Research Labs, 2001.

[38] A.A. Sinkar, H.R. Ghasemi, M.J. Schulte, U.R. Karpuzcu,
and N.S. Kim. Low-cost per-core voltage domain support
for power-constrained high-performance processors. IEEE
Trans. on Very Large Scale Integration (TVLSI) Systems,
22(4):747–758, 2014.

[39] K. Skadron, M.R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan. Temperature-aware
microarchitecture: Modeling and implementation. ACM
Trans. on Architecture and Code Optimization (TACO),
1(1):94–125, 2004.

[40] A. Smith. An Inquiry into the Nature and Causes of the
Wealth of Nations. A. and C. Black, 1863.

[41] Standard Performance Evaluation Corporation. SPEC
CPU2000. http://www.spec.org/cpu2000/, 2000.

[42] Standard Performance Evaluation Corporation. SPEC
CPU2006. http://www.spec.org/cpu2006/, 2006.

[43] G.E. Suh, S. Devadas, and L. Rudolph. A new memory
monitoring scheme for memory-aware scheduling and
partitioning. In Intl. Symp. on High Performance
Computer Architecture (HPCA), 2002.

[44] M.A. Suleman, M.K. Qureshi, and Y.N. Patt.
Feedback-driven threading: Power-efficient and
high-performance execution of multi-threaded workloads on
CMPs. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), 2008.

[45] I.E. Sutherland. A future market in computer time. Comm.
of the ACM, 11, 1968.

[46] F. Wu and L. Zhang. Proportional response dynamics leads
to market equilibrium. In Intl. Symp. on Theory of
Computing, 2007.

[47] Y. Xie and G.H. Loh. PIPP: Promotion/insertion
pseudo-partitioning of multi-core shared caches. In Intl.
Symp. on Computer Architecture (ISCA), 2009.

[48] S.M. Zahedi and B.C. Lee. REF: Resource elasticity
fairness with sharing incentives for multiprocessors. In Intl.
Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[49] L. Zhang. Proportional response dynamics in the Fisher
market. Theoretical Computer Science, 412(24), 2011.

