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ABSTRACT
Much research has been devoted to making microprocessors
energy-efficient. However, little attention has been paid to
multiprocessor environments where, due to the co-operative
nature of the computation, the most energy-efficient execu-
tion in each processor may not translate into the most energy-
efficient overall execution.

We present the thrifty barrier, a hardware-software ap-
proach to saving energy in parallel applications that exhibit
barrier synchronization imbalance. Threads that arrive early
to a thrifty barrier pick among existing low-power processor
sleep states based on predicted barrier stall time and other fac-
tors. We leverage the coherence protocol and propose small
hardware extensions to achieve timely wake-up of these dor-
mant threads, maximizing energy savings while minimizing
the impact on performance.

1 INTRODUCTION
Reducing energy consumption has become an important de-
sign goal for high-performance microprocessors and com-
puter systems based on them. High energy consumption not
only limits battery life in portable devices, but also compli-
cates heat dissipation support and electricity supply in large-
scale computing facilities. Past research on power-aware
computer systems mostly focuses on uniprocessor systems.
While many energy-efficient techniques have been developed
for uniprocessors, there are issues unique to multiprocessors
that warrant investigation. In a parallel workload, the over-
all performance depends on all the threads; however, at any
point in time, the critical path may depend on only a few
threads. In that case, slowing down threads not on the critical
path to save energy may not affect the overall performance
at all. Conversely, slowing down threads in the critical path
will negatively impact performance, and the local energy sav-
ings may be easily negated by the extra energy waste on other
processors due to longer execution time.

In this paper, we look at a source of energy waste that is
unique to parallel systems: the energy waste in barrier syn-
chronization. In barrier-synchronized parallel codes, threads
often spin-wait at barriers for all other threads before moving
to a different phase of the computation. The time a thread
spends spinning at the barrier is, to a large extent, determined
by the speed of another thread—the last one to arrive at the

barrier. Traditional low-power techniques for uniprocessors
consider the energy-performance trade-offs of the processor
in isolation, and are therefore unfit for this multithreaded sce-
nario.

We propose the thrifty barrier, which reduces the energy
waste in barrier spinloops by estimating the wait time and
forcing the processor into an appropriate low-power sleep
state. Many commercial processors offer various such sleep
states, each providing different levels of energy savings and
requiring correspondingly different transition times. The
thrifty barrier predicts the stall time based on past history, and
depending on the predicted slack, the processor may transi-
tion into one of these low-power sleep states. In anticipation
of the barrier release, the thrifty barrier also strives to wake
up the processor just in time to avoid potential performance
degradation. The goal is to provide maximum energy savings
while maintaining the same level of performance.

One key challenge in the design of the thrifty barrier, and
a primary contribution of this paper, is to accurately esti-
mate barrier stall time for each barrier instance. An accu-
rate estimation allows judicious selection of the right low-
power state to maximize energy savings, and minimizes per-
formance degradation by striving to bring the processor back
up in a timely fashion. The thrifty barrier achieves high accu-
racy by predicting the barrier stall time indirectly through the
interval time between consecutive barrier invocations, which
is much more predictable.

The thrifty barrier is implemented using a combination of
modest software-hardware support, and it can be made trans-
parent to the application by encapsulating the code in a typi-
cal barrier macro or directive. The thrifty barrier respects the
original barrier semantics, and thus thrifty and conventional
barriers may co-exist in the same binary.

We present the thrifty barrier in the context of shared-
memory multiprocessors. Nevertheless, the idea is concep-
tually viable in other environments such as message-passing
machines. Overall, our design of the thrifty barrier is sim-
ple and effective. For the applications and low-power sleep
states studied, significant energy savings can be achieved at
the expense of only a small performance degradation.

The rest of the paper is organized as follows: Section 2
presents the overview of the thrifty barrier; Section 3 dis-
cusses design details; Section 4 and Section 5 present the ex-
perimental setup and evaluation; Section 6 discusses related
work.
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Figure 1: Simplified diagrams of actions taken by a thread
that arrives early at a conventional (a) and a thrifty (b) barrier.
As an example, ��-�� represent three possible low-power
processor sleep states.

2 OVERVIEW
Figure 1(a) is a simplified diagram of the actions taken by
a thread that arrives early at a conventional barrier. Early
threads stop at the barrier and wait for all slower threads to
arrive. To do so, they typically spin-wait on a barrier flag
until the last thread to arrive flips its value. Once flipped, all
threads may continue execution past the barrier.

This barrier spinloop is highly inefficient by definition: of
all the iterations that are executed by the CPU, only the last
one is productive, when the thread learns that the flag has
been flipped. As a consequence, nearly all the spin energy
is wasted in unproductive computation. This energy waste is
largely proportional to the barrier imbalance.

Many modern processors feature one or more low-power
sleep states, often following the Advanced Configuration and
Power Interface (ACPI) specification [4]. This is true not
only for mobile and embedded processors, but also for high-
end server products, such as the Intel Xeon [15]. Low-power
states offer different power savings and correspondingly dif-
ferent transition times in and out of them. The CPU does not
execute code while in these low-power states. In this paper,
we propose to leverage this support to improve the energy
efficiency of imbalanced parallel codes.

In a thrifty barrier (Figure 1(b)), an early arriving thread
tries to bring its CPU into one among several possible low-
power states instead of spinning. The hope is to save the
energy that would be wasted in the spinloop. Once the
last thread arrives, all dormant CPUs are woken up, and all
threads are allowed to proceed past the barrier.

Because transitioning to and from a low-power sleep state
requires a non-negligible amount of time (on the order of tens
of microseconds [14, 16]), it is important that this transition
does not add to the execution time significantly. For exam-
ple, if an application has many barriers that present little stall
time, driving the CPU repetitively into a sleep state whose
transition time exceeds the barrier stall time could add up
to a significant slowdown. For this reason, an early arriv-

ing thread must first estimate whether enough stall time lies
ahead to warrant transition into a low-power sleep state. If
several sleep states are available, the estimation is also used
to select the best fit. As an example, Figure 1(b) shows three
sleep states ��-��. Section 3.1 discusses the details.

Even if the transition time is small compared to the barrier
imbalance, the dormant CPUs must wake up in a timely man-
ner for optimum results. If the CPU wakes up too early (i.e.,
not all threads have arrived to the barrier), the correspond-
ing thread ends up spinning for the remainder of the barrier
(Residual Spin in Figure 1(b)), wasting energy unnecessarily.
Conversely, a thread that wakes up late (i.e., the barrier has
long been completed) may affect the execution time adversely
if, for example, the thread is or becomes the last thread to ar-
rive at the next barrier. In general, the issue of early vs. late
wake-up presents an important energy-performance trade-off.
Section 3.3 covers this issue in detail.

The thrifty barrier is supported by a modest combination of
software and hardware. We augment the barrier with simple
prediction code to decide whether to bring the CPU into a
low-power sleep state, and if so, which among the possible
sleep states yields maximum energy savings with little or no
performance impact. Also, we minimally extend the on-chip
cache controller and leverage the existing cache coherence
protocol to provide a timely wake-up mechanism.

For the sake of simplicity, we describe our mechanism in
the context of a dedicated multiprocessor environment with
one CPU per thread. Section 3.4 discusses other scenarios.

3 DESIGN
In this section we describe our technique and the required
support in detail. To facilitate understanding of the trade-offs
involved, we describe sleep and wake-up mechanisms in in-
creasing complexity.

Figure 2 is an example of a conventional barrier with sense
reversal [10]. A thread arriving to such a barrier first checks in
by incrementing the thread count (statement S1). If the count
remains lower than the total number of threads, the thread
knows it has arrived early. Then, it proceeds to spin (i.e., con-
tinuously read) on a shared flag, waiting for the other threads
to catch up (statement S2). When the last thread arrives and
checks in, the count equals the total number of threads. At
that point, this last thread toggles the flag value, signaling the
release of the barrier, and proceeds past the barrier. As the
spinning threads detect the value change, they also proceed
past the barrier.

3.1 Sleep
In general, a thread arriving to a thrifty barrier first updates
the thread count as before. If early, the thread executes code
to bring the CPU to a low-power sleep state. We comment on
several possible design choices.

In its simplest form, the CPU can support a single low-
power sleep state, and make threads go to sleep every time
they arrive early to a barrier. In many existing CPUs, simply
executing a Halt instruction brings the CPU to a low-power
sleep state. Therefore, upon reaching a barrier, the thread
increases the thread count by one and, if early, it puts the
CPU to sleep.



local_f = !local_f;
lock(c);
count++; // increment count (S1)

unlock(c);
}

unlock(c);

}

if(count==total) { // last one
count = 0; // reset count
f = local_f; // toggle

else { // not last one

while(f != local_f); // spin (S2) 

Figure 2: Example of conventional barrier code with sense
reversal.

Conditional Sleep

As hinted in Section 2, one problem with the above approach
is that transitioning to and from a low-power sleep state in-
volves some latency. This latency is typically in the order
of tens of microseconds, largely attributable to the period of
stabilization in the PLL and in other parts required by fre-
quency and/or voltage changes. As a result, in the context of
the thrifty barrier, it is possible that this latency exceeds the
stall time that the early-arriving thread faces. If this occurs,
departure from the barrier may be delayed for that thread.
This may in turn affect the execution time of the application
as a whole, especially if the thread is or becomes the critical
thread for the next barrier—the last one to arrive.

To address this issue, we propose that the thread put the
CPU to sleep only when enough stall time lies ahead. Natu-
rally, this stall time is not known a priori. We propose to uti-
lize history-based prediction of the barrier stall time by each
thread; we address the specifics of this support later in Sec-
tion 3.2.

Therefore, if conditional sleep is supported, an early arriv-
ing thread makes a prediction of the barrier stall time ahead.
If enough time lies ahead, the thread brings its CPU into the
low-power state as before. If not, the thread starts spinning on
the barrier flag—the traditional way. We envision this deci-
sion to be encapsulated in a sleep( ) library call that is linked
at run-time, and abstracts away the specific timing character-
istics of the low-power sleep state from the application. The
call either returns immediately (too little stall time) or it en-
ters the low-power sleep state (enough stall time).

Multiple States

Once there is support for barrier stall time prediction, we need
not restrict our design to a single low-power sleep state. Often
times, processors feature multiple sleep states to choose from.
The energy savings typically depend on what parts of the pro-
cessor are disabled (typically by clock gating), and whether
the supply voltage is lowered. In general, a deeper sleep state
saves more energy, but it takes more time to transition in and
out of it. Some deeper sleep states may also gate the proces-
sor caches in order to save energy. Even though data are pre-
served (the supply voltage is not interrupted), the processor
may need to flush the dirty shared data if the cache will not
respond to protocol interventions. Note that the cache con-
troller can immediately acknowledge invalidations to clean
data, and delay internal action until the cache is accessible. If

the cache controller ever runs out of buffer entries, the pro-
cessor can always be woken up.

The support for multiple sleep states can be encapsulated
in the sleep( ) library call mentioned. This time, the func-
tion accesses a table to determine the deepest sleep state that
can be used within the estimated stall time. This table can be
filled at the time the application starts, or by the OS at startup,
or can even be hardcoded in the library itself. In any case, the
selection is transparent to the application. The library proce-
dure scans the table for a best fit, and brings the CPU to that
low-power sleep state, or returns immediately if not enough
sleep time lies ahead (as before).

3.2 Barrier Stall Time Estimation
In order to choose the optimum sleep state, as explained in
Section 3.1, early-arriving threads must make an estimation
of the barrier stall time ahead of them. This information is
also useful later at wake-up (Section 3.3). In this section
we propose a history-based prediction mechanism to estimate
this barrier stall time.

We define barrier stall time (BST���) as the time that a
given thread � spends waiting at a given barrier instance �.
In a conventional barrier, this is the time the thread invests
spinning at the barrier. For each thread �, the ratio of cumula-
tive barrier stall time BST� �

��

��� BST��� to overall execu-
tion time is a rough indicator of the potential energy savings
resulting from putting that CPU to sleep during such periods.

In a parallel application, the variability of barrier stall time
can be considerable across barrier invocations in the code.
However, we empirically observed that, in the applications
used in our study (Section 4), there was significantly less
variability across instances of the same barrier invocation in
the code. This can be intuitively justified by the fact that the
“computation phases” surrounding a particular barrier tend to
perform the same type of computation every time they are
executed. Very often parallel programs are written in SPMD
style (single program, multiple data). In these, the computa-
tion phases can be easily identified using the program counter
(PC) of the barrier at their end. Thus, we can easily achieve
indexed prediction by using the PC of the barrier at each
point. In the more general case, it would be necessary to
identify such computation phases by other means. This could
be accomplished by allocating separate barrier structures in
memory for each phase, and using their memory address to
index the predictor. To simplify our discussion, we assume a
SPMD programming style from now on.

Still, a nontrivial variability in PC-indexed barrier stall
time remains in many cases. Even if the computation that pre-
cedes the barrier repeats itself, it is not uncommon for com-
putation and data access costs to shift among threads across
instances of the code. Because the barrier stall time is not
only barrier- but also thread-dependent, this behavior makes
direct estimation hard. In our effort to estimate barrier stall
time accurately, we would like our prediction to be more in-
sensitive to such changes.

We find this predictability in the barrier interval time
(BIT). We define the barrier interval time BIT� as the time
between the release of two consecutive barrier instances ���

and � (zero denotes the beginning of the program). The key
to the predictability of barrier interval time is that it is thread-
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Figure 3: Variability of BIT and BST for three impor-
tant barriers (labeled 1-3) that execute in the main loop of
SPLASH-2’s FMM application [28], as observed by a ran-
domly picked thread (the same one in all twelve barrier in-
stances). Four consecutive iterations are shown. Values are
normalized to the average BIT across all barrier instances.

independent. Moreover, it is observable by any participating
thread as the sum of its compute time plus barrier stall time,
measured from the release of the last barrier instance. For the
applications studied, we found that PC-indexed barrier inter-
val time is by far the most stable of all the discussed metrics.

One possible concern regarding barrier interval time es-
timation is that it does not allow us to directly distinguish
barrier stall time from compute time. Fortunately, our sleep
mechanism is invoked at the time the thread is about to stall
at the barrier, and thus the compute time can be determined
(see Section 3.2.1). Thus, we can estimate barrier stall time
indirectly by subtracting the compute time from the estimated
barrier interval time in each case.

Figure 3 is a representative example of the above discus-
sion. The plot shows barrier interval times (BIT) for three
important barriers (labeled 1-3) that execute in the main loop
of SPLASH-2’s FMM application [28]. The results were ob-
tained in a simulation using the shared-memory multiproces-
sor model described in Section 4.1. We show four consecu-
tive iterations of the loop, and group bars accordingly. Each
bar is broken down into compute time (Compute) and barrier
stall time (BST), as observed by a randomly picked thread
(the same one in all twelve barrier instances). All values are
normalized to the average BIT across all barrier instances.

We see that both BIT and BST vary rather significantly
across barriers. Much less variability is observed across in-
vocations of the same barrier, which suggests the use of
PC indexing for prediction. Nevertheless, important differ-
ences across BST values still remain. It is in BIT, a thread-
independent metric, that we obtain a significantly more pre-
dictable behavior. Thus, by using BIT prediction, and sub-
tracting the thread’s compute time from it (known at the time
it hits the barrier), the thread’s BST can be derived.

We experimented with different types of predictors, and
were pleased to find that, for most of the applications that we
studied, simple last-value prediction of PC-indexed barrier in-

terval time was very accurate. Therefore, in our proposal, we
predict the barrier interval time using the value measured in
the last occurrence of the same barrier. Later, once the actual
BIT is known, we update the prediction by storing the new
value in the appropriate entry. In the next section we discuss
how this information is determined and maintained.

3.2.1 Managing Timing Information

As indicated before, threads that arrive early at a barrier must
estimate the stall time ahead of them by predicting the barrier
interval time, and subtracting from it their compute time for
that interval. Because the barrier is released by the last thread
to arrive, the exact release and interval times are not directly
available to other threads. This is especially true if threads
overpredict their stall time and sleep beyond the barrier re-
lease (see late wake-up in Section 3.3). One could think of
communicating the barrier release time to all threads; how-
ever, this would imply the existence of a global clock, which
we do not assume here.

To address this issue, we use a combination of global
knowledge of past barrier interval times, and local knowl-
edge of past barrier release times. We do reasonably assume
that (1) all processors operate at the same nominal clock fre-
quency (i.e., base cycle counts are meaningful system-wide),
and (2) the time period between the flipping of the barrier flag
and the realization of this fact by spinning threads is much
smaller than the barrier interval time itself. Naturally, we also
require that the local clock be such that processors can mea-
sure time intervals accurately, even if the CPU is put to sleep
between readings.

We describe the mechanism inductively; Figure 4 supports
this discussion. In the general case, assume that threads are
advancing toward barrier instance �. We assume that we have
(1) a shared location to (eventually) store the barrier interval
time leading to barrier instance �, BIT�, and (2) a local times-
tamp of the release of barrier instance �� � for each thread �,
BRTS�����. In PC-indexed last-value prediction, (1) is simply
the table entry for this barrier.

When thread � arrives early at barrier instance �, it obtains
a prediction of BIT�, and adds this value to BRTS�����. (In
PC-indexed last-value prediction, the BIT previously stored
in the table entry for this barrier is used as the prediction.)
The result is an estimation of the upcoming wake-up time.
Furthermore, by subtracting the current (local) time from the
estimated wake-up time, the thread can derive an estimation
of the stall time ahead of the thread, BST���. Using this infor-
mation, the thread may decide to force its CPU into a sleep
state.

When the last thread �
� arrives at barrier instance �, it calcu-

lates the actual BIT� by subtracting BRTS������ (local times-
tamp) from the current (local) time. Then, the thread updates
the shared BIT variable (and the predictor) and releases the
barrier. Finally, each thread � adds (once awake) the newly
available BIT� to its BRTS�����.1 The result represents the
(local) release timestamp of barrier �, BRTS���. At this point
we know (1) BIT�, stored in the shared BIT variable, and (2)
local timestamps for the release of barrier instance � in each

1In a relaxed memory consistency implementation, availability of BIT�
to all threads is ensured by placing a write fence between the BIT update and
the flipping of the barrier flag.
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Figure 4: Illustration of timing information for two consec-
utive barrier instances. BIT, BRTS, and BST stand for barrier
interval time, barrier release timestamp, and barrier stall time,
respectively.

thread �, BRTS���. Thus, induction holds for the general case.
In order for the mechanism to work from the start, interval

time and release timestamp variables are all initially set to
zero, and the first barrier instance is handled conventionally
(non-thrifty) as warm-up. Early arriving threads spin on the
barrier flag and, upon detecting the flipping by the last thread,
all threads record their local release timestamp.

Overall, we see that threads can estimate barrier intervals
based on available past values and derive stall times, all with-
out the need for a global clock.

3.3 Wake-up
Once the CPU is put to sleep, an external wake-up signal must
be produced in a timely manner so that the thread can resume
execution as the barrier is released. In this section we address
different ways this signal can be generated, and what the con-
sequences are on the timeliness of the wake-up, and on the
overall energy and performance benefits.

3.3.1 External Wake-up

One simple way of generating the wake-up signal is to lever-
age the coherence actions that take place when the last thread
flips the barrier flag. In a conventional barrier, an early ar-
riving thread that spins on the barrier flag typically brings a
(shared) copy to its cache in the first iteration (cache miss),
and then hits in the cache in every subsequent read. As the
last thread tries to flip (i.e., write to) the barrier flag, the co-
herence protocol sends invalidations to all sharers. Threads
spinning on that flag then miss in their caches and retrieve a
fresh copy of the flag, which now reads that access has been
granted. In the thrifty barrier, we can use this external invali-
dation message as our wake-up signal.

Though conceptually easy, a careful design of this mech-
anism is in order for a number of reasons. An early thread
whose CPU is put to sleep must be notified when the barrier
flag is flipped by the last thread to arrive. However, some
low-power sleep states may not respond to coherence actions
on cached data, in particular the barrier flag. We propose to
add some small control logic in the on-chip cache controller.
The added logic is programmable from within our sleep( ) li-
brary call, and therefore transparent to the application. When
supplied with the flag address and the target value, it reads in
the flag and (a) prevents the CPU from sleeping if the flag has
already been flipped, or (b) allows the CPU to sleep if the flag
is not flipped, but promptly issues a wake-up signal if an in-
validation to the flag is later received. Similar extensions have
been proposed elsewhere for different purposes [21, 23]. Of

course, we assume that the cache controller is not disabled,
even if the cache itself may be.

Finally, a residual spinloop must be present after the sleep
call to verify that the flag has indeed been flipped, lest we
fall prey of some unfortunate (but correct) type of exclusive
prefetch by another thread. Should this false wake-up take
place, the thread is left spinning on the flag for the duration
of the barrier. The proposed solution to this exceedingly rare
problem is suboptimal but correct, and it is much simpler than
the alternative of re-assessing whether to put the CPU back to
sleep.

One potential problem with external wake-up is that, with
the possible exception of a false wake-up, it guarantees a late
wake-up behavior. Indeed, quiescent CPUs are sent the wake-
up signal as the barrier is released. Consequently, the transi-
tion latency to exit the low-power sleep state comes fully into
the critical path of the thread. This happens whenever a thread
puts its CPU to sleep, and is thus likely to affect the overall
execution time. The impact depends largely on whether the
stall time is large enough as to amortize this transition latency.

3.3.2 Hybrid Wake-up

In order to improve wake-up behavior, we can further lever-
age the prediction support described in Section 3.1. Once an
early thread has estimated the stall time ahead and is about
to go to sleep, it is possible to program a timer to generate
the wake-up signal at expiration. We place this timer in the
on-chip cache controller—where the external wake-up sup-
port also resides. (Recall that we assume the cache controller
is never disabled, even when the CPU enters a sleep state.)
Upon invoking the sleep( ) library routine, and once deter-
mined that the CPU is to be put to sleep, the timer begins a
countdown starting with the predicted stall time. Once the
count reaches zero, the wake-up signal is generated.

Notice that, unlike the case of external wake-up, this mech-
anism is independent of external actions by other threads.
Thus, we call this mechanism internal wake-up. Also un-
like the case of external wake-up, dormant CPUs in this case
are subject to early, as well as late wake-up, depending on the
accuracy of the prediction. Recall that an early wake-up will
produce some energy waste due to residual spinning, and that
a late wake-up may cause performance degradation. Depend-
ing on what is more critical to the application, the prediction
could be adjusted accordingly.

A potentially important drawback of pure internal wake-up
is that, in principle, there is no bound to how late threads may
wake up as a result of overprediction. We conducted a num-
ber of preliminary experiments using internal-only wake-up,
and concluded that the performance of some applications may
be penalized significantly by even a few (severe) late wake-
ups. Among other effects, severely late wake-ups may create
a ripple effect in that they may affect subsequent barrier in-
tervals. Although more sophisticated prediction may alleviate
this problem, we prefer to keep our mechanism conceptually
simple.

Fortunately, external and internal wake-up mechanisms
can be combined into a single hybrid wake-up. Not only are
the two mechanisms largely independent of each other, they
complement each other quite well. Indeed, we can use the
external mechanism to bound a possible performance penalty



due to late wake-up, and rely on the internal mechanism to
anticipate the wake-up point and initiate the transition out of
the low-power sleep state before the barrier is released (at the
risk of incurring early wake-up). Because both mechanisms
are integrated in the same on-chip cache controller, there is no
risk of duplication: the first mechanism to trigger the wake-up
signal will automatically cancel the other.

3.3.3 Overprediction Threshold

In general, overprediction of the internal wake-up mechanism
in large barriers is not a concern, since the external wake-
up mechanism forces the CPU out of its sleep state soon
enough as to not cause a noticeable performance degrada-
tion. Smaller barriers, however, depend more critically on
the accuracy of the internal wake-up mechanism. Inevitably,
overprediction will occur in some of these barriers, for which
the penalty associated with an external wake-up is relatively
large. If this happens frequently, the aggregate penalty may
amount to a noticeable application slowdown.

We resolve this situation by imposing a very simple over-
prediction threshold mechanism. We require that every
thread � that wakes up after sleeping over barrier � annotates
its wake-up timestamp in a temporary variable. Once bar-
rier � is released and thread � is awake (this can happen in
any order), thread � subtracts its local barrier release times-
tamp BRTS��� (see Section 3.2.1 on how to derive this num-
ber) from its recorded wake-up time. A positive value indi-
cates that the thread overpredicted the release time; the actual
amount is the penalty incurred. If the penalty incurred is be-
yond a certain threshold, relative to the barrier interval time
BIT� (Section 3.2.1), future prediction for this thread on this
barrier is disabled (a bit is set for this thread on the corre-
sponding predictor entry). The hope is to cut potential future
performance losses, even at the expense of suboptimal energy
savings. This threshold may be tuned for different environ-
ments; empirically, a 10% threshold worked well in our study
(Section 5).

More complex solutions with sophisticated predictors
and/or confidence estimators are possible, however once
more we strive for minimizing complexity. The use of more
elaborate prediction and wake-up techniques is the subject of
future work.

3.4 Other Design Considerations
3.4.1 Time-Sharing Techniques

In some multiprogrammed environments, threads may yield
their CPU to other processes after they spin in the barrier for
a while without success. The goal is to improve the CPU
utilization. Similarly, in an overthreaded application (more
threads than available CPUs), threads may hand over the CPU
to others at the time they reach a synchronization point. Both
techniques may result in reduced energy waste due to spin-
ning, which makes them an interesting option to the prob-
lem that the thrifty barrier is trying to solve. However, unless
scheduling is carefully planned, time-sharing may hurt per-
formance significantly. For example, in the case of multipro-
gramming, the barrier may be released but some threads may
not be able to resume execution because they lack a CPU. In
the case of overthreading, the added computation time of the

Processor 1GHz, 6-issue dynamic
ALU 6 integer, 4 FP
Ld/St 2 units, 32Ld+32St
Branch Pred. 2k-entry 2b sat. counter
Branch Penalty 15 cycles
Memory CC-NUMA
L1 Cache 1GHz, 16kB, 64B lines, 2-way
L2 Cache 500MHz, 64kB, 64B lines, 8-way
Memory Bus 250MHz, split trans., 16B wide
Main Memory Interleaved, 60ns row miss
Cache RT: L1, L2 2ns, 12ns
Network Hypercube, wormhole
Router 250MHz, pipelined
Pin-to-pin Latency 16ns
Endpoint (un)Marshaling 16ns
System size 64 nodes

Table 1: Architecture modeled in the simulations. In the ta-
ble, RT stands for minimum round-trip latency from the pro-
cessor.

threads that time-share the CPU may come into the critical
path of the application. In contrast, the thrifty barrier tries
to achieve lower energy consumption while at the same time
striving for maintaining the same level of performance.

3.4.2 Interaction with Context Switching and I/O

Context switches in a multiprogrammed system can make
some threads unavailable for extended periods of time. Even
in a dedicated environment, the operating system may pre-
empt a thread, for example, to handle an I/O request or a
page fault. Consequently, barrier intervals in which context
switching or I/O takes place may be very unpredictable. For-
tunately, this kind of activity can be trivially detected by the
last thread to arrive at the barrier, by observing an inordinate
increase in the barrier interval time. In this case, the bar-
rier interval time is not updated in the prediction table. No-
tice that some threads may have forced their CPUs into sleep
mode, however this is unlikely to affect performance, since
the actual interval time will be significantly longer than the
one predicted by the threads. The next time around, threads
will once again use the older, shorter barrier interval time as
their prediction. This underprediction threshold can be tuned
to the particular system or application, and need not—and
probably should not—be equal to the overprediction thresh-
old discussed in Section 3.3.3.

As for the preempted thread, if it was already asleep at
the barrier, the operating system will cancel the flag moni-
toring at the cache controller. Notice that preemption does
not affect the BIT prediction update (which is conducted by
the last thread to arrive at the barrier), nor does it hamper
the update of the barrier release timestamp for the preempted
thread (since it is computed indirectly using the BIT—Section
3.2.1). It also does not compromise correct synchronization,
since preempted threads will still spin on the barrier flag once
they resume execution (residual spin, Section 3.3.1).

4 EXPERIMENTAL SETUP

4.1 Architecture
We conduct detailed execution-driven simulations of a CC-
NUMA multiprocessor model that features release consis-
tency and a coherence protocol along the lines of DASH



Application Problem Size B. Imbalance
Volrend head 48.20%
Radix 1M integers, radix 1,024 19.50%
FMM 16k particles, 8 time steps 16.56%
Barnes 16k particles, 8 time steps 15.93%
Water-Nsq 512 molecules, 12 time steps 12.90%
Water-Sp 512 molecules, 12 time steps 9.79%
Ocean 514 by 514 ocean 7.60%
FFT 64k points 3.82%
Cholesky tk15 1.64%
Radiosity room -ae 5000.0 -en 0.05 -bf 0.1 1.04%

Table 2: Applications from the SPLASH-2 suite used in this
study. Applications are sorted in decreasing barrier imbal-
ance.

[20]. Each node has one processor and two levels of caches.
The processor modeled is a six-issue out-of-order CPU. The
caches are relatively small to capture the behavior that real-
sized input data would exhibit on an actual machine with
larger caches, as suggested in [28]. Shared data pages are
distributed in a round-robin fashion among the nodes, and
private data pages are allocated locally. Table 1 summarizes
the parameters of the architecture modeled.

4.2 Applications
To evaluate our proposal, we use the applications of the
SPLASH-2 suite [28]. Table 2 lists the applications stud-
ied, in descending order of barrier imbalance, as measured
in simulations on our multiprocessor model. Two applica-
tions from the suite, Raytrace and LU, are not included in
this study: Raytrace does not synchronize using barriers, and
a more efficient version of LU that uses flags instead of bar-
riers is readily available [23]. While we report results for all
ten applications, our technique is naturally aimed at reducing
energy waste for applications with a nontrivial barrier imbal-
ance. Half of the applications listed exhibit a barrier imbal-
ance of 10% or higher. These we call out target applications.

The problem sizes that we use are at least as large as the
suggested sizes in [28]. We do not reduce the input size for
any application, as that may exacerbate the barrier imbalance.
The parallel efficiency (speedup over number of processors)
for the studied applications ranges from 40.3% to 82.0%, with
an average of 58.3% for 64 processors. This range is consid-
ered acceptable for these applications and system sizes [19].
For n-body problems, we increase the number of time steps,
in order to extend the execution as to observe more barrier
instances. This is compliant with the nature of these applica-
tions in a more realistic setting [27].

4.3 Energy Model
We focus our study on the overall energy consumption of the
CPUs (core plus on-chip caches). Processors are by far the
most power-hungry components of a node [9]. To model
the energy consumption in active processors, we integrate
Wattch [3] into our simulation infrastructure. To model the
energy consumption in dormant CPUs, we resort to published
datasheets for modern power-aware microprocessors [14].
We notice that the power consumption in the low-power sleep
states varies noticeably across processor models, even within
the same family. However, the relative ratios are very simi-

State P. Savings Tr. Latency Snoop? V. Reduction?
Sleep1 (Halt) 70.2% 10�s Yes No
Sleep2 79.2% 15�s No No
Sleep3 97.8% 35�s No Yes

Table 3: Low-power sleep states used in our study. Power
savings are relative to TDPmax.

lar [14, 17]. Also, while Wattch is reasonably accurate in rela-
tive terms (energy breakdowns, comparisons), accurate mod-
eling of absolute energy is not in its design goal [3]. Thus,
even if we carefully model after a particular commercial pro-
cessor, we cannot directly plug in absolute energy numbers
reported in product datasheets. Therefore, in order to derive
meaningful low-power sleep states, we proceed as follows:
We conduct some microbenchmarking to obtain an estimate
of the maximum thermal design power (TDPmax) in our pro-
cessor model. This represents the total power dissipation of
the processor while executing a worst-case instruction mix at
nominal voltages and normal operating conditions. Then, we
compute the ratios between published TDPmax and low-power
sleep states, and apply those ratios to our TDPmax. This way,
we derive the power consumption in those low-power sleep
states in our processor model. Then, when simulating, we
use those power values whenever we put a CPU to sleep, and
the simulated power consumption during active computation.

We simulate a processor with three low-power sleep states
Sleep1-3, inspired by actual low-power states of the Intel Pen-
tium family[14, 16]. Sleep1, which we refer to as Halt, is a
light low-power state that results from executing a Halt in-
struction. Sleep2 and Sleep3 are deeper sleep states that pre-
serve the context in processor and caches, but cannot service
external protocol requests. Sleep3 differs from Sleep2 in that
it lowers the supply voltage, which results in reduced leakage.
The power savings (relative to TDPmax) and transition laten-
cies are summarized in Table 3. During the transitions in and
out of these sleep states, we assume that power consumption
changes linearly along the transition latency. We also directly
simulate the power consumption at the spinloop. On average
across the applications, the power consumption of executing
the spinloop is about 85% of that of regular computation.

5 EVALUATION
In this section we evaluate the energy savings and perfor-
mance implications of applying our proposed thrifty barrier
mechanism in place of conventional barriers. We assess the
effectiveness of the thrifty barrier in a 64-node CC-NUMA
multiprocessor (Section 4), and analyze the different con-
tributing factors.

5.1 Overall Results
We explore several configurations as follows: a baseline sys-
tem with conventional barriers (Baseline); a thrifty configura-
tion with Halt as its only low-power sleep state (Thrifty-Halt);
an oracle version of the same system, in which BIT predic-
tion is perfect (Oracle-Halt); a thrifty configuration with all
three low-power sleep states available (Thrifty); and an ideal
thrifty configuration with perfect BIT prediction and no flush-
ing overhead for any low-power sleep state (Ideal).
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Figure 5: Normalized energy consumption for the SPLASH-2 applications under study on a 64-processor system. B, H, O, T,
and I stand for Baseline, Thrifty-Halt, Oracle-Halt, Thrifty, and Ideal, respectively.
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Figure 6: Normalized execution time for the SPLASH-2 applications under study on a 64-processor system. B, H, O, T, and I
stand for Baseline, Thrifty-Halt, Oracle-Halt, Thrifty, and Ideal, respectively.

Figures 5 and 6 show the energy consumption and execu-
tion times, respectively, for the SPLASH-2 applications de-
scribed in Section 4.2. Applications appear in descending or-
der of their barrier imbalance in Baseline, as listed in Table
2 Five bars are shown for each application, corresponding to
the five different configurations under study. In each group,
all bars are normalized to that of Baseline. Figure 5 shows
the average energy consumption; a configuration is better the
lower its energy bar is. On the other hand, in Figure 6, which
plots execution time, the goal is to keep performance as close
to Baseline’s as possible.

The results are very encouraging. Thrifty is effective at
saving energy, particularly among the five target applications
(10% or higher imbalance), for which it reduces energy con-
sumption by about 17% on average. At the same time, perfor-
mance degradation is well bounded, amounting to about 2%
on average for the target applications. For applications with
smaller barrier imbalance, Thrifty naturally does not show as
much energy reduction, but at the same time the performance
loss is virtually zero in all cases except Ocean. Thrifty in fact
expends a little more energy and time in Ocean than Baseline;
we comment on this case a bit later. In the case of FFT and
Cholesky, Thrifty (and Thrifty-Halt) behaves just like Base-
line. This is because these applications only have a handful
of non-repeating barriers, which leaves Thrifty’s PC-indexed

predictor unused.
When comparing Thrifty against Thrifty-Halt and Oracle-

Halt, we can see that exploiting multiple sleep states is in-
deed beneficial. When only the Halt sleep state is available,
Thrifty-Halt is unable to accrue energy savings beyond 11%
for the five applications of interest (itself an encouraging fig-
ure), vs. 17% for Thrifty. (If we substitute Volrend in the aver-
ages with the next application in line, Water-Sp, energy sav-
ings are 6.5% vs. 10.5%, respectively.) Performance losses
are definitely below Thrifty’s 2% for these applications, al-
though losses do occur. Oracle-Halt does not fare much bet-
ter in terms of energy savings. More conventional low-power
synchronization techniques, like executing Halt after spin-
ning unsuccessfully for a while, or using a Pause instruction
(originally conceived for different reasons) in a spinloop [13],
would likely find a lower bound in Oracle-Halt, itself inferior
to Thrifty.

5.2 Contributing Factors
To further analyze these results, we break down each bar into
up to four segments, each corresponding to the energy (time
for Figure 6) spent in one of the following states: Compute,
which represents the energy (time) spent not at a barrier (note
that other types of stalls, such as memory or locks, fall into



this category as well); Spin, which is the energy (time) used
up by spinning on the barrier flag; Transition, which com-
prises the energy (time) spent by the CPUs transitioning in
and out of low-power sleep states; and Sleep, which repre-
sents the energy (time) used in some low-power sleep state.

As expected, Thrifty is the only configuration for
which Compute energy/time increases for many applications,
mainly due to cache flush overheads associated with deep
sleep states. This is most noticeable in FMM, Water-Nsq,
and Ocean. In Volrend, however, Compute actually decreases
a bit, not only in Thrifty but also in Thrifty-Halt. We be-
lieve this is because the occasional thread delays caused by
overprediction happen to have a beneficial effect in lock con-
tention (threads in Volrend sift through tens of thousands of
locks). In any case, this effect is small.

Spin energy/time in Thrifty is generally quite small com-
pared to Baseline. This means that our mechanism, when
faced with a barrier, often finds a low-power sleep state to
move into. Exceptions to this (other than FFT and Cholesky)
are FMM and, above all, Ocean. Ocean has a number of
barriers that are invoked often and whose interval times can
swing significantly across instances. In general, the simple
last-value prediction used in Thrifty and in Thrifty-Halt does
not work well for this pattern. In the case of Ocean, the bar-
rier interval times of these barriers often drop to the point
that Thrifty overkills in selecting a sleep state, and exter-
nal wake-up kicks in. This not only exposes the transition
time out of the sleep state in both Thrifty and Thrifty-Halt,
but also the flushing of dirty data (and subsequent compul-
sory misses) required by the overkill sleep state in the case
of Thrifty. Without a prediction cut-off mechanism (Section
3.3.3) in place, experiments showed that Ocean could degrade
in performance by as much as 12% over Baseline. Fortu-
nately, our cut-off provision is very effective here, containing
losses in Thrifty within 3.5% of Baseline. As a logical side
effect, Ocean ends up spinning quite a bit at these barriers,
as Thrifty and Thrifty-Halt show. Notice that the theoreti-
cal lower bounds Oracle-Halt and Ideal, which never mispre-
dict, would actually save energy without incurring any per-
formance penalty. The still noticeable Spin in these is further
evidence that such short barriers do occur.

Other than Spin in the cases mentioned above, barrier en-
ergy/time is dominated by Transition+Sleep in all configu-
rations except Baseline (which sees neither). It is here that
Thrifty shines over Thrifty-Halt and even Oracle-Halt, in se-
lecting deeper sleep states that shrink energy consumption at
little performance overhead. By far, the application that bene-
fits the most from deeper sleep states is Volrend, whose large
barrier interval times and imbalance create an ideal scenario
for Thrifty, which matches the savings of Ideal.

Overall, we see that Thrifty is effective in exploiting the
available sleep states to save energy, while at the same time
containing performance degradation.

6 RELATED WORK
Low-power computing has long been an important design ob-
jective for mobile, battery-operated devices. However, reduc-
ing energy consumption for high-performance systems be-
came important relatively recently. In a uniprocessor envi-
ronment, various components are reconfigured during non-

critical time to save energy consumption with little per-
formance impact [1, 2, 8]. Sometimes, multiple compo-
nents are adapted simultaneously to increase the effective-
ness [5, 11, 12, 18]. These techniques are orthogonal to our
approach in that they try to reduce energy consumption while
the processor is actively executing useful instructions. In-
stead, our approach reduces energy waste in useless spinning,
when waiting at a barrier. In a web server cluster environ-
ment, studies have been done to evaluate different policies to
control the number of active servers (and thus their perfor-
mance level) to preserve power while maintaining acceptable
quality of service [6, 7, 24, 25]. This body of work is differ-
ent from ours in that the target system is a loosely-coupled
cluster running independent workloads, while we focus on
shared-memory multiprocessor systems running parallel ap-
plications.

To our best knowledge, the only other works that address
the energy issue in shared-memory multiprocessors look at
energy savings in cache coherence management [22, 26]. In-
spired by the observation that a large fraction of snoops do
not find copies in many of the other caches in a snooping
bus-based SMP, Moshovos, et al [22] propose Jetty to re-
duce the energy consumed by snoop requests. Saldanha and
Lipasti [26] examine the effects of reducing speculation in
a scalable snoop-based design, and observe significant po-
tential of energy savings by using serial snooping for load
misses. In the thrifty barrier, we instead work on the CPU
energy savings potential stemming from barrier imbalance in
parallel applications. These techniques are not exclusive of
each other and could be combined for improved overall re-
sults.

Kumar et al. [19] study synchronization issues on shared-
memory multiprocessors. They find that load imbalance con-
tributes the most to the synchronization in parallel applica-
tions; in contrast, the overhead of synchronization operations
does not dominate, even in a balanced situation where it is
expected to be substantial. This suggests that introducing
lightweight control algorithms in synchronization constructs,
such as the one used in the thrifty barrier, should present little
performance impact.

ACPI [4] allows OS-directed power management with def-
inition of hardware registers and BIOS interfaces. It de-
fines industry standards for configuration and thermal man-
agement. It considers all system states as power states. The
proposed thrifty barrier is designed to leverage the support of
such power states to improve the energy efficiency of imbal-
anced parallel applications.

7 CONCLUSIONS
We have presented the thrifty barrier, a novel synchroniza-
tion solution that reduces energy waste incurred by imbal-
anced applications in shared-memory multiprocessors. The
thrifty barrier predicts the stall time based on past history
and drives the processor into one of multiple CPU low-power
sleep states of different characteristics. In anticipation of the
barrier release, the thrifty barrier also strives to wake up the
processor just in time to avoid potential performance degra-
dation.

One key design issue for the thrifty barrier is to accurately
predict the stall time for each thread at a barrier. We found



that barrier stall time can be accurately estimated in many
cases, indirectly by using simple last-value prediction of the
interval time between two consecutive barriers. By combin-
ing this prediction mechanism with simple hardware exten-
sions, the thrifty barrier is able to wake up dormant threads as
the barrier is released, effectively achieving important energy
savings without incurring significant performance degrada-
tion.

We are looking at ways to extend this work, including
extending this concept to other parallel computing environ-
ments, such as message-passing systems, and to other syn-
chronization constructs, such as locks.
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