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Abstract
Efficiently allocating shared resources in computer systems
is critical to optimizing execution. Recently, a number of
market-based solutions have been proposed to attack this
problem. Some of them provide provable theoretical bounds
to efficiency and/or fairness losses under market equilib-
rium. However, they are limited to markets with potentially
important constraints, such as enforcing equal budget for all
players, or curve-fitting players’ utility into a specific func-
tion type. Moreover, they do not generally provide an intu-
itive “knob” to control efficiency vs. fairness.

In this paper, we introduce two new metrics, Market
Utility Range (MUR) and Market Budget Range (MBR),
through which we provide for the first time theoretical
bounds on efficiency and fairness of market equilibria un-
der arbitrary budget assignments. We leverage this result
and propose ReBudget, an iterative budget re-assignment al-
gorithm that can be used to control efficiency vs. fairness
at run-time. We apply our algorithm to a multi-resource al-
location problem in multicore chips. Our evaluation using
detailed execution-driven simulations shows that our budget
re-assignment technique is intuitive, effective, and efficient.

Keywords Multicore architectures; Market equilibria; Scal-
able resource allocation; Efficiency; Fairness.

1. Introduction
Devising scalable chip-multiprocessor (CMP) designs is an
important goal for the upcoming manycore generation. A
key challenge to scalability is the fact that these cores will
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share hardware resources, be it on-chip cache, pin band-
width, the chip’s power budget, etc. Prior work has shown
that freely contending for shared resources can penalize sys-
tem performance [4, 12, 15]. Thus, allocating resources effi-
ciently among cores is key.

Unfortunately, single-resource, and more generally unco-
ordinated resource allocation, can be significantly subopti-
mal, due to its inability to model the interactions among re-
sources [4]. A few solutions have been proposed to coordi-
nate resource allocation across multiple resources, and their
performance estimation methods range from trial runs [1,
15, 22], to artificial neural networks [4], and to analytical
models [12–14]. Unfortunately, these all rely on centralized
mechanisms (e.g., global hill-climbing) to optimize system
throughput, essentially exploring the global search space se-
quentially, which may be prohibitively expensive, particu-
larly in large-scale systems.

More recently, a number of market-based approaches
have been introduced. Chase et al. propose a static mar-
ket [11], where the players reveal to the resource supplier
the amount of money each is willing to pay as a function of
allocated service units, and the central market then allocates
the available computing resources so that monetary profit is
maximized. Still, because the maximization process is done
by the supplier centrally, it is unclear whether it could deal
with a large-scale system efficiently.

In the context of distributed computing clusters, Lai et al.
propose a market-based solution to resource allocation that
allows players to adjust their bids dynamically in response
to the others bids to that resource [23]. Resource allocation
is done in a largely distributed manner, which enables the
system to scale better than centralized approaches. Recently,
in our XChange work [37], we also propose one such dy-
namic market in the context of CMPs, and similarly show
that XChange is scalable due to its largely distributed nature:
Instead of making the resource allocation decision globally,
each core in the CMP is actively optimizing its resource as-
signment largely independently of each other, and partic-



ipants demands are reconciled through a relatively simple
pricing strategy.

XChange also shows that it can achieve a good balance
between system efficiency and fairness. The study is purely
empirical, however, and thus it does not provide any guaran-
tees on the loss of efficiency and fairness. It is well-known,
for example, that market mechanisms in equilibrium can
sometimes be highly inefficient—this is known as Tragedy
of Commons [18]. Therefore, a number of research efforts
have focused on quantifying the efficiency loss compared to
the optimal resource allocation, known as the Price of An-
archy (PoA). For example, Zhang studies a market where all
players have the same amount of money (budget) to purchase
resources, and he finds that the overall system efficiency in
such a market can be low (1/

√
N of the maximum feasi-

ble utility, where N is the number of market players), but
fairness is high (0.828-approximate envy-free, a measure of
fairness) [40]. This is consistent with our empirical observa-
tions in the XChange work [37].

Recently, Zahedi and Lee propose a resource alloca-
tion mechanism named elasticities proportional (EP) for
CMPs [39], which does provide game-theoretic guarantees
such as Pareto efficiency, envy-freeness, etc. However, such
guarantees rely on the assumption that an application’s util-
ity can be accurately curve-fitted to a Cobb-Douglas func-
tion, where the coefficients are used as the “elasticities” of
resources. Our XChange work shows that EP can in fact
perform worse than expected when such curve-fitting is not
well suited to the applications. In addition, although EP is
proven to be Pareto-efficient, its efficiency loss compared to
global optimality is not quantified.

To improve system efficiency while sacrificing some fair-
ness, our XChange work discusses a wealth redistribution
technique, which varies the players’ budget based on an es-
timation of their potential for performance gain. However,
XChange’s wealth redistribution is an on/off technique, pro-
viding no “knob” to control the efficiency vs. fairness trade-
off. It is also not backed up by a theoretical result that would
provide bounds for this trade-off. To the best of our knowl-
edge, there is no theoretic study that is able to quantify the
loss of both efficiency and fairness under an arbitrary budget
assignment.

Contributions
The contributions of this paper are as follows:
— We introduce a new Market Utility Range (MUR) metric,
which helps us establish a theoretical bound for efficiency
loss of a market equilibrium under a constrained budget.
Specifically, we show that, if MUR ≥ 0.5, then PoA ≥
(1 − 1

4MUR ) ≥ 0.5 (i.e., the efficiency is guaranteed to be at
least 50% of the optimal allocation); and that if MUR < 0.5,
then PoA ≥ MUR.
— We introduce a new Market Budget Range (MBR) metric,
which helps us evaluate the fairness of a market equilibrium

under a constrained budget. We show that any market equi-
librium is (2

√
1 + MBR− 2)-approximate envy-free.

— We propose ReBudget, a budget re-assignment technique
that is able to systematically control efficiency and fairness
in an adjustable manner. We evaluate ReBudget on top of
XChange, using a detailed simulation of a multicore archi-
tecture running a variety of applications. Our results show
that ReBudget is efficient and effective. In particular, it can
achieve 95% of the maximum feasible efficiency. Further-
more, when combined with the analysis using MUR and
MBR metrics, it can provide worst-case fairness guarantees.

2. Market Framework
This paper adopts the general market-based resource alloca-
tion framework proposed in our XChange work [37]. In this
section, we describe our efficiency and fairness models in
the context of that framework.

Assume a market consisting of N players and M re-
sources. Each player i has a utility function Ui(ri) when it is
allocated ri = (ri1, ri2, . . . , riM ) resources. We assume that
a player’s utility functions is concave, nondecreasing, and
continuous. Note that this may not always hold in the CMP
context (e.g., the utility of the allocated cache space [2, 37]).
We describe how we address this issue later in Section 4.

Every player i is allowed to bid bij for resource j, and
the sum of its bids cannot exceed its budget Bi (i.e., the to-
tal amount of money it is allowed to spend):

∑
j bij ≤ Bi.

The market reconciles those bids by adopting a proportional
allocation scheme, which is widely used [23, 40] and consid-
ered fair. The market first collects bids from all the players,
and then determines the price of each resource j as follows:

pj =

∑N
i=1 bij
Cj

(1)

where Cj represents the total amount of resource j. As a
result, player i gets rij units of resource j proportionally to
its bid: rij =

bij
pj

.
The essence of this type of market-based approach is that

it is a largely distributed mechanism: the players indepen-
dently traverse their local search space to find the bids that
maximize their own utilities, bringing the market toward a
resource allocation that is Pareto-optimal [25]. In order to
find such optimal bids, each player needs to solve an opti-
mization problem, which can be modeled as follows: Given
the price pj of resource j announced by the market, player
i is able to compute the sum of other players’ bids to that
resource: yij =

∑
i′ 6=i bi′j = pj × Cj − bij . By making the

simplification that other players do not change their bids and
therefore yij are constants, player i is able to make a predic-
tion on the amount of resource rij it can get if it changes its
bids from bij to b′ij :

rij =
b′ij

b′ij + yij
Cj (2)



Combining this equation with player i’s utility function
Ui(ri), the player can obtain its utility function vs. its bids:
Ui(bi) = Ui(

bij
bij+yij

Cj). Then the optimization problem a
player needs to solve is:

maximize Ui(bi)

subject to
∑
j

bij ≤ Bi (3)

Using the Lagrangian multiplier method, we conclude
that if such optimal bids exist, there exists a player-specific
constant λi > 0 such that, for any resource j:

∂Ui
∂bij

{
= λi if bij > 0
< λi if bij = 0

(4)

Intuitively, we define λij to be the rate of utility change
(marginal utility) if player i changes its bid on resource j by
one unit: λij = ∂Ui

∂bij
. From Equation 4, if player i submits

non-zero bids on different resources j, the λij for all those
resources are the same, and equal to λi in Equation 4. For
resources with zero bids, their λij is necessarily smaller
than λi. Otherwise, it contradicts the condition that the bids
maximize the player’s utility.

Let’s use an illustrative example. Assume player i bids
on two resources, with λi1 = 1 and λi2 = 2. If the player
moves one unit of bid from resource 1 to 2, its utility can
be increased by 1 unit (-1 from resource 1 and +2 from
resource 2). As a result, the current bids are not optimal,
and the player can keep improving its utility by adjusting its
bids until λij are equal, or the bids on one of the resources
drop to zero, beyond which no further profitable movement
is possible.

2.1 Market Equilibrium
Market equilibrium is a state where all the players have no
incentive to change their bids to improve utilities, and the
resource prices remain stable. It is a desirable state because
it is proven to be Pareto-optimal (i.e., no other resource allo-
cation can make any one individual better off without mak-
ing at least one individual worse off [25]). In order to find a
market equilibrium, we adopt an iterative bidding–pricing
process, similar to the one used in our recent XChange
work [37]. Such a process can be divided into two steps:
(1) the market broadcasts the current resource prices to all
the players, and (2) the players adjust their bids to maximize
their own utilities. These two steps are repeated iteratively
until the market converges—i.e., for any player, its utility
changes negligibly between two iterations. (In our imple-
mentation we detect this globally by monitoring prices in-
stead, and assume convergence when they fluctuate within
1%.)

Zhang [40] has shown that a market equilibrium always
exists in a strongly competitive market, where for any re-
source j, there always exists at least two players placing
non-zero bids.

Lemma 1. An equilibrium always exists for a strongly com-
petitive market. The market equilibrium may not be unique.

2.2 Efficiency
Given the existence of a market equilibrium, its system effi-
ciency, also known as social welfare, is an important metric.

Definition 1. The efficiency of a system is defined as the sum
of players’ utilities: Efficiency =

∑
i Ui(ri).

Nissan et al. [25] show that the efficiency of a market
equilibrium can be low. Papadimitriou introduces the con-
cept of Price of Anarchy (PoA) [26], which is the lower
bound of the efficiency of a market equilibrium compared
with that of the optimal allocation. Mathematically, let r∗i
denote a feasible resource allocation which maximizes the
system efficiency, Ω be the set of resource allocation in mar-
ket equilibrium (recall that a market equilibrium may not be
unique), and rn ∈ Ω be a market equilibrium outcome. Let
us also define optimal efficiency OPT =

∑
i Ui(r

∗
i ), and ef-

ficiency in market equilibrium Nash(rn) =
∑
i Ui(r

n
i ), the

Price of Anarchy is then defined as:

Definition 2. PoA = minrn∈Ω
Nash(rn)

OPT

Note that PoA is a lower bound, which means that the
efficiency of any market equilibrium rn is guaranteed to be
greater than PoA× OPT.

Zhang [40] studies PoA in a market with a proportionally
balanced budget, where a player is given a budget in propor-
tion to its maximum utility, i.e., the utility when it owns all
resources. Zhang then shows:

Lemma 2. The equilibrium in a market with a proportion-
ally balanced budget has a Price of Anarchy PoA = Θ( 1√

N
).

Recall that N is the number of players; thus, Lemma 2
tells us that PoA will worsen with the number of players,
and thus it can be prohibitively low in a large market.

2.3 Fairness
Envy-freeness (EF) is widely used to evaluate fairness of
a resource allocation in real life [5, 35], and it’s recently
introduced by Zahedi and Lee in the context of resource
allocation in CMPs [39]. It is a metric to evaluate how much
a player desires others’ resources compared to what it owns.

Definition 3. Envy-freeness (EF) of an allocation r =

(r1, . . . rN ) is EF(r) = mini,j
Ui(ri)
Ui(rj) .

By definition, a resource allocation is envy-free when
EF ≥ 1—i.e., players prefer their own resources to those
of others (at worst, they like them equally). Although a
market equilibrium is provably envy-free under some form
of utility constraints [39], in general it is not. And although
it might seem that a market equilibrium would be generally
fair as long as every player is endowed with the same budget,
Zhang shows that this is not guaranteed [40]. As a result,
Zhang defines c-approximate envy-free (c ≤ 1) as follows:



Definition 4. A market is c-approximate envy-free, if the
envy-freeness of any market equilibrium is larger than c, i.e.,
for any player i, Ui(ri) ≥ c ·maxj Ui(rj).

It is straightforward that the equilibrium is more “fair”
if c is closer to 1 (players envy others less). Zhang then
proves [40]:

Lemma 3. If each player in the market has the same budget,
market equilibrium is at least 0.828-approximate envy-free.
The bound is tight in the worst case.

Note that the bounds of efficiency and fairness proven
by Zhang [40] may not apply at the same time. Recall
that Lemma 2 requires a proportionally balanced budget
assignment (i.e., a player’s budget is proportional to its max-
imum achievable utility), while Lemma 3 assumes every
player has an equal budget. However, note that in the mul-
ticore resource allocation problem that we study, the utility
function is in fact a value normalized to the maximum utility
(discussed in Section 4.1.1). As a result, the maximum util-
ity is 1 for all the players, and therefore these two markets
are equivalent within the scope of this paper.

Thus, by combining Lemma 2 and Lemma 3 in our con-
text, we find although a market with equal budget for all
players has a good fairness guarantee, its efficiency can be
low (1/

√
N of optimal allocation in the worst case). In the

following sections, we study how budget assignment across
players affects the theoretical bound of efficiency and fair-
ness, and how to utilize such theory to design a budget re-
assignment scheme to trade off efficiency and fairness sys-
tematically.

3. Theoretical Results
In this section, we introduce two new metrics that will serve
our goal: Market Utility Range (MUR) and Market Budget
Range (MBR). By measuring MUR and MBR in the market
equilibrium, we can quantitatively understand the bound of
loss in efficiency and fairness. In addition, MUR and MBR
can be used as a guidance to adjust the budgets across play-
ers so that we can control the trade-off between efficiency
and fairness more effectively.

3.1 Efficiency
According to Equation 4, in a market with a budget con-
straint, if player i bids optimally to maximize its utility, its
marginal utility of bids ∂Ui

∂bij
is a player-specific value λi,

identical for all resources j with non-zero bids. Our intuition
is that, the larger the λi variation across players, the higher
“potential” there is to increase system efficiency by budget
re-assignment, and therefore the lower PoA efficiency guar-
antee the current market has.

Consider the following examples: Assume a budget-
constrained market with two players (A and B), such that
λA = 1 and λB = 3 in equilibrium. It is intuitive that if
the market moves 1 unit of budget from A to B, the mar-
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Figure 1: Relationship between Price of Anarchy and Market
Utility Range (left), and Envy-freeness and Market Budget
Range (right), based on Theorem 1 and Theorem 2, respec-
tively.

ket’s overall efficiency in equilibrium (which is the sum of
A’s and B’s utilities) is likely to increase (e.g., by 2 units, -1
from A and +3 from B). Consider, instead, that λA = 1 and
λB = 2. In that case, the same budget re-assignment also
points toward a market efficiency increase, but the improve-
ment may be lower than in the first case. Finally, consider
that λA and λB are equal. In that case, the intuitive expecta-
tion is that a budget re-assignment will not have an effect in
overall market efficiency.

Consequently, let’s define Market Utility Range (MUR)
as follows:

Definition 5. Maximum Utility Range is the maximum
variation of marginal utility λi across the market players,
MUR = mini λi

maxi λi

By using such definition, we can prove that:

Theorem 1. If MUR ≥ 0.5, the Price of Anarchy of the
market equilibrium PoA ≥ (1− 1

4MUR ) ≥ 0.5, i.e., the overall
market efficiency is guaranteed to be at least 50% of optimal
allocation; If MUR < 0.5, PoA ≥ MUR.

(The detailed proof can be found later in Section A.1.)
Not only does MUR provide a lower bound of overall

market efficiency, it can also be used to guide budget re-
assignment to help improve the overall market efficiency.
As shown in the examples above, by moving a portion of
budget from a player i with lower λi to another player i′

with higher λi′ , MUR moves toward 1.1 As a result, the
PoA guarantee increases, and the actual market efficiency
hopefully increases accordingly.

3.2 Envy-freeness
A likely side effect of assigning different budgets to different
players is that it may impact fairness negatively. It is straight-
forward that the player with the highest budget is able to pur-
chase more resources than others, and therefore it is likely to
be “envied” by others. Hence, we hypothesize that a valuable
indicator of envy (or envy-freeness) of a market in equilib-
rium is the variation of the budget across players:

1 It is provable that player i’s marginal utility of bids λi decreases mono-
tonically with a larger budget.



Definition 6. Market Budget Range is the maximum varia-
tion in budget across players, MBR = mini Bi

maxi Bi
.

Note that MBR is defined as the minimum budget divided
by the maximum budget, so that larger budget variation
means lower MBR value. Based on this definition, we can
prove the following:

Theorem 2. A market equilibrium with budget range MBR
is (2
√

1 + MBR− 2)-approximate envy-free.

(A short proof sketch can be found in Section A.2.)
The key insight here is that, by combining Theorem 1

and Theorem 2, we can attempt to adjust the trade-off be-
tween efficiency and fairness: As Figure 1 shows, the more
aggressively we re-assign the budget to make MUR closer to
1, the higher system efficiency we may achieve. However, it
creates a larger variation in players’ budgets, which in turn
may hurt fairness. Note that such budget re-assignments do
not guarantee an actual improvement in either the efficiency
or the envy-freeness. Nevertheless, our expectation is that,
by tightening the efficiency/envy-freeness bounds according
to our MUR and MBR theorems, the resulting allocation at
equilibrium will tend to move in the desired direction. There-
fore, we envision that an algorithm, by using MUR and MBR
together, can try to fine-tune a market’s trade-off between ef-
ficiency and fairness. We show one such algorithm ReBud-
get in Section 4.2.

4. ReBudget Framework
In this section, we first describe the basic framework for
market-based resource allocation. We then describe ReBud-
get, a practical heuristic based on the theoretical results
in Section 3 to assign budgets across players, so that an ad-
justable trade-off between system efficiency and fairness can
be accomplished.

4.1 Market-based Approach
Our basic market-based resource allocation framework, de-
scribed in Section 2, is a dynamic proportional market. In
this framework, the goal is to find a market equilibrium us-
ing an iterative bidding–pricing procedure, after which re-
sources are allocated proportionally to bids. This mechanism
is detailed in Section 2.1.

Shared cache space and on-chip power are two of the
most frequently targeted resources in the literature [6, 9,
24, 27, 34, 38], and our evaluation of ReBudget will focus
on these two resources. Our mechanism, however, is a gen-
eral framework: As long as the resource’s utility function
can be accurately modeled, and such utility function is non-
decreasing, continuous, and concave (or can be made con-
cave), the results of this paper can be applied. (Note that
prior studies show that the utility of cache is often non-
continuous—e.g., if partitioned by cache ways—and non-
concave [2, 37], which is not consistent with our theoretical
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Figure 2: Normalized utility under different cache alloca-
tion, running at the highest possible frequency. The x-axis
is the number of cache ways enabled. Section 5 describes
the setup.

assumptions. We describe how to address such issue later
in Section 4.1.1.)

At any point in time, we guarantee that each core will
be given a minimum amount resources: one cache region
(128 kB), and the power to run at minimum frequency
(800 MHz in our setup, Section 5) for free. The remaining
cache capacity and power budget are allocated using market-
based mechanism. This is to guarantee that each application
is able to at least run regardless of its purchasing power.

We now address the two major challenges in designing
the market: how to model the players’ utility, and how the
players bid to maximize their utility.

4.1.1 Utility Function
In the multicore resource allocation problem that we study,
we define an application’s utility to be its IPC, normalized
to the IPC when it’s running alone (and thus owns all the
resources): Ui(ri) = IPC(ri)/IPCalone. Thus, the possi-
ble values of Ui are between 0 and 1. To figure out the
performance–resource relationship of the utility function,
we adopt the monitoring technique of our recent XChange
work [37]: We divide the total execution time of an appli-
cation into compute and memory phases. The length of the
memory phase under different cache allocations is estimated
using UMON shadow tags [27] and a critical path predic-
tor [24]. The length of the compute phase and the corre-
sponding power consumption is estimated using the power
model developed by Isci et al. [9]. The sum of both phases is
an estimation of the execution time given a particular cache-
power allocation. Note that this is all modeled dynamically
online; no prior off-line profiling is needed whatsoever [37].

Recall that in Section 2, in order to apply the theoret-
ical results, the utility function of a player is required to
be concave, continuous, and non-decreasing in shape. How-
ever, in computer architecture, this is not always true. On
the one hand, power is known to be concave [9, 24], and
fine-grained enough to regard it as continuous. For exam-



ple, Intel’s RAPL technique allows setting the CPU power
at a granularity of 0.125W [20]. On the other hand, it is
well-known that cache capacity is a non-concave, and non-
continuous resource [2, 27].

Figure 2 shows the cache utilities of two representative
applications, mcf and vpr. The markers are the utilities (nor-
malized IPC) of each application when it is given different
cache ways (no change in power budget). From the figure,
we can make two observations:

First, such a utility function is not continuous, as it is par-
titioned by cache ways which are relatively coarse-grained.
To make it continuous, we adopt Futility Scaling by Wang
and Chen [36], a feedback control mechanism that can pre-
cisely keep the partition size close to a target at the granu-
larity of cache lines. We empirically set the allocation gran-
ularity to 128 kB, and we call this a cache region.

Second, cache utility may not be concave. Although vpr
shows a concave utility function, mcf clearly is not: its nor-
malized utility is flat at 0.2 for 1 to 10 cache ways, and sud-
denly increases to 1.0 once it secures 12 ways (1.5MB). This
is because mcf ’s working set size is 1.5 MB, and 12 cache
ways or more will satisfy its need by reducing the L2 cache
miss rate to be almost zero. To address this issue, we ap-
ply Talus, a technique to convexify cache behavior [2]. Talus
works roughly as follows: First, based on an application’s
actual cache utility, its “convex hull” is derived, which is the
convex set of the cache utility. The cache allocation points
on the hull are called “point of interest” (PoI), which are
the desired allocations. Next, to make cache utility contin-
uous on the convex hull, Talus divides the cache partition
of a core into two “shadow” partitions. Given an arbitrary
cache partition target, Talus first finds its two neighboring
PoIs, and then adjusts the size of the shadow partitions ac-
cordingly. The access stream is also divided correspondingly
into the two shadow partitions. More details can be found in
Talus [2]. As shown in Figure 2, Talus effectively convexi-
fies the cache behavior to a convex hull, which satisfies the
requirement of being concave and non-decreasing.

4.1.2 Bidding Strategy
Now that we have constructed a utility function for each
player, according to the market’s bidding–pricing procedure
(Section 2), the next problem is how each player finds its
optimal bids to maximize its utility. Because both cache and
power utilities are concave, heuristics such as hill climbing
are appropriate in finding optimal solutions [2]. Therefore,
we adopt a simple hill-climbing technique as follows:

1. Each player i splits its budget Bi into equal bids bij
across all resources. In addition, S, which is the amount
by which a player will shift its budget across resources, is
set to be half of the bid.

2. Each player i computes the marginal utility λij of all re-
sources j. According to the optimality condition in Equa-
tion 4, if a player’s bids are such that they maximize the

player’s utility, then the marginal utilities of all resources
which receive non-zero bids are necessarily identical—
in other words, the player has no incentive to re-allocate
its budget across resources. Otherwise, if λij varies for
different resources under the current bids, the player will
move an amount S of money from a resource k with lower
λik to another one k′ with higher λik′ , and such a move
will tend to equalize the marginal utility of these two re-
sources (recall that the player’s utility function is concave,
which means that marginal utility λij decreases as bid bij
increases).

3. S is halved, and the process is repeated, until one of the
following two conditions is met: (a) Either λij of the re-
sources stays the same (within 5% difference); or (b) S is
smaller than 1% of the total budget. Because S decreases
exponentially with every step, and λij is monotonic, such
an algorithm will quickly reach an optimal bids to the re-
sources.

4.2 Budget Re-assignment Algorithm
The mechanism discussed so far applies to individual players
in the context of a general budget-constrained market-based
mechanism. In this section, we describe ReBudget, a heuris-
tic that works on top of the above mechanism. ReBudget
assigns different budgets to players in an adjustable manner,
so that a trade-off between system efficiency and fairness can
be made.

As is discussed Section 3, MUR and MBR are good
metrics to indicate multicore efficiency and fairness. Using
MUR, we can identify the lower bound of system efficiency,
as shown in Theorem 1. Moreover, due to the concavity of
utility, player i’s λi increases if its budgetBi is reduced. As a
result, by reducing the budget of a player with low λi, system
MUR, which is the maximum variation of marginal utility λi
across the market players, will move closer to 1, potentially
yielding a higher efficiency. On the other hand, however, by
creating a larger budget variation across players, MBR will
decrease (recall from Section 3.2 that larger budget variation
will decrease MBR), therefore opening the door for the level
of fairness (i.e., envy-freeness) to decrease as well.

In ReBudget, we attempt to maximize efficiency while
guaranteeing a certain level of fairness. The system adminis-
trator can set a lowest acceptable envy-freeness level, and us-
ing Theorem 2, the minimum MBR can be computed. Then,
the budgets of the players are re-assigned based on their λi
value under market equilibrium: those with lower λi will get
a reduction in budget. We define a player to be “low λi” if
its λi is smaller than 50% of the maximum λi—recall that,
in Theorem 1, we find that when MUR is smaller than 0.5,
the PoA guarantee starts to decrease linearly. However, at
any point in time, the budget variation across players has to
be maintained higher than the set MBR value.

We design an iterative method with exponential back-off:



(1) MBR is computed based on the lowest acceptable fair-
ness level set by the administrator. To start the bidding pro-
cess for the market, each player is assigned an equal budget
B. The amount of budget re-assignment, named step, is ini-
tialized to be (1−MBR) · B2 . (2) Players then use their bud-
get to conduct the algorithm we described in Section 4.1.2 to
reach a market equilibrium. (3) λi of each player is collected.
If a player i’s λi value is lower than 50% of the maximum
λi in the market, its budget is reduced by one step. (4) step is
halved, and the algorithm returns to (2) to find a market equi-
librium again. When step is smaller than 1% of each player’s
initial budget, or when no player’s budget is decreased, the
resulting market equilibrium is the final outcome.

This algorithm has two advantages: (1) The highest possi-
ble budget of any player isB, and the lowest possible budget
is MBR ·B (if the player gets a budget decrease in all itera-
tions). Therefore, the maximum variation of players’ budget
will stay within MBR, and the fairness level set by the de-
signer is guaranteed. (2) The exponentially decreasing step
ensures that the process is fast, so that the market is still ef-
ficient and scalable to deal with large-scale systems.

The above exponential back-off greedy algorithm is a
show case of how MUR and MBR can be used to guide
budget re-assignment to optimize the system. As we will
show in Section 6, such an algorithm is in fact fast and
efficient in practice.

4.3 Implementation
We now discuss the hardware and software implementation
of ReBudget. On the hardware side, ReBudget requires:

1. Hardware monitors to model an application’s utility–
resource relationship. As is discussed in Section 4.1.1,
we adopt the same monitoring hardware as we do in
XChange. As a result, the overhead is 3.7 kB per core [37],
and the total overhead of the monitors is less than 1% of
the total cache.

2. Extra states per partition and per cache line for partition-
ing the cache. We adopt Futility Scaling to partition the
L2 cache. and it incurs around 1.5% storage overhead of
the total cache [36].

On the software side, in order to handle the changing
resource demands due to context switches and applica-
tion phase changes, our budget re-assignment algorithm de-
scribed in Section 4.2 is triggered every 1 ms to re-allocate
resources. Similar to XChange, such an algorithm can be
piggybacked to the Linux kernel’s APIC timer interrupt,
with a low runtime overhead [37].

5. Experimental Methodology
5.1 Architectural Model
We evaluate ReBudget using SESC [28], a highly detailed
execution-driven simulator, which we modified in-house
to suit our experimental setup. We model 4-way out-of-

Table 1: System configuration.

Chip-Multiprocessor System Configuration
Number of Cores 8 / 64

Power Budget 80 W / 640 Wa

Shared L2 Cache Capacity 4 MB / 32 MB
Shared L2 Cache Associativity 16 / 32 ways

Memory Controller 2 / 16 channels
Core Configuration
Frequency 0.8 GHz - 4.0 GHz

Voltage 0.8 V - 1.2 V
Fetch/Issue/Commit Width 4 / 4 / 4

Int/FP/Ld/St/Br Units 2 / 2 / 2 / 2 / 2
Int/FP Multipliers 1 / 1

Int/FP Issue Queue Size 32 / 32 entries
ROB (Reorder Buffer) Entries 128

Int/FP Registers 160 / 160
Ld/St Queue Entries 32 / 32

Max. Unresolved Branches 24
Branch Misprediction Penalty 9 cycles min.

Branch Predictor Alpha 21264 (tournament)
RAS Entries 32

BTB Size 512 entries, direct-mapped
iL1/dL1 Size 32 kB

iL1/dL1 Block Size 32 B / 32 B
iL1/dL1 Round-Trip Latency 2 / 3 cycles (uncontended)

iL1/dL1 Ports 1 / 2
iL1/dL1 MSHR Entries 16 / 16

iL1/dL1 Associativity direct-mapped / 4-way
Memory Disambiguation Perfect

a We anticipate multicore chips with different number of cores will not be
fabricated under the same technology, and thus expect the power consump-
tion per core to decrease with the technology. For simplicity, in our evalua-
tion, we use a chip TDP of 10 W per core and a 65-nm power model.

order cores; Table 1 shows the most important parameters
of the CMP. We also faithfully model Micron’s DDR3-1600
DRAM timing [19].

We use Wattch [7] and Cacti [30] to model the dynamic
power consumption of the processors and memory system.
We adopt Intel’s power management approach for Sandy
Bridge [29] to approximate the static power consumption
as a fraction of the dynamic power that is exponentially
dependent on the system temperature [10]. The run-time
temperature of the chip multiprocessor is estimated using
Hotspot [31] integrated with SESC.

Our multicore chip is able to regulate two shared on-
chip resources: power budget and shared last-level cache.
The power budget is regulated via per-core DVFS, similar
to Intel’s RAPL technique [20]. Each core can run at a
frequency between 800 MHz and 4 GHz, as long as the
total power consumption remains within p×10 W, where p
is the number of processor cores. The last-level (L2) cache
is partitioned using Futility Scaling by Wang and Chen [36],
at the granularity of 128 kB (one cache region). The total L2
cache capacity is p×512 kB. Due to the overhead of UMON



shadow tags [27], we limit its stack distance to be 16, i.e.,
the shadow tags can estimate the miss rate for the cache with
capacities from 128 kB to 2 MB. We empirically observe
that very few of our applications benefit from cache regions
larger than 2 MB, and even if they do, such a large cache
region is usually not affordable given the limited budget of
each player. With a dynamic sampling rate of 32, the shadow
tags take up 3.6 kB per core, which is less than 1% of the L2
cache size.

We guarantee that each core will have at least one cache
region, and sufficient power budget to allow it to run at the
minimum frequency (800 MHz). The remaining resources
will be entirely distributed (i.e., no leftovers) based on a
market-based resource allocation decision.

Workload Construction
We use a mix of 24 applications from SPEC2000 [32] and
SPEC2006 [33] to evaluate our proposal. Each application
is cross-compiled to MIPS ISA with -O2 optimization us-
ing gcc 4.6.1. For all simulations, we use Simpoints [8] to
pick the most representative 200-million dynamic instruc-
tion block of each application.

Our evaluation is based on multiprogrammed workloads
because we anticipate to allocate resources at the granularity
of cores. For multithreading workloads, we can still allocate
the resources at thread granularity if each thread is running
on a different core.2 Another choice is to allocate resources
at the granularity of applications. All the threads of one ap-
plication may share the same resources, which is a reason-
able assumption, because the demand of the threads tend to
be similar across threads of a parallel application in many
programming models.

To construct our multiprogrammed workloads, we clas-
sify the 24 applications into four classes based on profiling:
Cache-sensitive (C), Power-sensitive (P), Both-sensitive (B),
and None (N). Then, we create six categories of multipro-
grammed workloads: CPBN, CCPP, CPBB, BBNN, BBPN,
and BBCN. For each category, we randomly generate 40
workloads for 8- and 64-core configurations. The random
generation works as follows: for an 8-core (64-core) config-
uration, 2 (16) applications are randomly selected from each
application class (e.g., CPBN means 2 (16) applications in
each of C, P, B, and N, whereas CCPP will have 4 (32) ap-
plications in C and 4 (32) in P).

Performance Metrics
A key issue in resource allocation is the figure of merit.
As is discussed in Section 4.1, we define an application’s
utility to be its IPC normalized by the IPC when it’s running
alone: Ui(ri) = IPC(ri)/IPCalone. The system efficiency

2 Skewing resources within threads in a multi-threaded application (e.g., to
alleviate synchronization imbalance) is beyond our scope, can be incorpo-
rated orthogonally to our approach, and has been studied elsewhere [3, 16].

can therefore be computed as:

Efficiency =

N∑
i=1

Ui =

N∑
i=1

IPCi(ri)

IPCalone
i

(5)

We realize that this is exactly weighted speedup, a common
metric to measure system throughput, and has been widely
accepted by the community. Therefore, our Price of Anarchy
study becomes meaningful in computer architecture: it guar-
antees the lower bound of throughput in market equilibrium.

A system could achieve high throughput (i.e., weighted
speedup) by starving one or two applications while benefit-
ing all the others; however, system fairness would suffer as a
result, providing a bad experience to some users. Therefore,
we evaluate fairness using envy-freeness shown in Defini-
tion 3, which is a widely used metric in economy, and has
recently been introduced by Zahedi and Lee to evaluate fair-
ness in multicore chips [39].

6. Evaluation
We evaluate our proposal in two phases. In the first phase, we
analytically study the effectiveness of ReBudget by assum-
ing that the applications’ utility functions can be perfectly
modeled and convexified. For this phase only, we extensively
profile each application using our simulation infrastructure.
(Recall that ReBudget does not require off-line profiling;
our second phase models utility functions at run-time using
hardware monitors, as described in Section 4.1.1.)

We sample 90 cache+power configuration points, with
{1-6, 8, 10, 12, 16} cache regions (10 possible allocations)
and {0.8,1.2,1.6,. . ., 4.0} GHz (9 possible allocations). For
each point, we collect average IPC and power consumption.3

Then, we derive the convex hull of cache and power, and as-
sume that their utilities are perfectly concave and continu-
ous. Finally, we analytically evaluate the system efficiency
and fairness by applying ReBudget and other competing
mechanisms to all 240 bundles.

In the second phase, we evaluate ReBudget in a simu-
lated CMP environment (SESC). The application’s utility is
monitored at run-time, using the technique described in Sec-
tion 4.1.1. We apply Talus [2] and Futility Scaling [36] to
make cache behavior concave and continuous. Because of
practical simulation time constraints, we randomly select
one application bundle per category, and run it using detailed
simulations. We use these results to validate our first phase
evaluation.

We conduct all the experiments on 8- and 64-core CMP
configurations, and find that the results are similar. There-
fore, we omit the results for the 8-core configuration, and
focus on the large-scale 64-core configuration.

3 Without loss of generality, our evaluation assumes that allocating more
than 16 cache regions (2 MB) does not yield any significant additional util-
ity to any application. This is reasonable for the input sets of the applications
studied, and it allows us to complete profiling in a reasonable time.
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Figure 3: Marginal utility λi of each application in a sample
BBPC bundle. The multiple copies of the same application
in the bundle behave essentially the same way, so only one
of each is shown. λi is normalized to the maximum λi in the
bundle. MUR metric is also shown.

The allocation mechanisms evaluated are as follows:
EqualShare, where resources are equally partitioned among
all processor cores. Two XChange mechanisms [37]:4 Equal-
Budget, where resources are partitioned using a market-
based procedure assuming equal budgets for all players; and
Balanced, where each player receives a budget proportional
to the utility difference between its maximum (2 MB L2
cache and 4.0 GHz frequency) and minimum (128 kB and
800 MHz) possible allocations, normalized to the former.
ReBudget-step, where resources are allocated using our Re-
Budget mechanism such that, at the end of the first iteration
(where all players run with equal budget), each player is
assigned either its original budget or step less. (Recall that
step is halved in each subsequent iteration.) The initial bud-
get is set to be 100 for all players. Finally, MaxEfficiency,
which is the resource allocation maximizing system effi-
ciency, is obtained by running an infeasible very fine-grained
hill-climbing search (recall that all utilities are concave).

6.1 Efficiency
For the first phase evaluation, Figure 4 reports the efficiency
and envy-freeness for EqualShare, MaxEfficiency, as well as
XChange’s EqualBudget and Balanced, and ReBudget with
different aggressiveness (i.e., step) based on run-time feed-
back. The bundles are ordered by the efficiency of Equal-
Share. We observe that the efficiency of EqualShare com-
pared to MaxEfficiency suddenly increases for the last 40
bundles. Most of these bundles fall into the category of
BBPN. EqualShare works well for BBPN workloads be-
cause 75% of the apps in the bundle are power sensitive,
and equally distributing the power in EqualShare works rea-
sonable well. In addition, although the efficiency can be
improved by giving more cache to “B” apps, they are not
as cache-sensitive as “C” apps. Therefore, EqualShare in
cache performs better for BBPN bundles than others such
as CPBN.

4 Note we convexify applications’ utility, which is an improvement over the
original XChange.

6.1.1 EqualBudget vs. EqualShare
We first compare the efficiency between EqualBudget market-
based mechanism with EqualShare allocation. Figure 4a
shows that in a 64-core configuration, 37% of the work-
loads in EqualBudget are able to achieve 95% of the social
welfare of the MaxEfficiency, and over 90% bundles are
within 90%. This proves that the market-based mechanism
is robust, efficient, and scalable in this setup.

However, there are still 10% of the applications below
90% of the welfare in optimal allocation. We observe that
over half of these workloads fall in the category of BBPC,
where the number of applications favoring both resources
(50%) is much higher than the number of applications favor-
ing power (25%) or cache (25%) only. This is reminiscent of
the well-known Tragedy of Commons [18]. MaxEfficiency
strongly favors the apps which prefer only one resource,
and the “B” apps, which need both resources, are sacrificed
for the sake of higher system efficiency. The EqualBudget
mechanism allows all the applications to fairly contend with
each other, even though the price is an efficiency that is not
as good as MaxEfficiency’s.

We look closely at an 8-core experiment using a BBPC
bundle that contains four “B” apps (apsi and swim, 2 copies
each), two “C” apps (2 copies of mcf ), and two “P” apps
(hmmer and sixtrack). The overall efficiency of such bundle
with EqualBudget is 90% of MaxEfficiency, and we find
its MUR = 0.40. Figure 3 shows λi value of each app
at market equilibrium. We can find that with EqualBudget,
“B” app swim has the lowest λi value, indicating that it is
over-budgeted and not use its money efficiently; on the other
hand, “C” app mcf has the highest λi value, showing that a
budget increase can lead to a high utility gain.

6.1.2 XChange-Balanced
XChange’s Balanced budget assignment is an intuitive way
to distribute budget among players to improve efficiency [37].
However, Figure 4a shows that it does not outperform Equal-
Budget in efficiency too much, but in fact it loses in fairness,
as shown in Figure 4b. The reasons are: (1) With the ex-
ception of “N”-type apps, which are not sensitive to any
resources, the performance difference between minimum
and maximum utility of most apps are similar, especially
when we give out minimum resources for each player for
free. Therefore, the budget assignment is not very different
from EqualShare. (2) Blindly setting the player’s budget Bi
proportionally to his “potential,” while ignoring the shape of
utility and MUR metric, is ineffective.

6.1.3 ReBudget
We evaluate the our ReBudget mechanism proposed in Sec-
tion 4.2. We test different aggressiveness, by setting the
amount of budget decrease at each iteration (i.e., step) to
be 20 and 40. Figure 4a clearly shows that by re-assigning
the budget more aggressively, efficiency will improve for all
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Figure 4: Comparison of system efficiency (weighted speedup) and envy-freeness among the proposed mechanisms in a 64-
core configuration. System efficiency results are normalized to MaxEfficiency. Workloads are ordered by the efficiency of
EqualShare.

bundles. Also, for all the 240 bundles, ReBudget-40 achieves
95% of system efficiency of MaxEfficiency.

We look closely at the same 8-core bundle we study
in Section 6.1.1. For ReBudget-20, Figure 3 shows that
swim, whose λi at 0.40 is the lowest under EqualBudget,
has its value increased to 0.46, because its budget drops from
100 (every player’s initial budget) to 61.25 units (minimum
budget under ReBudget-20). On the other hand, mcf, which
has the highest λi, has its budget unchanged (100). The bud-
get of other apps are lowered to around 80, because their λi
values are significantly lower than mcf. Note that λi of apsi
and hmmer decrease, even though their budgets are reduced.
This is because the budget cut of swim makes the prices
of resources drop significantly. As a result, although apsi
and hmmer’s budgets are reduced, they can actually afford
more resources, and their λi decreases. Overall, the MUR of
ReBudget-20 increases to 46%, compared to 40% in Equal-
Budget. Correspondingly, the efficiency of ReBudget-20 in-
creases to 96% of MaxEfficiency.

In ReBudget-40, swim, whose λi is still the lowest in
ReBudget-20, get a further budget cut to 20. As a result, its
λi value increases from 0.46 to 0.72, as shown in Figure 3.
mcf in this case is no longer the highest in λi value: six-

track’s budget is decreased to 30 and it starts to request for
more money. Therefore, MUR of the system is increased to
0.59, and the efficiency is now 99% of MaxEfficiency.

6.2 Fairness
We use envy-freeness as the metric to evaluate the fairness,
as is discussed in Section 2.3. We first look at the fairness
comparison between EqualBudget and MaxEfficiency. As
expected, Figure 4b shows that EqualBudget is almost envy-
free, where in the worst case, it is still 0.93-approximate
envy-free. On the contrary, MaxEfficiency is unfair, which
is typically 0.35-approximate envy-free.

Regarding the XChange-Balanced mechanism, the envy-
freeness of most workloads stays at 0.9, where in the worst-
case it is 0.86-approximate envy-free. It is not as good as
EqualBudget, and considering its trivial efficiency gain, and
no control over the aggressiveness in making trade-off be-
tween efficiency and fairness, we consider such a mechanism
to be ineffective.

On the other hand, the envy-freeness of ReBudget has
a direct relationship with its aggressiveness. Figure 4b
shows that the typical envy-freeness of ReBudget-20 and
ReBudget-40 are 0.8 and 0.5, respectively, and none of the
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Figure 5: Comparison of system efficiency (weighted
speedup) and envy-freeness among the proposed mecha-
nisms in a simulated 64-core configuration. System effi-
ciency results are normalized to MaxEfficiency.

bundles violates the theoretic guarantee provided by Theo-
rem 2 (0.53 and 0.19). We notice that there is a gap between
the theory and reality. This is because what Theorem 2 states
is a theoretic lower bound, which should stand in all cases.
Such bound is tight, and it is not hard to construct a market
to reach it5. Although it does not happen on the applica-
tions we use, it could happen in the real life. In addition,
we show the envy-freeness of ReBudget-20 is consistently
higher than ReBudget-40 for all bundles. Therefore, besides
the theoretic guarantee, MBR can be used as an accurate
indicator of system fairness.

Combined with the findings in Section 6.1, we can con-
clude that the more aggressive budgets are adjusted, the
higher efficiency, and correspondingly the lower fairness it
is achieved. This is appealing, because system designers and
administrators can use the step as a “knob” to trade off one
for the other.

6.3 Simulation Results
Besides the above analytical results, we implement ReBud-
get in architectural simulator SESC. Figure 5 shows the sys-
tem efficiency and envy-freeness of the competing mech-
anisms. Such results are consistent to our analytical eval-
uation above: ReBudget improves system efficiency over
EqualBudget by sacrificing fairness, and the more aggres-

5 Zhang shows an example in EqualBudget case [40].

sive budget is re-assigned, the more efficiency improvement
it is achieved. On the other hand, EqualBudget achieves the
highest in envy-freeness, and MaxEfficiency, which targets
at maximizing system efficiency, is the worst in fairness. Re-
Budget successfully maintains its rank between these two
extremes, and aggressiveness gradually hurts system perfor-
mance as expected.

6.4 Convergence
A very important aspect of the market-based mechanism is
how fast our algorithm is in finding the equilibrium alloca-
tion. To the best of our knowledge, there is no theoretic lower
bound on the convergence time. However, in reality, we find
that EqualBudget and XChange-Balanced converge within
3 iterations for 95% of the bundles. ReBudget mechanism
spends a few more iterations, because it needs to re-converge
after budget adjustment. However, the exponential back-off
in budget change guarantees that the ReBudget process con-
verges fast. These findings are in line with prior studies (e.g.,
Feldman et al. find the convergence time for a dynamic mar-
ket is ≤ 5 iterations [17]). We also adopt a fail-safe mecha-
nism for the very rare cases that market cannot converge: we
simply terminate the equilibrium finding algorithm after 30
iterations.

7. Conclusion
In this paper, we have introduce two new metrics, Mar-
ket Utility Range (MUR) and Market Budget Range (MBR),
which help us establish a theoretical bound for the loss of
efficiency and fairness of a market equilibrium under a con-
strained budget, respectively. We have proposed ReBudget,
a budget re-assignment technique that is able to systemat-
ically control efficiency and fairness in an adjustable man-
ner. We evaluate ReBudget on top of our earlier XChange
proposal for market-based resource management in CMPs,
using a detailed simulation of a multicore architecture run-
ning a variety of applications. Our results show that ReBud-
get is efficient and effective. In particular, when combined
with the proposed MUR and MBR metrics, ReBudget is ef-
fective at maximizing efficiency under worst-case fairness
constraints.

A. Proofs
A.1 Proof of Theorem 1
Johari and Tsitsiklis [21] study the PoA for a market where
the players are not constrained by a budget, and the players
are maximizing their actual payoff: i.e., its utility minus its
resource costs:

maximize Ui(bi)−
∑
j

bij (6)

We introduce market utility range metric MUR = mini{λi}
maxi{λi}

into their proof, so that such proof can be generalized to



a market with budget constraint. In a market equilibrium
allocation rn where player i bids bni , there exists λi > 0
for this player, such that for any resources j:

∂Ui(r
n
i )

∂bij
=
∂Ui(r

n
i )

∂rij

∂rij
∂bij

=
∂Ui(r

n
i )

∂rij

1

pnj
(1−

rnij
Cj

)

{
= λi if bij > 0
< λi if bij = 0

(7)
Let Vi(ri) =

∑
j
∂Ui(r

n
i )

∂rij
(rij−rnij)+Ui(r

n
i ). We find rn

for Ui is also the equilibrium allocation for Vi:

∂Vi(r
n
i )

∂bij
=
∂Vi(r

n
i )

∂rij

∂rij
∂bij

=
∂Ui(r

n
i )

∂rij

∂rij
∂bij

.

Define Nash(U) to be the system efficiency in market
equilibrium, where players have utility function Ui. Because
the market equilibrium allocation for Ui is also the equi-
librium allocation for Vi, Nash(U) = Nash(V ). Also de-
fine OPT(U) to be the maximum feasible efficiency of the
market. Due to the concavity of the utility function Ui, we
have Vi ≥ Ui for any resource allocation ri. Therefore,
OPT(V ) ≥ OPT(U), and:

Nash(U)/OPT(U) ≥ Nash(V )/OPT(V )

Define αij =
∂Ui(r

n
i )

∂rij
, βi = Ui(r

n
i ) −

∑
j αijr

n
ij , and

Vi(ri) =
∑
j αijrij + βi. Let Wi(ri) =

∑
j αijrij , B =∑

i βi. Then we have:

Nash(U)

OPT(U)
≥ Nash(V )

OPT(V )
≥ Nash(V )−B

OPT(V )−B
=

Nash(W )

OPT(W )
(8)

Next, we show the Price of Anarchy assuming players
have utility Wi. The social welfare W =

∑
iWi(ri) =∑

i

∑
j αijrij =

∑
j

∑
i αijrij . It is easy to find that the

optimal social welfare is achieved if for resource j, all Cj is
given to the player i that has maximum αij :

OPT(W ) =
∑
j

Cj max
i
{αij}

For market equilibrium allocation rn, we have Nash(W ) =∑
j

∑
i αijr

n
ij . Define Nashj =

∑
i αijr

n
ij . From Equa-

tion 7, each player has αij 1
pnj

(1− rnij
Cj

) = λi for any resource
j if he submits a non-zero bid to it. Therefore, αij ≥ pnj λi.
Without loss of generality, we define α1j = maxi{αij}.
Then we have:

Nashj = α1jr
n
1j +

∑
i 6=1

αijr
n
ij ≥ α1jr

n
1j +

∑
i6=1

pnj λir
n
ij

≥ α1jr
n
1j + pnj min

i
{λi}(Cj − rn1j)

≥ α1jr
n
1j + α1j

mini{λi}
λ1

(Cj − rn1j)(1−
rn1j
Cj

)

≥ α1jr
n
1j + α1j

mini{λi}
maxi{λi}

(Cj − rn1j)(1−
rn1j
Cj

)

= α1j [
MUR
Cj

(rn1j − (1− 1

2MUR
))2 + Cj(1−

1

4MUR
)]

Therefore, if MUR ≥ 1
2 , Nashj ≥ α1jCj(1 − 1

4MUR ),
and:

Nash(W ) =
∑
j

Nashj ≥ (1− 1

4MUR
)
∑
j

max
i
{αij}Cj

= (1− 1

4MUR
)OPT(W ) ≥ 1

2
OPT(W )

If MUR < 1
2 , Nashj > α1jCj ·MUR, then:

Nash(W ) > MUR · OPT(W )

Combined with Equation 8, we have:

MUR ≥ 1

2
:

Nash(U)

OPT(U)
≥ Nash(W )

OPT(W )
≥ (1− 1

4MUR
)

MUR <
1

2
:

Nash(U)

OPT(U)
≥ Nash(W )

OPT(W )
≥ MUR

A.2 Proof of Theorem 2
We introduce market budget range metric MBR = Bi

maxj{Bj}
into Zhang’s proof of envy-freeness with equal budget [40],
so that our results apply to a market with an arbitrary budget
assignment for players. The idea for proving a market is c-
approximate envy-free is to prove that at market equilibrium,
for any feasible bid vector z with 0 ≤ zj ≤ ynij , and it
is always the case that

∑
j zj = maxi{Bi}, Ui(rni ) ≥

c · Ui( zj
bnij+ynij

).
To prove this, we define the player i’s budget range:

MBRi = Bi

maxj{Bj} . Similar to Zhang [40], we construct a

matrix {b̂jk} for 0 ≤ j, k ≤ M , where M is the number of
resources. Such matrix satisfies the following conditions:

b̂jj = min
j
{bij , zj ·MBRi},∑

k

b̂jk = bij ,∑
j

b̂jk = zk ·MBRi

The rest of the proof follows Zhang [40], combined with the
fact that MBRi = Bi

maxj{Bj} ≥
minj Bj

maxk Bk
= MBR.

Finally, we get that for any player i,

Ui(x
n
i ) ≥ (2

√
1 + MBRi − 2) · Ui(z)

≥ (2
√

1 + MBR− 2) · Ui(z)
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