¥\ Cornell University
)5 Computer Systems Laboratory

PLIANT: LEVERAGING APPROXIMATION TO IMPROVE
RESOURCE EFFICIENCY IN DATACENTERS

Neeraj Kulkarni, Feng Qi, Christina Delimitrou

CLOUD COMPUTING CS|E:

= Resource Flexibility
 Users can elastically scale their resources on-demand

= Cost Efficiency

 Sharing resources between multiple users and applications

soaik’ WK

v NGINX

‘e = §\ GraphLab
— == o
mongo Google == @hadaap
Latency-critical Batch applications

Interactive apps
E— - ——

QoS: throughput

QoS: tail latency

%’; Cornell University

45 Computer Systems Laboratory

LOW UTILIZATION! CSiii:

= Servers operate at 10% - 40% utilization most of the time

0.040 , - : . 0.03
0095 : 0.025 llr Google cluster
Twitter cluster 0 iHiiitH
0030 !
0.02
E0025 2
50020 é 0.015
o0015 ‘ & oo
"~ 0.010
’ ‘ ‘ 0.005
ooos ‘ | -
0.000, ‘ 0 e e
20 40 60 80 100 0 01 02 03 04 05 06 07 08 09 1
CPU Utilization (%) CPU Utilization

* Major reasons:
Dedicated servers for interactive services
Resource over-provisioning — conservative reservations

C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-Aware Cluster Management,” in ASPLOS, 2014
L. Barroso et. al., “The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines”, Second edition, 2013

ornell University

omputer Systems Laboratory

MULTI-TENANCY CSle

= Scheduling multiple jobs on the same server

* Increases server utilization and cost efficiency

* Interference in shared resources

network

= Interference = Unpredictable performance
= Difficult with interactive services

>
\\ Cornell University

¢/ Computer Systems Laboratory

PREVIOUS SOLUTIONS CSlii:

1. Allow co-scheduling of apps that would not violate QoS
* Bubble-Up, Bubble-Flux, Paragon and Quasar

2. Partition shared resources at runtime to reduce interference
 Heracles, Ubik, Rubik

3. Reduce interference by throttling applications at runtime
* Bubble-Flux, ReQoS, Protean Code

= But...

* Server utilization by disallowing certain co-locations
 Performance of batch applications by treating them as low-priority

%’; Cornell University

45 Computer Systems Laboratory

BREAK UTILIZATION VS PERFORMANCE TRADE-OFF CSL.

= Approximate computing applications

* Tolerate some loss in output accuracy in return for
» Improved performance, or
» Same performance with reduced resources

* Cloud workloads suitable for approximation

t,‘«

Nl

Big Data
& Analytics

Scientific. e DATA
Computing MININ

 Performance can be more important than highest output quality

* Co-locate approximate batch apps with interactive services
* Meet performance for both applications at the cost of some inaccuracy

%’; Cornell University

45 Computer Systems Laboratory

LEVERAGING APPROXIMATION

1. Mitigate interference:

* Approximation can reduce # of requests to memory system & network
« Approximation may not be always sufficient

2. Meet performance of approximate applications:

* When approximation is not enough, employ resource partitioning;
» Core relocation
» Cache partitioning
» Memory partitioning

* Provide more resources to interactive service to meet its QoS
* Approximation preserves the performance of batch applications

%’; Cornell University

¢/ Computer Systems Laboratory

APPROXIMATION TECHNIQUES CS|=

* Loop perforation: Skip fraction of iterations

 Fewer instructions & data accesses = exec time ¢ & cache interference ¢

= Synchronization elision: Barriers, locks elided | doubte—t—c—mt-t

* Threads don’t wait for sync = exec time ¢

o B for i =1 to N
Reduces memory accesses for acquiring locks e i e,
* Lower precision: Reduce precision of variables | "7
Toekt—

* e.g., replace ‘double’ with ‘float” or “int’
* Reduces memory traffic wmtock)”

* Tiling: Compute 1 element & project onto neighbors

* Fewer instructions & data accesses = exec time ¢ & [for i = 1 to M:
- A[1i,2] = F(1,2)
cache interference ¢ for § = 1 to 3:
P
A[i][J] = A[1][2]

4”; Cornell University

¢/ Computer Systems Laboratory

APPROXIMATION TRADE-OFFS

= 100s of approximate variants

* Pruning design space:
 Hint-based:
» Employ approximations hinted by ACCEPT* tool
* Profiling-based (gprof):

» Approximate in functions which contribute most to execution time

‘ Il Precise I Approx vi I Approx v2 I Approx v3 N Approx v4 i‘

o
214 : Canneal 3.0 Canneal
() ' ;
510’@..) iremses oo cg 5
o rox selecte
ool (RO © P e
S ' ® % 2.
o 0.8} °
c ® oo 31,
D 0.7¢ T e c
£ ' % 2
< 0.6 : o S1
'-.C=) 0.5 : ° ® e ® % 0
%0475 5 10 15 20 0.
me

Inaccuracy (%)

*ACCEPT: A Programmer-Guided Compiler Framework for Practical Approximate Computing, A. Sampson et. al.

Cornell University

Computer Systems Laboratory

PLIANT: GOALS CcSiE

= High utilization

* Co-schedule interactive services with approximate applications

= High QoS

» Satisty QoS of all co-scheduled jobs at the cost of some accuracy loss

= Minimize accuracy loss
* Adjust approximation at runtime using slack in tail latency

* Techniques used to reduce interference at runtime
* Approximation
* Resource relocation (core relocation, cache & memory partitioning)

%’; Cornell University

¢/ Computer Systems Laboratory

PLIANT - OVERVIEW CSI=:

* Continuously monitors * Dynamic recompilation
the tail latency * Runtime allocation
(4
QoS violation O Design Space
/- [Y —— e Exploration
\

Pliant

(2]
k7]
o}
@ g Ei g
wanviemary ||
\ / CPU CPU CPU
Client
’ , ; LLC
- interactive
service
workload
B generator
«~] approximate
—~——~

computing app

Server

ornell University

omputer Systems Laboratory

PLIANT — RUNTIME ALGORITHM CS|i:

= Meet QoS as fast as possible
= Minimize accuracy loss using latency slack when QoS met

QoS not met B
¥
ﬂ‘ \C_y o
Batch: precise I
A QoS not met

Pe
QoS not met fTor, fnanc
e
Batch: Most-1 Approx I Ofapp,,
Ox o

Batch: Most Approx y \ \
Batch: -1 core I
Latency slack > 10% Interactive: +1 core L
Batch: -1 core

Interactive: +1 core

Interference ¢ Latency slack > 10%

4"; Cornell University
¢/ Computer Systems Laboratory

PLIANT — RUNTIME ALGORITHM

= Multiple resources: cores, LLC and memory

QoS not met

YN N N\

Batch: Most Approx CPU saturated? Cache thrashing?

Batch: -1 core I Batch: -1 LLC way I Batch: - 512 MB !
Interactive: +1 core Interactive: +1 LLC way Interactive: +512

Batch: -1 core Batch: -1 LLC way Batch: - 512 MB
Interactive: +1 core Interactive: +1 LLC way Interactive: +512 MB

\ Cornell University

¢ Computer Systems Laboratory

PLIANT — VARYING APPROXIMATION DEGREE CS]iii

* Dynamic recompilation system
« Aggregated approximate variants to construct tunable app
* Linux signals for DynamoRIO to switch to an approximate variant

« drwrap_replace() interface is used to replace functions
» Coarse granularity = low overheads

DynamoRIO

<

ADD Dinary
precise — signal0 precise - addr0
approxl — signall approxl - addrl
void f1 p(){ approx2 — signal2 approx2 - addr2
//£f1 _precise

Tunable Apy

void f1 a2(){

//£1 _approx2 Pliant runtime

3\ Cornell University

Computer Systems Laboratory

PLIANT — RUNTIME RESOURCE ALLOCATION CS|&:

= All applications run in Docker containers

= Core relocation

 Docker update interface to allocate cores to each container

= Cache allocation
* Intel’s Cache Allocation Technology (CAT) to allocate cache ways

* Memory capacity

* Docker update interface to assign memory limits

4”; Cornell University

45 Computer Systems Laboratory

EXPERIMENTAL SETUP CSI®

= Interactive services: NGINX, memcached, MongoDB

= 24 approximate computing applications:
« PARSEC, SPLASH?2x, MineBench, BioPerf benchmark suites

= Systems
* 44 physical core dual-socket platform, 128 GB RAM, 56 MB LLC/socket

* Interactive services & approximate applications pinned to different
physical cores of same socket

= Baseline
« Approximate application run in precise mode
* Cores, cache, and memory shared fairly among the applications

%’; Cornell University

45 Computer Systems Laboratory

EVALUATION - DYNAMIC BEHAVIOR C S

Batch: precise

‘ [Precise [Approx v1 [Approx v2 [Approx v3 [Approx v4 ‘

1=
1D
3
@)
1V
@)
0
D
o
+
@)
Qv
13
>
0]
|
>
1
O
1O
1=
o
z
I

300

Batch: Most-1 Approx

]]

T T T e T

250¢ Batch: Most Approx

Batch: -1 core

200 Interactive: +1 core

Batch: -1 core

150¢ Interactive: +1 core

99'"%-ile tail latency (usec)

N
cores (reclaimed by memcached)

Batch: -1 core

0 5 10 15 20 25 30 35 40 45 Interactive: +1 core
Time (sec)

I
=

100

o‘; Cornell University

g Computer Systems Laboratory

EVALUATION — DYNAMIC BEHAVIOR CSlii

= Across interactive services
* memcached and NGINX need to reclaim resources
* In case of MongoDB, approximation is enough

‘ [Precise [Approx vi1 [0 Approx v2 [Approx v3 71 Approx v4

300 Memcached + Canneal (4 approx) , 50 NGINX + Canneal (4 approx) MongoDB + Canneal (4 approx)
w19] T 02 ‘ T o5E15 = F 3 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ —~
W [v el m
— P e 1 QG5 < O 140n a
o o s % ¢ i z 3 S
S o50l 4 o € 40F 4 o E ! c
2 HH : ' E = | 2 2 T 1200 2 g
> i ! oo g 35 > O ! =
c 4 i :._ = a1 72 E (ICJ 30 g 6 " T _S‘
I}] '] > 4+ = Y v
EZOO 0 ﬂ ﬁ ! 'F_H-;-H:lﬂ § ° 1 g 3100' = = r—r t .'-. —— 8
= ' a1 = 25 ‘S = Tivan = i .- T1h IS ess
-8 [.I - : ' ﬂllj_! -JJ!-]_ OE) £ % & : ! r_%
@ nuud & 920 2 9 80 i o
: oo = = =
% 150 lb € %15 0 2 ° 3
2 8 T 10 = S % 60 5
5 7 o
_19 5 : : : ‘ ‘ : 1 : : : ‘ ‘ ‘ ‘ ‘ 1
1000 5 10 15 20 25 30 35 40 45 1 0 5 10 15 i 20 25 30 35 40 0 5 10 15 .20 25 30 35 40
Time (sec) Time (sec) Time (sec)

Cornell University

Computer Systems Laboratory

EVALUATION — DYNAMIC BEHAVIOR CSIiE

= Across approximate applications
* Bayesian shows bursty behavior - approximation usually enough
* In case of SNP, no resource reclamation is required

[Precise [Approx v1 [Approx v2 [Approx v3 71 Approx v4 1 Approx v5 [1 Approx v6 [Approxv7 [Approx VB‘

300 Memcached + Canneal (4 approx) Memcached + SNP (5 approx)

719 502 s 1 o 3p0.Memcached + Bayesian (8 approx)i4A 300g75— 5
— i Do ' o _ s ° S | 9
3 N ER A I ° a9k g
1y) Al L = |n

2250 ' € 22501 7o g =% 15
a "1 ': g L>)‘ :' ':'l g g E
c H D 0 :". -. - 12 = 2 1| [2
g ool FLE fad CETRA 2 2 > 2o 3
- 200 b /W ﬂum- ° 4200 23 - b— 5
E i [i E o 5
o i o nnand ® s o " &
et d ' [y (0] - —_ = o (S}
2 150 i g % 1s0f g 2 g
2 10 = ¥ = S =
8 ¢ % 5 2 0
o ° 5 S

100 S (O S — B : 0S8 joof e U . THea B S

0 5 10 15 20 25 30 35 40 45 10070715 20 25 30 35 40 45 50 0 5 101520 2T5 30 35 40 45 50 55 60

Time (sec) Time (sec) ime (sec)

= For all co-schedulings, show QoS is met for all apps at an
accuracy loss of up to 5% (2.8% on average)

3\ Cornell University

¢ Computer Systems Laboratory

SUMMARY - PLIANT CS|=:

= Approximation can break performance vs utilization trade-off
= Many cloud applications can tolerate some loss of quality

= Pliant — practical runtime system
* Incremental approximation using dynamic recompilation
* Dynamic allocation of shared resources

= Achieves high utilization
* Enabled co-scheduling of approximate batch apps with interactive services

= Achieves high QoS

* Meets QoS for all apps at cost of small accuracy loss (max 5%, avg 2.8%)

%’; Cornell University

45 Computer Systems Laboratory

QUESTIONS? CS|E:

= Approximation can break performance vs utilization trade-off
= Many cloud applications can tolerate some loss of quality

= Pliant — practical runtime system
* Incremental approximation using dynamic recompilation
* Dynamic allocation of shared resources

= Achieves high utilization
* Enabled co-scheduling of approximate batch apps with interactive services

= Achieves high QoS

* Meets QoS for all apps at cost of small accuracy loss (max 5%, avg 2.8%)

%’; Cornell University

45 Computer Systems Laboratory

THANK YOU!

Cornell University

Computer Systems Laboratory

Page 25 of 25

