
PLIANT: LEVERAGING APPROXIMATION TO IMPROVE
RESOURCE EFFICIENCY IN DATACENTERS

Neeraj Kulkarni, Feng Qi, Christina Delimitrou

CLOUD COMPUTING

§ Resource Flexibility
• Users can elastically scale their resources on-demand

§ Cost Efficiency
• Sharing resources between multiple users and applications

Batch applicationsLatency-critical
Interactive apps

QoS: tail latency QoS: throughput

LOW UTILIZATION!

C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-Aware Cluster Management,” in ASPLOS, 2014

§ Major reasons:
• Dedicated servers for interactive services
• Resource over-provisioning – conservative reservations

§ Servers operate at 10% - 40% utilization most of the time

Twitter cluster Google cluster

L. Barroso et. al., “The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines”, Second edition, 2013

CPU

MULTI-TENANCY

CPU

§ Scheduling multiple jobs on the same server
• Increases server utilization and cost efficiency
• Interference in shared resources

……CPU CPU

Memory

LLC
App1

App2

compute

§ Interference à Unpredictable performance
§ Difficult with interactive services

network

memory

PREVIOUS SOLUTIONS

1. Allow co-scheduling of apps that would not violate QoS
• Bubble-Up, Bubble-Flux, Paragon and Quasar

2. Partition shared resources at runtime to reduce interference
• Heracles, Ubik, Rubik

3. Reduce interference by throttling applications at runtime
• Bubble-Flux, ReQoS, Protean Code

§ But …
• Server utilization by disallowing certain co-locations
• Performance of batch applications by treating them as low-priority

BREAK UTILIZATION VS PERFORMANCE TRADE-OFF

§ Approximate computing applications
• Tolerate some loss in output accuracy in return for

» Improved performance, or
» Same performance with reduced resources

§ Cloud workloads suitable for approximation

• Performance can be more important than highest output quality

§ Co-locate approximate batch apps with interactive services
• Meet performance for both applications at the cost of some inaccuracy

LEVERAGING APPROXIMATION

1. Mitigate interference:
• Approximation can reduce # of requests to memory system & network
• Approximation may not be always sufficient

2. Meet performance of approximate applications:
• When approximation is not enough, employ resource partitioning:

» Core relocation
» Cache partitioning
» Memory partitioning

• Provide more resources to interactive service to meet its QoS
• Approximation preserves the performance of batch applications

APPROXIMATION TECHNIQUES

§ Loop perforation: Skip fraction of iterations
• Fewer instructions & data accesses à exec time ⇩ & cache interference ⇩

§ Synchronization elision: Barriers, locks elided
• Threads don’t wait for sync à exec time ⇩
• Reduces memory accesses for acquiring locks

§ Lower precision: Reduce precision of variables
• e.g., replace ‘double’ with ‘float’ or ‘int’
• Reduces memory traffic

double l_c = 1.0
float l_c = 1.0

for i = 1 to N:
if i % 2 != 0:
.....

lock()
g_c = g_c + l_c
unlock()

BARRIER()

for i = 1 to M:
A[i,2] = F(i,2)
for j = 1 to 3:
A[i][j] = F(i,j)
A[i][j] = A[i][2]

.
.
.

.
.
.

.
.
.

.
.
.

§ Tiling: Compute 1 element & project onto neighbors
• Fewer instructions & data accesses à exec time ⇩ &

cache interference ⇩

APPROXIMATION TRADE-OFFS

§ 100s of approximate variants
§ Pruning design space:

• Hint-based:
» Employ approximations hinted by ACCEPT* tool

• Profiling-based (gprof):
» Approximate in functions which contribute most to execution time

0 5 10 15 20
Inaccuracy (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ex
ec

ut
io

n
tim

e
no

rm
. t

o
pr

ec
is

e Canneal

0 5 10 15 20
Inaccuracy (%)

0.5

0.6

0.7

0.8

0.9

1.0

1.1 Glimmer
Precise
Approx Selected

0 5 10 15 20
Inaccuracy (%)

0.5

0.6

0.7

0.8

0.9

1.0

1.1 Glimmer
Precise
Approx Selected

Precise
Approx Selected

*ACCEPT: A Programmer-Guided Compiler Framework for Practical Approximate Computing, A. Sampson et. al.

nginx memcached mongodb0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ta
il

La
te

nc
y

vs
. Q

oS

Canneal

Precise Approx v1 Approx v2 Approx v3 Approx v4 Approx v5 Approx v6 Approx v7 Approx v8Precise Approx v1 Approx v2 Approx v3 Approx v4 Approx v5 Approx v6 Approx v7 Approx v8

PLIANT: GOALS

§ High utilization
• Co-schedule interactive services with approximate applications

§ High QoS
• Satisfy QoS of all co-scheduled jobs at the cost of some accuracy loss

§ Minimize accuracy loss
• Adjust approximation at runtime using slack in tail latency

§ Techniques used to reduce interference at runtime
• Approximation
• Resource relocation (core relocation, cache & memory partitioning)

PLIANT - OVERVIEW
• Continuously monitors

the tail latency
• Dynamic recompilation
• Runtime allocation

CPU

Client

Server

CPU

LLC

Main	Memory

CPU

…

…

LLC

Main	Memory

Pliant

interactive
service

approximate
computing app

QoS violation

CPU CPU

Performance	
monitor

Actuator

CPU

workload
generator

re
qu

es
ts

Design	Space	
Exploration

CB

A

PLIANT – RUNTIME ALGORITHM

§ Meet QoS as fast as possible
§ Minimize accuracy loss using latency slack when QoS met

Batch:	-1		core	
Interactive:	+1	core	

Batch:	-1	core	
Interactive:	+1	core	

Batch:	Most-1	Approx

Batch:	Most	Approx

Batch:	precise

…
..

…
..

Interference ⇩

Latency	slack	>	10%

QoS	not	met

Latency	slack	>	10%

QoS	not	met

QoS	not	met

PLIANT – RUNTIME ALGORITHM

§ Multiple resources: cores, LLC and memory

Batch:	Most	Approx

QoS	not	met

CPU	saturated?

Batch:	-1	LLC	way	
Interactive:	+1	LLC	way	

Batch:	- 512	MB	
Interactive:	+512	MB

Batch:	-1	core	
Interactive:	+1	core	

Cache	thrashing? Mem	saturated?

Batch:	-1	LLC	way	
Interactive:	+1	LLC	way	

Batch:	- 512	MB	
Interactive:	+512	MB

Batch:	-1	core	
Interactive:	+1	core	

…
..

…
..

…
..

PLIANT – VARYING APPROXIMATION DEGREE

§ Dynamic recompilation system
• Aggregated approximate variants to construct tunable app
• Linux signals for DynamoRIO to switch to an approximate variant
• drwrap_replace() interface is used to replace functions

» Coarse granularity à low overheads

Tunable App

void f1_p(){
//f1_precise
.....
}
void f1_a1(){
//f1_approx1
.....
}
void f1_a2(){
//f1_approx2
.....
}

.
.
.

.
.
.

App Binary

addr0 <f1_p>
....
.....

addr1 <f1_a1>
.....
.....

addr2 <f1_a2>
.....
.....

.
.
.

.
.
.

Pliant runtime

DynamoRIO

precise - addr0
approx1 - addr1
approx2 - addr2

precise – signal0
approx1 – signal1
approx2 – signal2

f0

f1_p
f2

f1_a2

signal2

signal0

f1_a1

PLIANT – RUNTIME RESOURCE ALLOCATION

§ All applications run in Docker containers

§ Core relocation
• Docker update interface to allocate cores to each container

§ Cache allocation
• Intel’s Cache Allocation Technology (CAT) to allocate cache ways

§ Memory capacity
• Docker update interface to assign memory limits

EXPERIMENTAL SETUP

§ Interactive services: NGINX, memcached, MongoDB

§ 24 approximate computing applications:
• PARSEC, SPLASH2x, MineBench, BioPerf benchmark suites

§ Systems
• 44 physical core dual-socket platform, 128 GB RAM, 56 MB LLC/socket
• Interactive services & approximate applications pinned to different

physical cores of same socket

§ Baseline
• Approximate application run in precise mode
• Cores, cache, and memory shared fairly among the applications

EVALUATION - DYNAMIC BEHAVIOR

Precise Approx v1 Approx v2 Approx v3 Approx v4 Approx v5 Approx v6 Approx v7 Approx v8Precise Approx v1 Approx v2 Approx v3 Approx v4 Approx v5 Approx v6 Approx v7 Approx v8

Batch:	-1	core	
Interactive:	+1	core	

Batch:	-1	core	
Interactive:	+1	core	

Batch:	Most-1	Approx

Batch:	Most	Approx

Batch:	precise

Batch:	-1	core	
Interactive:	+1	core	

EVALUATION – DYNAMIC BEHAVIOR

§ Across interactive services
• memcached and NGINX need to reclaim resources
• In case of MongoDB, approximation is enough

Precise Approx v1 Approx v2 Approx v3 Approx v4 Approx v5 Approx v6 Approx v7 Approx v8Precise Approx v1 Approx v2 Approx v3 Approx v4 Approx v5 Approx v6 Approx v7 Approx v8

EVALUATION – DYNAMIC BEHAVIOR

Precise Approx v1 Approx v2 Approx v3 Approx v4 Approx v5 Approx v6 Approx v7 Approx v8

§ Across approximate applications
• Bayesian shows bursty behavior - approximation usually enough
• In case of SNP, no resource reclamation is required

§ For all co-schedulings, show QoS is met for all apps at an
accuracy loss of up to 5% (2.8% on average)

SUMMARY - PLIANT

§ Approximation can break performance vs utilization trade-off
§ Many cloud applications can tolerate some loss of quality

§ Pliant – practical runtime system
• Incremental approximation using dynamic recompilation
• Dynamic allocation of shared resources

§ Achieves high utilization
• Enabled co-scheduling of approximate batch apps with interactive services

§ Achieves high QoS
• Meets QoS for all apps at cost of small accuracy loss (max 5%, avg 2.8%)

QUESTIONS?

§ Approximation can break performance vs utilization trade-off
§ Many cloud applications can tolerate some loss of quality

§ Pliant – practical runtime system
• Incremental approximation using dynamic recompilation
• Dynamic allocation of shared resources

§ Achieves high utilization
• Enabled co-scheduling of approximate batch apps with interactive services

§ Achieves high QoS
• Meets QoS for all apps at cost of small accuracy loss (max 5%, avg 2.8%)

Page 25 of 25

THANK YOU!

