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CLOUD COMPUTING CS|E:

= Resource Flexibility
 Users can elastically scale their resources on-demand

= Cost Efficiency

 Sharing resources between multiple users and applications
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LOW UTILIZATION! CSiii:

= Servers operate at 10% - 40% utilization most of the time
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* Major reasons:
Dedicated servers for interactive services
Resource over-provisioning — conservative reservations

C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-Aware Cluster Management,” in ASPLOS, 2014
L. Barroso et. al., “The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines”, Second edition, 2013
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MULTI-TENANCY CSle

= Scheduling multiple jobs on the same server

* Increases server utilization and cost efficiency

* Interference in shared resources

network

= Interference = Unpredictable performance
= Difficult with interactive services
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PREVIOUS SOLUTIONS CSlii:

1. Allow co-scheduling of apps that would not violate QoS
* Bubble-Up, Bubble-Flux, Paragon and Quasar

2. Partition shared resources at runtime to reduce interference
 Heracles, Ubik, Rubik

3. Reduce interference by throttling applications at runtime
* Bubble-Flux, ReQoS, Protean Code

= But...

* Server utilization by disallowing certain co-locations
 Performance of batch applications by treating them as low-priority
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BREAK UTILIZATION VS PERFORMANCE TRADE-OFF CSL.

= Approximate computing applications

* Tolerate some loss in output accuracy in return for
» Improved performance, or
» Same performance with reduced resources

* Cloud workloads suitable for approximation
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 Performance can be more important than highest output quality

* Co-locate approximate batch apps with interactive services
* Meet performance for both applications at the cost of some inaccuracy
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LEVERAGING APPROXIMATION

1. Mitigate interference:

* Approximation can reduce # of requests to memory system & network
« Approximation may not be always sufficient

2. Meet performance of approximate applications:

* When approximation is not enough, employ resource partitioning;
» Core relocation
» Cache partitioning
» Memory partitioning

* Provide more resources to interactive service to meet its QoS
* Approximation preserves the performance of batch applications
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APPROXIMATION TECHNIQUES CS|=

* Loop perforation: Skip fraction of iterations

 Fewer instructions & data accesses = exec time ¢ & cache interference ¢

= Synchronization elision: Barriers, locks elided | doubte—t—c—mt-t

* Threads don’t wait for sync = exec time ¢

o B for i =1 to N
Reduces memory accesses for acquiring locks e i e,
* Lower precision: Reduce precision of variables | "7
Toekt—

* e.g., replace ‘double’ with ‘float” or “int’
* Reduces memory traffic wmtock)”

* Tiling: Compute 1 element & project onto neighbors

* Fewer instructions & data accesses = exec time ¢ & [for i = 1 to M:
- A[1i,2] = F(1,2)
cache interference ¢ for § = 1 to 3:
P
A[i][J] = A[1][2]
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APPROXIMATION TRADE-OFFS

= 100s of approximate variants

* Pruning design space:
 Hint-based:
» Employ approximations hinted by ACCEPT* tool
* Profiling-based (gprof):

» Approximate in functions which contribute most to execution time
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*ACCEPT: A Programmer-Guided Compiler Framework for Practical Approximate Computing, A. Sampson et. al.
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PLIANT: GOALS CcSiE

= High utilization

* Co-schedule interactive services with approximate applications

= High QoS

» Satisty QoS of all co-scheduled jobs at the cost of some accuracy loss

= Minimize accuracy loss
* Adjust approximation at runtime using slack in tail latency

* Techniques used to reduce interference at runtime
* Approximation
* Resource relocation (core relocation, cache & memory partitioning)

%’; Cornell University

¢/ Computer Systems Laboratory




PLIANT - OVERVIEW CSI=:

* Continuously monitors * Dynamic recompilation
the tail latency * Runtime allocation
( 4
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PLIANT — RUNTIME ALGORITHM CS|i:

= Meet QoS as fast as possible
= Minimize accuracy loss using latency slack when QoS met
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PLIANT — RUNTIME ALGORITHM

= Multiple resources: cores, LLC and memory

QoS not met

YN N N\

Batch: Most Approx CPU saturated? Cache thrashing?

Batch: -1 core I Batch: -1 LLC way I Batch: - 512 MB !
Interactive: +1 core Interactive: +1 LLC way Interactive: +512

Batch: -1 core Batch: -1 LLC way Batch: - 512 MB
Interactive: +1 core Interactive: +1 LLC way Interactive: +512 MB
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PLIANT — VARYING APPROXIMATION DEGREE CS]iii

* Dynamic recompilation system
« Aggregated approximate variants to construct tunable app
* Linux signals for DynamoRIO to switch to an approximate variant

« drwrap_replace() interface is used to replace functions
» Coarse granularity = low overheads

DynamoRIO

<

ADD Dinary
precise — signal0 precise - addr0
approxl — signall approxl - addrl
void f1 p(){ approx2 — signal2 approx2 - addr2
//£f1 _precise

Tunable Apy

void f1 a2(){

//£1 _approx2 Pliant runtime
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PLIANT — RUNTIME RESOURCE ALLOCATION CS|&:

= All applications run in Docker containers

= Core relocation

 Docker update interface to allocate cores to each container

= Cache allocation
* Intel’s Cache Allocation Technology (CAT) to allocate cache ways

* Memory capacity

* Docker update interface to assign memory limits
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EXPERIMENTAL SETUP CSI®

= Interactive services: NGINX, memcached, MongoDB

= 24 approximate computing applications:
« PARSEC, SPLASH?2x, MineBench, BioPerf benchmark suites

= Systems
* 44 physical core dual-socket platform, 128 GB RAM, 56 MB LLC/socket

* Interactive services & approximate applications pinned to different
physical cores of same socket

= Baseline
« Approximate application run in precise mode
* Cores, cache, and memory shared fairly among the applications
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EVALUATION - DYNAMIC BEHAVIOR C S

Batch: precise
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EVALUATION — DYNAMIC BEHAVIOR CSlii

= Across interactive services
* memcached and NGINX need to reclaim resources
* In case of MongoDB, approximation is enough
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EVALUATION — DYNAMIC BEHAVIOR CSIiE

= Across approximate applications
* Bayesian shows bursty behavior - approximation usually enough
* In case of SNP, no resource reclamation is required
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= For all co-schedulings, show QoS is met for all apps at an
accuracy loss of up to 5% (2.8% on average)
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SUMMARY - PLIANT CS|=:

= Approximation can break performance vs utilization trade-off
= Many cloud applications can tolerate some loss of quality

= Pliant — practical runtime system
* Incremental approximation using dynamic recompilation
* Dynamic allocation of shared resources

= Achieves high utilization
* Enabled co-scheduling of approximate batch apps with interactive services

= Achieves high QoS

* Meets QoS for all apps at cost of small accuracy loss (max 5%, avg 2.8%)
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QUESTIONS? CS|E:

= Approximation can break performance vs utilization trade-off
= Many cloud applications can tolerate some loss of quality

= Pliant — practical runtime system
* Incremental approximation using dynamic recompilation
* Dynamic allocation of shared resources

= Achieves high utilization
* Enabled co-scheduling of approximate batch apps with interactive services

= Achieves high QoS

* Meets QoS for all apps at cost of small accuracy loss (max 5%, avg 2.8%)
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THANK YOU!
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