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CLOUD COMPUTING

§ Resource Flexibility
• Users can elastically scale their resources on-demand

§ Cost Efficiency
• Sharing resources between multiple users and applications

Batch applicationsLatency-critical 
Interactive apps

QoS: tail latency QoS: throughput



LOW UTILIZATION!

C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-Aware Cluster Management,” in ASPLOS, 2014 

§ Major reasons:
• Dedicated servers for interactive services 
• Resource over-provisioning – conservative reservations

§ Servers operate at 10% - 40% utilization most of the time

Twitter cluster Google cluster

L. Barroso et. al., “The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines”, Second edition, 2013



CPU

MULTI-TENANCY

CPU

§ Scheduling multiple jobs on the same server
• Increases server utilization and cost efficiency
• Interference in shared resources

……CPU CPU

Memory

LLC
App1

App2

compute

§ Interference à Unpredictable performance
§ Difficult with interactive services

network

memory



PREVIOUS SOLUTIONS

1. Allow co-scheduling of apps that would not violate QoS
• Bubble-Up, Bubble-Flux, Paragon and Quasar

2. Partition shared resources at runtime to reduce interference
• Heracles, Ubik, Rubik

3. Reduce interference by throttling applications at runtime
• Bubble-Flux, ReQoS, Protean Code

§ But …
• Server utilization by disallowing certain co-locations
• Performance of batch applications by treating them as low-priority



BREAK UTILIZATION VS PERFORMANCE TRADE-OFF

§ Approximate computing applications
• Tolerate some loss in output accuracy in return for

» Improved performance, or
» Same performance with reduced resources

§ Cloud workloads suitable for approximation

• Performance can be more important than highest output quality

§ Co-locate approximate batch apps with interactive services
• Meet performance for both applications at the cost of some inaccuracy



LEVERAGING APPROXIMATION

1. Mitigate interference:
• Approximation can reduce # of requests to memory system & network
• Approximation may not be always sufficient

2. Meet performance of approximate applications:
• When approximation is not enough, employ resource partitioning:

» Core relocation
» Cache partitioning
» Memory partitioning

• Provide more resources to interactive service to meet its QoS
• Approximation preserves the performance of batch applications



APPROXIMATION TECHNIQUES

§ Loop perforation: Skip fraction of iterations
• Fewer instructions & data accesses à exec time ⇩ & cache interference ⇩

§ Synchronization elision: Barriers, locks elided
• Threads don’t wait for sync à exec time ⇩
• Reduces memory accesses for acquiring locks

§ Lower precision: Reduce precision of variables
• e.g., replace ‘double’ with ‘float’ or ‘int’
• Reduces memory traffic

double l_c = 1.0
float l_c = 1.0

for i = 1 to N:
if i % 2 != 0: 
.....

lock()
g_c = g_c + l_c
unlock()

BARRIER()

for i = 1 to M:
A[i,2] = F(i,2)
for j = 1 to 3:
A[i][j] = F(i,j)
A[i][j] = A[i][2]

.
.
.

.
.
.

.
.
.

.
.
.

§ Tiling: Compute 1 element & project onto neighbors
• Fewer instructions & data accesses à exec time ⇩ & 

cache interference ⇩



APPROXIMATION TRADE-OFFS

§ 100s of approximate variants
§ Pruning design space:

• Hint-based:
» Employ approximations hinted by ACCEPT* tool

• Profiling-based (gprof):
» Approximate in functions which contribute most to execution time
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*ACCEPT: A Programmer-Guided Compiler Framework for Practical Approximate Computing, A. Sampson et. al.
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PLIANT: GOALS

§ High utilization
• Co-schedule interactive services with approximate applications

§ High QoS
• Satisfy QoS of all co-scheduled jobs at the cost of some accuracy loss

§ Minimize accuracy loss
• Adjust approximation at runtime using slack in tail latency

§ Techniques used to reduce interference at runtime
• Approximation
• Resource relocation (core relocation, cache & memory partitioning)



PLIANT - OVERVIEW
• Continuously monitors 

the tail latency
• Dynamic recompilation
• Runtime allocation
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PLIANT – RUNTIME ALGORITHM

§ Meet QoS as fast as possible 
§ Minimize accuracy loss using latency slack when QoS met

Batch:	-1		core	
Interactive:	+1	core	

Batch:	-1	core	
Interactive:	+1	core	

Batch:	Most-1	Approx

Batch:	Most	Approx

Batch:	precise

…
..

…
..

Interference ⇩

Latency	slack	>	10%

QoS	not	met

Latency	slack	>	10%

QoS	not	met

QoS	not	met



PLIANT – RUNTIME ALGORITHM

§ Multiple resources: cores, LLC and memory

Batch:	Most	Approx

QoS	not	met

CPU	saturated?

Batch:	-1	LLC	way	
Interactive:	+1	LLC	way	

Batch:	- 512	MB	
Interactive:	+512	MB

Batch:	-1	core	
Interactive:	+1	core	

Cache	thrashing? Mem	saturated?

Batch:	-1	LLC	way	
Interactive:	+1	LLC	way	

Batch:	- 512	MB	
Interactive:	+512	MB

Batch:	-1	core	
Interactive:	+1	core	

…
..

…
..

…
..



PLIANT – VARYING APPROXIMATION DEGREE

§ Dynamic recompilation system
• Aggregated approximate variants to construct tunable app
• Linux signals for DynamoRIO to switch to an approximate variant
• drwrap_replace() interface is used to replace functions

» Coarse granularity à low overheads

Tunable App

void f1_p(){
//f1_precise
.....
}
void f1_a1(){
//f1_approx1
.....
}
void f1_a2(){
//f1_approx2
.....
}

.
.
.

.
.
.

App Binary

addr0 <f1_p>
....
.....

addr1 <f1_a1>
.....
.....

addr2 <f1_a2>
.....
.....

.
.
.

.
.
.

Pliant runtime

DynamoRIO

precise - addr0
approx1 - addr1
approx2 - addr2

precise – signal0
approx1 – signal1
approx2 – signal2

f0

f1_p
f2

f1_a2

signal2

signal0

f1_a1



PLIANT – RUNTIME RESOURCE ALLOCATION

§ All applications run in Docker containers

§ Core relocation
• Docker update interface to allocate cores to each container

§ Cache allocation
• Intel’s Cache Allocation Technology (CAT) to allocate cache ways

§ Memory capacity
• Docker update interface to assign memory limits



EXPERIMENTAL SETUP

§ Interactive services: NGINX, memcached, MongoDB

§ 24 approximate computing applications:
• PARSEC, SPLASH2x, MineBench, BioPerf benchmark suites

§ Systems
• 44 physical core dual-socket platform, 128 GB RAM, 56 MB LLC/socket
• Interactive services & approximate applications pinned to different 

physical cores of same socket

§ Baseline
• Approximate application run in precise mode
• Cores, cache, and memory shared fairly among the applications



EVALUATION - DYNAMIC BEHAVIOR
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EVALUATION – DYNAMIC BEHAVIOR

§ Across interactive services
• memcached and NGINX need to reclaim resources
• In case of MongoDB, approximation is enough
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EVALUATION – DYNAMIC BEHAVIOR

Precise Approx v1 Approx v2 Approx v3 Approx v4 Approx v5 Approx v6 Approx v7 Approx v8

§ Across approximate applications
• Bayesian shows bursty behavior - approximation usually enough 
• In case of SNP, no resource reclamation is required

§ For all co-schedulings, show QoS is met for all apps at an 
accuracy loss of up to 5% (2.8% on average)



SUMMARY - PLIANT

§ Approximation can break performance vs utilization trade-off
§ Many cloud applications can tolerate some loss of quality

§ Pliant – practical runtime system
• Incremental approximation using dynamic recompilation
• Dynamic allocation of shared resources

§ Achieves high utilization
• Enabled co-scheduling of approximate batch apps with interactive services

§ Achieves high QoS
• Meets QoS for all apps at cost of small accuracy loss (max 5%, avg 2.8%)



QUESTIONS?

§ Approximation can break performance vs utilization trade-off
§ Many cloud applications can tolerate some loss of quality

§ Pliant – practical runtime system
• Incremental approximation using dynamic recompilation
• Dynamic allocation of shared resources

§ Achieves high utilization
• Enabled co-scheduling of approximate batch apps with interactive services

§ Achieves high QoS
• Meets QoS for all apps at cost of small accuracy loss (max 5%, avg 2.8%)
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