: Cornell University

X-Containers: Breaking Down Barriers
to Improve Performance and Isolation
of Cloud-Native Containers

Zhiming Shen
Cornell University

Joint work with Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan,
Christina Delimitrou, Robbert Van Renesse, Hakim Weatherspoon

Software Containers

50%

40%

20%

20%
of companies
have containers

deployed

50%
of companies
have containers

Docker denloved
containerization i eploye

debuted /

=

2013 2014 2015 2016 2017 2018 2019 2020

Cloud-Native Container Platforms

Cloud-Native

Img src: https://pivotal.io/cloud-native

Cloud-Native Container Platforms

* Single Concern Principle:

@ 1 J Every container should address a single
concern and do it well.

DevOps Continuous Delivery

Cloud-Native * Making containers easier to

Microservices ~ Contalners o Replace, reuse, and upgrade
.===- transparently
o Scale horizontally
o Debug and troubleshoot

Img src: https://pivotal.io/cloud-native

The Problem

7

.

Shared kernel attack
surface and TCB

/

Process

Process
Process
Process

Container

>

[namespaces][cgroups][SELinux]

|

\ / Not allowed to install
~__ kernel modules

~ Hard to tune or optimize

Linux Kernel

Hardware

for a specific container

]

Existing Solutions

Isolation
VM Customization
Optimization
Container @ @ Container Portabilit
; ortabllity
® ® Linux m 2=
NE ARE
[KVM e & Performance

)
| Linux | | Linux | [Linux |

Clear gVisor
Container

Container

Ptrace mode: high overhead
KVM mode: require nested virtualization

Require nested hardware
virtualization support in the cloud

6

X-Containers achieve
* VM-level Isolation
e Support of Kernel Customization
* Support of Kernel Optimization
* Good Portability (without the need of hardware-assisted virtualization)
* High Performance

AND
e Backward Compatibility

X-Containers

Container Container
v O O O
o o o o
(@) (@) (@) (@)
() (] () (]
(V5] (V5] (V5] (V5]
(V5] (V5] (V5] (V5]
User mode \ / \ /

Kernel mode [OS Kernel]

X-Containers

Container Container
L) O L) O
3 o] 3 o]
(@) (@) (@) (@)
() (] () (]
A A A a
User mode L OS Kernel]/ L OS Kernel]/

Kernel mode [Exokernel]

X-Containers

User mode B

Kernel mode [

Container Container
-U \ 4 -U -U \ 4 -U
o o o o
(@) (@) (@) (@)
() (] () (]
(V5] (V5] (V5] (V5]
(V5] (V5] (V5] (V5]

> ; 5
OS Kernel OS Kernel

J J
Exokernel

10

X-Containers

X-Container X-Container
)) i))
o o o o
(@) (@) (@) (@)
M M M M
a a a a

> ; 5
X-LibOS X-LibOS

User mode _ ")\ ')

Kernel mode [X-Kernel]

X-Containers

* A new security paradigm for cloud-native containers

/;\
VM -~ ™
X-Container
Container g g Container 33’ g
(L tinex J) [H] 184
(_KkvMm JEJEY (L xbos |)/

)
[Linux | [Linux] [Linux | | X-Kernel |

Container Clear gVisor X-Container
Container

* X-Kernel: an exokernel with a small attack surface and TCB
e X-LibOS: a LibOS that decouples security isolation from the process model

Threat Model and Design Trade-offs

e Threat model

X—Container\ /X-Container\ X-Container
(T T T (V([-

[X-Kernel 1

* Trade-offs
* Reduced intra-container isolation
* Improved inter-container isolation and performance
* Process isolation and kernel-supported security features are not effective

Implementation

e X-LibOS from Linux kernel
* Binary compatibility
* Highly customizable

X—Container\ /X-Container\ X-Container
s Lz f sz s ¢ X-Kernel from Xen
i Process | & 1 '8 13 g '3 |] . .]
3 S | VAR S P | F LR I P O * Para-virtualization interface
User mode \ XLibos 1|1l 1 XLbOS I XLibOS | . C Iti :
o NG <) G oncurrent multi-processing

J e Limitations
* Memory management
* Spawning time

Kernel mode [X-Kernel

Optimizing System Calls

* Existing solutions

\
: /X-Container N . * Patch source code
ystem call S T r—_Function calls * Link to another library
ZE RN ;\2 * Our solution
" XLibos < * Automatic Binary Optimization
User Mod RS
_ oserviode _<K_ D\ Module (ABOM)
Kernel Mode[X-Kernel } * Binary level equivalence

e Position-independence

For many applications, more than 90% of syscalls are turned into function calls

15

Evaluation Setup

* Testbed
* Amazon EC2
* Google Compute Engine

* Compared container runtimes
* Docker
e gVisor (Ptrace in Amazon, and KVM in Google)
e Clear-Container (only in Google)
* Xen-Container
* X-Container

* Configurations
* Patched for Meltdown

System Call Performance

Up to 27X of Docker (patched) and
1.6X of Clear-Container

w
o
D

I.I ||
| H

e

e

N
(@)

e

e

=
o

e

(92

e

i
i
i
i
i
i

= o e e e R P .:l;kk.

Normalized Performance
[HRY
ul

J
\
§

Amazon Google

W Docker B Clear-Container BEgVisor FE4Xen-Container [X-Container

17

Real Application Perfo

Normalized Throughput

‘Mance

NGINX
1.5

1 ..I
05 H % 2
0 == (A e

A 1200127
e

Memcached t2.64x"’3.08x
4

, B D me

Amazon Google

Amazon

Apache ‘0.64x"'0.72x
1.5

1

O'Z H rm@ HEE@%

Amazon Google

@ Docker B Clear-Container BEgVisor EXen-Container [X-Container

18

Spawning Time and Memory Footprint

Time (S)

w

N

Docker

Spawning Time Memory Footprint

w
o

N
(O}

N
o

W User Program
m X-LibOS Booting
m Xen Tool Stack

Memory Footprint (MB)
S5 &

u

0 m

X-Container Docker

W Free
m X-LibOS
W Extra

B micropython

1.93

X-Container

Reduced to 460m:s.

Can be further reduced to <10m:s.

19

More Evaluations in the Paper

* More micro/macro benchmarks

* Patched and unpatched for Meltdown
 Comparing to Unikernel and Graphene

* Scalability (up to 400 containers on a single host)

Conclusion

e X-Containers: a new security paradigm for isolating single-concerned
cloud-native containers
* X-Kernel: an exokernel with a small attack surface and TCB
* X-LibOS: A LibOS that decouples security isolation from the process model
* Trade-off: intra-container isolation vs. inter-container isolation

* Implemented with Xen and Linux
* Binary compatibility
e Concurrent multi-processing

* More at http://x-containers.org

Thank You. Questions?

: Cornell University

Backup Slides

Pros and Cons of the X-Container Architecture

Inter-container isolation
System call performance
Portability
Compatibility
Intra-container isolation
Memory efficiency
Spawning time

Software licensing

Poor

Good
Good
Good
Good
Short

Clean

Good
Poor
Good

Good
Good
Short

Clean

Good

Good
Good

Clean

Good
Poor

Good
Good
Good

Clean

Good
Good
Good
Good

23

Comparing Isolation Boundaries

(

[Process

]

Kernel

)

Process

4 VM) // \\ (X-Container N
- ™\ - = VM (TS T
Container CTTTTTTTT > A S gt
0 n 1 1) [0}
i i | _fr_o_cfs_s_‘i Process RAREE
3 3 i ! (-T-T-----s e o
§ f“E Kernel 11 LbOS) [LALinux][Process + LibOS | | pelEes
. \) e 2 D NEEEERPEPPS o 4
Kernel Hypervisor Hypervisor [Microkernel] Exokernel X-Kernel |
Container Virtual Unikernel, Dune, L4Linux Library OS X-Container

Machine

EbbRT, OSY

(Microkernel)

(Exokernel)

Automatic Binary Optimization Module
(ABOM)

00000000000ebbal < read>:
eb6a9: b8 00 00 00 00 mov $0x0, $eax
ebbae: 0f 05 syscall

‘ 7-Byte Replacement (Case 1)

00000000000ebbal < read>:

eb6a9: ff 14 25 08 00 60 ff callg *Oxffffffffffe600008
000000000007f400 < syscall.Syscall>:

7f41d: 48 8b 44 24 08 mov 0x8 (%rsp), seax
7£422: 0f 05 syscall

‘ 7-Byte Replacement (Case 2)

000000000007£400 < syscall.Syscall>:

7f41d: ff 14 25 08 Oc 60 ff callg *Oxffffffffffe00c08
0000000000010330 < restore rt>:

10330: 48 c7 c0 0f 00 00 00 mov $0xf, $rax

10337: 0f 05 syscall

‘ 9-Byte Replacement (Phase-1)

0000000000010330 < restore rt>:
10330: ff 14 25 80 00 60 ff callg *Oxffffffffffe00080
10337: 0f 05 syscall

‘ 9-Byte Replacement (Phase-2)

0000000000010330 < restore rt>:
10330 £f 14 25 80 00 60 ff callg *Oxffffffffff600080
10337: eb £7 imp 0x10330

The Exokernel Approach

e Separating protection and management

-

\

Process }[Process

~

J

s

Operating System Kernel

>

Ve

Hardware

Monolithic OS Kernel

[Process }[Process }

[Library OS } [Library OS }

[Exokernel]
SIS
Hardware
Exokernel

26

