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Cloud-Native Container Platforms

Cloud-Native

Img src: https://pivotal.io/cloud-native



Cloud-Native Container Platforms

* Single Concern Principle:

@ 1 J Every container should address a single
concern and do it well.

DevOps Continuous Delivery

Cloud-Native * Making containers easier to

Microservices ~ Contalners o Replace, reuse, and upgrade
.===- transparently
o Scale horizontally
o Debug and troubleshoot

Img src: https://pivotal.io/cloud-native



The Problem
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Existing Solutions

Isolation
VM Customization
Optimization
Container @ @ Container Portabilit
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Clear gVisor
Container

Container

Ptrace mode: high overhead
KVM mode: require nested virtualization

Require nested hardware
virtualization support in the cloud
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X-Containers achieve
* VM-level Isolation
e Support of Kernel Customization
* Support of Kernel Optimization
* Good Portability (without the need of hardware-assisted virtualization)
* High Performance

AND
e Backward Compatibility



X-Containers
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X-Containers

Container Container
L) O L) O
3 o] 3 o]
(@) (@) (@) (@)
() (] () (]
A A A a
User mode L OS Kernel ]/ L OS Kernel ]/

Kernel mode [ Exokernel ]




X-Containers
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X-Containers
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X-Containers

* A new security paradigm for cloud-native containers
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X-Container
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Container

* X-Kernel: an exokernel with a small attack surface and TCB
e X-LibOS: a LibOS that decouples security isolation from the process model



Threat Model and Design Trade-offs

e Threat model

X—Container\ /X-Container\ X-Container
(T T T ( V([ -

___________

[ X-Kernel 1

* Trade-offs
* Reduced intra-container isolation
* Improved inter-container isolation and performance
* Process isolation and kernel-supported security features are not effective



Implementation

e X-LibOS from Linux kernel
* Binary compatibility
* Highly customizable

X—Container\ /X-Container\ X-Container
s Lz f sz s ¢ X-Kernel from Xen
i Process | & 1 '8 13 g '3 | ] . . ]
3 S | VAR S P | F LR I P O * Para-virtualization interface
User mode \ XLibos 1|1l 1 XLbOS I XLibOS | . C Iti :
o NG <) G oncurrent multi-processing

J e Limitations
* Memory management
* Spawning time

Kernel mode [ X-Kernel




Optimizing System Calls

* Existing solutions

\
: /X-Container N . * Patch source code
ystem call S T r—_Function calls * Link to another library
ZE RN ;\2 * Our solution
" XLibos < * Automatic Binary Optimization
User Mod RS
_ oserviode _<K_ D\ Module (ABOM)
Kernel Mode[ X-Kernel } * Binary level equivalence

e Position-independence

For many applications, more than 90% of syscalls are turned into function calls

15



Evaluation Setup

* Testbed
* Amazon EC2
* Google Compute Engine

* Compared container runtimes
* Docker
e gVisor (Ptrace in Amazon, and KVM in Google)
e Clear-Container (only in Google)
* Xen-Container
* X-Container

* Configurations
* Patched for Meltdown



System Call Performance

Up to 27X of Docker (patched) and
1.6X of Clear-Container
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Real Application Perfo
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Spawning Time and Memory Footprint
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More Evaluations in the Paper

* More micro/macro benchmarks

* Patched and unpatched for Meltdown
 Comparing to Unikernel and Graphene

* Scalability (up to 400 containers on a single host)



Conclusion

e X-Containers: a new security paradigm for isolating single-concerned
cloud-native containers
* X-Kernel: an exokernel with a small attack surface and TCB
* X-LibOS: A LibOS that decouples security isolation from the process model
* Trade-off: intra-container isolation vs. inter-container isolation

* Implemented with Xen and Linux
* Binary compatibility
e Concurrent multi-processing

* More at http://x-containers.org

Thank You. Questions?
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Pros and Cons of the X-Container Architecture

Inter-container isolation
System call performance
Portability
Compatibility
Intra-container isolation
Memory efficiency
Spawning time

Software licensing
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Comparing Isolation Boundaries
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Automatic Binary Optimization Module
(ABOM)

00000000000ebbal < read>:
eb6a9: b8 00 00 00 00 mov $0x0, $eax
ebbae: 0f 05 syscall

‘ 7-Byte Replacement (Case 1)

00000000000ebbal < read>:

eb6a9: ff 14 25 08 00 60 ff callg *Oxffffffffffe600008
000000000007f400 < syscall.Syscall>:

7f41d: 48 8b 44 24 08 mov 0x8 (%rsp), seax
7£422: 0f 05 syscall

‘ 7-Byte Replacement (Case 2)

000000000007£400 < syscall.Syscall>:

7f41d: ff 14 25 08 Oc 60 ff callg *Oxffffffffffe00c08
0000000000010330 < restore rt>:

10330: 48 c7 c0 0f 00 00 00 mov $0xf, $rax

10337: 0f 05 syscall

‘ 9-Byte Replacement (Phase-1)

0000000000010330 < restore rt>:
10330: ff 14 25 80 00 60 ff callg *Oxffffffffffe00080
10337: 0f 05 syscall

‘ 9-Byte Replacement (Phase-2)

0000000000010330 < restore rt>:
10330 £f 14 25 80 00 60 ff callg *Oxffffffffff600080
10337: eb £7 imp 0x10330



The Exokernel Approach

e Separating protection and management
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