SEER: LEVERAGING BIG DATA TO NAVIGATE THE COMPLEXITY OF PERFORMANCE DEBUGGING IN CLOUD MICROSERVICES

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and Christina Delimitrou

Cornell University

ASPLOS – April 15th 2019
From monoliths to microservices:

- Monoliths → all functionality in a single service
- Microservices → many single-concerned, loosely-coupled services
Executive Summary

- From monoliths to microservices:
 - Monoliths \rightarrow all functionality in a single service
 - Microservices \rightarrow many single-concerned, loosely-coupled services
Executive Summary

- From monoliths to microservices:
 - Monoliths \rightarrow all functionality in a single service
 - Microservices \rightarrow many single-concerned, loosely-coupled services

- Microservices implications:
 - Modularity, specialization, faster development
 - Performance unpredictability (us-level QoS), cascading QoS violations \rightarrow A-posteriori debugging
Executive Summary

- From monoliths to microservices:
 - Monoliths → all functionality in a single service
 - Microservices → many single-concerned, loosely-coupled services

- Microservices implications:
 - Modularity, specialization, faster development
 - Performance unpredictability (us-level QoS), cascading QoS violations → A-posteriori debugging

- Seer: Proactive performance debugging for interactive microservices
 - Leverage DL to anticipate & diagnose root cause of QoS violations
 - >90% accuracy on large-scale end-to-end microservices deployments
 - Avoid unpredictable performance
 - Offer insight to improve microservices design and deployment
Motivation
Motivation

- webserver
- databases
- recommender
- ads
- photos
- posts

(diagram showing connections between webserver, databases, recommender, ads, photos, and posts)
Motivation

Monolith

Microservices
Advantages of microservices:
- Modular → easier to understand
- Speed of development & deployment
- On-demand provisioning, elasticity
- Language/framework heterogeneity
Performance Debugging Challenges

- Complicate cluster management & performance debugging
- Dependencies cause cascading QoS violations
- Difficult to isolate root cause of performance unpredictability
Performance Debugging Challenges

- Complicate cluster management & performance debugging
- Dependencies cause cascading QoS violations
- Difficult to isolate root cause of performance unpredictability
Performance Debugging Challenges

- Dependencies cause cascading QoS violations
- Empirical performance debugging → too slow, bottlenecks propagate
- Long recovery times for performance
Performance Debugging Challenges

- Dependencies cause cascading QoS violations
- Empirical performance debugging → too slow, bottlenecks propagate
- Long recovery times for performance
Performance Debugging Challenges

- Dependencies cause cascading QoS violations
- Empirical performance debugging \Rightarrow too slow, bottlenecks propagate
- Long recovery times for performance

Netflix
Amazon
Social Network
Performance Debugging Challenges

- Dependencies cause cascading QoS violations
- Empirical performance debugging \(\Rightarrow \) too slow, bottlenecks propagate
- Long recovery times for performance
Performance Debugging Challenges

- Dependencies cause cascading QoS violations
- Empirical performance debugging → too slow, bottlenecks propagate
- Long recovery times for performance
Performance Debugging Challenges

- Dependencies cause cascading QoS violations
- Empirical performance debugging → too slow, bottlenecks propagate
- Long recovery times for performance
Performance Debugging Challenges

- Dependencies cause cascading QoS violations
- Empirical performance debugging → too slow, bottlenecks propagate
- Long recovery times for performance
Performance Debugging Challenges

- Dependencies cause cascading QoS violations
- Empirical performance debugging → too slow, bottlenecks propagate
- Long recovery times for performance

Demo: http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4
- Use ML to identify the culprit (root cause) of an *upcoming* QoS violation
 - Leverage the massive amount of distributed traces collected over time
 - Use targeted per-server hardware probes to determine the cause of the QoS violation
- Inform cluster manager to take proactive action & prevent QoS violation
 - Need to predict 100s of msec – a few sec in the future
Two-level tracing

- Distributed RPC-level tracing
 - Similar to Dapper, Zipkin
 - Per-microservice latencies
 - Inter- and intra-microservice queue lengths
 - Tracing overhead: <0.1% in QPS, <0.2% in 99th percentile latency

- Per-node hardware monitoring
 - Targeted on nodes with problematic microservices
 - Perf counters & contentious microbenchmarks
Two-level tracing

- Distributed RPC-level tracing
 - Similar to Dapper, Zipkin
 - Per-microservice latencies
 - Inter- and intra-microservice queue lengths
 - Tracing overhead: <0.1% in QPS, <0.2% in 99th %ile latency

- Per-node hardware monitoring
 - Targeted on nodes with problematic microservices
 - Perf counters & contentious microbenchmarks
Instrumentation & Tracing

- **Two-level tracing**
 - Distributed RPC-level tracing
 - Similar to Dapper, Zipkin
 - Per-microservice latencies
 - Inter- and intra-microservice queue lengths
 - Tracing overhead: <0.1% in QPS, <0.2% in 99th %ile latency

- Per-node hardware monitoring
 - Targeted on nodes with problematic microservices
 - Perf counters & contentious microbenchmarks
Instrumentation & Tracing

- Two-level tracing
 - Distributed RPC-level tracing
 - Similar to Dapper, Zipkin
 - Per-microservice latencies
 - Inter- and intra-microservice queue lengths
 - Tracing overhead: <0.1% in QPS, <0.2% in 99th %ile latency

- Per-node hardware monitoring
 - Targeted on nodes with problematic microservices
 - Perf counters & contentious microbenchmarks
Two-level tracing

- Distributed RPC-level tracing
 - Similar to Dapper, Zipkin
 - Per-microservice latencies
 - Inter- and intra-microservice queue lengths
 - Tracing overhead: <0.1% in QPS, <0.2% in 99th %ile latency

- Per-node hardware monitoring
 - Targeted on nodes with problematic microservices
 - Perf counters & contentious microbenchmarks
DL for Cloud Performance Debugging

- **Why?**
 - Architecture-agnostic
 - Adjusts to changes over time
 - High accuracy, good scalability & fast inference (within window of opportunity)

Output signal

Probability that a microservice will initiate a QoS violation in the near future
DL for Cloud Performance Debugging

Output signal

Probability that a microservice will initiate a QoS violation in the near future
DL for Cloud Performance Debugging

- Container utilization

Input signal

Output signal

Probability that a microservice will initiate a QoS violation in the near future
DL for Cloud Performance Debugging

Input signal
- Container utilization
- Latency

Output signal
Probability that a microservice will initiate a QoS violation in the near future
DL for Cloud Performance Debugging

Input signal
- Container utilization
- Latency
- Queue length

Output signal
Probability that a microservice will initiate a QoS violation in the near future
DL for Cloud Performance Debugging

Input signal

- Container utilization
- Latency
- Queue length

Output signal

Probability that a microservice will initiate a QoS violation in the near future
DL for Cloud Performance Debugging

Input signal
- Container utilization
- Latency
- Queue length

Dimensionality reduction

Output signal
Probability that a microservice will initiate a QoS violation in the near future
DL for Cloud Performance Debugging

Input signal
- Container utilization
- Latency
- Queue length

Output signal
Probability that a microservice will initiate a QoS violation in the near future

Dimensionality reduction
- CNN

Near-future prediction
- LSTM
- Softmax
DL for Cloud Performance Debugging

- **Queue length**

- **Input signal**
 - Microservices (in dependencies order)
 - #Microservices

- **Output signal**
 - Probability that a microservice will initiate a QoS violation in the near future
 - Queue length

- **DNN Configuration**
 - **CNN**: Fast, but cannot effectively predict future
 - **LSTM**: Higher accuracy, but affected by noisy, non-critical microservices
 - **Hybrid network**: Highest accuracy, without significantly higher overhead

![Graph showing QoS Violation Detection Accuracy (%) vs Inference Time (ms)]
Methodology

- **Training** once: slow (hours - days)
 - Across load levels, load distributions, request types
 - Annotated queue traces \rightarrow inject microbenchmarks to force controlled QoS violations
 - Weight/bias inference with SGD
 - Incremental retraining & dynamically expanding/shrinking in the background

- **Inference**: continuously streaming traces

- **20-server dedicated heterogeneous cluster**
 - Different server configurations
 - 10s of cores, $>$100GB RAM per server

- **4 end-to-end applications** \rightarrow ~30-40 unique microservices each
 - Social Network, Media Service, E-commerce Site, Banking System
End-to-end Microservices

- **Social Network**

Frontend:
- Load Balancer
- NGINX
- Video Store Frontend
- Image Store Frontend

Logic:
- Unique ID
- URL Shorten
- Read Home Timeline
- Compose Post
- Read Post
- User Timeline
- Social Graph
- Recomender
- User
- Text
- Video
- User Tag
- Write Home Timeline
- Favorite
- Search
- Post Storage
- RabbitMQ

Caching & Storage:
- Memcached
- MongoDB
- Index_0
- Index_1
- Index_n
- Redis
- Memcached
- Home timeline storage
- User timeline storage
- User storage
- Post storage
- Social graph storage
- Image storage
- Video storage

Client
End-to-end Microservices

Social Network

Frontend
- Load Balancer
- Image Store Frontend
- Video Store Frontend

Logic
- Unique ID
- Read Post
- Read Home Timeline
- Compose Post
- User
- User Timeline
- Search
- Favorite
- Post Storage
- Home timeline storage

Caching & Storage
- Memcached
- MongoDB
- User storage
- Post storage
- User timeline storage
- Redis
- Social graph storage
- Image storage
- Video storage
End-to-end Microservices

- Social Network
End-to-end Microservices

- **Social Network**

![Diagram of End-to-end Microservices]

- Frontend
 - Load Balancer
 - NGINX
 - Image Store Frontend
 - Video Store Frontend

- Logic
 - Unique ID
 - Read Post
 - Favorite
 - Search
 - Read Home Timeline
 - Post Storage
 - User Timeline
 - Compose Post
 - User
 - Social Graph
 - Write Home Timeline
 - RabbitMQ
 - Memcached
 - Redis

- Caching & Storage
 - Memcached
 - MongoDB
 - Index
 - Index
 - Index
 - Memcached
 - Memcached
 - Memcached
 - Memcached
 - Memcached
 - User storage
 - Post storage
 - User timeline storage
 - Home timeline storage
 - Social graph storage
 - Image storage
 - Video storage
Validation

- 91% accuracy in signaling upcoming QoS violations
- 88% accuracy in attributing QoS violation to correct microservice

- 50GB input training dataset
 - Accuracy levels off thereafter
- 50ms tracing sampling interval
 - No benefit from finer-grain tracing
Validation

- 91% accuracy in signaling upcoming QoS violations
- 88% accuracy in attributing QoS violation to correct microservice

- 50GB input training dataset
 - Accuracy levels off thereafter
- 50ms tracing sampling interval
 - No benefit from finer-grain tracing

Percentage (%)

<table>
<thead>
<tr>
<th>Time</th>
<th>False Negatives</th>
<th>False Positives</th>
<th>10ms</th>
<th>50ms</th>
<th>500ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>10ms</td>
<td></td>
<td></td>
<td>50</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>50ms</td>
<td></td>
<td></td>
<td>40</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>500ms</td>
<td></td>
<td></td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1s</td>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2s</td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Validation

- 91% accuracy in signaling upcoming QoS violations
- 88% accuracy in attributing QoS violation to correct microservice

- 50GB input training dataset
- Accuracy levels off thereafter
- 50ms tracing sampling interval
- No benefit from finer-grain tracing
Sensitivity Analysis

- Large increase in accuracy until \(\sim \)50GB training set
 - Levels off afterwards
- Large increase in training time after 50GB
- Tracing interval < 500ms \(\rightarrow \) low accuracy
- Tracing interval > 100ms \(\rightarrow \) no further improvement
Sensitivity Analysis

- Large increase in accuracy until ~50GB training set
 - Levels off afterwards
- Large increase in training time after 50GB

- Tracing interval < 500ms → low accuracy
- Tracing interval > 100ms → no further improvement
Sensitivity Analysis

- Large increase in accuracy until ~50GB training set
 - Levels off afterwards
- Large increase in training time after 50GB
- Tracing interval < 500ms → low accuracy
- Tracing interval > 100ms → no further improvement
Avoiding QoS Violations

- Identify cause of QoS violation
 - Private cluster: performance counters & utilization monitors
 - Public cluster: contentious microbenchmarks

- Adjust resource allocation
 - RAPL (fine-grain DVFS) & scale-up for CPU contention
 - Cache partitioning (CAT) for cache contention
 - Memory capacity partitioning for memory contention
 - Network bandwidth partitioning (HTB) for net contention
 - Storage bandwidth partitioning for I/O contention

- Application level bugs
 - Human needs to intervene
Demo

Seer

Default
Demo

Seer

Default

Front end

Front end

Tail Latency (us)

Time (s)

QoS
Demo

Seer

Front end

Logic tiers

Default

Front end

Logic tiers

QoS

Time (s)

Tail Latency (ms)

0 20 40 60 80 100 120
0 20 40 60 80 100 120
Demo

Seer

Queue

CPU

Default

QoS met
Demo: http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo.mp4
Using ML to Design Better Cloud Systems

- Large-scale Social Network deployment (~600 users, ~2 months deployment)
- Offload Seer on Google TPU v2 → 24x-118x improvement in training and inference
- Several bugs found (blocking RPCs, livelocks, shared data structs, cyclic dependencies, insufficient resources, etc.)
- Fewer QoS violations over time
Microservices become increasingly popular

Traditional performance debugging techniques do not scale and introduce long recovery times

Seer leverages DL to anticipate QoS violations & find their root causes
- >90% detection accuracy, avoids 86% of QoS violations

Provides insight on how to better design and deploy complex microservices

Practical solutions for systems whose scale make previous empirical solutions impractical
Microservices become increasingly popular

Traditional performance debugging techniques do not scale and introduce long recovery times

Seer leverages DL to anticipate QoS violations & find their root causes
- >90% detection accuracy, avoids 86% of QoS violations

Provides insight on how to better design and deploy complex microservices

Practical solutions for systems whose scale make previous empirical solutions impractical
Microservices become increasingly popular

Traditional performance debugging techniques do not scale and introduce long recovery times

Seer leverages DL to anticipate QoS violations & find their root causes
 - >90% detection accuracy, avoids 86% of QoS violations

Provides insight on how to better design and deploy complex microservices

Practical solutions for systems whose scale make previous empirical solutions impractical