

Task Scheduling for Heterogeneous Swarm of Drones **Ariana Bruno & Justin Hu** Advised by Prof. Christina Delimitrou

Introduction

The project has three main goals:

- 1. Setup and develop applications for a swarm of drones: image recognition, obstacle avoidance and coordinated movement.
- 2. Benchmark local versus remote execution performance between the drone and a backend cloud
- 3. Design centralized swarm coordination control system and compare with decentralized approaches for different scheduling policies.

Swarm Applications

The application for the swarm of drones is defined as a coordinated sequence of tasks that is split up and divided among the drones.

The ideal swarm application is for each drone in the swarm to execute a route, performing object recognition and obstacle avoidance along the way.

Fig. 1: Illustration of the Swarm of Drone Application

System Specifications

Table 1: Drone Specifications

Drone Type:	Parrot AR Drone 2.0
Operating System:	Linux 2.6.32
Available Memory:	11 GB
RAM:	1GB at 200 MHz
Connection:	WiFi

Table 2: Software Specifications

Framework:	Node.js
Open Source Libraries:	ardrone_autonomy
	Cylon
	OpenCV

Swarm Task Scheduler

The task scheduler is developed to assign tasks to the drones and performs in two ways:

- **Push**: the manager can push tasks to drones via the worker.
- **Pull**: the worker pulls tasks from a queue created by the manager.

Fig. 3: Illustration of the cloud, edge, and hybrid computing for the Swarm

- <u>Cloud computing</u>: all computation and execution required for the drone's task occurs in the cloud.
- Edge computing: all the computation and execution occurs on the drone's operating system.
- <u>Hybrid computing</u>: the computation and execution can occur both in the cloud or on the drone.

Acknowledgements:

Thank you Professor Christina Delimitrou, we truly appreciate all of your help and guidance throughout this research project. Additionally, we would like to thank our fellow graduate students that collaborated on this project, Brian Ritchken (M.Eng ECE '18), and Brendan Jackson (M.Eng ECE '18)

Results				
enchmark results were collected	for, network late	ncy, TCP laten		
one movement latency, drone de	etection latency, a	and power		
nsumption for drone movement	and drone detec	tion		
Table 3: Network	Latency - Ping			
Connection Type	Average (ms)	St. Dev. (ms)		
Direct connection to Drone	1.720	2.086		
Connection to Drone through Router	16.229	30.140		
(s) (s) (s) (s) (s) (s) (s) (s)	60 70 80 9 P Message (kB)	90 100 110		
Detection Type	Average (ms)	St. Dev. (ms)		
On Drone Tag Detection	32.093	231.861		
OpenCV Cloud Tag Detection	75.096	39.705		
DpenCV Cloud Face Detection	94.904	32.663		
Table 5: Movement Latency &	Battery Power Cons	sumption		
Movement	Avg. (s)	St. Dev. (s)		
ake off	7.365	0.396		
urn	3.089	0.460		
Iorizontal Motion	2.432	0.681		
Vertical Motion	5 221	1 271		
	J.231			

Results				
enchmark results were collected	for, network late	ncy, TCP laten		
rone movement latency, drone de	etection latency.	and power		
nsumption for drone movement	and drone detec	tion		
Table 3: Network	Latency - Ping			
Connection Type	Average (ms)	St. Dev. (ms)		
Direct connection to Drone	1.720	2.086		
Connection to Drone through Router	16.229	30.140		
(s) (s) (s) (s) (s) (s) (s) (s)) 60 70 80 9 P Message (kB) tion Latency	90 100 110		
Detection Type	Average (ms)	St. Dev. (ms)		
On Drone Tag Detection	32.093	231.861		
OpenCV Cloud Tag Detection	75.096	39.705		
OpenCV Cloud Face Detection	94.904	32.663		
Table 5: Movement Latency &	Battery Power Cons	sumption		
Movement	Avg. (s)	St. Dev. (s)		
Take off	7.365	0.396		
Turn	3.089	0.460		
	1			
Horizontal Motion	2.432	0.681		
Horizontal Motion Vertical Motion	2.432 5.231	0.681 1.271		

	CS	
Resu	ults	
enchmark results were collected	for, network late	ncy, TCP laten
one movement latency, drone de	etection latency, a	and power
nsumption for drone movement	and drone detec	tion
Table 3: Network	Latency - Ping	
Connection Type	Average (ms)	St. Dev. (ms)
Direct connection to Drone	1.720	2.086
Connection to Drone through Router	16.229	30.140
(v) 2.50 2.00 1.50 1.00 0.50 0.00 0 10 20 30 40 50 Size of TCF Table 4: Detect) 60 70 80 9 P Message (kB) tion Latency	90 100 110
Detection Type	Average (ms)	St. Dev. (ms)
On Drone Tag Detection	32.093	231.861
OpenCV Cloud Tag Detection	75.096	39.705
OpenCV Cloud Face Detection	94.904	32.663
Table 5: Movement Latency &	Battery Power Cons	sumption
Movement	Avg. (s)	St. Dev. (s)
ake off	7.365	0.396
urn	3.089	0.460
Invizontal Motion	2.432	0.681
/ertical Motion	5.231	1.271

Table 6: Battery Power Consumption			
Task Type	Average (%)	St. Dev. (%)	
On Drone Tag Detection for 1 min.	<1%	<1%	
OpenCV Cloud Tag Detection for 1 min.	<1%	<1%	
Constant Drone Movement for 1 min.	10%	1.4%	

Future Work

- . Further optimize how the task scheduler prioritizes tasks for drones based on each drone's performance status.
- 2. Investigate the centralized coordination control system for scalability challenges and quantify the results to improve the control system to be more practical for large-scale swarms
- 3. Improve object detection and obstacle avoidance procedures to handle more practical events such as building obstruction

For additional information or questions please contact: Ariana Bruno (M.Eng ECE '18) - amb633@cornell.edu Jusrin Hu (M.Eng CS '18) - amb633@cornell.edu