
PARTIES: QoS-Aware Resource Partitioning for
Multiple Interactive Services

Shuang Chen
Cornell University
sc2682@cornell.edu

Christina Delimitrou
Cornell University

delimitrou@cornell.edu

José F. Martínez
Cornell University

martinez@cornell.edu

Abstract
Multi-tenancy in modern datacenters is currently limited to a
single latency-critical, interactive service, running alongside
one or more low-priority, best-effort jobs. This limits the effi-
ciency gains from multi-tenancy, especially as an increasing
number of cloud applications are shifting from batch jobs to
services with strict latency requirements.

We present PARTIES, a QoS-aware resource manager that
enables an arbitrary number of interactive, latency-critical
services to share a physical node without QoS violations.
PARTIES leverages a set of hardware and software resource
partitioning mechanisms to adjust allocations dynamically
at runtime, in a way that meets the QoS requirements of
each co-scheduled workload, and maximizes throughput for
the machine. We evaluate PARTIES on state-of-the-art server
platforms across a set of diverse interactive services. Our
results show that PARTIES improves throughput under QoS
by 61% on average, compared to existing resource managers,
and that the rate of improvement increases with the number
of co-scheduled applications per physical host.

CCS Concepts • Computer systems organization →
Cloud computing; Real-time system architecture.

Keywords Cloud computing; datacenters, quality of ser-
vice, resource management, resource partitioning, isolation,
interference

ACM Reference Format:
Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019.
PARTIES: QoS-Aware Resource Partitioning for Multiple Interactive
Services. In 2019 Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’19), April 13–17, 2019, Providence,
RI, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3297858.3304005

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304005

1 Introduction
Cloud computing has become ubiquitous by offering resource
flexibility and cost efficiency [9, 11, 31]. Resource flexibility is
achieved as users elastically scale their resources on demand.
Cost efficiency is achieved through multi-tenancy, i.e., by
scheduling jobs from multiple users on the same physical
host to increase utilization. Unfortunately, multi-tenancy
often comes at a performance penalty, as co-scheduled appli-
cations contend for shared resources, leading to interference
and performance unpredictability. Interference is particu-
larly destructive for interactive, latency-critical (LC) services,
which must meet strict quality of service (QoS) guarantees.

Prior work has tackled interference in three ways. The
first approach is to simply disallow interactive services from
sharing resources with other applications to avoid interfer-
ence [42, 43, 51, 53]. This preserves the QoS of the LC ap-
plications, but lowers the resource efficiency of the system.
The second approach is to avoid co-scheduling applications
that are likely to interfere with each other [19–22, 24, 44].
This improves utilization, although it limits the options of
applications that can be co-scheduled. The third approach
focuses on eliminating interference altogether, by partition-
ing resources among co-scheduled services, using OS- and
hardware-level isolation techniques [23, 35, 36, 42, 43, 49].
This approach protects QoS for the LC service, and allows
best-effort (BE) workloads to benefit from unused resources.
Unfortunately, this approach is currently limited to at most
one interactive service per physical host, co-scheduled with
one or more BE jobs. Alternatively, if multiple interactive
applications are co-scheduled on a physical host, their load
is dialed down considerably, leading to underutilization [61].

Cloud applications are progressively shifting from batch to
low-latency services. For example, traditionally throughput-
bound applications, like big data and graph analytics, are
now moving to in-memory computation, with frameworks
like Spark [60] and X-Stream [48], which brings task execu-
tion latencies to a few milliseconds or seconds. Furthermore,
cloud applications are undergoing a major redesign from
large, monolithic services that encompass the entire appli-
cation functionality in a single binary, to hundreds or thou-
sands of loosely-coupled microservices [28–30, 52]. While
the end-to-end latency of a large-scale service remains in
the granularity of several milliseconds or seconds, each mi-
croservice must meet much tighter latency constraints, often

https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Shuang Chen, Christina Delimitrou, and José F. Martínez

in the order of a few hundreds of microseconds. Addition-
ally, each microservice resides in a small, mostly stateless
container, which means that many containers need to be
scheduled on one physical host to maximize utilization. Con-
sequently, techniques that only allow one high-priority LC
service per machine are not general enough to manage these
new application scenarios.

In this paper, we present PARTIES (PARTitioning for multi-
ple InteractivE Services), a cloud runtime system that allows
two or more LC services to meet their QoS constraints while
sharing a highly-utilized physical host. PARTIES leverages
an online monitoring framework that operates at the granu-
larity of a few hundred milliseconds, to quickly detect QoS
violations. Upon detection, the runtime boosts the allocation
of one or more resources for the LC service whose latency
suffers the most. PARTIES assumes no a priori knowledge
of incoming applications, making it applicable in settings
like public clouds where user-submitted applications are not
known in advance. PARTIES uses both OS- and hardware-
level partitioningmechanisms available in modern platforms,
including containers, thread pinning, cache partitioning, fre-
quency scaling, memory capacity partitioning, and disk and
network bandwidth partitioning to satisfy the instantaneous
resource needs of each co-scheduled interactive service.
Finding the optimal resource allocation for each LC ser-

vice over time requires exhaustive allocation exploration,
which quickly becomes intractable. Instead, PARTIES ensures
fast convergence by exploiting the observation that certain
resources are fungible, i.e., can be traded off with each other,
to only explore a few allocations before arriving to a satis-
factory decision. PARTIES is dynamic, adjusting its decisions
to fluctuating load, without the need for resource overprovi-
sioning. Once all services meet their QoS targets, PARTIES
additionally optimizes for server utility by progressively re-
claiming excess resources from each LC application, which
can potentially be allocated to BE jobs.
We first characterize the sensitivity of six popular and

diverse, open-source LC services to different resource alloca-
tions, and to interference in shared resources, and show that
resource isolation is both essential and effective at reducing
contention. We then introduce the concept of resource fungi-
bility, i.e., the fact that resources can be traded for each other
to arrive to equivalent application performance. Fungibility
improves the controller’s flexibility and convergence speed.
We evaluate PARTIES on a high-end server platform across
a diverse mix of LC services and input loads. We compare
PARTIES to Heracles, a controller designed for a single LC ser-
vice and multiple BE jobs, and show that PARTIES operates
the server at near-capacity, and achieves up to 61% higher
aggregate throughput, while meeting the QoS target of each
LC service. PARTIES allows an arbitrary number of LC jobs to
be co-scheduled, increasing the cluster manager’s flexibility,
and making it applicable for scenarios where large numbers
of microservices share hardware resources.

Table 1. Platform Specification
Model Intel Xeon E5-2699 v4
OS Ubuntu 16.04 (kernel 4.14)

Virtualization Technology LXC (Linux containers) 2.0.7
Sockets 2

Cores/Socket 22
Threads/Core 2

Base/Max Turbo Frequency 2.2GHz / 3.6GHz
Default Frequency Driver ACPI with the "performance" governor

L1 Inst/Data Cache 32 / 32 KB
L2 Cache 256KB

L3 (Last-Level) Cache 55 MB, 20 ways
Memory 16GBx8, 2400MHz DDR4
Disk 1TB, 7200RPM HDD

Network Bandwidth 10Gbps

2 Related Work
Improving the resource efficiency ofmulticore systems through
application colocation has been a very active research field
over the past few years [12, 25, 34, 56]. These approaches
typically account for resource contention, although they are
geared towards batch applications, and optimize for long-
term goals (e.g., throughput or fairness). As such, they are
not directly applicable to interactive services that must meet
short-term tail latency constraints.

Past work on improving resource efficiency in datacenters
falls into two categories. First, there are cluster schedulers
that infer the expected interference of a given application
colocation [13, 18, 20–22, 24, 33, 45, 58, 59, 61, 62], and ei-
ther adjust allocations at runtime, or completely disallow
resource sharing when the predicted latency violates QoS.
While this approach protects the QoS of LC services, it is
overly conservative, and limits the set of applications that can
share a physical node. The second approach proposes fine-
grained resource partitioning mechanisms that altogether
eliminate interference [35, 36, 43, 49, 55, 57]. These tech-
niques achieve more aggressive resource sharing, but either
require microarchitectural changes, which are not readily
available in production systems, or target batch applications.
The most relevant work to PARTIES is Heracles [43], a

multi-resource controller that leverages a set of hardware
and software isolation mechanisms to improve server uti-
lization by colocating a single interactive service with one
or more BE workloads. Both PARTIES and Heracles rely on
resource partitioning to guarantee cross-application isola-
tion, with PARTIES additionally supporting memory capacity
and disk bandwidth isolation. However, while Heracles is de-
signed to manage a single LC application, PARTIES provides
a general scheduling framework that manages an arbitrary
number of co-scheduled interactive services. We provide a
detailed comparison of the two schemes in Section 5.
3 Characterization
To quantify the impact of resource interference and alloca-
tion, we study six popular, open-source LC services. Table 1
shows the specs of our experimental platform. 8 physical
cores are exclusively allocated to network interrupts (IRQ
cores) per socket. This is the minimum core count needed

PARTIES ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Table 2. Latency-Critical Applications
Application Memcached Xapian NGINX Moses MongoDB Sphinx
Domain Key-value store Web search Web server Real-time translation Persistent database Speech recognition

Target QoS 600us 5ms 10ms 15ms 300ms 2.5s
Max Load under QoS 1,280,000 8,000 560,000 2,800 240 14

IPC 0.74 1.16 0.67 0.74 0.40 0.79
User / Sys / IO CPU% 13 / 78 / 0 42 / 23 / 0 20 / 50 / 0 50 / 14 / 0 0.3 / 0.2 / 57 85 / 0.6 / 0
Instr Cache MPKI 23.25 2.34 27.18 6.25 33.07 7.32

LLC MPKI 0.55 0.03 0.06 10.48 0.01 6.28
Memory Capacity (GB) 9.3 0.02 1.9 2.5 18 1.4

Memory Bandwidth (GB/s) 0.6 0.01 0.6 26 0.03 3.1
Disk Bandwidth (MB/s) 0 0 0 0 5.1 0

Network Bandwidth (Gbps) 3.0 0.07 6.2 0.001 0.01 0.001

256K
512K

768K
1024K

1280K
1536K

RPS

100

101

102

103

104

105

106

99
th

Pe
rc

en
til

e
(u

se
c)

(a) Memcached

1600
3200

4800
6400

8000
9600

11200

RPS

100

101

102

103

104

99
th

Pe
rc

en
til

e
(m

se
c)

(b) Xapian

80K
240K

400K
560K

720K

RPS

100

101

102

103

104

99
th

Pe
rc

en
til

e
(m

se
c)

(c) NGINX

400
1200

2000
2800

3600

RPS

100

101

102

103

104

105

99
th

Pe
rc

en
til

e
(m

se
c)

(d) Moses

40 80120160200240280320

RPS

0
100
200
300
400
500
600
700
800
900

99
th

Pe
rc

en
til

e
(m

se
c)

(e) MongoDB

2 4 6 8 10 12 14 16
RPS

0
1000
2000
3000
4000
5000
6000
7000
8000

99
th

Pe
rc

en
til

e
(m

se
c)

(f) Sphinx
Figure 1. Tail latency with increasing input load (RPS). The vertical lines show the knee of each curve, which is hereafter referred to as max
load. The horizontal lines show the latency at max load, which is used to determine the QoS targets of each application (detailed numbers
can be found in Table 2).
to handle network interrupts across the server socket when
operating at max load. Allowing LC threads to share cores
with IRQ cores leads to both lower throughput and higher
latency [16]. 8GB of memory is exclusively allocated to the
OS. Each application is instantiated in a separate container.
Finally, we enable hyperthreading and Turbo boosting.

3.1 Latency-critical applications
We characterize six open-source interactive applications:
• Memcached [27] is a high-performance memory object
caching system. Such in-memory key-value stores have
become a critical tier in cloud services that optimize for
low latency [39–41]. We use Memcached 1.4.36 compiled
from source [1], and configure its dataset to hold 32 million
items, each with a 30B key and a 200B value.
• Xapian [6] is a web search engine included in the Tail-
bench suite [37]. We follow Tailbench’s setup to configure
Xapian to represent a leaf node in a distributed web search
service. The node’s indexes are built from a snapshot of
the English version of Wikipedia.
• NGINX [3] is a high-performance HTTP server, currently
responsible for over 41% of livewebsites (circa Jan 2019 [4]).
We use NGINX 1.12.0 compiled from source, and set it up as
a front-end serving static files. The input dataset consists
of one million html files of 1KB each.
• Moses [38] implements a statistical machine translation
(SMT) system, a vital component of online translation
systems and intelligent personal assistants (IPA), and is
configured as outlined in Tailbench [37].
• MongoDB [2] is one of the most popular NoSQL data-
base systems, and is widely used in industry for back-end

data storage [26]. We use MongoDB 3.2.16 compiled from
source, and compose a dataset with one billion records,
each with 10 fields and 100B per field.
• Sphinx [54] is a speech recognition system with acoustic,
phonetic, and language models, configured as in [37].
To quantify themaximum input load the server can sustain

and how latency reacts to increasing load, we start from low
request-per-second (RPS) and gradually inject higher request
rates, until the application starts dropping requests on the
server side. Figure 1 shows the relationship between tail
latency and RPS. All applications experience a rapid increase
in tail latency after exceeding a load threshold, typically
between 60% and 80% of their maximum RPS. We therefore
set the QoS target of each application as the 99th percentile
latency of the knee, as marked in Figure 1. We denote the RPS
at the knee in each case as max load, which is the maximum
throughput the machine can sustain while meeting QoS.

Table 2 reports the QoS target in terms of 99th percentile
(tail) latency, max load (maximum RPS achieved under the
QoS target), and various microarchitectural characteristics
for each application at max load. The six applications have a
diverse set of characteristics: their QoS targets range from
microseconds to seconds; they involve different amounts of
user-space, kernel-space, and I/O processing; their instruc-
tion and data footprints vary widely; and they vary in their
memory, disk, and network bandwidth demands. This en-
sures a high coverage of the design space of cloud services.

3.2 Testing strategy
We use open-loop workload generators as clients for all ap-
plications to ensure that latency measurements at high loads

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Shuang Chen, Christina Delimitrou, and José F. Martínez

Table 3. List of experimental setups for studying resource interference (left), and isolation mechanisms per resource (right).

Shared
Resource Method of Generating Interference Isolation

Mechanism Software/Hardware Isolation Tool

Hyper-
thread

8 compute-intensive microbenchmarks are colocated on the same
hyperthreads as LC applications. Core

Isolation
Linux’s cpuset cgroups is used to allocate specific core

IDs to a given application.CPU 8 compute-intensive microbenchmarks are colocated on the same
physical cores as the LC applications, but different hyperthreads.

Power 12 compute-intensive microbenchmarks (power viruses) are
mapped on the 12 logical cores of the 6 idle CPUs.

Power
Isolation

The ACPI frequency driver with the “userspace”
governor to set selected cores to a fixed frequency
(1.2-2.2GHz with 100MHz increments), or with the

“performance” governor to run at turbo frequency (the
highest possible frequency based on load, power

consumption, CPU temperature, etc [15]).

LLC
Capacity

We launch a cache-thrashing microbenchmark which
continuously streams an array the size of the LLC. It runs on an

idle core in the same socket as the LC application.
LLC

Isolation

Intel’s Cache Allocation Technology (CAT) [7, 32] is
used for LLC way partitioning. It indirectly regulates
memory bandwidth as well because memory traffic is
highly correlated with cache hit rate. There is no

mechanism available on the evaluated server platform
to partition memory bandwidth directly.

LLC
Bandwidth

We launch 12 cache-thrashing microbenchmarks whose aggregate
footprint is the size of the LLC, i.e., each thrashes 1/12 of the LLC.

Memory
Bandwidth

We launch 12 memory-thrashing microbenchmarks, generating
50GB/s of memory traffic (upper limit on the evaluated machine).

Memory
Capacity

We launch one memory-thrashing microbenchmark that streams
120GB out of the 128GB memory (8GB is reserved for OS).

Memory
Isolation

Linux’s memory cgroups is used to limit the maximum
amount of memory capacity per container.

Disk
Bandwidth We launch dd with of=/dev/null. Disk

Isolation
Linux’s blkio cgroups is used to throttle the maximum

disk read bandwidth per container.

Network
Bandwidth

We launch one iperf3 client on an idle core, and direct its traffic to
an idle machine running the iperf3 server using 100 connections,

each at 100Mbps bandwidth.

Network
Isolation

Linux’s qdisc traffic control scheduler [14] with
hierarchical token bucket (HTB) queueing discipline is

used to limit the egress network bandwidth.

Table 4. Impact of resource interference. Each row corresponds to one type of resource. Values in the table are the maximum percentage of
max load for which the server can satisfy QoS when the LC application is running under interference. Cells with smaller numbers/darker
colors mean that applications are more sensitive to that type of interference.

Memcached Xapian NGINX Moses MongoDB Sphinx
Hyperthread 0% 0% 0% 0% 90% 0%

CPU 10% 50% 60% 70% 100% 30%
Power 60% 80% 90% 90% 100% 70%

LLC Capacity 90% 90% 70% 80% 100% 30%
LLC Bandwidth 0% 60% 70% 30% 90% 0%

Memory Bandwidth 0% 50% 40% 10% 70% 0%
Memory Capacity 0% 100% 0% 0% 20% 80%
Disk Bandwidth 100% 100% 100% 100% 10% 100%

Network Bandwidth 20% 90% 10% 90% 90% 80%

are accurate [50, 63]. For Memcached, we use an in-house
load generator, similar to mutilate [46], but converted to
open-loop. For NGINX and MongoDB, we modified popu-
lar open-source generators, wrk2 [5] and YCSB [17], from
closed- to open-loop. For Moses, Sphinx and Xapian, we use
the open-loop load generators provided by Tailbench [37].
All the load generators use exponential inter-arrival time
distributions [39] to simulate a Poisson process, where re-
quests are sent continuously and independently at a constant
average rate. We also use a Zipfian distribution for the re-
quest popularity [8, 47], and limit input loads to read-only,
which correspond to the majority of requests in production
systems, e.g., 95% of Memcached requests at Facebook [10].

Clients run on up to three Intel Xeon servers, with 10Gbps
links to the server. We instantiate enough clients to avoid
client-side saturation, therefore, end-to-end latencies, mea-
sured at the clients, are mostly due to server-side delays. For
each experiment, we run the clients for one minute, which
is long enough for tail latencies to converge to variances of

less than 5%. We additionally run each experiment five times,
and record the average throughput and latency.
3.3 Interference Study
To understand the impact of interference on tail latency, we
colocate each LC workload with microbenchmarks [18] that
stress different parts of the system. To ensure sufficient re-
sources for the contentious microbenchmarks, we instantiate
each application with 8 threads pinned to 8 hyperthreads
on 8 different physical cores. Excluding the 8 IRQ cores, an-
other 6 physical cores with 12 hyperthreads are available to
the microbenchmarks. We study 9 shared resources in total,
detailed in Table 3.
3.3.1 Interference Analysis
Table 4 shows the diverse impact of resource interference
across the six applications. Usually applications are most
sensitive to resources whose utilization they saturate. For
instance, Moses and Sphinx have high demand for cache
capacity and memory bandwidth, seen by their high LLC
MPKI and memory bandwidth usage in Table 2. Interference

PARTIES ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

#C
or

es

X
X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

Memcached

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X
X

X
X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

Xapian

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X

NGINX

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

Moses

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

MongoDB

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X
X
X

X
X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

Sphinx

1.2GHz
1.4GHz
1.6GHz
1.8GHz
2.0GHz
2.2GHz
>2.2GHz

(a) Low load (30% of each application’s max load)

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

#C
or

es

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

Memcached

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

Xapian

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

NGINX

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

Moses

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

MongoDB

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X

Sphinx

1.2GHz
1.4GHz
1.6GHz
1.8GHz
2.0GHz
2.2GHz
>2.2GHz

(b) High load (90% of each application’s max load)

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

#C
or

es

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

Memcached

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

Xapian

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

NGINX

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

Moses

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

MongoDB

1 3 5 7 9 1113151719
Cache ways

1
3
5
7
9

11
13

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

Sphinx

1.2GHz
1.4GHz
1.6GHz
1.8GHz
2.0GHz
2.2GHz
>2.2GHz

(c) Low load (30% of each application’s max load) with memory thrashing microbenchmarks
Figure 2. Sensitivity to resource allocation under different loads and interference sources. Each column/row represents a fixed number of
cache ways/cores assigned to an application using the core and LLC isolation mechanisms. Each cell represents the minimum frequency
needed to meet QoS under a given number of cores and cache ways. The darker the color, the higher the required frequency. Cells with cross
marks mean that QoS cannot be satisfied even at the highest possible frequency.
in these resources results in QoS violations for these applica-
tions even at low loads. However, high usage of a resource
does not always correlate with sensitivity to interference in
the same resource. For example, Memcached is highly sen-
sitive to memory bandwidth interference despite not using
a lot of bandwidth itself (Table 2). Its sensitivity is instead
caused by its very stringent QoS target: since Memcached
requests have to finish in a few hundred microseconds, they
cannot tolerate high memory access latencies.

For all applications except for MongoDB, time sharing the
same hyperthread incurs unsustainably high latencies. Even
after eliminating the overhead of context switching, sharing
a physical core even on different hyperthreads results in
significantly lower throughput. Since colocation on the same
physical cores also leads to contention in L1 and L2 caches,
which cannot be mitigated by either software or hardware
isolation mechanisms, we disallow sharing of a physical core.

3.4 Isolation Study
The study above shows that 1) for each of the studied appli-
cations, there are resources that, when contented for, lead
to QoS violations; 2) for each shared resource, there are
applications that suffer from its interference. To eliminate
destructive interference, modern platforms have incorpo-
rated software and hardware isolation mechanisms (Table 3).
We use these isolations mechanisms to understand the sen-
sitivity to resource allocations, and the trade-offs between
allocations of different resources.

We first run each application alone, using isolation mech-
anisms to cap the amount of allocated resources. This helps
disentangle sensitivity to resource allocation from sensitivity
to resource contention. We then colocate each application
with contentious microbenchmarks, and study to what ex-
tent isolation mechanisms eliminate interference. We first
study compute-related resources, including cores, power, and
LLC, and then focus on storage-related resources, including
memory and disk. We do not study network bandwidth in
depth since, unlike other resources, it acts as a threshold, i.e.,
QoS can only be met when network bandwidth is sufficient,
and does not improve thereafter.

3.4.1 Core, Power, and LLC Isolation
Figure 2a and 2b show sensitivity to compute-related re-
sources when applications are at 30% and 90% of their re-
spective max load. All applications except for MongoDB are
most sensitive to core allocations, violating QoS when cores
are insufficient. When cores are sufficient, both frequency
and cache ways can be reduced while still meeting QoS. Mon-
goDB is dominated by I/O traffic, and hence only requires a
single core at the lowest frequency to meet QoS at high load.
Most applications are not highly sensitive to LLC alloca-

tions especially at low load. This is because cloud services
have large datasets that do not fit in the LLC to begin with.
However, for some applications like xapian, cache demand
still increases at high load because of data reuse among con-
current requests [36]. Additionally, LLC isolation serves as an

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Shuang Chen, Christina Delimitrou, and José F. Martínez

indirect way to reducememory bandwidth contention, which
applications are more sensitive to, as shown in Table 4, and
for which there is no direct isolation mechanism. To show
this effect, we repeat the same experiment but colocating
each application with microbenchmarks that thrash mem-
ory bandwidth on idle cores. As seen in Figure 2c, the LLC
demand increases substantially compared to the stand-alone
applications of Figure 2a, making partitioning critical. Fur-
thermore, the demand for cores and frequency also increases,
because faster computation is needed to hide the high mem-
ory access latency caused by increased cache misses.

3.4.2 Memory and Disk Isolation

15 30 45 60 75 90 105 120
Memory Capacity (GB)

0

1

2

3

4

5

6

D
is

k
B

an
dw

id
th

 (
M

B
/s

)

30% of max load
90% of max load

Figure 3. Sensitivity of MongoDB
tomemory capacity and disk band-
width. Y-axis shows the minimum
disk bandwidth to meet QoS un-
der different memory allocations.
At high load (90% of max load)
with less than 60GBmemory, Mon-
goDB cannot meet QoS even with
unconstrained disk bandwidth.

Most studied applica-
tions do not involve
disk operations, and in-
creasing their memory
capacity allocation be-
yond the size of their re-
spective datasets does
not improve performance.
However, applications
like MongoDB are I/O-
intensive, and use mem-
ory as a software cache
to relieve traffic to per-
sistent storage. As shown
in Figure 3, as memory
capacity increases, MongoDB achieves the same latency at
lower disk bandwidth, as more requests hit in memory.

3.4.3 Resource fungibility
Key to the effectiveness of PARTIES is the observation that
resources are fungible, i.e., they can be traded for each other.
In Section 4, we show that this reduces the time PARTIES
needs to find an allocation that satisfies QoS for two reasons:
(1) for a given application and load, there is more flexibility
in the resources that can be used to meet QoS for all co-
scheduled applications; and (2) the heuristic that explores
the space of possible allocations can be kept relatively simple,
as it is sufficient to find one satisfactory resource allocation.
Indeed, Figures 2a-2c, and3 all clearly show that, for any
application at any given load, there are multiple feasible
resource tuples. For instance, when Moses is at high load,
<10 cores, 11 cache ways, turbo frequency>, <14 cores, 11
cache ways, 1.8GHz>, and <14 cores, 2 cache ways, 2.2GHz>
are all valid allocations that meet QoS.

4 PARTIES Design
PARTIES is a feedback-based controller that dynamically ad-
justs resource allocations between co-scheduled LC appli-
cations using fine-grained monitoring and resource parti-
tioning, with the objective to meet all applications’ QoS
constraints. Below, we describe PARTIES in detail.

4.1 Design Principles
PARTIES is designed following four design principles:
• Resource allocation decisions are dynamic and fine-
grained. As shown in Section 3, LC applications are very
sensitive to resource allocations, with suboptimal deci-
sions – even by a small amount – leading to QoS viola-
tions. Fine-grained monitoring detects such short resource
demand bursts, and prevents them from occurring.
• No a priori application knowledge and/or profiling
is required. Creating an offline profile of resource interac-
tions in all possible application colocations, even if feasible,
would be prohibitively expensive. Moreover, obtaining this
information is not always possible, especially in the con-
text of a public cloud hosting previously-unknown work-
loads. Instead, resource fungibility (Section 3.4.3) enables
PARTIES to find viable allocations entirely online and in
a timely fashion, and without relying on per-application
empirically-tuned parameters.
• The controller recovers from incorrect decisions fast.
Since PARTIES explores the allocation space online, in-
evitably some of its decisions may be counterproductive.
By leveraging fine-grained online monitoring, PARTIES
quickly detects and recovers from such events.
• Migration is only used as a last resort When the ag-
gregate resource demand of co-scheduled applications ex-
ceeds the server’s total capacity, meeting QoS for all ser-
vices becomes impossible. In such cases, workload migra-
tion is the only remedy left. Because of the high overhead
of migration, if it becomes necessary, PARTIES selects the
application whose performance will be impacted the least
from migration, either because it is stateless, or because it
has a very relaxed QoS target (see Section 4.2.1).

4.2 PARTIES Controller
PARTIES consists of a monitoring and a resource allocation
component. The former monitors per-application tail latency,
memory capacity and network bandwidth usage, while the
latter uses them to determine appropriate resource alloca-
tions, and enforces them using isolation mechanisms.

4.2.1 Main controller operation
As shown in Algorithm 1, the controller starts from fair allo-
cation, where each application receives an equal partition
of all managed resources, and all processors run at nominal
frequency. After initialization, tail latencies and resource
utilizations are sampled every 500ms, and based on the mea-
surements, resources may be adjusted, depending on each
application’s tail latency slack:
• If at least one application has little or negative slack, i.e.,
QoS is (about to be) violated, PARTIES will assign more
resources to it, startingwith application S with the smallest
slack. This operation is carried out by upsize(S).
• When all applications comfortably satisfy their target QoS,

PARTIES will reduce the resource allocation of application

PARTIES ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Algorithm 1: PARTIES’ main function.
// Start from fair allocation of all resources
initialization();
while TRUE do

monitor tail latency and resource utilization for 500ms;
adjust_network_bandwidth_partition();
for each application A do

slack[A]← (target[A] - latency[A]) / target[A];
end
find application L with the largest slack;
find application S with the smallest slack;
if slack[S] < 0.05 then

// At least one app may violate its QoS; prioritize the
one with the worst performance

upsize(S);
else

if slack[L] > 0.2 then
// All apps have slack; start reclaiming resources
from the one with the highest slack

downsize(L);
end

end
if cannot meet all applications’ QoS targets for one minute
then

migrate();
end

end

L that exhibits the highest tail latency slack. This allows
excess resources to be reclaimed by function downsize(L),
either to reduce power consumption, or to invest towards
additional best-effort jobs, improving the machine’s utility.
The controller also maintains a timer to track how long

a QoS violation has been occurring for, which is reset upon
meeting QoS. If no resource allocation that meets all applica-
tions’ QoS is found in one minute, migration is triggered to
reduce the server load, and prevent prolonged performance
degradation.We describe how the slack andmigration thresh-
olds are set in Section 4.3.

When migration is invoked, the process involves: 1) choos-
ing an application to migrate; 2) creating a new instance of
the application on a more lightly-loaded machine; 3) redi-
recting requests from the previous instance to the new one;
4) terminating the previous instance. When choosing which
application to migrate, as per our design principles, PARTIES
chooses the one that will incur the least migration overhead.
Compared to stateful applications, stateless services do not
require migration of data in memory, thus introduce lower
migration overheads. When all colocated jobs are stateful,
PARTIES chooses the one with the most relaxed QoS target.

Network bandwidth allocations are adjusted every 500ms
via adjust_network_bandwidth_partition(). As mentioned in
Section 3.4, network bandwidth acts as a threshold as op-
posed to a tradeable resource, thus the controller allocates

Algorithm 2: PARTIES’ upsize(A) function increases the
resource allocation of application A to resolve its QoS
violation. action is a global variable that corresponds to a
pair of <direction, resource> that reflects which resource
will be adjusted and how, for each application.
// Choose a resource to adjust
if action[A].direction , UP then

action[A]← next_action(action[A], UP)
end
take_action(A);
previous_latency[A]← latency[A] ;
monitor tail latency and resource utilization for 500ms;
if latency[A] > previous_latency[A] then

// Latency has not decreased. Adjust another resource next
time.

action[A]← next_action(action[A], UP);
end

Algorithm 3: PARTIES’ downsize(A) function reclaims
excess resources from app A to improve total utility.
// Choose a resource to adjust
if action[A].direction , DOWN then

action[A]← next_action(action[A], DOWN)
end
take_action(A);
monitor tail latency and resource utilization for 500ms;
slack[A]← (target[A] - latency[A]) / target[A];
if slack[A] < 0.05 then

// QoS is about to be violated. Revert the adjustment and
adjust another resource next time.

revert_back(A);
action[A]← next_action(action[A], DOWN);

end

bandwidth based on each application’s usage. If bandwidth
slack is less than 0.5Gbps, the bandwidth partition is in-
creased by 0.5Gbps at a time. If slack is larger than 1Gbps,
unused bandwidth is reclaimed in steps of 0.5Gbps.

4.2.2 Upsizing and Downsizing Allocations
The upsize and downsize functions (Algorithm 2 and 3) shift
resources to or from an application. To do so, they first select
a resource to adjust, and then evaluate the impact of the
adjustment by monitoring latency and utilization. In upsize,
an adjustment is beneficial if latency decreases, while in
downsize, an adjustment is acceptable as long as QoS is still
satisfied post-adjustment. If the adjustment is not beneficial,
the controller switches to a different resource in the next
interval. Moreover, if in downsize, the action is immediately
reverted to quickly recover from the previously incorrect de-
cision. To prevent unnecessary QoS violations due to aggres-
sive downsizing in the future, downsizing of this application
is disabled for 30 seconds. The action is not reverted in upsize
in case the application lacks multiple resources (e.g., it needs

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Shuang Chen, Christina Delimitrou, and José F. Martínez

more memory capacity and more cores). This may result in
temporary oversubscription, however, excess resources will
be reclaimed later once QoS is comfortably met.

4.2.3 Resource Ordering
The most important step in upsize and downsize is deciding
which resource to adjust (function next_action). We represent
allocation decisions as <direction, resource> pairs. There are
ten actions in total: <UP/DOWN, CORE/CACHE/FREQ/MEM/DISK>,
which correspond to increasing or decreasing cores, cache
space, frequency, memory capacity, and disk bandwidth. Be-
cause PARTIES does not assume any a priori knowledge about
each application’s characteristics, it picks the initial resource
to adjust randomly. This ensures that the controller is gen-
erally applicable to any LC application regardless of which
resources it is sensitive to. Since decisions happen at a sub-
second granularity, even if the controller does not select the
most critical resource first, it will at worst select it within
the next four decision intervals.

PARTIES remembers the most recent action for each appli-
cation. Figure 4 illustrates the detailed transitions between
actions. For instance, if application A needs to be upsized,
action[A] will land in a random state in one of the UP wheels.
Assume it lands in memory capacity in the storage wheel
(i.e., action[A] is assigned to <UP, MEM>). If adjusting mem-
ory capacity does not improve latency, action[A] moves to
the next resource (i.e., disk bandwidth) in the same wheel. If
A is indeed in need of memory capacity and/or disk band-
width, its latency should drop. If not, the controller will start
adjusting compute resources by randomly selecting a re-
source in the compute wheel. Unlike resources in the storage
wheel where the benefit in performance is almost always
immediate, adjusting compute resources may require mul-
tiple rounds before there are noticeable performance gains.
Indeed, when an application is severely starved for compute
resources, fine-grained adjustments, e.g., in frequency, are
not enough to dissipate the long queues that have built up
in the system. Every time the controller completes a turn
in the compute wheel, it checks memory utilization before
deciding whether to initiate another round or to jump to the
storage wheel. If memory slack is large and latency does not
drop after scaling compute up, there is a high probability
that the allocated compute resources are not yet sufficient.
On the other hand, if memory is almost saturated, the QoS
violation is likely due to an increasing dataset, in which case
the controller jumps to the storage wheel.
Skipping states: There are a few corner cases that require
states of a wheel to be skipped. First, when an application
already has themax/min amount of a resource R, and the next
action requires upsizing/downsizing that resource, next_action
is called again to select a different resource. Second, for in-
memory applications likeMemcached, whichwill exhibit out-
of-memory errors whenmemory is insufficient, the <DOWN,

Compute Storage

D

M No Benefit

$

C

F

 No Benefit &
Mem Slack < 1GB UP UP

Mem Slack < 1GB Mem Slack >= 1GB

UP

DOWN

Compute Storage

D

M No Benefit

$

C

F

 No Benefit

DOWN DOWN

Figure 4. Transitions (arrows) between actions (nodes) in function
next_action. For each UP or DOWN direction, tradeable resources
are grouped into trading wheels (compute and storage). Transitions
between wheels within the same direction happen when options
for the current wheel have been exhausted. Transitions between
directions (opposite sides in the figure) happen when the controller
moves from upsize to downsize or vice versa.

MEM> state in the storage wheel is skipped if memory ca-
pacity slack is less than 1GB. These services are easily iden-
tifiable by monitoring their disk bandwidth usage.

4.2.4 Enforcing Resource Allocations
PARTIES uses interfaces provided by the OS and the hard-
ware platform (Table 3) to enforce resource isolation. Algo-
rithm 4 shows how resources are adjusted. When attempting
to upsize application A, the find_victim_application() func-
tion looks for an application to reclaim resources from. If
BE jobs are present, PARTIES always reclaim resources from
them first. Otherwise, the victim is usually the LC applica-
tion with the highest tail latency slack. The only exception
is when action[A] is <UP, MEMORY>, to avoid applications
being killed by the OS due to out of memory (OOM) er-
rors, find_victim_application() returns the application with
the greatest memory capacity slack. It only returns the LC
application with the greatest tail latency slack when no ser-
vice has memory slack larger than 1GB. On the other hand,
when attempting to downsize LC application A, if BE jobs
are present, the controller yields the reclaimed resources to
them. Otherwise, the reclaimed resources remain idle. Each
interval adjusts resources at a fine granularity (one physical
core, one cache way, 100MHz frequency, 1GB memory, or
1GB/s disk bandwidth), to minimize the impact on the vic-
tim application in upsize(), or on the application A itself in
downsize(). Finally, in upsize(), if both the upsized and victim
application are in the same resource of an UP wheel, the
victim will move to the next resource in the wheel to break
the resource ping-ponging between the two applications.

4.3 Discussion
What does PARTIES need to know about applications?
PARTIES does not need any offline profiling, or a priori ap-
plication knowledge except for their QoS targets. However,
to reduce out-of-memory errors for in-memory applications
during resource adjustments, a short online profiling is in
need to classify if an application is in-memory. To do so, PAR-
TIES monitors each application’s disk bandwidth usage for
one second at the start of each application. An application is
classified as in-memory when it does not involve I/O at all.

PARTIES ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Algorithm 4: PARTIES’ take_action(A) function.
if action[A].direction == UP then

// find a BE or LC application to reclaim resources from
V = find_victim_application();
move resources from V to A;
if V is latency critical and action[V] == action[A] then

// avoid moving the same resource back and forth
between two applications

action[V] = next_action(action[V], UP);
end

else
// find an LC application to give reclaimed resources to
V = find_recipient_application();
move resources from A to V;

end

How is latency monitored? We monitor the latency of
all requests on the client, via each service’s workload gener-
ator. Since we instantiate enough clients to avoid client-side
saturation, the end-to-end latencies mostly reflect server-
side delays. In a private cloud, internal applications are al-
ready instrumented to report their performance, therefore
the cloud provider has access to all necessary performance
metrics. In a public cloud, the applications either report
their own performance, or allow the cloud provider to insert
probe points to measure it. In a distributed deployment, a
per-node local PARTIES agent will interact with a cluster
scheduler which records end-to-end latencies that account
for request fanout, and reports per-server QoS targets. We
also examined monitoring low-level performance metrics
(e.g., CPI [61]). Although they can distinguish nominal from
heavily-problematic behavior, they are less effective when
requiring fine-grained decisions, e.g., capturing relative per-
formance slack across co-scheduled applications.

How are the controller parameters determined? The
controller uses multiple threshold and step constants:
• The decision interval is set to 500ms by default. Although
more frequent monitoring enables faster detection of QoS
violations, overly fine-grained latency polling leads to
noisy and unstable results, as there are not enough re-
quests accummulated for tail latency to converge. Longer
intervals provide better stability, but delay convergence.
• The latency slack for upsizing an allocation is set to 5% by
default. Larger values make the controller more proactive
at detecting potential QoS violations, however, they are
also prone to raising false alarms which hurt resource ef-
ficiency. The slack for downsizing an allocation is set to
20% by default. Smaller values can result in overly aggres-
sive resource reclamations which hurt performance, while
larger values lead to poor utilization. The two thresholds
are configured based on a sensitivity study on a subset
of the examined applications, and their effectiveness is
validated with the remaining LC services.

• The timer that triggers migration is set to 1min based on
PARTIES’s worst-case convergence time (see Section 5.4
for details on convergence). Shortening it would cause
unnecessary migrations, while lengthening it would allow
long-standing QoS violations.
• Finally, the granularity of resources adjusted per interval
is set to 1 core, 1 cache way, 100MHz frequency, 1GB of
memory, and 1GBps disk bandwidth. Coarser granularity
can lead to overly aggressive resource reclamation andQoS
violations, while finer granularity prolongs convergence.
What if upsizing one application violates the QoS of

another? Since PARTIES orders applications by increasing
latency slack, if upsizing one application causes a QoS vio-
lation for the victim, the latter will also be upsized when it
has the smallest latency slack. Moreover, PARTIES reduces
resource ping-ponging by ensuring that when the victim ap-
plication is upsized, it will not start from the same resource as
the application it yielded resources to (see take_action func-
tion in Algorithm 4). Resource fungibility allows PARTIES
to arrive to an acceptable resource allocation, as different
resource vectors have an equivalent effect on performance.

Will an application keep getting QoS violations be-
cause of unsuccessful downsizing? This could happen
when removing any resource brings latency slack from 20%+
to 5%-. In practice, this happens rarely as large slack usually
signals excessive allocated resources. However, to prevent
this pathological case, downsizing an application is disabled
for 30s once an incorrect downsize action was reverted.
How frequent is migration? Migration happens only

when the migration timer expires. In practice, migrations
are rare and only occur when the server is oversubscribed,
i.e., the aggregate load exceeds the machine’s capacity.

How are job schedulers influenced in the presence
of PARTIES? PARTIES is a per-node resource manager that
runs locally and manages co-scheduled applications placed
by the cluster-level scheduler. The scheduler periodically
interacts with PARTIES to ensure that individual machines
are neither overloaded nor oversubscribed.
5 Evaluation
5.1 Methodology
We evaluate PARTIES on a high-end server; details on our
platforms and LC applications can be found in Section 3.1.
Since PARTIES is an intra-node manager, it can simply be
replicated across multiple machines. Only in the case of
migrations a central coordinator with global cluster visibility
is required to determine the destination machine.

In addition to LC applications, we create a multi-threaded
BE job running in a separate container. The BE application
consists of 14 threads of compute-intensive, and 14 threads of
memory-thrashing microbenchmarks. Its throughput is de-
fined as the aggregate throughput across microbenchmarks.

We first evaluate scenarios where applications run at con-
stant loads, and later explore diurnal load patterns. We inject

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Shuang Chen, Christina Delimitrou, and José F. Martínez

20 40 60 80 100
Max Load of Memcached(%)

0

20

40

60

80

100

M
ax

Lo
ad

of
th

e
C

ol
oc

at
ed

A
pp

(%
)

(a) Memcached

20 40 60 80 100
Max Load of Xapian(%)

0

20

40

60

80

100

(b) Xapian

20 40 60 80 100
Max Load of NGINX(%)

0

20

40

60

80

100

(c) NGINX

20 40 60 80 100
Max Load of Moses(%)

0

20

40

60

80

100

(d) Moses

20 40 60 80 100
Max Load of Sphinx(%)

0

20

40

60

80

100

(e) Sphinx

20 40 60 80 100
Max Load of Mongodb(%)

0

20

40

60

80

100

memcached
NGINX
xapian
moses
sphinx
mongoDB

(f) MongoDB
Figure 5. Colocation of 2 LC applications. Each plot shows the result of colocating one application (App1) with each of the six studied
applications (App2). Each line shows the maximum percentage of App2’s max load (y-axis) that can be achieved without a QoS violation
when App1 is running at the fraction of its own max load indicated on the x-axis.
applications with loads from 10% to 100% of their respective
max load (Section 3.1), in 10% load increments. We test all
load combinations for a given N -app mix, for a total of 10N
combinations. For each run, we allow 30s of warm-up and
60s of measurement, repeated 3 times. This is long enough
for PARTIES to converge in all cases when the machine is not
oversubscribed. If a satisfactory allocation in which all apps
meet their QoS cannot be found after 1min, we signal that
PARTIES is unable to deliver QoS for that configuration.
5.2 Constant Load
5.2.1 PARTIES Effectiveness
Figure 5 shows colocations of 2 LC-application mixes under
PARTIES. In general, an application can operate at high load
without violating QoS whenever the colocated application
runs at a modest fraction of its own max load (typically 40-
60%). MongoDB is a particularly amenable co-runner due
to its low compute demands, with both MongoDB and its
colocated application successfully running close to their re-
spective max load. The only exception is when both applica-
tions are MongoDB instances, in which case the aggregate
throughput cannot exceed 160% because of I/O contention.

PARTIES is designed to support any number of LC appli-
cations. To illustrate this, we also show results for three-
and six-application mixes in Figure 6. To conserve space, we
show only the most challenging of the 3-application mixes,
namely those with Memcached and Xapian, which have the
strictest QoS of all studied applications (Table 2). PARTIES
again meets QoS for all co-scheduled applications, up un-
til the point where the machine becomes oversubscribed.
As before, MongoDB’s I/O-bound behavior enables more
resources to be yielded to the other services.
5.2.2 Comparison with Heracles
Heracles [43] is the most relevant prior work on resource
allocation for LC applications. Unlike PARTIES, Heracles is
designed for a single LC job running with one or more low-
priority BE jobs. Thus, when evaluating Heracles with multi-
ple LC services, we select the one with the strictest QoS as
the LC application, and treat the others as BE jobs. Note that
in Heracles, there is no partitioning between BE jobs.
We compare PARTIES and Heracles using Effective Ma-

chine Utilization (EMU), a metric used in the Heracles evalua-
tion [43], defined as the max aggregate load of all colocated

applications, where each application’s load is expressed as
a percentage of its max load, as before. Note that EMU can
be above 100% due to better bin-packing of shared resources.
Figure 7 shows the EMU achieved by Heracles for 2- up to
6-app mixes. PARTIES achieves 13% higher EMU for 2-app
mixes on average. This difference increases with the num-
ber of co-scheduled applications. For 6-app mixes, PARTIES
achieves on average 61% higher EMU than Heracles.

There are several factors that justify these results:
• Heracles suspends BE jobs upon detecting a QoS violation,
which is counterproductive when the colocated jobs are
also latency-critical. PARTIES instead adjusts the partition-
ing of multiple resources to find a configuration that meets
the QoS of all co-scheduled LC applications.
• There is no resource partitioning between BE jobs in Her-
acles, which is problematic when there are 3 or more colo-
cated LC applications. This leads to lower EMU for Hera-
cles, with the gap betweenHeracles and PARTIES increasing
with the number of colocated services.
• Heracles uses several resource subcontrollers that operate
independently from each other. For example, Heracles may
adjust frequency and cores at the same time, which may be
too aggressive in downsize and too conservative in upsize.
It also does not leverage the fact that these two resources
are tradeable with each other. Instead in PARTIES, only one
resource is adjusted in each interval.
• Heracles does not support partitioning of memory capacity
or disk bandwidth. This particularly shows up when mul-
tiple I/O-bound workloads, e.g., 2 instances of MongoDB,
are colocated on the same physical host.

5.2.3 Comparison with Other Resource Controllers
Next, we examine the most challenging three-app mix, Mem-
cached, Xapian, and NGINX, which have the strictest QoS
requirements of all studied applications. In addition to Hera-
cles, we also compare with two other controllers:
• Unmanaged: No isolation mechanisms are used, and the
ACPI frequency driver is set to the default “ondemand”
governor. The unmanaged environment relies on the OS
to schedule applications and manage resources.
• Oracle: An ideal manager that always finds a viable allo-
cation, if one exists, via exhaustive offline profiling.

PARTIES ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

10 20 30 40 50 60 70 80 90
Max Load of Memcached(%)

10
20
30
40
50
60
70
80
90M

ax
Lo

ad
of

X
ap

ia
n

(%
) 70

60
50
40
30
20
20
10

70
50
40
20
20
10

60
40
30
10
10

30
20
10

20
10

10
Max Load of NGINX(%)

10 20 30 40 50 60 70 80 90
Max Load of Memcached(%)

10
20
30
40
50
60
70
80
90M

ax
Lo

ad
of

X
ap

ia
n

(%
) 70

60
40
40
20
10

60
50
30
20
10

50
40
20
20
10

40
30
20
10

20
10
10

10
10

Max Load of Moses(%)

10 20 30 40 50 60 70 80 90
Max Load of Memcached(%)

10
20
30
40
50
60
70
80
90M

ax
Lo

ad
of

X
ap

ia
n

(%
) 70

60
50
40
20
20
10

60
50
40
40
20
20

50
40
40
20

40
40
20

40
20

30
10

10
Max Load of Sphinx(%)

10 20 30 40 50 60 70 80 90
Max Load of Memcached(%)

10
20
30
40
50
60
70
80
90M

ax
Lo

ad
of

X
ap

ia
n

(%
) 100

100
100
100
100
100
90
90
80

100
100
100
100
100
100
90
90

100
100
100
100
100
90
90

100
100
100
100
100
90
90

100
100
100
100
90

100
100
100

100
100
100

100
100

100
Max Load of MongoDB(%)

(a) Colocation of Memcached and Xapian with each of the remaining four applications.

10 20 30 40 50 60 70 80 90
Max Load of Memcached(%)

10
20
30
40
50
60
70
80
90M

ax
Lo

ad
of

X
ap

ia
n

(%
) 50

30
20
10

30
20
10
10

10
10

10 10
Max Load of NGINX (%)

20

40

60

80

100

(b) Colocation of all 6 services
Figure 6. Colocation of 3- and 6-app mixes. The heatmap values are the max percentage of the third app’s (or NGINX in the 6-app mix) max
load that can be achieved without QoS violations when Memcached and Xapian run at the fraction of their max loads indicated in the x and
y axes, respectively. In the 6-app mix, Moses, Sphinx, and MongoDB are at 10%, 10% and 100% of their respective max load (not shown).

2 3 4 5 6
Number of Colocated Apps

0

50

100

150

200

E
M

U
 (

%
)

Heracles PARTIES

Figure 7. Violin plots of Effective Ma-
chine Utilization (EMU) with constant
load for 2- to 6-app mixes. Red markers
show min, mean, and max EMU.

10 20 30 40 50 60 70 80
Max Load of Xapian(%)

10

20

30

40

50

60

M
ax

Lo
ad

of
M

em
ca

ch
ed

(%
)

50

30

10

10

30

20

20 10 10
Max Load of NGINX(%)

(a) Unmanaged

10 20 30 40 50 60 70 80
Max Load of Xapian(%)

60

50

40

30

50

40

30

10

40

20

10

30

10

10
Max Load of NGINX(%)

(b) Heracles

10 20 30 40 50 60 70 80
Max Load of Xapian(%)

70

70

60

30

20

10

60

50

40

20

10

50

40

30

10

40

20

10

30

20

10

20

10

20 10
Max Load of NGINX(%)

(c) PARTIES

10 20 30 40 50 60 70 80
Max Load of Xapian(%)

80

70

60

40

20

10

70

50

40

30

10

50

40

30

20

40

30

20

30

20

10

30

10

20 10
Max Load of NGINX(%)

20

40

60

80

100

(d) Oracle
Figure 8. Colocation of Memcached (M), Xapian (X) and NGINX (N) with different resource
managers. The values in the heatmaps are the max percentage of N’s max load achieved without
QoS violations when M and X run at the fraction of their max loads indicated in the y and x axes.

Figure 8 shows the maximum achievable load under QoS
for the four controllers. Unmanaged performs the worst,
as it does not directly manage interference. Compared to
Heracles, when Memcached and Xapian operate at the same
load, NGINX consistently achieves 10%-30% higher load with
PARTIES. Even pushing utilization by 10-20% translates to
huge cost benefits when multiplied across 10,000s machines
in a datacenter. Alternatively, this also means that under
the same load, PARTIES uses fewer resources than Heracles,
leaving more room for power savings, or additional BE jobs.

PARTIES in fact behaves similarly to Oracle, achieving at
most 10% lower EMU than the oracular controller. There
are two reasons for the gap between PARTIES and Oracle.
First, PARTIES upsizes the application with the most severe
QoS violation at each interval. When the aggregate load
is very high, and there are only a few viable allocations,
always prioritizing the service with the smallest latency
slack can result in ping-ponging effects between severely
resource-starved applications. Second, when an application
is very resource-constrained, any resource adjustment would
need more than 500ms to take effect, especially when tuning
compute resources, due to the long queues that have built up
in the system. This makes PARTIES over-allocate resources
in the compute wheel. Increasing the monitoring interval
would resolve this issue but delay convergence; given that
this is only needed in pathological cases where the machine
is oversubscribed, we keep the monitoring interval the same
as before (500ms).

5.3 Fluctuating Load
We now evaluate how PARTIES behaves with dynamically
changing load. Datacenter applications often experience fluc-
tuations in their load, such as diurnal patterns where load is
high at daytime, and gradually decreases during the night.
To simulate this scenario, we choose a three-application mix
with Memcached, Xapian, and Moses. This mix includes the
two applications with the strictest QoS, plus the one with
the most pressure on memory bandwidth (Moses). We vary
the load of Memcached from 10% to 60%, and set the load of
Moses and Xapian at 10 and 20% of their respectivemax load.
Figure 9 shows how PARTIES dynamically tunes resources
to adjust to Memcached’s load variation. Since adjusting
network bandwidth is trivial, and these applications do not
contend for memory capacity and disk bandwidth, we only
show compute-related resources in the plot.

In the beginning, all three services are lightly loaded. PAR-
TIES starts with a fair allocation of all resources. As the
system is lightly loaded, PARTIES detects a large slack in the
tail latency of all services (Memcached first, then Moses and
Xapian), and decreases their core and cache allocations. The
BE job therefore gets more resources, and higher throughput.

At 25s, the load of Memcached quickly ramps up from 10%
to 60% of its max load. Unmanaged and Heracles start falter-
ing when Memcached’s load increases to 40% at around 60s.
Unmanaged results in a dramatic increase in latency, whereas
Heracles detects the QoS violation, and pauses all other ap-
plications for five minutes, as specified in [43]. As a result,

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Shuang Chen, Christina Delimitrou, and José F. Martínez

0 50 100 150 200 250
0

10
20
30
40
50
60
70

%
of

M
ax

Lo
ad

moses
xapian
memcached

0 50 100 150 200 250
10−1

100
101
102
103
104
105

N
or

m
.

La
te

nc
y

w
.

U
nm

an
ag

ed

0 50 100 150 200 250
10−1

100
101
102
103
104
105

N
or

m
.

La
te

nc
y

w
.

H
er

ac
le

s

0 50 100 150 200 250
10−1

100

101

102

103

N
or

m
.

La
te

nc
y

w
.

PA
R

TI
E

S

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

N
or

m
.

Th
ro

ug
hp

ut
w

.
PA

R
TI

E
S

BE

0 50 100 150 200 250
0
2
4
6
8

10
12
14

#C
or

es

0 50 100 150 200 250
1200
1400
1600
1800
2000
2200
2400

Fr
eq

ue
nc

y
(M

H
z)

0 50 100 150 200 250
Time (s)

0

5

10

15

20

LL
C

W
ay

s

Figure 9. Latency and resource allocations with Unmanaged, Hera-
cles, and PARTIES with varying load for Memcached. Moses and
Xapian operating at 10% and 20% of their respectivemax load. Mem-
cached starts at 10% of its max load, and gradually reaches 60%,
where it remains for one minute. The load then gradually drops
back to 10%. Latencies are normalized to their respective QoS; a
value larger than one signifies a QoS violation. BE throughput is
normalized to its max throughput in isolation. The y-scale of latency
figures is logarithmic.

Moses and Xapian experience rapidly increasing latencies,
and eventually drop requests. PARTIES detects latency spikes
as load increases, and gradually moves more resources to
Memcached. At the same time, the BE throughput drops due
to fewer available resources. When Memcached is at 60% of
itsmax load, both Memcached and Xapian start experiencing
QoS violations. PARTIES upsizes their resources accordingly.
As a result, it finds a valid allocation within 20s, preventing
any further QoS violations.

At around 120s, even though Memcached’s load starts to
decrease, resources are not reclaimed immediately, as latency
slack is still small. To prevent a potential latency surge, PAR-
TIES downsizes an application only when its latency slack is
larger than 0.2; this happens at 135s. Subsequently, the BE
throughput increases, as the aggregate LC load decreases.
Even though there are still occasional short QoS violations
during this period, latencies recover quickly, as incorrect
downsize actions are immediately reverted.

5.4 PARTIES Overhead
PARTIES is currently implemented as a user-level runtime
that polls the latency and resource utilization of applications,
and interacts with the OS and hardware to adjust allocations.
The runtime is pinned on core 0, taking 15% of its CPU
utilization (monitoring and resource adjustment each take
10% and 5%, respectively).

2 3 4 5 6
#Colocated Apps

0

10

20

30

40

50

60

C
on

ve
rg

en
ce

 T
im

e
(s

)

Figure 10. Violin plot of con-
vergence time for 2 to 6-app
mixes. Red markers show the
min, mean, and max.

Figure 10 shows conver-
gence time for 2- up to 6-
LC app mixes with con-
stant loads. PARTIES takes a
few seconds (when the ini-
tial partition works), up to
sixty seconds (worst case of
all six LC applications colo-
cated) to converge to an al-
location without QoS vio-
lations. In general, conver-
gence time depends on the load of each application, and
the number of colocated applications. Note that, although
the total search space grows exponentially with the number
of colocated interactive applications, convergence time in
practice grows much more slowly: when moving from 2- to
6-LC application mixes, average convergence time increases
by 2.8x even though the search space increases by several
orders of magnitude. This is because PARTIES does not at-
tempt to find the optimal resource allocation: rather, it stops
the exploration the moment all applications meet their QoS,
which greatly reduces the exploration time. PARTIES then
relies on downsize() (Algorithm 3) to further close the gap
between the selected and optimal allocations.

6 Conclusion
We have presented PARTIES, an online resource controller
that enables multiple latency-critical applications to share a
physical host without QoS violations. PARTIES leverages both
hardware and software isolation mechanisms to preserve
QoS, and assumes no a priori information about any of the
co-scheduled services. We have evaluated PARTIES against
state-of-the-art mechanisms, and showed that it achieves
considerably higher throughput, while satisfying QoS in the
face of varying loads, and that its gains increase with the
number of co-scheduled applications.

Acknowledgments
We thank Daniel Sanchez, David Lo, and the anonymous re-
viewers for their feedback. This work was supported in part
by Air Force award FA9550-5-1-0311; by NSF and the Semi-
conductor Research Corporation (SRC) through the DEEP3M
Center, which is part of the E2CDA program; and by DARPA
and SRC through the CRISP Center, which is part of the
JUMP program. Christina Delimitrou was supported by NSF
award CNS-1422088, by a Facebook Faculty Award, and by a
John and Norma Balen Sesquicentennial Faculty Fellowship.

PARTIES ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

References
[1] Memcached official website. http://memcached.org.
[2] MongoDB official website. http://www.mongodb.com.
[3] NGINX official website. http://nginx.org.
[4] Usage statistics and market share of NGINX for websites. https://

w3techs.com/technologies/details/ws-nginx/all/all.
[5] Wrk2: A constant throughput, correct latency recording variant of

wrk. https://github.com/giltene/wrk2.
[6] Xapian project website. http://github.com/xapian/xapian.
[7] Intel R⃝64 and IA-32 Architecture Software Developer’s Manual, vol3B:

System Programming Guide, Part 2, 2014.
[8] Lada A Adamic and Bernardo AHuberman. Zipf’s law and the internet.

Glottometrics, 2002.
[9] Amazon EC2. http://aws.amazon.com/ec2/.
[10] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. Workload analysis of a large-scale key-value store. In
Proceedings of the 2012 ACM SIGMETRICS Joint International Conference
on Measurement and Modeling of Computer Systems, 2012.

[11] Luiz Barroso and Urs Hoelzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis
lectures on computer architecture, 2013.

[12] Ramazan Bitirgen, Engin Ipek, and José F. Martínez. Coordinated
management of multiple interacting resources in chip multiproces-
sors: A machine learning approach. In Proceedings of the 41st annual
IEEE/ACM International Symposium on Microarchitecture, 2008.

[13] Sergey Blagodurov, Alexandra Fedorova, Evgeny Vinnik, Tyler Dwyer,
and Fabien Hermenier. Multi-objective job placement in clusters.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2015.

[14] Martin A. Brown. Traffic control howto. http://linux-ip.net/articles/
Traffic-Control-HOWTO/.

[15] James Charles, Preet Jassi, Narayan S Ananth, Abbas Sadat, and Alexan-
dra Fedorova. Evaluation of the Intel® core i7 turbo boost feature. In
IEEE International Symposium on Workload Characterization, 2009.

[16] Shuang Chen, Shay GalOn, Christina Delimitrou, Srilatha Manne,
and José F. Martínez. Workload characterization of interactive cloud
services on big and small server platforms. In IEEE International
Symposium on Workload Characterization, 2017.

[17] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing, 2010.

[18] Christina Delimitrou and Christos Kozyrakis. iBench: Quantifying
interference for datacenter applications. In IEEE International Sympo-
sium on Workload Characterization, 2013.

[19] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware
scheduling for heterogeneous datacenters. In Proceedings of the Eigh-
teenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2013.

[20] Christina Delimitrou and Christos Kozyrakis. QoS-aware scheduling
in heterogeneous datacenters with paragon. In ACM Transactions on
Computer Systems, Vol. 31 Issue 4, 2013.

[21] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
efficient and qos-aware cluster management. In Proceedings of the
Nineteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2014.

[22] Christina Delimitrou and Christos Kozyrakis. HCloud: Resource-
efficient provisioning in shared cloud systems. In Proceedings of the
Twenty First International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2016.

[23] Christina Delimitrou and Christos Kozyrakis. Bolt: I know what you
did last summer... in the cloud. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2017.

[24] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. Tarcil:
Reconciling Scheduling Speed and Quality in Large Shared Clusters.

In Proceedings of the Sixth ACM Symposium on Cloud Computing, 2015.
[25] Alexandra Fedorova, Margo Seltzer, and Michael D Smith. Improving

performance isolation on chip multiprocessors via an operating system
scheduler. In Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques, 2007.

[26] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds:
A study of emerging scale-out workloads on modern hardware. In
Proceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2012.

[27] Brad Fitzpatrick. Distributed caching with memcached. In Linux
Journal, Volume 2004, Issue 124, 2004.

[28] Yu Gan and Christina Delimitrou. The Architectural Implications of
Cloud Microservices. In Computer Architecture Letters, vol.17, iss. 2,
Jul-Dec 2018.

[29] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayantara Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Bren-
don Jackson, Kelvin Hu, Meghna Pancholi, Brett Clancy, Chris Colen,
Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Ma-
teo Espinosa, Yuan He, and Christina Delimitrou. An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software Im-
plications for Cloud and Edge Systems. In Proceedings of the Twenty
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, April 2019.

[30] Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna Pancholi, Dailun
Cheng, and Christina Delimitrou. Seer: Leveraging Big Data to Navi-
gate the Complexity of Performance Debugging in Cloud Microser-
vices. In Proceedings of the Twenty Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, April 2019.

[31] Google container engine. https://cloud.google.com/container-engine.
[32] intel-cmt-cat: a user-space software for Intel R⃝ resource director tech-

nology. https://github.com/01org/intel-cmt-cat.
[33] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal

Talwar, and Andrew Goldberg. Quincy: fair scheduling for distributed
computing clusters. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, 2009.

[34] Vatche Ishakian, Raymond Sweha, Jorge Londono, and Azer Bestavros.
Colocation as a service: Strategic and operational services for cloud
colocation. In the 9th IEEE International Symposium on Network Com-
puting and Applications, 2010.

[35] Harshad Kasture, Davide B Bartolini, Nathan Beckmann, and Daniel
Sanchez. Rubik: Fast analytical power management for latency-critical
systems. In Proceedings of the 48th International Symposium on Mi-
croarchitecture, 2015.

[36] Harshad Kasture and Daniel Sanchez. Ubik: Efficient cache sharing
with strict QoS for latency-critical workloads. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

[37] Harshad Kasture and Daniel Sanchez. Tailbench: a benchmark suite
and evaluation methodology for latency-critical applications. In IEEE
International Symposium on Workload Characterization, 2016.

[38] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch,
Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, et al. Moses: Open source toolkit for statis-
tical machine translation. In Proceedings of the 45th Annual Meeting of
the ACL on Interactive Poster and Demonstration Sessions, 2007.

[39] Jacob Leverich and Christos Kozyrakis. Reconciling high server uti-
lization and sub-millisecond quality-of-service. In Proceedings of the
9th European Conference on Computer Systems, 2014.

[40] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. Tales
of the tail: Hardware, OS, and application-level sources of tail latency.
In Proceedings of the ACM Symposium on Cloud Computing, 2014.

http://memcached.org
http://www.mongodb.com
http://nginx.org
https://w3techs.com/technologies/details/ws-nginx/all/all
https://w3techs.com/technologies/details/ws-nginx/all/all
https://github.com/giltene/wrk2
http://github.com/xapian/xapian
http://aws.amazon.com/ec2/
http://linux-ip.net/articles/Traffic-Control-HOWTO/
http://linux-ip.net/articles/Traffic-Control-HOWTO/
https://cloud.google.com/container-engine
https://github.com/01org/intel-cmt-cat

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Shuang Chen, Christina Delimitrou, and José F. Martínez

[41] Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn, Anuj Kalia,
Michael Kaminsky, David G. Andersen, O. Seongil, Sukhan Lee, and
Pradeep Dubey. Architecting to achieve a billion requests per second
throughput on a single key-value store server platform. In Proceedings
of the 42nd Annual International Symposium on Computer Architecture,
2015.

[42] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and
Christos Kozyrakis. Towards energy proportionality for large-scale
latency-critical workloads. In Proceedings of the 41st Annual Interna-
tional Symposium on Computer Architecuture, 2014.

[43] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. Heracles: Improving resource
efficiency at scale. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, 2015.

[44] Jason Mars and Lingjia Tang. Whare-map: heterogeneity in "homoge-
neous" warehouse-scale computers. In Proceedings of the 40th Annual
International Symposium on Computer Architecture, 2013.

[45] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou
Soffa. Bubble-up: increasing utilization in modern warehouse scale
computers via sensible co-locations. In Proceedings of the 44th
IEEE/ACM International Symposium on Microarchitecture, 2011.

[46] Memcached load generator. https://github.com/leverich/mutilate.
[47] Lakshmish Ramaswamy, Ling Liu, and Arun Iyengar. Cache clouds:

Cooperative caching of dynamic documents in edge networks. In
Proceedings of the 25th IEEE International Conference on Distributed
Computing Systems, 2005.

[48] Amitabha Roy, Ivo Mihailovic, andWilly Zwaenepoel. X-Stream: Edge-
centric graph processing using streaming partitions. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
2013.

[49] Daniel Sanchez and Christos Kozyrakis. Vantage: Scalable and Effi-
cient Fine-Grain Cache Partitioning. In Proceedings of the 38th annual
International Symposium in Computer Architecture, 2011.

[50] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. Open
versus closed: A cautionary tale. In Proceedings of the Third Conference
on Symposium on Networked Systems Design & Implementation, 2016.

[51] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. Omega: flexible, scalable schedulers for large compute clus-
ters. In Proceedings of the 8th ACM European Conference on Computer
Systems, 2013.

[52] Johannes Thönes. Microservices. IEEE Software, 32(1):116–116, 2015.
[53] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-

heimer, Eric Tune, and John Wilkes. Large-scale cluster management

at google with borg. In Proceedings of the Tenth European Conference
on Computer Systems, 2015.

[54] Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh,
Evandro Gouvea, Peter Wolf, and Joe Woelfel. Sphinx-4: A flexible
open source framework for speech recognition. In Sun Microsystems,
Inc., 2004.

[55] XiaodongWang, Shuang Chen, Jeff Setter, and José F. Martínez. SWAP:
Effective fine-grain management of shared last-level caches with min-
imum hardware support. In 2017 IEEE International Symposium on
High Performance Computer Architecture, 2017.

[56] Xiaodong Wang and José F Martínez. XChange: A market-based ap-
proach to scalable dynamic multi-resource allocation in multicore
architectures. In International Symposium on High Performance Com-
puter Architecture, 2015.

[57] Carole-Jean Wu and Margaret Martonosi. A comparison of capacity
management schemes for shared CMP caches. In Proceedings of the
7th Workshop on Duplicating, Deconstructing, and Debunking, 2008.

[58] Hailong Yang, Alex Breslow, JasonMars, and Lingjia Tang. Bubble-flux:
precise online qos management for increased utilization in warehouse
scale computers. In Proceedings of the 40th International Symposium
on Computer Architecture, 2013.

[59] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. Delay scheduling: a simple tech-
nique for achieving locality and fairness in cluster scheduling. In
Proceedings of the European conference on Computer systems, 2010.

[60] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, 2012.

[61] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. CPI2: CPU performance isolation for shared com-
pute clusters. In Proceedings of the 8th ACM European Conference on
Computer Systems, 2013.

[62] Yunqi Zhang, Michael A. Laurenzano, Jason Mars, and Lingjia Tang.
SMiTe: Precise QoS prediction on real-system smt processors to im-
prove utilization in warehouse scale computers. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture,
2014.

[63] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. Treadmill:
Attributing the source of tail latency through precise load testing and
statistical inference. In Proceedings of the 43rd International Symposium
on Computer Architecture, 2016.

https://github.com/leverich/mutilate

	Abstract
	1 Introduction
	2 Related Work
	3 Characterization
	3.1 Latency-critical applications
	3.2 Testing strategy
	3.3 Interference Study
	3.4 Isolation Study

	4 PARTIES Design
	4.1 Design Principles
	4.2 PARTIES Controller
	4.3 Discussion

	5 Evaluation
	5.1 Methodology
	5.2 Constant Load
	5.3 Fluctuating Load
	5.4 PARTIES Overhead

	6 Conclusion
	Acknowledgments
	References

