
AUGUST 2018 | VOL. 61 | NO. 8 | COMMUNICATIONS OF THE ACM 65

TRANSLATING THE IMPACT of Amdahl’s Law on tail
latency provides new insights on what future
generations of data-center hardware and software
architectures should look like. The emphasis on
latency, instead of just throughput, puts increased
pressure on system designs that improve both
parallelism and single-thread performance.

Computer architecture is at an in-
flection point. The emergence of ware-
house-scale computers has brought
large online services to the forefront
in the form of Web search, social net-
works, software-as-a-service, and more.
These applications service millions of
user queries daily, run distributed over
thousands of machines, and are con-
cerned with tail latency (such as the
99th percentile) of user requests in ad-
dition to high throughput.6 These char-
acteristics represent a significant de-
parture from previous systems, where
the performance metric of interest
was only throughput, or, at most, aver-
age latency. Optimizing for tail latency
is already changing the way we build
operating systems, cluster managers,
and data services.7,8 This article inves-
tigates how the focus on tail latency af-
fects hardware designs, including what
types of processor cores to build, how
much chip area to invest in caching
structures, how much resource inter-
ference between services matters, how
to schedule different user requests in
multicore chips, and how these deci-

sions interact with the desire to mini-
mize energy consumption at the chip
or data-center level.2

While the precise answers will come
from detailed experiments with both
simulated and real systems, there is
great value in having an analytical
framework that identifies the major
trade-offs and challenges in latency-
sensitive cloud systems. We aim here
to complement the previous analyses
on Amdahl’s Law for parallel and mul-
ticore systems1,11 by designing a model
that draws from basic queueing theory

Amdahl’s Law
for Tail Latency

DOI:10.1145/3232559

Queueing theoretic models can guide design
trade-offs in systems targeting tail latency,
not just average performance.

BY CHRISTINA DELIMITROU AND CHRISTOS KOZYRAKIS

 key insights
 ˽ Optimizing for tail latency makes

Amdahl’s Law more consequential
than when optimizing for average
performance.

 ˽ Queueing theory can provide accurate
first-order insights into how hardware
for future interactive services should
be designed.

 ˽ As service responsiveness and
predictability become more critical,
finding a balance between compute and
memory resources likewise becomes
more critical.

http://dx.doi.org/10.1145/3232559

66 COMMUNICATIONS OF THE ACM | AUGUST 2018 | VOL. 61 | NO. 8

contributed articles

Figure 1. Building system insights from queueing theory: (a) 99th percentile response time in
an M/M/1 model; and (b) 99th percentile queueing time in an M/M/4 model as a function of µ.

0.0 0.2 0.4 0.6 0.8 1.0
Service Rate mµ

(a)

100

101

102

103

104

105

9
9

th
 P

er
ce

n
ti

le
 L

at
en

cy

10% load 50% load 99% load

0.0 0.2 0.4 0.6 0.8 1.0
Service Rate mµ

(b)

10–6

10–5

10–4

10–3

10–2

10–1

100

9
9

th
 P

er
ce

n
ti

le
W

ai
ti

n
g

 T
im

e
(k

 =
 4

)

Amdahl’s Law describes the speedup of a program when
a fraction f of the computation is accelerated by a factor S.
Speedup is then defined as

In a multi-core machine, Amdahl’s Law captures the
benefit from multiple cores in average performance. While
this interpretation is still relevant, it is, by itself, insufficient
for describing tail latency requirements. To bridge the gap
we build upon ideas from queueing theory, which provides
a framework to reason about task-arrival rates, service
times, and end-to-end response times. Simple models (such
as M/M/1 and M/M/k) are particularly attractive for first-
order performance calculations because they can concisely
describe performance in closed-form expressions.

M/M/1 model. We start with one of the simplest queueing
models: the M/M/1 queue, modeling a system in which a
single server processes incoming tasks. Tasks arrive under a
Poisson process with rate λ. The service times also follow an
exponential distribution, with rate parameter µ and mean
service time Ts = 1/µ (µ=per f (r) in the main text of the article.
A larger µ means a more powerful server and results in lower
latency. Tasks are processed in a simple first-in-first-out
order. This simple queueing system is stable when µ > λ. In
contrast, when µ > λ, queued tasks keep increasing, leading to
instability. The load of the system is defined as ρ = λ/µ. Given
these definitions, the mean number of tasks in the system is

where N is a random variable for the number of tasks.
Likewise, the mean of task response time (using random
variable R) is

and the ρ-th percentile of response time is

Figure 1a outlines the 99th percentile of request latency as a
function of the service rate µ. As µ increases, tail latency drops
both at low and high load.

M/M/k model. We now extend the M/M/1 model to a more
realistic system with k equivalent servers in order to model a
multicore machine. Tasks are now added to a single, shared
queue, where servers draw them from for processing. As with
the M/M/1 model, tasks arrive under a Poisson process with
arrival rate λ and each server processes tasks with service rate
µ. Closed-form solutions for the mean response time and
response-time percentiles exist but are more complicated
than in the M/M/1 model. Specifically, system load is ρ = λ/
(kµ). The probability that a new task must be enqueued is
given by Erlang’s C formula

and the mean number of tasks in the system

The average response time is

Finally, the p-th percentile of queueing time is

Figure 1b outlines how the 99th percentile of queueing
time correlates to the service rate µ for one and four servers.
Higher service rates correspond to less time spent by requests
in the queue. We use the M/M/k model for analysis of system
trade-offs unless otherwise specified. In the article’s section
on validation, we verify that this model closely reflects real
system behavior. For applications with non-Poisson arrival-
and service-time distributions, more general queueing
models may be needed (such as the G/G/k model).10,24 For
more complex applications (such as multi-tier services),
system architects would need a more sophisticated analytical
model (such as a queueing network).

Analytical Framework

AUGUST 2018 | VOL. 61 | NO. 8 | COMMUNICATIONS OF THE ACM 67

contributed articles

Figure 4a shows how throughput in
queries per second (QPS) changes for
different latency QoS targets, under the
M/M/N queueing model described in
the sidebar. Throughput of 100QPS for
QoS=10Ts means the system achieved
100QPS for which the 99th latency per-
centile is 10Ts. The x-axis captures the
size of selected cores, moving from
many small cores on the left side to a
single core of 100BCEs on the right
side. We examine all core sizes from
1BCE up to 100BCEs in increments of
a single resource unit. In configura-
tions with multiple cores, throughput
is aggregated across all cores. The dis-
continuities in the graph are an artifact
of the limited resource budget and ho-
mogeneous design; for example, for
U = 51, an architect can build a single
51BCE core, while 49 resource units re-
main unused. Throughput for 10Ts for
cores greater than 7BCE overlaps with
100Ts, as does throughput for 5Ts for
cores of more than 12BCEs.

Finding 1. Very strict QoS targets put
a lot of pressure on single-thread per-
formance. When QoS = Ts or 5 Ts, cores
smaller than 22BCEs or 12BCEs, re-
spectively, achieve zero QPS for which
the tail latency satisfies the QoS target.
This happens because the cores are too
weak to handle variability in service
time even in the absence of queue-
ing, and the queueing naturally occurs
when cores operate close to saturation.
This result means that, for services
with extremely low-latency require-
ments (such as in-memory caching
and in-memory distributed storage),21
architects must focus on improving

(see Figure 1 in the sidebar “Analytical
Framework”) and can provide first-or-
der insights on how design decisions
interact with tail latency. As was the
case with the previous analyses based
on Amdahl’s Law, our model has sig-
nificant implications for processor de-
signs for cloud servers.

While analytical models help draw
first-order insights, they run the risk
of not accurately reflecting the com-
plex operation of a real system. In Fig-
ure 2, we show a brief validation study
of the queueing model, as discussed
in the sidebar, with {1, 4, 8, 16} com-
pute cores against a real instantiation
of memcached, a popular in-memory,
key-value store, with the same number
of cores. We set the mean interarrival
rate and service time of the queueing
model based on the measured times
with memcached. In both cases, when
providing memcached with exponen-
tially distributed input load, the mem-
cached request latency is close to the
one estimated by the queueing model
across load levels.

Cost Model
Since hardware resources are not infi-
nite, this analysis requires a cost model
that relates resource usage to perfor-
mance. We use a model similar to the
one used by Hill and Marty11 to extend
Amdahl’s Law to multicore chips. That
is, we assume a given multicore chip is
limited to R base core equivalents (BCE)
units. This limitation represents area
or power-consumption constraints in
the chip design. The BCE is an abstract
cost unit that captures processor re-
sources and caches but does not share
resources (such as interconnection
networks and memory controllers). As
in Hill and Marty,11 we assume these
resources are fairly constant in the sys-
tem variations we examine. A baseline
core that consumes 1BCE unit achieves
performance of perf(1)=1. Chip archi-
tects can build more powerful cores
by dedicating r ∈ [1,R] resource units
to each core to achieve performance
per f (r), where per f (r) is the rate pa-
rameter µ in our performance model.
Larger cores have higher service rate
µ, which is inversely related to tail la-
tency, as discussed in the sidebar. If
performance increases superlinearly
with resources, then more cores are
always better. In practice per f (r) < r,

creating trade-offs between opting for
few brawny or many wimpy cores. By
default, we follow Shekhar Borkar3 and
use per f (r) = sqrt(r) but have also inves-
tigated how higher roots affect the cor-
responding insights.

Brawny Versus Wimpy Cores
We first examine a system where all
cores are homogeneous and have
identical cost. An important question
the designer must answer is: Given a
constrained aggregate power or area
budget, should architects build a few
large cores or many small cores? The
answer has been heavily debated in
recent years in both academia and
industry,4,12,14,17,19,22 as it relates to the
introduction of new designs (such as
the ARM server chips and throughput
processors like Xeon Phi).

Assuming the total budget is R =
100BCEs, an architect can build 100
basic cores of 1BCE each, 25 cores of
4BCEs each, one large core of 100BCEs,
or in general R/U cores of U units each,
as shown in Figure 3. We consider
an online service workload with tail
latency quality-of-service (QoS) con-
straints. QoS is defined as a function of
the mean service time Ts of the 100BCE
machine. For example, a very strict QoS
target would require the 99th percentile
of request latency to be Ts. This means
the time between arrival and comple-
tion of 99% of requests must be less or
equal to the machine’s mean service
time, allowing no tolerance for queue-
ing or service-time variability. More re-
laxed QoS targets are defined as multi-
ples of Ts: QoS = αTs, α ∈ [5, 10, 50, 100].

Figure 2. Validation of the queueing model against a real instantiation of an in-memory
key-value store (memcached) for {1,4,8,16} cores.

0.0 0.2 0.4 0.6 0.8 1.0
Load

0

500

1000

1500

2000

2500

3000

3500

4000

L
at

en
cy

(u
se

c)

MM1
memcached k=1
MM4
memcached k=4

MM8
memcached k=8
MM16
memcached k=16

68 COMMUNICATIONS OF THE ACM | AUGUST 2018 | VOL. 61 | NO. 8

contributed articles

parallelism. At lower QoS targets, a larg-
er set of medium-size cores achieves
the best performance. For example,
7BCE cores are optimal for QoS = 10Ts.
For applications with moderate la-
tency requirements (such as Web
search and Web servers), architects
should seek to balance improve-
ments in single-thread performance
(instruction-level parallelism) and
multi-core performance (request-
level parallelism). Increasing sin-
gle-thread performance at high cost
yields diminishing returns in this
case. Nevertheless, a large pool of
wimpy cores—1BCE—is optimal only
when applications have no latency
constraints, as with long data min-

ing queries or log-processing requests.
With QoS = 100Ts, applications are es-
sentially throughput-limited and per-
form best with many wimpy cores.

These findings highlight a dispar-
ity between optimal system design
when optimizing for throughput ver-
sus when optimizing for tail latency.
For example, in a homogeneous sys-
tem where throughput is the only per-
formance metric of interest and paral-
lelism is plentiful, the smallest cores
achieve the best performance; see the
1BCE cores in Figure 4a. In compari-
son, when optimizing for throughput
under a tail latency constraint, the op-
timal design point shifts toward larg-
er cores, unless the latency constraint
relaxes significantly.

Finding 3. Limited parallelism also
calls for more powerful cores. So far
we have assumed all user requests are
independent and perfectly paralleliz-
able, though it is rarely the case in
practice. Requests are often depen-
dent on each other and on system
issues like connection ordering and
locks for writes causing serialization.
The growing trend of breaking com-
plex services down to smaller compo-
nents (microservices) will only make
the problem of request dependen-
cies more common. This brings up
the caveat of Amdahl’s Law. To what
extent are the previous findings ac-
curate when parallelism is limited?
Figure 4b shows the case of a reason-
able QoS (10Ts) with f ∈ {50%, 90%,
99%, 100%}. When, for example, the
parallel fraction of the computation
f is 90%, 10% of requests are serial-
ized. As a result, while optimal per-
formance was previously achieved
with seven BCE cores, the optimal
core size now shifts to 25 BCEs.
Limited parallelism also affects
throughput-centric systems,11 with
more powerful cores outperforming
wimpy cores in applications with se-
rial regions. Using Hill’s and Marty’s
model11 with a 100BCE budget and
10% serialization, an architect would
determine that 10BCE cores are opti-
mal for throughput, a less aggressive
increase in core size than when op-
timizing for latency. As parallelism
decreases further, more performant
cores are needed to drive down tail
latency. When 50% of execution is se-
rial, a single 100BCE core is optimal,

single-thread performance even at
high cost. At the same time, some core
parallelism is needed. A single 100BCE
core performs significantly worse than
four 25BCE cores. This finding is in
agreement with industry concerns
about the performance of small cores
with warehouse-scale services.12 The
need for high single-thread perfor-
mance also motivates application- or
domain-specific accelerators as a more
economical way of improving perfor-
mance than incremental out-of-order
core optimizations.

Finding 2. At lower latency con-
straints, architects should look for ways
to balance optimizations for single-
thread performance and request-level

Figure 3. Homogeneous server configurations for a budget of R = 100 resource units:
(a) 100 1BCE cores; (b) 25 4BCE cores; and (c) one 100BCE core.

Service time: Ts = 1/µ

Small Core

(a) (b)

(c)

Arrival rate: λ Arrival rate: λ

Arrival rate: λ

Service time: Ts = 1/(µ√4)

Medium Core

Service time: Ts = 1/(µ√100)

Large Core

AUGUST 2018 | VOL. 61 | NO. 8 | COMMUNICATIONS OF THE ACM 69

contributed articles

Figure 4. Studies on big versus small cores, core heterogeneity, and caching using the queueing model.

the need for lock serialization, and at
the architecture level by investing in
methods that increase single-thread
performance and intra-request par-
allelism.9

These findings remain consistent for
per f (r) scaling with the square, cubic,

0 20 40 60 80 100

BCEs
(a) Throughput (QPS) under a tail latency constraint as
a system architect increases the resources per core when
parallelism is unlimited;

0

1

2

3

4

5

6

7

8

Q
P

S
at

Q
oS

(
*

1/
T

s
)

QoS=1Ts
QoS=5Ts
QoS=10Ts
QoS=50Ts
QoS=100Ts

0 20 40 60 80 100

BCEs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Q
P

S
at

Q
oS

(
*

1/
T

s
)

QoS = 10Ts

F=100%

F=99%

F=90%

F=50%

(b) Throughput under a tail latency constraint when parallelism
is not plentiful;

0 20 40 60 80 100

BCEs toward small cores (%)

0

2

4

6

8

10

Q
P

S
at

Q
oS

(
*

1/
T

s
)

U1 = 1, U2 = 25

QoS=1Ts

QoS=5Ts

QoS=10Ts

QoS=50Ts

QoS=100Ts

(c) Throughput (QPS) under a tail latency constraint
as a system architect increases the resources for small
cores (U1=1) under the assumption of unlimited parallelism;

0 20 40 60 80 100

BCEs toward small cores (%)

0

1

2

3

4

5

6

Q
P

S
at

Q
oS

(
*

1/
T

s
)

QoS = 10Ts, U1 = 1, U2 = 25

F=100%

F=99%

F=90%

F=50%

(d) Throughput under a tail latency constraint when parallelism
is limited;

0 10 20 30 40 50 60 70 80 90

BCEs for caching

0

2

4

6

8

10

12

14

Q
P

S
at

Q
oS

(
*

1/
T

s
)

U = 10

QoS=1Ts
QoS=5Ts
QoS=10Ts
QoS=50Ts
QoS=100Ts

(e) Throughput (QPS) under a tail latency constraint as
a system architect increases resources for caching, as
opposed to compute when parallelism is unlimited;

(f) Throughput under a tail latency constraint when parallelism
is not plentiful.

0 10 20 30 40 50 60 70 80 90

BCEs for caching

0

2

4

6

8

10

12

Q
P

S
at

Q
oS

(
*

1/
T

s
)

QoS=10Ts, U=10

F=100%
F=99%
F=90%
F=50%

a dramatic shift from the unlimited-
parallelism case; overall throughput
is also an order of magnitude lower.
Quantifying the degree of parallel-
ism in latency-critical services is es-
sential when deciding how to build
the underlying hardware. At the same

time, computer scientists should
strive to remove serialization across
the system stack—at the application
level by developing tracing and mon-
itoring systems that detect and mini-
mize cross-service dependencies, at
the operating system by minimizing

70 COMMUNICATIONS OF THE ACM | AUGUST 2018 | VOL. 61 | NO. 8

contributed articles

Figure 5. Heterogeneous server configuration with 25BCE large cores and 1BCE small cores.

Arrival rate: λ

short request

long request

Figure 6. Server configurations with 10BCE cores when dedicating (a) 10 resource units and
(b) 70 resource units toward caching.

(C
=

10
)

C
ac

he

(a)

Arrival rate: λ

Arrival rate: λ

Service time: Ts = 1/(µ√10)

(b)

(C
=

70
)

C
ac

he

and fourth root of r. Beyond that point,
optimal design favors smaller cores.

Core Heterogeneity
The previous section explored the
trade-offs between powerful, brawny
cores and power-efficient, wimpy cores.
Neither type of core provides high effi-
ciency across a wide range of QoS tar-
gets, raising several obvious questions,
including: Should an architect com-
bine multiple core types in the same
system, as is already the norm in multi-
core chips for mobile systems? How
should architects determine the size of
these cores? And at what ratio should
they use them? Determining the right
mix of large-versus-little cores, as well
as devising schedulers that take ad-
vantage of heterogeneous cores, espe-
cially in the presence of heterogeneous
load, has been a notably active topic of
research in computer architecture in
recent years.5,9,15 Figure 4c shows the
QPS under various QoS targets for a set
of heterogeneous designs. In all cases,
the system has two core configura-
tions: small cores with U = 1, benefiting
applications with relaxed QoS, and big
cores with U = 25, benefiting applica-
tions with strict QoS. The system also
receives two exponentially distributed
input request streams, one with short
and the other with long mean-service-
time requests, and design a simple het-
erogeneity-aware scheduler that routes
long requests to big cores and short re-
quests to small cores. Requests are ad-
mitted to a single queue, as in Figure 5,
and the ratio of long-to-short requests
is, for now, 1:1. Figure 5 starts with all
big cores at the leftmost point of the
x-axis, explores the heterogeneous
space, and ends with all small cores at
the rightmost point.

Finding 4. Figure 4c captures a sur-
prising trend. For strict QoS targets,
like 1 · Ts, homogeneous systems with
all big cores achieve optimal perfor-
mance. In contrast, for very relaxed QoS
targets, like 100Ts, using all small cores
achieves the best performance. How-
ever, for QoS targets in the middle (such
as 10Ts), heterogeneous systems, cou-
pled with heterogeneity-aware sched-
ulers, outperform their homogeneous
counterparts. This result is especially
true when the ratio of big to small cores
matches the ratio of long-to-short re-
quests. Varying the request ratio affects

AUGUST 2018 | VOL. 61 | NO. 8 | COMMUNICATIONS OF THE ACM 71

contributed articles

Finding 6. For services with strict
tail-latency requirements that exhibit
locality, the benefit from caching is
critical to achieving QoS. For strict
QoS constraints (such as QoS = Ts), at
least C = 20 units are needed to lower
the core’s service time in a way that
achieves QPS under the tail-latency
constraint.16,20 Moderately increasing
caching resources beyond C = 20 units
further improves performance, as larg-
er fractions of the working set fit in the
last-level cache;16 that is, more requests
enjoy the shorter processing time of
caches for the purpose of the queueing
model. However, the benefits diminish
beyond C = 40, and performance de-
grades rapidly as compute resources be-
come insufficient.16 Existing server chips
dedicate one-third to one-half of their
area budget to caches. Our analysis indi-
cates this trend will continue.

Finding 7. For relaxed QoS targets,
caching is less critical. Since smaller
cores are sufficient for achieving the
QoS constraints in this case, and al-
though caching is still beneficial, mod-
erate cache provisioning (such as C =
10 units to 30 units) yields most of its
potential performance benefits. In-
creasing caching units to C = 40 has
no effect on performance, and further
increase degrades performance. Ar-
chitects should focus instead on ex-
ploiting request parallelism in a way
that keeps the large number of smaller
cores busy.12,16

these findings significantly. The fur-
ther away the ratio of long-to-short re-
quests is from the ratio of big-to-small
cores the more homogeneous systems
outperform their heterogeneous coun-
terparts. This result means that for
heterogeneous architectures to make
sense the system must closely track the
input load and adjust to its changes, a
common phenomenon in large-scale
online services.18

Finding 5. We have again assumed
unlimited request parallelism. Once
serialization between requests is
introduced, the optimal operation
point shifts. Figure 4d shows QPS un-
der various tail-latency QoS targets
for increasing values of f ∈ {50%, 90%,
99%, 100%}. Where previously homo-
geneity outperformed heterogeneous
designs for extreme QoS require-
ments—very strict and very relaxed—
now takes the lead heterogeneity.
For example, for a moderate QoS
target of 10Ts and f = 0.9 a single big
core achieves optimal performance,
compared to the 50:50 mix in Figure
4c. In general, the more parallelism is
limited the more the optimal operation
point shifts left, with more big and fewer
smaller cores. This is in agreement with
Hill’s and Marty’s observations,11 with
the added implication that latency
considerations cause a more rapid
shift toward larger cores than when
throughput is the only performance
metric of interest. For example, when
f = 0.9 and the system optimizes only
for throughput, two 50BCE cores
achieve the best performance under
Hill’s and Marty’s model. As before,
this result highlights the importance
of quantifying the degree of parallel-
ism in interactive applications. It also
establishes that, even with limited
parallelism, scheduling that takes
into account the different capabilities
of available hardware is essential for
harnessing the potential of hardware
heterogeneity.

Caching
Architects constantly deal with the
trade-off of using the limited re-
sources for compute or caching.
Larger caches help avoid the long
latencies of main memory but draw
significant static power and reduce
the amount of resources available for
compute cores; see Figure 6 for two

characteristic configurations. Using
the same total budget as before—R
= 100—we explore how QPS under a
tail-latency constraint changes as a
fraction C ∈ [0, 90] of resources goes
toward building caches, as opposed
to cores. We use 10BCE cores, ben-
efitting applications with moder-
ately strict QoS targets; Figure 4e
shows this trade-off. On the leftmost
point of the x-axis all resources are
dedicated to building cores. On the
rightmost point, 90% of resources go
toward building caches and the re-
maining 10% toward building cores,
one 10BCE core in this case. Increas-
ing caching by 10BCE results in one
fewer core in the system. We assume
caches improve service time under a
sqrt(C) function, meaning Ts0 = Ts =
sqrt(C).23 We validate the selection of
the scaling factor against a real instal-
lation of memcached where the allo-
cated last-level cache partition is ad-
justed using Intel’s Cache Allocation
Technology. As the number of used
cores increases, the allocated cache
capacity decreases. Figure 7 outlines
that the difference between the ana-
lytical model and the real system is,
in general, marginal. The findings
reported in Figure 4e remain consis-
tent for scaling functions until the
seventh root of C, which corresponds
to progressively lower benefits from
caching, causing the optimal point to
shift increasingly to the left.

Figure 7. Validation of the queueing model against a real instantiation of an in-memory
key-value store (memcached) with increasing caching and reduced compute resources.

0.0 0.2 0.4 0.6 0.8 1.0

Load

0

500

1000

1500

2000

L
at

en
cy

 (
u

se
c)

MM4+FullCache
memcached k=4+FullCache
MM8+HalfCache

memcached k=8+HalfCache
MM16+NoCache
memcached k=16+NoCache

72 COMMUNICATIONS OF THE ACM | AUGUST 2018 | VOL. 61 | NO. 8

contributed articles

Conclusion
Amdahl’s Law is as pervasive when
it comes to tail latency as it has been
for traditional systems. Our goal here
has been to offer a simple, intuitive,
practical model that can lend first-or-
der insights into which optimizations
make sense when an application
cares about tail performance. Using
it, we have shown the overarching
trade-offs in large-versus-small-core
systems, heterogeneity, and cach-
ing. We encourage computer systems
researchers to expand this model to
express more sophisticated systems
and studies.

Acknowledgments
We thank Mark Hill, Partha Rangana-
than, Daniel Sanchez, and the anony-
mous reviewers for their helpful feed-
back on earlier drafts of this article.

References
1. Amdahl, G.M. Validity of the single-processor approach

to achieving large-scale computing capabilities. In
Proceedings of the Spring Joint Computer Conference
(Atlantic City, NJ, Apr. 18–20). AFIPS ACM Press,
New York, 1967, 483–485.

2. Barroso, L. and Hölzle, U. The case for energy-
proportional computing. Computer 40, 12 (Dec. 2007),
33–37.

3. Borkar, S. Thousand-core chips: A technology
perspective. In Proceedings of the 44th Annual Design
Automation Conference (San Diego, CA, June 4–8).
ACM Press, New York, 2007, 746–749.

4. Chen, S., Galon, S., Delimitrou, C., Manne, S., and
Martinez, J.F. Workload characterization of interactive
cloud services on big and small server platforms. In
Proceedings of the IEEE International Symposium
on Workload Characterization (Seattle, WA, Oct. 1–3).
IEEE Press, 2017, 125–134.

5. Craeynest, K., Jaleel, J. et al. Scheduling
heterogeneous multi-cores through performance
impact estimation (pie). In Proceedings of the 27th
International Conference of the International Society
for Computers and Their Applications (Las Vegas, NV,
Mar. 12–14). International Society for Computers and
Their Applications, Winona, MN, 2012, 213–224.

6. Dean, J. and Barroso, L.A. The tail at scale. Commun.
ACM 56, 2 (Feb. 2013), 74–80.

7. Delimitrou, C. and Kozyrakis, C. Paragon: QoS-aware
scheduling for heterogeneous datacenters. In
Proceedings of the 18th International Conference on
Architectural Support for Programming Languages
and Operating Systems (Houston, TX, Mar. 16–20).
ACM Press, New York, 2013.

8. Delimitrou, C. and Kozyrakis, C. Quasar: Resource-
efficient and QoS-aware cluster management. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages
and Operating Systems (Salt Lake City, UT, Mar. 1–5).
ACM Press, New York, 2014.

9. Haque, Md. E., Eom, Y.h., He, Y., Elnikety, S., Bianchini,
R., and McKinley, K.S. Few-to-many: Incremental
parallelism for reducing tail latency in interactive
services. In Proceedings of the 20th International
Conference on Architectural Support for Programming
Languages and Operating Systems (Istanbul, Turkey,
Mar. 14–18). ACM Press, New York, 2015, 161–175.

10. Harchol-Balter, M. Performance Modeling and Design
of Computer Systems: Queueing Theory in Action.
Cambridge University Press, Cambridge, U.K., 2013.

11. Hill, M. and Marty, M.R. Amdahl’s Law in the multicore
era. IEEE Computer 41, 7 (July 2008), 33–38.

12. Hölzle, U. Brawny cores still beat wimpy cores, most
of the time. IEEE Micro 30, 4 (July-Aug. 2010), 20–24.

13. Kanev, S., Darago, J.P., Hazelwood, K., Ranganathan,
P., Moseley, T., Wei, G.-Y., and Brooks, D. Profiling a

warehouse-scale computer. In Proceedings of the
42nd Annual International Symposium on Computer
Architecture (Portland, OR, June 13–17). 2015, 158–169.

14. Khubaib, M., Suleman, A., Hashemi, M., Wilkerson,
C., and Patt, Y.N. Morphcore: An energy-efficient
microarchitecture for high-performance ILP and
high-throughput TLP. In Proceedings of the 45th
Annual IEEE/ACM International Symposium on
Microarchitecture (Vancouver, B.C., Dec. 1–5). IEEE
Computer Society, Washington, D.C., 2012, 305–316.

15. Li, J., Agrawal, K., Elnikety, S., He, Y., Lee, I-T.A., Lu,
C., and McKinley, K.S. Work stealing for interactive
services to meet target latency. In Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Barcelona, Spain,
Mar. 12–16). ACM Press, New York, 2016, 1–13.

16. Li, S., Lim, H., Lee, V.W., Ahn, J.H., Kalia, A., Kaminsky,
M., Andersen, D.G., Seongil, O., Lee, S., and Dubey,
P. Architecting to achieve a billion requests per
second throughput on a single key-value store
server platform. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture
(Portland, OR, June 13–17). ACM Press, New York,
2015, 476–488.

17. Liang, X., Nguyen, M., and Che, H. Wimpy or brawny
cores: A throughput perspective. Journal of Parallel
and Distributed Computing 73, 10 (Oct. 2013),
1351–1361.

18. Meisner, D., Sadler, C.M., Barroso, L.A., Weber, W.D.,
and Wenisch, T.F. Power management of online data-
intensive services. In Proceedings of the 38th Annual
International Symposium on Computer Architecture
(San Jose, CA, June 4–8). ACM Press, New York, 2011,
319–330.

19. Meisner, D. and Wenisch, T.F. Does low-power
design imply energy efficiency for data centers? In
Proceedings of the 17th IEEE/ACM International
Symposium on Low-Power Electronics and Design
(Fukuoka, Japan, Aug. 1–3). IEEE Press, Piscataway,
NJ, 2011, 109–114.

20. Novakovic, S., Daglis, A., Bugnion, E., Falsafi, B., and
Grot, B. Scale-Out NUMA. In Proceedings of the 19th
International Conference on Architectural Support
for Programming Languages and Operating Systems
(Salt Lake City, UT, Mar. 1–5). ACM Press, New York,
2014, 3–18.

21. Ousterhout, J., Agrawal, P. et al. The case for
RAMClouds: Scalable high-performance storage
entirely in DRAM. SIGOPS Operating Systems Review
43, 4 (Jan. 2010), 92–105.

22. Reddi, V.J., Lee, B.C., Chilimbi, T., and Vaid, K. Web
search using mobile cores: Quantifying and mitigating
the price of efficiency. In Proceedings of the 37th
IEEE/ACM International Symposium on Computer
Architecture (Saint-Malo, France, June 19–23). ACM
Press, New York, 2010, 314–325.

23. Sprangle, E. and Carmean, D. Increasing processor
performance by implementing deeper pipelines. In
Proceedings of the International Symposium on
Computer Architecture (Anchorage, AK, May 25–29).
IEEE Press, 2002, 25–34.

24. Trivedi, K. Probability and Statistics with Reliability,
Queuing, and Computer Science Applications, Second
Edition. John Wiley & Sons, Inc., New York, 2002.

Christina Delimitrou (delimitrou@cornell.edu) is an
assistant professor and the John and Norma Balen
Sesquicentennial Faculty Fellow in the Department of
Electrical and Computer Engineering at Cornell University,
Ithaca, NY, USA.

Christos Kozyrakis (kozyraki@stanford.edu) is a
professor in the Departments of Electrical Engineering
and Computer Science at Stanford University, Stanford,
CA, USA.

Copyright held by the authors.
Publication rights licensed to ACM. $15.00

Finding 8. Limited parallelism
highlights the importance of in-
creased caching. Figure 4f reports
the performance for a moderate QoS
target of 10Ts and increasing values
of f ∈ [50%, 90%, 99%, 100%]. When
10% of the requests need to be serial-
ized, the optimal point for caching is
C = 40 units compared to C = 30 units
with unlimited parallelism. Serial-
ized execution requires higher sin-
gle-thread performance, and larger
on-chip caches is one way to achieve
such performance.

Discussion
The models we offer here aim to
provide first-order insight into how
system design decisions affect tail
latency and throughput in QoS-
constrained services. These mod-
els do not capture every aspect of
a data-center machine or applica-
tion.13 For example, while we can
arbitrarily scale service times using
the presented queueing model, sys-
tem call and RPC overheads in real
systems have hard lower limits. Like-
wise, software, especially in cloud
applications, is not static. These
frequent changes in cloud environ-
ments affect the degree of depen-
dencies across requests, in terms
of both the request fanout and the
dependencies across components of
a service (such as in microservices-
based cloud applications). A more so-
phisticated model that captures such
dependencies, potentially through a
queueing network, can provide more
accurate performance estimations
at the cost of greater complexity. Fi-
nally, in hardware, architects cannot
build cores with arbitrarily higher
performance by simply adding more
resources. They must also account
for such factors as locality, coher-
ence, and memory scheduling absent
from our current model.

We see queueing theoretic models
as a starting point for using queue-
ing theory principles to draw in-
sights into system design. We hope
this analysis motivates researchers
to develop more sophisticated mod-
els that address the limitations we
have identified and, more important,
the hardware and software that can
achieve the performance require-
ments we highlighted.

