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TRANSLATING THE IMPACT of Amdahl’s Law on tail 
latency provides new insights on what future 
generations of data-center hardware and software 
architectures should look like. The emphasis on 
latency, instead of just throughput, puts increased 
pressure on system designs that improve both 
parallelism and single-thread performance. 

Computer architecture is at an in-
flection point. The emergence of ware-
house-scale computers has brought 
large online services to the forefront 
in the form of Web search, social net-
works, software-as-a-service, and more. 
These applications service millions of 
user queries daily, run distributed over 
thousands of machines, and are con-
cerned with tail latency (such as the 
99th percentile) of user requests in ad-
dition to high throughput.6 These char-
acteristics represent a significant de-
parture from previous systems, where 
the performance metric of interest 
was only throughput, or, at most, aver-
age latency. Optimizing for tail latency 
is already changing the way we build 
operating systems, cluster managers, 
and data services.7,8 This article inves-
tigates how the focus on tail latency af-
fects hardware designs, including what 
types of processor cores to build, how 
much chip area to invest in caching 
structures, how much resource inter-
ference between services matters, how 
to schedule different user requests in 
multicore chips, and how these deci-

sions interact with the desire to mini-
mize energy consumption at the chip 
or data-center level.2 

While the precise answers will come 
from detailed experiments with both 
simulated and real systems, there is 
great value in having an analytical 
framework that identifies the major 
trade-offs and challenges in latency-
sensitive cloud systems. We aim here 
to complement the previous analyses 
on Amdahl’s Law for parallel and mul-
ticore systems1,11 by designing a model 
that draws from basic queueing theory 
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 key insights
 ˽ Optimizing for tail latency makes 

Amdahl’s Law more consequential 
than when optimizing for average 
performance. 

 ˽ Queueing theory can provide accurate 
first-order insights into how hardware 
for future interactive services should  
be designed. 

 ˽ As service responsiveness and 
predictability become more critical, 
finding a balance between compute and 
memory resources likewise becomes 
more critical. 
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Figure 1. Building system insights from queueing theory: (a) 99th percentile response time in 
an M/M/1 model; and (b) 99th percentile queueing time in an M/M/4 model as a function of µ. 
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Amdahl’s Law describes the speedup of a program when 
a fraction f of the computation is accelerated by a factor S. 
Speedup is then defined as 

In a multi-core machine, Amdahl’s Law captures the 
benefit from multiple cores in average performance. While 
this interpretation is still relevant, it is, by itself, insufficient 
for describing tail latency requirements. To bridge the gap 
we build upon ideas from queueing theory, which provides 
a framework to reason about task-arrival rates, service 
times, and end-to-end response times. Simple models (such 
as M/M/1 and M/M/k) are particularly attractive for first-
order performance calculations because they can concisely 
describe performance in closed-form expressions. 

M/M/1 model. We start with one of the simplest queueing 
models: the M/M/1 queue, modeling a system in which a 
single server processes incoming tasks. Tasks arrive under a 
Poisson process with rate λ. The service times also follow an 
exponential distribution, with rate parameter µ and mean 
service time Ts = 1/µ (µ=per f (r) in the main text of the article. 
A larger µ means a more powerful server and results in lower 
latency. Tasks are processed in a simple first-in-first-out 
order. This simple queueing system is stable when µ > λ. In 
contrast, when µ > λ, queued tasks keep increasing, leading to 
instability. The load of the system is defined as ρ = λ/µ. Given 
these definitions, the mean number of tasks in the system is 

 

where N is a random variable for the number of tasks. 
Likewise, the mean of task response time (using random 
variable R) is 

and the ρ-th percentile of response time is 
  

Figure 1a outlines the 99th percentile of request latency as a 
function of the service rate µ. As µ increases, tail latency drops 
both at low and high load. 

M/M/k model. We now extend the M/M/1 model to a more 
realistic system with k equivalent servers in order to model a 
multicore machine. Tasks are now added to a single, shared 
queue, where servers draw them from for processing. As with 
the M/M/1 model, tasks arrive under a Poisson process with 
arrival rate λ and each server processes tasks with service rate 
µ. Closed-form solutions for the mean response time and 
response-time percentiles exist but are more complicated 
than in the M/M/1 model. Specifically, system load is ρ = λ/
(kµ). The probability that a new task must be enqueued is 
given by Erlang’s C formula 

and the mean number of tasks in the system 

The average response time is 

Finally, the p-th percentile of queueing time is 

Figure 1b outlines how the 99th percentile of queueing 
time correlates to the service rate µ for one and four servers. 
Higher service rates correspond to less time spent by requests 
in the queue. We use the M/M/k model for analysis of system 
trade-offs unless otherwise specified. In the article’s section 
on validation, we verify that this model closely reflects real 
system behavior. For applications with non-Poisson arrival- 
and service-time distributions, more general queueing 
models may be needed (such as the G/G/k model).10,24 For 
more complex applications (such as multi-tier services), 
system architects would need a more sophisticated analytical 
model (such as a queueing network). 

Analytical Framework 
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Figure 4a shows how throughput in 
queries per second (QPS) changes for 
different latency QoS targets, under the 
M/M/N queueing model described in 
the sidebar. Throughput of 100QPS for 
QoS=10Ts means the system achieved 
100QPS for which the 99th latency per-
centile is 10Ts. The x-axis captures the 
size of selected cores, moving from 
many small cores on the left side to a 
single core of 100BCEs on the right 
side. We examine all core sizes from 
1BCE up to 100BCEs in increments of 
a single resource unit. In configura-
tions with multiple cores, throughput 
is aggregated across all cores. The dis-
continuities in the graph are an artifact 
of the limited resource budget and ho-
mogeneous design; for example, for 
U = 51, an architect can build a single 
51BCE core, while 49 resource units re-
main unused. Throughput for 10Ts for 
cores greater than 7BCE overlaps with 
100Ts, as does throughput for 5Ts for 
cores of more than 12BCEs. 

Finding 1. Very strict QoS targets put 
a lot of pressure on single-thread per-
formance. When QoS = Ts or 5 Ts, cores 
smaller than 22BCEs or 12BCEs, re-
spectively, achieve zero QPS for which 
the tail latency satisfies the QoS target. 
This happens because the cores are too 
weak to handle variability in service 
time even in the absence of queue-
ing, and the queueing naturally occurs 
when cores operate close to saturation. 
This result means that, for services 
with extremely low-latency require-
ments (such as in-memory caching 
and in-memory distributed storage),21 
architects must focus on improving 

(see Figure 1 in the sidebar “Analytical 
Framework”) and can provide first-or-
der insights on how design decisions 
interact with tail latency. As was the 
case with the previous analyses based 
on Amdahl’s Law, our model has sig-
nificant implications for processor de-
signs for cloud servers. 

While analytical models help draw 
first-order insights, they run the risk 
of not accurately reflecting the com-
plex operation of a real system. In Fig-
ure 2, we show a brief validation study 
of the queueing model, as discussed 
in the sidebar, with {1, 4, 8, 16} com-
pute cores against a real instantiation 
of memcached, a popular in-memory, 
key-value store, with the same number 
of cores. We set the mean interarrival 
rate and service time of the queueing 
model based on the measured times 
with memcached. In both cases, when 
providing memcached with exponen-
tially distributed input load, the mem-
cached request latency is close to the 
one estimated by the queueing model 
across load levels. 

Cost Model 
Since hardware resources are not infi-
nite, this analysis requires a cost model 
that relates resource usage to perfor-
mance. We use a model similar to the 
one used by Hill and Marty11 to extend 
Amdahl’s Law to multicore chips. That 
is, we assume a given multicore chip is 
limited to R base core equivalents (BCE) 
units. This limitation represents area 
or power-consumption constraints in 
the chip design. The BCE is an abstract 
cost unit that captures processor re-
sources and caches but does not share 
resources (such as interconnection 
networks and memory controllers). As 
in Hill and Marty,11 we assume these 
resources are fairly constant in the sys-
tem variations we examine. A baseline 
core that consumes 1BCE unit achieves 
performance of perf(1)=1. Chip archi-
tects can build more powerful cores 
by dedicating r ∈ [1,R] resource units 
to each core to achieve performance 
per f (r), where per f (r) is the rate pa-
rameter µ in our performance model. 
Larger cores have higher service rate 
µ, which is inversely related to tail la-
tency, as discussed in the sidebar. If 
performance increases superlinearly 
with resources, then more cores are 
always better. In practice per f (r) < r, 

creating trade-offs between opting for 
few brawny or many wimpy cores. By 
default, we follow Shekhar Borkar3 and 
use per f (r) = sqrt(r) but have also inves-
tigated how higher roots affect the cor-
responding insights. 

Brawny Versus Wimpy Cores 
We first examine a system where all 
cores are homogeneous and have 
identical cost. An important question 
the designer must answer is: Given a 
constrained aggregate power or area 
budget, should architects build a few 
large cores or many small cores? The 
answer has been heavily debated in 
recent years in both academia and 
industry,4,12,14,17,19,22 as it relates to the 
introduction of new designs (such as 
the ARM server chips and throughput 
processors like Xeon Phi). 

Assuming the total budget is R = 
100BCEs, an architect can build 100 
basic cores of 1BCE each, 25 cores of 
4BCEs each, one large core of 100BCEs, 
or in general R/U cores of U units each, 
as shown in Figure 3. We consider 
an online service workload with tail 
latency quality-of-service (QoS) con-
straints. QoS is defined as a function of 
the mean service time Ts of the 100BCE 
machine. For example, a very strict QoS 
target would require the 99th percentile 
of request latency to be Ts. This means 
the time between arrival and comple-
tion of 99% of requests must be less or 
equal to the machine’s mean service 
time, allowing no tolerance for queue-
ing or service-time variability. More re-
laxed QoS targets are defined as multi-
ples of Ts: QoS = αTs, α ∈ [5, 10, 50, 100]. 

Figure 2. Validation of the queueing model against a real instantiation of an in-memory 
key-value store (memcached) for {1,4,8,16} cores. 
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parallelism. At lower QoS targets, a larg-
er set of medium-size cores achieves 
the best performance. For example, 
7BCE cores are optimal for QoS = 10Ts. 
For applications with moderate la-
tency requirements (such as Web 
search and Web servers), architects 
should seek to balance improve-
ments in single-thread performance 
(instruction-level parallelism) and 
multi-core performance (request-
level parallelism). Increasing sin-
gle-thread performance at high cost 
yields diminishing returns in this 
case. Nevertheless, a large pool of 
wimpy cores—1BCE—is optimal only 
when applications have no latency 
constraints, as with long data min-

ing queries or log-processing requests. 
With QoS = 100Ts, applications are es-
sentially throughput-limited and per-
form best with many wimpy cores. 

These findings highlight a dispar-
ity between optimal system design 
when optimizing for throughput ver-
sus when optimizing for tail latency. 
For example, in a homogeneous sys-
tem where throughput is the only per-
formance metric of interest and paral-
lelism is plentiful, the smallest cores 
achieve the best performance; see the 
1BCE cores in Figure 4a. In compari-
son, when optimizing for throughput 
under a tail latency constraint, the op-
timal design point shifts toward larg-
er cores, unless the latency constraint 
relaxes significantly. 

Finding 3. Limited parallelism also 
calls for more powerful cores. So far 
we have assumed all user requests are 
independent and perfectly paralleliz-
able, though it is rarely the case in 
practice. Requests are often depen-
dent on each other and on system 
issues like connection ordering and 
locks for writes causing serialization. 
The growing trend of breaking com-
plex services down to smaller compo-
nents (microservices) will only make 
the problem of request dependen-
cies more common. This brings up 
the caveat of Amdahl’s Law. To what 
extent are the previous findings ac-
curate when parallelism is limited? 
Figure 4b shows the case of a reason-
able QoS (10Ts) with f ∈ {50%, 90%, 
99%, 100%}. When, for example, the 
parallel fraction of the computation 
f is 90%, 10% of requests are serial-
ized. As a result, while optimal per-
formance was previously achieved 
with seven BCE cores, the optimal 
core size now shifts to 25 BCEs. 
Limited parallelism also affects 
throughput-centric systems,11 with 
more powerful cores outperforming 
wimpy cores in applications with se-
rial regions. Using Hill’s and Marty’s 
model11 with a 100BCE budget and 
10% serialization, an architect would 
determine that 10BCE cores are opti-
mal for throughput, a less aggressive 
increase in core size than when op-
timizing for latency. As parallelism 
decreases further, more performant 
cores are needed to drive down tail 
latency. When 50% of execution is se-
rial, a single 100BCE core is optimal, 

single-thread performance even at 
high cost. At the same time, some core 
parallelism is needed. A single 100BCE 
core performs significantly worse than 
four 25BCE cores. This finding is in 
agreement with industry concerns 
about the performance of small cores 
with warehouse-scale services.12 The 
need for high single-thread perfor-
mance also motivates application- or 
domain-specific accelerators as a more 
economical way of improving perfor-
mance than incremental out-of-order 
core optimizations. 

Finding 2. At lower latency con-
straints, architects should look for ways 
to balance optimizations for single-
thread performance and request-level 

Figure 3. Homogeneous server configurations for a budget of R = 100 resource units:  
(a) 100 1BCE cores; (b) 25 4BCE cores; and (c) one 100BCE core. 
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Figure 4. Studies on big versus small cores, core heterogeneity, and caching using the queueing model. 

the need for lock serialization, and at 
the architecture level by investing in 
methods that increase single-thread 
performance and intra-request par-
allelism.9 

These findings remain consistent for 
per f (r) scaling with the square, cubic, 
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a dramatic shift from the unlimited-
parallelism case; overall throughput 
is also an order of magnitude lower. 
Quantifying the degree of parallel-
ism in latency-critical services is es-
sential when deciding how to build 
the underlying hardware. At the same 

time, computer scientists should 
strive to remove serialization across 
the system stack—at the application 
level by developing tracing and mon-
itoring systems that detect and mini-
mize cross-service dependencies, at 
the operating system by minimizing 
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Figure 5. Heterogeneous server configuration with 25BCE large cores and 1BCE small cores. 
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Figure 6. Server configurations with 10BCE cores when dedicating (a) 10 resource units and 
(b) 70 resource units toward caching. 
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and fourth root of r. Beyond that point, 
optimal design favors smaller cores. 

Core Heterogeneity 
The previous section explored the 
trade-offs between powerful, brawny 
cores and power-efficient, wimpy cores. 
Neither type of core provides high effi-
ciency across a wide range of QoS tar-
gets, raising several obvious questions, 
including: Should an architect com-
bine multiple core types in the same 
system, as is already the norm in multi-
core chips for mobile systems? How 
should architects determine the size of 
these cores? And at what ratio should 
they use them? Determining the right 
mix of large-versus-little cores, as well 
as devising schedulers that take ad-
vantage of heterogeneous cores, espe-
cially in the presence of heterogeneous 
load, has been a notably active topic of 
research in computer architecture in 
recent years.5,9,15 Figure 4c shows the 
QPS under various QoS targets for a set 
of heterogeneous designs. In all cases, 
the system has two core configura-
tions: small cores with U = 1, benefiting 
applications with relaxed QoS, and big 
cores with U = 25, benefiting applica-
tions with strict QoS. The system also 
receives two exponentially distributed 
input request streams, one with short 
and the other with long mean-service-
time requests, and design a simple het-
erogeneity-aware scheduler that routes 
long requests to big cores and short re-
quests to small cores. Requests are ad-
mitted to a single queue, as in Figure 5, 
and the ratio of long-to-short requests 
is, for now, 1:1. Figure 5 starts with all 
big cores at the leftmost point of the 
x-axis, explores the heterogeneous 
space, and ends with all small cores at 
the rightmost point. 

Finding 4. Figure 4c captures a sur-
prising trend. For strict QoS targets, 
like 1 · Ts, homogeneous systems with 
all big cores achieve optimal perfor-
mance. In contrast, for very relaxed QoS 
targets, like 100Ts, using all small cores 
achieves the best performance. How-
ever, for QoS targets in the middle (such 
as 10Ts), heterogeneous systems, cou-
pled with heterogeneity-aware sched-
ulers, outperform their homogeneous 
counterparts. This result is especially 
true when the ratio of big to small cores 
matches the ratio of long-to-short re-
quests. Varying the request ratio affects 
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Finding 6. For services with strict 
tail-latency requirements that exhibit 
locality, the benefit from caching is 
critical to achieving QoS. For strict 
QoS constraints (such as QoS = Ts), at 
least C = 20 units are needed to lower 
the core’s service time in a way that 
achieves QPS under the tail-latency 
constraint.16,20 Moderately increasing 
caching resources beyond C = 20 units 
further improves performance, as larg-
er fractions of the working set fit in the 
last-level cache;16 that is, more requests 
enjoy the shorter processing time of 
caches for the purpose of the queueing 
model. However, the benefits diminish 
beyond C = 40, and performance de-
grades rapidly as compute resources be-
come insufficient.16 Existing server chips 
dedicate one-third to one-half of their 
area budget to caches. Our analysis indi-
cates this trend will continue. 

Finding 7. For relaxed QoS targets, 
caching is less critical. Since smaller 
cores are sufficient for achieving the 
QoS constraints in this case, and al-
though caching is still beneficial, mod-
erate cache provisioning (such as C = 
10 units to 30 units) yields most of its 
potential performance benefits. In-
creasing caching units to C = 40 has 
no effect on performance, and further 
increase degrades performance. Ar-
chitects should focus instead on ex-
ploiting request parallelism in a way 
that keeps the large number of smaller 
cores busy.12,16 

these findings significantly. The fur-
ther away the ratio of long-to-short re-
quests is from the ratio of big-to-small 
cores the more homogeneous systems 
outperform their heterogeneous coun-
terparts. This result means that for 
heterogeneous architectures to make 
sense the system must closely track the 
input load and adjust to its changes, a 
common phenomenon in large-scale 
online services.18 

Finding 5. We have again assumed 
unlimited request parallelism. Once 
serialization between requests is 
introduced, the optimal operation 
point shifts. Figure 4d shows QPS un-
der various tail-latency QoS targets 
for increasing values of f ∈ {50%, 90%, 
99%, 100%}. Where previously homo-
geneity outperformed heterogeneous 
designs for extreme QoS require-
ments—very strict and very relaxed—
now takes the lead heterogeneity. 
For example, for a moderate QoS 
target of 10Ts and f = 0.9 a single big 
core achieves optimal performance, 
compared to the 50:50 mix in Figure 
4c. In general, the more parallelism is 
limited the more the optimal operation 
point shifts left, with more big and fewer 
smaller cores. This is in agreement with 
Hill’s and Marty’s observations,11 with 
the added implication that latency 
considerations cause a more rapid 
shift toward larger cores than when 
throughput is the only performance 
metric of interest. For example, when 
f = 0.9 and the system optimizes only 
for throughput, two 50BCE cores 
achieve the best performance under 
Hill’s and Marty’s model. As before, 
this result highlights the importance 
of quantifying the degree of parallel-
ism in interactive applications. It also 
establishes that, even with limited 
parallelism, scheduling that takes 
into account the different capabilities 
of available hardware is essential for 
harnessing the potential of hardware 
heterogeneity. 

Caching 
Architects constantly deal with the 
trade-off of using the limited re-
sources for compute or caching. 
Larger caches help avoid the long 
latencies of main memory but draw 
significant static power and reduce 
the amount of resources available for 
compute cores; see Figure 6 for two 

characteristic configurations. Using 
the same total budget as before—R 
= 100—we explore how QPS under a 
tail-latency constraint changes as a 
fraction C ∈ [0, 90] of resources goes 
toward building caches, as opposed 
to cores. We use 10BCE cores, ben-
efitting applications with moder-
ately strict QoS targets; Figure 4e 
shows this trade-off. On the leftmost 
point of the x-axis all resources are 
dedicated to building cores. On the 
rightmost point, 90% of resources go 
toward building caches and the re-
maining 10% toward building cores, 
one 10BCE core in this case. Increas-
ing caching by 10BCE results in one 
fewer core in the system. We assume 
caches improve service time under a 
sqrt(C) function, meaning Ts0 = Ts = 
sqrt(C).23 We validate the selection of 
the scaling factor against a real instal-
lation of memcached where the allo-
cated last-level cache partition is ad-
justed using Intel’s Cache Allocation 
Technology. As the number of used 
cores increases, the allocated cache 
capacity decreases. Figure 7 outlines 
that the difference between the ana-
lytical model and the real system is, 
in general, marginal. The findings 
reported in Figure 4e remain consis-
tent for scaling functions until the 
seventh root of C, which corresponds 
to progressively lower benefits from 
caching, causing the optimal point to 
shift increasingly to the left. 

Figure 7. Validation of the queueing model against a real instantiation of an in-memory  
key-value store (memcached) with increasing caching and reduced compute resources. 
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Conclusion 
Amdahl’s Law is as pervasive when 
it comes to tail latency as it has been 
for traditional systems. Our goal here 
has been to offer a simple, intuitive, 
practical model that can lend first-or-
der insights into which optimizations 
make sense when an application 
cares about tail performance. Using 
it, we have shown the overarching 
trade-offs in large-versus-small-core 
systems, heterogeneity, and cach-
ing. We encourage computer systems 
researchers to expand this model to 
express more sophisticated systems 
and studies. 
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Finding 8. Limited parallelism 
highlights the importance of in-
creased caching. Figure 4f reports 
the performance for a moderate QoS 
target of 10Ts and increasing values 
of f ∈ [50%, 90%, 99%, 100%]. When 
10% of the requests need to be serial-
ized, the optimal point for caching is 
C = 40 units compared to C = 30 units 
with unlimited parallelism. Serial-
ized execution requires higher sin-
gle-thread performance, and larger 
on-chip caches is one way to achieve 
such performance. 

Discussion 
The models we offer here aim to 
provide first-order insight into how 
system design decisions affect tail 
latency and throughput in QoS-
constrained services. These mod-
els do not capture every aspect of 
a data-center machine or applica-
tion.13 For example, while we can 
arbitrarily scale service times using 
the presented queueing model, sys-
tem call and RPC overheads in real 
systems have hard lower limits. Like-
wise, software, especially in cloud 
applications, is not static. These 
frequent changes in cloud environ-
ments affect the degree of depen-
dencies across requests, in terms 
of both the request fanout and the 
dependencies across components of 
a service (such as in microservices-
based cloud applications). A more so-
phisticated model that captures such 
dependencies, potentially through a 
queueing network, can provide more 
accurate performance estimations 
at the cost of greater complexity. Fi-
nally, in hardware, architects cannot 
build cores with arbitrarily higher 
performance by simply adding more 
resources. They must also account 
for such factors as locality, coher-
ence, and memory scheduling absent 
from our current model. 

We see queueing theoretic models 
as a starting point for using queue-
ing theory principles to draw in-
sights into system design. We hope 
this analysis motivates researchers 
to develop more sophisticated mod-
els that address the limitations we 
have identified and, more important, 
the hardware and software that can 
achieve the performance require-
ments we highlighted. 


