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Abstract
Cloud providers routinely schedule multiple applications per
physical host to increase efficiency. The resulting interfer-
ence on shared resources often leads to performance degra-
dation and, more importantly, security vulnerabilities. Inter-
ference can leak important information ranging from a ser-
vice’s placement to confidential data, like private keys.

We present Bolt, a practical system that accurately de-
tects the type and characteristics of applications sharing a
cloud platform based on the interference an adversary sees
on shared resources. Bolt leverages online data mining tech-
niques that only require 2-5 seconds for detection. In a multi-
user study on EC2, Bolt correctly identifies the characteris-
tics of 385 out of 436 diverse workloads. Extracting this in-
formation enables a wide spectrum of previously-impractical
cloud attacks, including denial of service attacks (DoS) that
increase tail latency by 140x, as well as resource freeing
(RFA) and co-residency attacks. Finally, we show that while
advanced isolation mechanisms, such as cache partitioning
lower detection accuracy, they are insufficient to eliminate
these vulnerabilities altogether. To do so, one must either
disallow core sharing, or only allow it between threads of
the same application, leading to significant inefficiencies and
performance penalties.

*CCS Concepts: • Security and privacy → Systems se-
curity; • Computer systems organization→ Cloud com-
puting
*Keywords: cloud computing; security; interference; isola-
tion; datacenter; latency; denial of service attack; data min-
ing

1. Introduction
Cloud computing has reached proliferation by offering re-
source flexibility and cost efficiency [3, 1, 28]. Cost ef-
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ficiency is achieved through multi-tenancy, i.e., by co-
scheduling multiple jobs from multiple users on the same
physical hosts to increase utilization. However, multi-tenancy
leads to interference in shared resources, such as last level
caches or network switches, causing unpredictable perfor-
mance [48, 16, 53]. More importantly, unmanaged con-
tention leads to security and privacy vulnerabilities [39].
This has prompted significant work on side-channel [43, 70]
and distributed denial of service attacks (DDoS) [30, 2, 70],
data leakage exploitations [80, 43], and attacks that pin-
point target VMs in a cloud system [60, 78, 75, 32]. Most of
these schemes leverage the lack of strictly enforced resource
isolation between co-scheduled instances and the naming
conventions cloud frameworks use for machines to extract
confidential information from victim applications, such as
encryption keys.

This work presents Bolt, a practical system that can ex-
tract detailed information about the type, functionality, and
characteristics of applications sharing resources in a cloud
system. Bolt uses online data mining techniques to quickly
determine the pressure an application puts on each of several
shared resources. We show that this information is sufficient
to determine the framework type (e.g., Hadoop), functional-
ity (e.g., DNN), and dataset characteristics of a co-scheduled
application, as well as the resources it is most sensitive to.
Bolt periodically collects statistics on the resource pressure
applications incur and projects this signal against datasets
from previously seen workloads. Since detection repeats pe-
riodically, Bolt accounts for changes in application behav-
ior and can distinguish between multiple co-residents on the
same physical host. We validate Bolt’s detection accuracy
with a controlled experiment in a 40-server cluster using vir-
tualized instances. Out of 108 co-scheduled victim applica-
tions, including batch and real-time analytics, and latency-
critical services, such as key-value stores and databases, Bolt
correctly identifies the type and characteristics of 87% of
workloads. We also used Bolt in a user study on Amazon
EC2. We asked 20 users to launch applications of their pref-
erence on EC2 instances and not disclose any information
on their type and characteristics to us. Bolt correctly labeled
277 out of 436 launched jobs and determined the resource
characteristics of 385, even when more than 5 jobs share a
physical host.



The information obtained by Bolt makes several cloud
attacks practical and difficult to detect. For example, we use
Bolt to launch host-based DoS attacks that use information
on the victim’s resource sensitivity to inject carefully-crafted
contentious programs that degrade the victim’s performance.
In the 40-server cluster, Bolt’s DoS attack translates to a tail
latency increase of up to 140× for interactive workloads.
Unlike traditional DoS attacks that saturate compute and
memory resources, Bolt maintains low CPU utilization, by
only introducing interference in the most critical resources,
making it resilient to DoS mitigation techniques, such as
load-triggered VM migration. We have also used Bolt to
launch resource freeing attacks (RFA) that force the victim
to yield its resources to the adversary [67], and VM co-
residency detection attacks that pinpoint where in a shared
cluster a specific application resides [69]. We show that
the information obtained through data mining is critical to
escalate the impact of the attack, reduce its time and cost,
and to make it difficult to detect.

Finally, we examine to what degree current isolation tech-
niques can alleviate these security vulnerabilities. We an-
alyze baremetal systems, containers, and virtual machines
with techniques like thread pinning, memory bandwidth iso-
lation, and network and cache partitioning. These are the
main isolation techniques available today, and while they
progressively reduce application detection accuracy from
81% to 50%, they are not sufficient to eliminate these vulner-
abilities. We show that the only method currently available
to reduce accuracy down to 14% is core isolation, where an
application is only allowed to share cores with itself to avoid
malicious co-residents. However, since application threads
contend for shared on-chip resources performance degrades
by 34% on average. Alternatively, if we allocate more cores
per application to mitigate performance unpredictability, we
end up with resource underutilization and cloud inefficiency.
We hope that this study will motivate public cloud providers
to introduce stricter isolation solutions in their platforms and
systems architects to develop fine-grain isolation techniques
that provide strong isolation and performance predictability
at high utilization.

2. Related Work
Performance unpredictability is a well-studied problem in
public clouds that stems from platform heterogeneity, re-
source interference, software bugs and load variation [12, 47,
62, 18, 17, 20, 54, 35, 21, 62, 59, 37]. A lot of recent work
has proposed isolation techniques to reduce unpredictability
by eliminating interference [58, 61, 45, 65, 64]. With Bolt,
we show that unpredictability due to interference also hides
security vulnerabilities, since it enables an adversary to ex-
tract information about an application’s type and character-
istics. Below we discuss related work with respect to cloud
vulnerabilities, such as VM placement detection, DDoS, and
side-channel attacks.

VM co-residency detection: Cloud multi-tenancy has mo-
tivated a line of work on locating a target VM in a pub-
lic cloud. Ristenpart et al. [60] showed that the IP machine
naming conventions of cloud providers allowed adversarial
users to narrow down where a victim VM resided in a clus-
ter. Xu et al. [74] and Herzberg et al. [32] extended this
study, resulting, in part, in cloud providers changing their
naming conventions, reducing the effectiveness of network
topology-based co-residency attacks. Following this devel-
opment Varadarajan et al. [69] evaluated the susceptibil-
ity of three cloud providers to VM placement attacks, and
showed that techniques like virtual private clouds (VPC) ren-
der some of them ineffective. Similarly, Zhang et al. [78]
designed HomeAlone, a system that detects VM placement
by issuing side-channels in the L2 cache during periods of
low traffic. Finally, Han et al. [31] proposed VM placement
strategies that defend against placement attacks, although
they are not specifically geared towards public clouds. With
Bolt, we show that leveraging simple data mining techniques
on the pressure applications introduce on shared resources
increases the accuracy of VM co-residency detection signif-
icantly. Bolt does not rely on knowing the cloud’s network
topology or host IPs, making it resilient against mitigation
techniques, such as VPCs.
Performance attacks: Once a victim application is located,
an adversary can can negatively affect its performance. Dis-
tributed Denial of Service attacks [51, 23, 67, 34] in the
cloud have increased in number and impact over the past
years. This has generated a lot of interest in detection and
prevention techniques [55, 14, 30]. Bakshi et al. [2], for ex-
ample, developed a system that detects abnormally high net-
work traffic that could signal an upcoming DDoS attack,
while Crosby et al. [13] and Edge [22] proposed a new
DoS attack relying on algorithmic complexity that drives
CPU usage up. Finally, resource-freeing attacks (RFAs) also
hurt a victim’s performance, while additionally forcing it to
yield its resources to the adversary [67]. While RFAs are
effective, they require significant compute and network re-
sources, and are prone to defenses, such as live VM migra-
tion, that cloud providers introduce to mitigate performance
unpredictability due to resource saturation. In contrast, Bolt
launches host-based attacks on the same machine as the vic-
tim that take advantage of the victim’s resource sensitivity,
and keep resource utilization moderate, therefore evading
defense mechanisms.
Side-channel attacks: There are also attacks that attempt to
extract confidential information from co-scheduled applica-
tions, such as private keys [81, 42, 76, 4]. Zhang et al. [80]
proposed a system that launches side-channel attacks in a
virtualized environment, and cross-tenant side-channel at-
tacks in PaaS clouds [79]. Wu et al. [73], on the other hand,
used the memory bus of an x86 processor to launch a covert-
channel attack and degrade the victim’s performance. On
the defense side, Perez-Botero et al. [56] analyzed the vul-
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Figure 1: Overview of the application detection process. Bolt first measures the pressure co-residents place in shared
resources, and then uses data mining to determine the type and characteristics of co-scheduled applications.

nerabilities of common hypervisors, and Wang et al. [70]
proposed a system for intrusion detection in cloud settings,
while Liu et al. [43] and Varadajaran et al. [68] designed
scheduler-based defenses against covert- and side-channel
attacks in the memory bus. The latter system controls the
overlapping execution of different VMs and injects noise in
the memory bus to prevent an adversary from extracting con-
fidential information. Bolt does not rely on accurate microar-
chitectural event measurements through performance coun-
ters to detect application placement, and is therefore resilient
to techniques that limit the fidelity of time-keeping and per-
formance monitoring to thwart information leakage in side-
channel attacks [49].

3. Bolt
3.1 Threat Model
Bolt targets IaaS providers that operate public clouds for mu-
tually untrusting users. Multiple VMs can be co-scheduled
on the same server. Each VM has no control over where
it is placed, and no a priori information on other VMs on
the same physical host. For now, we assume that the cloud
provider is neutral with respect to detection by adversarial
VMs, i.e., it does not assist such attacks or employ addi-
tional resource isolation techniques than what is available
by default to hinder attacks by adversarial users. In Section 6
we explore how additional isolation techniques affect Bolt’s
detection accuracy.
Adversarial VM: An adversarial VM has the goal of de-
termining the nature and characteristics of any applications
co-scheduled on the same physical host, and negatively im-
pacting their performance. Adversarial VMs start with zero
knowledge of co-scheduled workloads.
Friendly VM: This is a normal VM scheduled on a physi-
cal host that runs one or more applications. Friendly VMs
do not attempt to determine the existence and characteris-
tics of other co-scheduled VMs. They also do not employ
any schemes to prevent detection, such as memory pattern
obfuscation [27].

3.2 Application Detection
Detection relies on inferring workload characteristics from
the contention the adversary experiences in shared resources.

For simplicity, we assume one co-scheduled victim job
for now and generalize in Section 3.3. Figure 1 shows an
overview of the system’s operation.

Bolt instantiates an adversarial VM on the same physi-
cal host as the victim, friendly VM. Bolt uses its VM to run
a few microbenchmarks of tunable intensity that each put
progressively more pressure on a specific shared resource.
The resources stressed by the microbenchmarks include on-
chip resources, such as functional units, and different lev-
els of the cache hierarchy, and off-chip resources, such as
the memory, network and storage subsystems [15]. Each mi-
crobenchmark progressively increases its intensity from 0 to
100% until it detects pressure from the co-scheduled work-
load, i.e., until the microbenchmark’s performance is worse
than its expected value when running in isolation. The inten-
sity of the microbenchmark at that point captures the pres-
sure the victim incurs in shared resource i and is denoted ci,
where i∈[1,N], N=10 and ci ∈[0,100]. The 10 resources are:
L1 instruction and L1 data cache, L2 and last level cache,
memory capacity and memory bandwidth, CPU, network
bandwidth, disk capacity and disk bandwidth. Large values
of ci imply high pressure in resource i. For unconstrained re-
sources, e.g., last level cache, 100% pressure means that the
benchmark takes over the entire resource capacity. For re-
sources constrained through partitioning mechanisms, e.g.,
memory capacity in VMs, 100% corresponds to taking over
the entire memory partition allocated to the VM.

Bolt uses 2-3 microbenchmarks for profiling, requiring
approximately 2-5 seconds in total. It randomly selects one
core and one uncore benchmark to get a more representative
snapshot of the co-resident’s resource profile. If the core
is not shared between the adversarial and friendly VMs,
Bolt measures zero pressure in the shared core resource. It
then adds a third microbenchmark for an additional uncore
resource (shared caches, memory, network or storage).

We use this sparse signal to determine the application’s
pressure in all other resources, its type and characteristics.
Online data mining techniques have recently been shown to
effectively solve similar problems in cluster management by
finding similarities between new unknown applications and
previously seen workloads [19]. The Quasar cluster man-
ager, for example, used collaborative filtering to find similar-



ities in terms of heterogeneity, interference sensitivity, and
provisioning. The advantage of collaborative filtering is that
it can identify application similarities without a priori knowl-
edge of application types and critical features. Unfortunately
this means that it is also unable to label the victim workloads
and classify their functionality, making it insufficient for the
adversary’s purpose.
Practical data mining: Bolt instead feeds the profiling sig-
nal to a hybrid recommender using feature augmentation [9,
25] that determines the type and resource characteristics
of victim workloads. The recommender combines collab-
orative filtering and content-based similarity detection [9,
29]. The former has good scaling properties, relaxed spar-
sity constraints and offers conceptual insight on similarities,
while the latter exploits contextual information for accurate
resource profile matching.

First, a collaborative filtering system recovers the pres-
sure the victim places in non-profiled resources [16, 83].
The system relies on matrix factorization with singular
value decomposition (SVD) [72] and PQ-reconstruction
with stochastic gradient descent (SGD) [6, 38] to find simi-
larities between the new victim application and previously-
seen workloads. SVD produces three matrices, U, Σ and V.
The singular values σi in Σ correspond to similarity con-
cepts, such as the intensity of compute operations or the
correlation between high network and disk traffic. Similar-
ity concepts are in the order of the number of examined
resources, and are ordered by decreasing magnitude in Σ.
Large singular values reveal stronger similarity concepts
(higher confidence in workload correlation), while smaller
values correspond to weaker similarity concepts and are
typically discarded during the dimensionality reduction by
SVD. Matrix U(m,r) captures the correlation between each
application and similarity concept, and V(n,r) the correlation
between each resource and similarity concept.

Once we have identified critical similarity concepts and
discarded inconsequential information, a content-based sys-
tem that uses weighted Pearson correlation coefficients to
compute the similarity between the resource profile u j of a
new application j and the applications the system has previ-
ously seen. Weights correspond to the values of the r more
critical similarity concepts 1, and resource profiles to the
rows of the matrix of left singular vectors U. Using tra-
ditional Pearson correlation would discard the application-
specific information that certain resources are more critical
for a given workload. Similarity between applications A and
B is given by:

Weighted Pearson(A,B) =
cov(uA,uB;σ)√

cov(uA,uA;σ) · cov(uB,uB;σ)
(1)

where uA is the correlation of application A with each simi-
larity concept σi, cov(uA,uB;σ)= ∑i σi(uAi−m(uA;σ))(uBi−m(uB;σ))

∑i σi

1 We keep the r largest singular values, such that we preserve 90% of the
total energy: ∑

r
i=1 σ2

i = 90%∑
n
i=1 σ2
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Figure 2: We show the correlation between the pres-
sure in various resources and the probability of a co-
scheduled application being memcached. For example,
workloads with high LLC pressure and very high L1-i
pressure have a high probability of being memcached.

the covariance of A and B under weights σ , and m(uA;σ) =
∑i σi·uAi

∑i σi
the weighted mean for A. The output of the hybrid

recommender is a distribution of similarity scores of how
closely a victim resembles different previously-seen appli-
cations. For example, a victim may be 65% similar to a
memcached workload, 18% similar to a Spark job running
PageRank, 10% similar to a Hadoop job running an SVM
classifier, and 3% to a Hadoop job running k-means. The
95th percentile of the recommender’s end-to-end latency is
80msec. Apart from application labels, this analysis yields
information on the resources the victim is sensitive to, en-
abling several practical performance attacks (Section 5).
System insights from data mining: Before dimensionality
reduction, each similarity concept corresponds to a shared
resource. Different resources convey different amounts of in-
formation about a workload, and thus have different value to
Bolt for detection. The magnitude of each similarity concept
reflects how strongly it captures application similarities. For
the controlled experiment of Section 3.4 that involves batch
and interactive jobs, the resources with most value are the LL
and L1-i caches, followed by compute intensity and memory
bandwidth. While the exact order depends on the applica-
tion mix, correlating similarity concepts to resources shows
that certain resources are more prone to leaking information
about a workload, and their isolation should be prioritized.

Finally, we show how resource pressure correlates to the
probability that an application is of a specific type. Figure 2
show the probability that an unknown workload is a mem-
cached instance with a read-mostly load and KB-range val-
ues, as a function of its measured resource pressure (de-
tails on methodology in Section 3.4). We decouple the 10
resources in 2D plots for clarity. From the heatmaps it be-
comes clear that cache activity is a very strong indicator of
workload type, with applications with very high L1-i and
high LLC pressure corresponding to memcached with a high
probability. Disk traffic also conveys a lot of information,



with zero disk usage signaling a memcached workload with
very high likelihood. Similar graphs can be created to fin-
gerprint other application types. The high heat areas around
the red regions of each graph correspond to memcached jobs
with different rd:wr ratios and value sizes, and memory-
bound workloads like Spark.

3.3 Challenges
Multiple co-residents: When a single application shares a
host with Bolt, detection is straightforward. However, cloud
operators colocate VMs on the same physical host to maxi-
mize the infrastructure’s utility. Disentangling the contention
caused by several jobs is challenging. By default Bolt uses
two benchmarks - one core and one uncore - to measure re-
source pressure. If the recommender cannot determine the
type of co-scheduled workload based on them (all Pear-
son correlation coefficients below 0.1), either the applica-
tion type has not been seen before, or the resource pressure
is the result of multiple co-residents. If at least one of the co-
residents shares a core with Bolt, i.e., the core benchmark
returns non-zero pressure, we profile with an additional core
benchmark and use it to determine the type of co-runner.
Because hyperthreads are not shared between multiple ac-
tive instances, this allows accurately measuring pressure in
core resources. The remainder of the uncore interference is
used to determine the other co-scheduled workloads. This
assumes a linear relationship between jobs for the resources
of memory bandwidth and I/O bandwidth which can intro-
duce some inaccuracies, but in practice does not significantly
impact Bolt’s detection ability (see Section 3.4).

Finally, there are occurrences where none of the co-
scheduled applications share a core with Bolt. In this case,
the system must rely solely on uncore resource pressure to
detect applications. To disentangle the resource character-
istics across co-residents, Bolt employs a shutter profiling
mode, which involves frequent, brief profiling phases (10-
50msec each) in uncore resources. The goal of this mode is
to capture at least one of the co-scheduled workloads during
a low-pressure phase, which would reveal the resource usage
of only one of the co-residents, much like a high speed cam-
era shutter attempts to capture a fast-moving object still. Fig-
ure 3 shows how shutter profiling works. When the shutter
is open (upper left figure), thus profiling is off, Bolt cannot
differentiate between the two victim VMs. When the shutter
is closed during profiling, Bolt checks for changes in uncore
resource pressure. If both victims are at high load differenti-
ating between them is difficult (lower left). Similarly when
both VMs are at low load (lower right). However, when only
VM2 is at low load the pressure, Bolt captures is primarily
from VM1, allowing the system to detect its type, and based
on the remaining pressure also detect VM2. This technique
is particularly effective for user-interactive applications that
go through intermittent phases of low load; it is less effec-
tive for mixes of services with constant steady-state load,
such as long-running analytics, or logging services. We will

Server 
VM2 Bolt VM1 

Server 
VM2 Bolt VM1 

✖	  

✖	  

✖	  

✖	  

Server 
VM2 Bolt VM1 

Server 
VM2 Bolt VM1 

✔	  

✖	  

✖	  

✖	  

✔	  

✔	  

Figure 3: Shutter profiling mode.

consider whether additional input signals, such as per-job
cache miss rate curves, can improve detection accuracy for
the latter workloads.
Application phases: Datacenter applications are notorious
for going through multiple phases during their execution.
Online services in particular follow diurnal patterns with
high load during the day and low load in the night [3, 50, 44].
Moreover, an application may not be immediately detected,
especially during its initialization phase. Cloud users may
purchase instances to run a service and then maintain them
to execute other applications, e.g., analytics over different
datasets. In these cases, the results of Bolt’s detection can
become obsolete over time. We address this by periodically
repeating the profiling and detection steps for co-scheduled
workloads. Each iteration takes 2-5 seconds for profiling
and a few milliseconds for the recommender’s analysis. Sec-
tion 3.4 shows a sensitivity study on how frequently detec-
tion needs to happen.

3.4 Detection Accuracy
We first evaluate Bolt’s detection accuracy in a controlled
environment, where all applications are known. We use
a 40-machine cluster with 8 core (2-way hyperthreaded)
Xeon-class servers, and schedule a total of 108 workloads,
including batch analytics in Hadoop [46] and Spark [77]
and latency-critical services, such as webservers, mem-
cached [26] and Cassandra [10]. For each application type,
there are several different workloads with respect to algo-
rithms, framework versions, datasets and input load patterns.
Friendly applications are scheduled using a least-loaded
(LL) scheduler that allocates resources on the machines with
the most available compute, memory and storage. All work-
loads are provisioned for peak requirements to reduce inter-
ference. Even so, interference between co-residents exists,
since the scheduler does not account for the sensitivity ap-
plications have to contention. In the end of this section, we
evaluate how a scheduler that accounts for cross-application
interference affects detection accuracy. The training set con-
sists of 120 diverse applications that include webservers,
various analytics algorithms and datasets, and several key-
value stores and databases. The training set is selected to
provide sufficient coverage of the space of resource charac-
teristics. Figure 4 shows the pressure jobs in the training set
put in compute, memory, storage, and network bandwidth.
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Figure 4: Coverage of resource characteristics for appli-
cations in the training set.

Applications Detection accuracy (%)
Least Load scheduler Quasar scheduler

Aggregate 87% 89%
memcached 78% 80%

Hadoop 92% 92%
Spark 85% 86%

Cassandra 90% 89%
speccpu2006 84% 85%

Table 1: Bolt’s detection accuracy in the controlled ex-
periment with the least loaded scheduler and Quasar.

While there are clusters of applications that saturate several
resources, the selected workloads cover the majority of the
resource usage space. This enables Bolt to match any re-
source profile to information from the training set, even if
the new application has not been previously seen. Increasing
the training set size further did not improve detection accu-
racy. Finally, note that there is no overlap between training
and testing sets in terms of algorithms, datasets, and input
loads.

In each server we instantiate an adversarial VM running
Ubuntu 14.04. By default the VM has 4vCPUs (2 physical
cores) to generate enough contention (Fig. 10 shows a sensi-
tivity analysis on the VM size). The remainder of each ma-
chine is allocated to one or more friendly VMs. The max VM
number, 5 in our setting, depends on the available servers.
Friendly VMs run on Ubuntu 14.04 or Debian 8.0. Adver-
sarial VMs have no a priori information on the number and
type of their co-residents. Applications are allowed to share
a physical core, but must be on different hyperthreads (vC-
PUs). While sharing a single hyperthread is common in pri-
vate deployments hosting batch jobs in small containers [7],
it is uncommon in public clouds, where 1 vCPU is the min-
imum guaranteed size of dedicated resources for non-idling
instances.

Table 1 shows Bolt’s detection accuracy, per application
class, and aggregate. We signal a detection as correct if Bolt
identifies correctly the framework (e.g., Hadoop) or service
(e.g., memcached) the application uses, and the algorithm,
e.g., SVM on Hadoop, or user load characteristics, e.g., read-
vs. write-heavy load. We do not currently examine more
detailed features, such as the distribution of individual query
types. Bolt correctly identifies 87% of jobs, and for certain
application classes like databases and analytics, the accuracy
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Figure 5: Star charts showing the resource profiles of
two Hadoop and one unknown job. The closer the shaded
area is to a vertex the higher the pressure in the specific
resource.
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Figure 6: Detection accuracy as a function of the number
of co-runners (left) and the apps’ dominant resources
(right).

exceeds 90%. Misclassified jobs are typically identified as
workloads with the same or similar critical resources.
Per-application profiles: Note that, although in Table 1 we
group applications by programming framework or online
service, each framework does not correspond to a single re-
source profile. Profiles of applications within a framework
can vary greatly depending on functionality, complexity, and
dataset features. Bolt’s recommender system matches re-
source profiles to specific algorithmic classes and dataset
characteristics within each framework. Figure 5 shows an
example where two Hadoop jobs, one running word count
on a small dataset, and one running a recommender system
on a very large dataset exhibit very different resource pro-
files. While the third application is also a Hadoop job it is
identified as very similar to the recommender as opposed to
word count.
Number of co-residents: The number of victim applica-
tions affects detection accuracy. Figure 6a shows accuracy
as a function of the number of victims per machine. When
the number of co-residents is less than 2, accuracy exceeds
95%. As the number increases accuracy drops, since it be-
comes progressively more difficult to differentiate between
the contention caused by each workload. When there are
5 co-scheduled applications, accuracy is 67%. Interestingly,
accuracy is higher for 4 than for 3 applications, since with 4
workloads the probability of sharing a core, and thus getting
an accurate measurement of core pressure is higher. While
aggressive multi-tenancy affects accuracy, large numbers of
co-residents in public clouds are unlikely in practice [41].



Dominant resource: We now examine the correlation be-
tween the resource an application puts the most pressure on,
and Bolt’s ability to correctly detect it (Figure 6). The num-
bers on each bar show how many applications have each re-
source as dominant. In general, applications that are most
easily detected are ones with high instruction cache (L1-i),
memory bandwidth, network bandwidth and disk capacity
pressure. These are workloads that fall in one of the fol-
lowing categories: latency-critical services with large code-
bases such as webservers, in-memory analytics like Spark,
and disk-bound analytics like Hadoop. Interestingly, L2 ac-
tivity is a poor indicator of application type, in contrast to L1
and LLC, since it does not capture a significant change in the
working set size (from 32KB to 256KB for our platforms).
Number of iterations: In this controlled experiment, we
stop the detection process upon correct identification of a
workload. For several jobs, this requires more than one it-
erations of profiling and data mining. Figure 7a shows the
fraction of workloads that were correctly-identified after N
iterations. 71% of victims only require a single iteration,
while an additional 15% required a second. A small frac-
tion of applications needed more than two iterations, while
jobs that are not identified correctly until the sixth iteration
did not benefit from additional iterations. The number of ap-
plications per machine also affects the iterations required for
detection (Figure 7b). When a single job is scheduled on a
machine, one iteration is sufficient for almost all workloads.
As the number of victims per machine increases additional
iterations are needed to disentangle the contention signals of
each co-scheduled job.

Figure 8 shows a case of detection over several iter-
ations. The victim is a 4vCPU instance executing differ-
ent consecutive jobs. Detection occurs every 20sec by de-
fault (see Fig. 10 for a sensitivity study on profiling fre-
quency). After the initial iteration, Bolt detects the job as
mcf from SPECCPU2006. In the next two iterations, the in-
terference profile of the victim continues to fit mcf’s char-
acteristics. At t=60sec, Bolt detects that the job profile has
changed and now resembles an SVM classifier running on
Mahout [46]. Similarly at t=180sec, the victim changes
again to a Spark data mining workload. Changes are typi-
cally captured within a few seconds.
Resource pressure: Figure 9 shows the correlation between
the pressure of a victim in a given resource and Bolt’s ability
to correctly detect it. We plot detection accuracy for three
core and three uncore resources; the results are similar for
the remaining four. In almost all cases, very low or very
high pressure carries the most value for detection. For disk
bandwidth, accuracy remains high except for the 20-50% re-
gion which contains many application classes with moder-
ate disk activity, including analytics in Hadoop, databases
and graph applications. Resource pressure also affects the
number of iterations Bolt needs to correctly identify a work-
load. For resources with a lot of value for detection, such as
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Figure 8: Example of workload phase detection by Bolt.

the L1-i and LLCs, when pressure is moderate several iter-
ations are needed for accuracy to increase. In contrast, for
off-chip resources like network bandwidth this effect is less
pronounced. In general, when moderate pressure hurts de-
tection accuracy (Figure 9), more iterations are needed for
correct identification.
Scheduler: So far we have used a least loaded scheduler,
which is commonly-used in datacenters [33, 63]. This sched-
uler does not account for resource contention between appli-
cations, leading to suboptimal performance [16, 24, 5, 84,
82]. Recent work has shown that if interference is accounted
for at the scheduler level both performance and utilization
improve [48, 19, 53]. We now evaluate the impact of such
a scheduler on Bolt’s detection accuracy. Quasar [19] lever-
ages machine learning to quickly determine which applica-
tions can be co-scheduled on the same machine without de-
structive interference. We use Quasar to schedule all victim
applications and then inject Bolt in each physical host for de-
tection. In a real setting Bolt can trick an interference-aware
scheduler by incurring very low levels of interference ini-
tially, until it is co-scheduled with a victim application and
can determine its type and characteristics.

Table 1 shows Bolt’s accuracy with the least loaded
scheduler (LL) and Quasar. Interestingly, accuracy increases
slightly with Quasar, 2% on average, but in general the im-
pact of the scheduler is small. There are two reasons for the
increase; first, both LL and Quasar do not share a single
hyperthread between jobs, so core pressure measurements
remain accurate. Second, because Quasar only co-schedules
jobs with different critical resources, it provides Bolt with a
less “noisy” interference signal for uncore resources, mak-
ing distinguishing co-residents easier. Therefore reducing
interference in software alone is not sufficient to mitigate
these security threats.
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sure victims place in various shared resources.
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Figure 10: Sensitivity to: (a) profiling frequency, (b)
adversarial VM size, and (c) profiling benchmarks.

Sensitivity analysis: Finally, we examine how design de-
cisions in Bolt affect detection. Figure 10a shows how ac-
curacy changes as profiling frequency decreases. For profil-
ing intervals beyond 30 sec accuracy drops rapidly. If pro-
filing only occurs every 5 minutes almost half the victims
are incorrectly identified. Note that if workloads are long-
running and mostly-stable, profiling can be less frequent
without such an impact on accuracy. Figure 10b shows ac-
curacy as a function of the adversarial VM’s size. We exam-
ine sizes offered as on-demand instances by EC2 [1]. If the
adversary has fewer than 4 vCPUs, its resources are insuffi-
cient to create enough contention to capture the co-residents’
pressure. Accuracy continues to grow for larger sizes, how-
ever, the larger the adversarial instance is the less likely it
will be co-scheduled with other VMs, nullifying the value
of Bolt. Finally, Figure 10c shows accuracy as a function of
the number of microbenchmarks used for profiling. A single
benchmark is not sufficient to fingerprint the characteristics
of a workload, however, using more than 3 benchmarks has
diminishing returns in accuracy. Unless otherwise specified,
we use 20sec profiling intervals, 4 vCPU adversarial VMs
and 2 benchmarks for initial profiling.

3.5 Limitations
While Bolt can accurately detect most frequently-run work-
loads, it has certain limitations. First, when no job shares
a core with the adversary, the system assumes linear rela-
tion between the co-residents’ resource pressure in uncore
resources. While this is true in some cases, it may not be
generally accurate. We will explore alternative ways of dis-
tinguishing co-residents in future work. Second, the system
cannot differentiate between multiple jobs running in a sin-
gle instance and multiple instances running one job each.
While this does not affect detection, if a covert-channel at-
tack is aimed at a particular user, more accurate information
would increase the adversary’s leverage. Similarly, Bolt can-
not currently distinguish between two copies of the same job

sharing a platform at low load and one copy of the job that
runs at higher load.

4. Cloud User Study
We now evaluate Bolt in a real-world environment with
multiple users and unknown applications. We conducted a
multi-user study on Amazon EC2 subject to the following
rules:

• We have engaged 20 independent users from two aca-
demic institutions (Cornell University and Stanford Uni-
versity), provided them with access to a shared cluster
of 200 c3.8xlarge instances on EC2, with 32 vCPUs and
60GB of memory each, and asked them to submit several
applications of their choosing.

• On each instance we maintain a 4-vCPU VM for Bolt. All
other resources are made available to the users as VMs.

• Each user submits one or more applications and all users
have equal priority, i.e., no application will be preempted
to accommodate the job of another user.

• Users were instructed to behave amenably, i.e., to avoid
consuming disproportionate resources, so that the system
can observe a representative job sample from all users.

• Users were also advised to pin their applications to spe-
cific cores to eliminate interference from the OS sched-
uler. Physical cores can be shared across jobs, however,
each vCPU (hardware thread) is dedicated to a single ap-
plication.

• Users can optionally select the instance(s) they want to
launch their applications on. We provide a spreadsheet
with a list of all available instances and their utilization
at each point in time. This information, as well as any a
priori information on the type, number, and characteris-
tics of submitted applications is concealed from Bolt.

• If a user does not select an instance, a least-loaded sched-
uler selects the VM with the most available cores and
memory.

Once users start launching jobs in the cluster, we instan-
tiate Bolt on each machine and activate it periodically to de-
tect the type, characteristics, and number of co-scheduled
applications. The entire experiment lasts approximately 4
hours, beyond which point all instances are terminated. Fig-
ure 11 shows the PDF of application types the different users
launched, provided by the users after the completion of the
experiment. Different colors correspond to different users. A
total of 436 jobs were submitted to the cluster. The applica-
tion mix includes analytics jobs in Hadoop and Spark, sci-
entific benchmarks (Parsec, Bioparallel), hardware synthesis
tools (Cadence, VivadoHLS), multicore (zsim) and n-body
simulations, email clients, web browsers, web servers (http),
music and video streaming services, and databases, among
others. Each job may take one or more vCPUs. Even though
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Figure 12: Detection accuracy of (a) application labels and (b) resource characteristics. Fig 12(c): number of jobs per
instance.

figure 11 groups applications by framework the individual
logic and datasets differ between jobs in the same frame-
work. Note that we have not updated the training set for this
study; it consists of the same 120 applications described in
Section 3.4.

Figure 12a shows the number of applications that were
correctly identified by name across the different categories.
In total 277 jobs are correctly labeled. As expected, Bolt
could not assign a label to application types it has not seen
before, such as email clients, or image editing applications.
However, even when Bolt cannot label an application, it can
still identify the resources it is sensitive to, as shown in fig-
ure 12b. For 385 out of 436 jobs, Bolt correctly identifies
the job’s resource characteristics. For performance attacks,
such as the ones described in Section 5, this information is
sufficient to dramatically degrade the performance of a vic-
tim application. Finally, figure 12c shows the number of co-
scheduled applications per instance throughout the duration
of the experiment. The bottom 14 instances remained un-
used; for the remaining 186 instances the number of active
applications ranges from 1 to 6, with each job taking one
or more vCPUs. The majority of misclassified applications
correspond to instances with 5 or more concurrently active
jobs.

5. Security Attacks
Bolt makes several cloud attacks practical and difficult to
detect. We discuss three possible attacks that leverage the
information obtained through detection.

5.1 Internal Denial of Service Attack
Attack setting: Denial of service attacks hurt the perfor-
mance of a victim service by overloading its resources [14,
2, 51]. In cloud settings specifically, they can be catego-
rized in two types; external and internal (or host-based) at-
tacks. External attacks are the most conventional form of
DoS [51, 13, 22]. These attacks utilize external servers to di-
rect excessive traffic to the victims, flooding their resources,
and hurting their availability. External DoS attacks affect
mostly PaaS and SaaS systems, and include IP spoofing, syn-
chronization (SYN) flooding, smurf, buffer overflow, land,
and teardrop attacks.

In contrast, internal DoS attacks take advantage of IaaS
and PaaS cloud multi-tenancy to launch adversarial pro-
grams on the same host as the victim and degrade its perfor-
mance [14, 60, 34, 52]. For example, Ristenpart et al. [60]
showed how an adversarial user can leverage the IP naming
conventions of IaaS clouds to locate a victim VM and de-
grade its performance. Cloud providers are starting to build
defenses against such attacks. For example, EC2 offers au-
toscaling that will increase the instances of a service un-
der heavy resource usage. Similarly, there is related work
on mechanisms that detect saturation in memory bandwidth
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Figure 13: Latency and utilization with Bolt and a naı̈ve
DoS attack that saturates CPU resources.

and can trigger VM migration [71]. This means that DoS
attacks that simply overload a physical host are ineffective
when such defenses are in place. We focus on host-based
DoS attacks and make them resilient against such defenses
by avoiding resource saturation. We leverage the information
obtained by Bolt to construct custom interference programs
that stress the resources the victim is most sensitive to with-
out overloading the host.

Bolt creates custom contentious workloads by combining
the microbenchmarks used to measure the resource pressure
of the victim. Since these microbenchmarks are tunable, Bolt
configures their intensity to a higher point than their mea-
sured pressure ci during detection. For example, if a victim
is detected as memcached, and its most critical resources are
the L1-i cache (81% pressure) and the last level cache (LLC)
(78% pressure), Bolt uses the two microbenchmarks for L1-
i and LLC at a higher intensity than what memcached can
tolerate.
Impact: We use the DoS attack setting above against the 108
applications of the controlled experiment (Section 3.4). The
DoS attack results in degraded performance by 2.2x on aver-
age and up to 9.8x in terms of execution time. Degradation is
much more pronounced for interactive workloads like key-
value stores, with tail latency increasing by 8-140x, a dra-
matic impact for applications with strict tail latency SLAs.

We now examine the impact of the DoS attack on uti-
lization. If it translates to resource saturation, there is a high
probability that the DoS will be detected and the victim mi-
grated to a new machine. The experimental cluster supports
live migration. If CPU utilization (sampled every 1 sec) ex-
ceeds 70% the victim is migrated to an unloaded host. Fig-
ure 13 compares the tail latency and CPU utilization with
Bolt to that of a naı̈ve DoS that saturates the CPU through a
compute-intensive kernel. We focus on a single victim VM
running memcached. The overhead of migration (time be-
tween initiating migration and latency returning to normal
levels) for this VM is 8sec. Performance degradation is sim-
ilar for both systems until t=80sec, at which point the victim
is migrated to a new host due to the compute-intensive kernel
causing utilization to exceed 70%. While during migration
performance continues to degrade, once the VM resumes in
the new server, latency returns to nominal levels. In contrast,
Bolt keeps utilization low, and impacts the victim’s perfor-
mance beyond t=80sec.

5.2 Resource Freeing Attack
Attack setting: The goal of a resource freeing attack (RFA)
is to modify the workload of a victim such that it frees up
resources for the adversary, improving its performance [67,
66]. The adversarial VM consists of two components, a ben-
eficiary and a helper. The beneficiary is the program whose
performance the attacker wants to improve, and the helper
is the program that forces the victim to yield its resources.
The RFA works by adding load in the victim’s critical re-
sources, causing other resources to free up. For example, if
the victim is a memory-bound Spark job, introducing addi-
tional memory traffic will result in Spark stalling in memory,
and lessening its pressure in the other resources, until it can
reclaim its required memory bandwidth. When launched in
a public cloud, the victim of an RFA ends up paying more
and achieving worse performance compared to running in
isolation.

We now create a proof of concept RFA for a webserver, a
network-bound Hadoop job, and a memory-bound Spark job.
Launching RFAs requires in depth knowledge of the victim’s
resource requirements [67], which Bolt provides by identi-
fying the victim’s dominant resource. Once the dominant re-
source is detected, the runtime applies a custom helper pro-
gram that saturates this critical resource. For the webserver,
the helper is a CPU-intensive benchmark launching CGI re-
quests, causing the victim to saturate its CPU usage, servic-
ing fewer real user requests, and freeing up cache resources.
For the Hadoop job, we use a network-intensive benchmark
similar to iperf, which saturates network bandwidth, and
frees up CPU and memory resources for the beneficiary.
Similarly, for Spark we use a streaming memory benchmark
that slows down k-means and frees network and compute re-
sources for the adversary. The selection of the beneficiary
is of lesser importance; without loss of generality we se-
lect mcf, a CPU-intensive benchmark from SPECCPU2006.
The same methodology can be used with other beneficiaries,
conditioned to their critical resource not overlapping with
the victim’s.
Impact: Table 2 shows the performance degradation for the
three victim applications, and the improvement in execution
time for the beneficiary. The webserver suffers the most in
terms of queries per second, as the helper’s CGI requests
pollute its cache, preventing it from servicing legitimate user
requests. Hadoop and Spark experience significant degrada-
tions in execution time, due to network and memory band-
width saturation respectively. Execution time for mcf im-
proves by 16-38%, benefiting from the victim stalling in its
critical resource to improve its cache and CPU usage.

5.3 VM Co-residency Detection
Attack setting: Sections 3.4 and 4 showed that we can iden-
tify the applications sharing a cloud infrastructure. However,
a malicious user is rarely interested in a random service run-
ning on a public cloud. More often, they target a specific



Victim Beneficiary Target
App Perf App Perf Resource

Apache Webserver -64% (QPS) mcf +24% CPU
Hadoop (SVM) -36% (Exec.) mcf +16% Network BW

Spark (k-means) -52% (Exec.) mcf +38% Memory BW

Table 2: RFA impact on the victims and beneficiaries.

workload, e.g., a competitive e-commerce site. Therefore
they need to pinpoint where the target resides in a practical
manner. This requires a launch strategy and a mechanism for
co-residency detection [69]. The attack is practical if the tar-
get is located with high confidence, in reasonable time and
with modest resource costs. Bolt enables this attack to be
carried out in a practical way and remains resilient against
defense mechanisms, such as virtual private clouds (VPCs)
which make internal IP addresses private to a single tenant.
Once a target VM is located, the adversary can launch RFA
or DoS attacks as previously described. Co-residency detec-
tion attacks rely on leakage of logical information, e.g., IP
address, or on observing the impact of a side-channel attack
due to resource contention. Bolt relies on a variation of the
latter approach.

Assume a system of N servers. A target victim user
launches k VMs. The adversary launches n malicious VMs.
Instances are launched simultaneously to avoid malicious-
malicious instance co-residency [69]. The probability that at
least one adversarial VM will be co-scheduled with a victim
instance is: P( f ) = 1− (1− k/N)n. The adversary then uses
a two-process detection scheme. The sender is a process that
creates contention to degrade the victim’s performance. The
receiver is the process that detects this degradation, running
either on the same host as the victim (cooperative detection)
or externally (uncooperative detection). We assume an unco-
operative victim, which is the more general case. Bolt works
as the sender to determine the type of co-residents on each
sampled host and identify any of the desired type. Assume
m VMs of the desired type have been detected in the sample
set. Bolt now needs to prune down this space to VM(s) from
the specific target victim. It launches an external receiver
aiming at the victim over a public channel, e.g., HTTP, or
key-value protocol, to ping the victim service. This is the
only point of communication with the victim. At the same
time the sender incurs contention in the resources the victim
is most sensitive to. If the sender and victim are co-residents
the receiver’s requests will be slower due to contention. Bolt
quickly prunes down the sampled VMs by determining the
type of co-residents. In a large cluster this reduces the time
to pinpoint a victim, and the resource costs for the adver-
sary. It also increases the confidence in the detection, in the
presence of noise from other co-residents.
Impact: We evaluate co-residency detection on the same
40-node cluster. The victim is a SQL server, instantiating
a single VM. The cluster also hosts 7 other VMs running
SQL. Other active VMs host key-value stores, Hadoop and
Spark jobs. Bolt launches 10 senders simultaneously on

randomly-selected machines (P( f ) = .), and detects 3
VMs running SQL in the sample set. It then introduces mem-
ory interference, as the receiver initiates a large number of
SQL queries. While these queries have 8.16msec mean la-
tency without interference, latency now becomes 26.14msec.
Given a ∼ 3× latency increase, we can conclude that one of
the co-residents is the victim SQL server. Detection required
6sec from instantiation to receiver detection, and 11 adver-
sary VMs.

6. Improving Security via Resource Isolation
Since interference is at the heart of Bolt’s detection method-
ology, isolation mechanisms that attenuate contention should
reduce its accuracy. We first evaluate to what extent ex-
isting isolation techniques mitigate security vulnerabilities,
and then highlight trade-offs between security, performance,
and utilization. We use the same setting as in the controlled
experiment of Section 3.4. We evaluate 4 resource-specific
isolation techniques and 3 settings for OS-level isolation
mechanisms: baremetal, containerized, and virtualized. The
baremetal system does not employ any OS level isolation.
The containerized setup uses Linux containers (lxc), and
assigns cores to applications via cpuset cgroups. Both
containers and VMs constrain memory capacity. Baremetal
experiments do not enforce memory capacity allocations,
and the Linux scheduler is free to float applications across
cores.

The first resource-specific isolation techniques is thread
pinning to physical cores, to constrain interference from
scheduling actions, like context switching. The number of
cores an application is allocated can change dynamically,
and is limited by how fast Linux can migrate tasks, typically
in the tens of milliseconds.

For network isolation, we use the outbound network
bandwidth partitioning capabilities of Linux’s traffic con-
trol. Specifically, we use the qdisc [8] scheduler with hier-
archical token bucket queueing discipline (HTB) to enforce
egress bandwidth limits. The limits are set to the maximum
traffic burst rate for each application to avoid contention
(ceil parameter in HTB interface). Ingress network band-
width isolation has been extensively studied in previous
work [36]; these approaches can be applied here as well.

For DRAM bandwidth isolation, there is no commer-
cially available partitioning mechanism. To enforce band-
width isolation we use the following approach: we monitor
the DRAM bandwidth usage of each application through
performance counters [45] and modify the scheduler to only
colocate jobs on machines that can accommodate their ag-
gregate peak memory bandwidth requirements. This requires
extensive application knowledge, and is used simply to high-
light the benefits of DRAM bandwidth isolation.

Finally, for last level cache (LLC) isolation, we use the
Cache Allocation Technology (CAT) available in recent In-
tel chips [11]. CAT partitions the LLC in ways, which in
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Figure 14: Detection accuracy with isolation techniques.

a highly-associative cache allows for non-overlapping par-
titions at the granularity of a few percent of the LLC ca-
pacity. Each co-resident is allocated one partition configured
to its current capacity requirements [57]. Partitions can be
resized at runtime by reprogramming specific low-level reg-
isters (MSRs); changes take effect after a few milliseconds.

We add one isolation mechanism at a time in the three
system settings (baremetal, containers, VMs). Figure 14
shows the impact of isolation techniques on Bolt’s detection
accuracy. As expected, when no isolation is used, baremetal
allows for a significantly higher detection accuracy than
container- and VM-based systems, mostly due to the lat-
ter constraining core and memory capacity usage. As a re-
sult, introducing thread pinning benefits baremetal the most,
since it reduces core contention. It also benefits container-
and VM-based setups to a lesser degree, by eliminating un-
predictability introduced by the Linux scheduler (e.g., con-
text switching) [40]. The dominant resource of each appli-
cation determines which isolation technique benefits it the
most. Thread pinning mostly benefits workloads bound by
on-chip resources, such as L1/L2 caches and cores. Adding
network bandwidth partitioning lowers detection accuracy
for all three settings almost equally. It primarily benefits
network-bound workloads, for which network interference
conveys the most information for detection. Memory band-
width isolation further reduces accuracy by 10% on average,
benefiting jobs dominated by DRAM traffic. Finally, cache
partitioning has the most dramatic reduction in accuracy,
especially for LLC-bound workloads. We attribute this to
the importance cache pressure has as a detection signal. The
number of co-residents also affects the extent to which iso-
lation helps. The more co-scheduled applications exist per
machine, the more isolation techniques degrade accuracy, as
they make distinguishing between co-residents harder.

Unfortunately, even when all the techniques are on, ac-
curacy is still 50% due to two reasons: current techniques
are not fine-grain enough to allow strict and scalable isola-
tion and core resources (L1/L2 caches, CPU) are prone to
interference due to contending hyperthreads [61]. To eval-
uate the latter hypothesis, we modify the scheduler, such
that hyperthreads of different jobs are never scheduled on
the same physical core, e.g., if a job needs 7vCPUs it is
allocated 4 dedicated physical cores. The grey bars of Fig-
ure 14 show the detection accuracy. Baremetal instances still
allow certain applications to be detected, but for container-

ized and virtualized settings, accuracy drops to 14%. The re-
maining accuracy corresponds to disk-heavy workloads. Im-
proving security, however, comes at a performance penalty
of 34% on average in execution time, as threads of the same
job are forced to contend with one another. Alternatively,
users can overprovision their resource reservations to avoid
degradation, which results in a 45% drop in utilization. This
means that the cloud provider cannot leverage CPU idleness
to share machines, decreasing the cost benefits of cloud com-
puting. Note that enforcing core isolation alone is also not
sufficient, as it allows a detection accuracy of 46%.
Discussion: The previous analysis highlights a design prob-
lem with current datacenter platforms. Traditional multi-
cores are prone to contention, which will only worsen as
more cores are integrated in each server, and multi-tenancy
becomes more pronounced. Existing isolation techniques are
insufficient to mitigate security vulnerabilities, and tech-
niques that provide reasonable security guarantees sacrifice
performance or cost efficiency, through low utilization. This
highlights the need for new fine-grain, and coordinated iso-
lation techniques that guarantee security at high utilization
for shared resources.

7. Conclusions
We have presented Bolt, a practical system that uses online
data mining techniques to identify the type and character-
istics of applications running on shared cloud systems, and
enables practical attacks that degrade their performance. In
a 40-server cluster, Bolt correctly identifies 87% out of 108
workloads, and degrades tail latency by up to 140x. We also
used Bolt in a user study on EC2 to detect the character-
istics of unknown jobs submitted by multiple users. Finally,
we show that, while existing isolation techniques are helpful,
they are not sufficient to mitigate such attacks. Bolt reveals
real, easy-to-exploit threats in public clouds. We hope that
this work will motivate cloud providers and computer sci-
entists to develop and deploy stricter isolation primitives in
cloud systems.
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