
EFFICIENTLY SUPPORTING DYNAMIC TASK

PARALLELISM ON HETEROGENEOUS CACHE-

COHERENT SYSTEMS

Moyang Wang, Tuan Ta, Lin Cheng, Christopher Batten

Page 1 of 26

Computer Systems Laboratory
Cornell University

MANYCORE PROCESSORS

Small Core Count Large Core Count

Page 1 of 26

Hardware-Based Cache Coherence Software-Centric Cache Coherence / No Coherence

Tilera
TILE64

64 Cores

Intel
Xeon Phi

72 Cores

Cavium
ThunderX

48 Cores

NVIDIA
GV100 GPU

72 SM

Celerity

511 Cores

Adapteva
Epiphany

1024 Cores

KiloCore

1000 Cores

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

SOFTWARE CHALLENGE

Page 2 of 22

int fib(int n) {
if (n < 2) return n;
int x, y;
tbb::parallel_invoke(
[&] { x = fib(n - 1); },
[&] { y = fib(n - 2); }

);
return (x + y);

}

int fib(int n) {
if (n < 2) return n;
int x = cilk_spawn fib(n - 1);
int y = fib(n - 2);
cilk_sync;
return (x + y);

}

Intel
TBB

Intel
Cilk Plus

• Programmers expect to use
familiar shared-memory
programming models on
manycore processors

• Even more difficult to allow
cooperative execution
between host processor
and manycore co-processor

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

SOFTWARE CHALLENGE

Page 2 of 22

int fib(int n) {
if (n < 2) return n;
int x, y;
tbb::parallel_invoke(
[&] { x = fib(n - 1); },
[&] { y = fib(n - 2); }

);
return (x + y);

}

int fib(int n) {
if (n < 2) return n;
int x = cilk_spawn fib(n - 1);
int y = fib(n - 2);
cilk_sync;
return (x + y);

}

Intel
TBB

Intel
Cilk Plus

• Programmers expect to use
familiar shared-memory
programming models on
manycore processors

• Even more difficult to allow
cooperative execution
between host processor
and manycore co-processor

Host
Processor

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

CONTRIBUTIONS

Page 3 of 26

• Work-Stealing Runtime for manycore
processors with heterogeneous cache
coherence (HCC)

- TBB/Cilk-like programming model

- Efficient cooperative execution
between big and tiny cores

• Direct task stealing (DTS), a lightweight
software and hardware technique to
improve performance and energy efficiency

• Detailed cycle-level evaluationA big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

EFFICIENTLY SUPPORTING DYNAMIC TASK PARALLELISM ON HCC

Page 4 of 26

• Background

• Implementing Work-Stealing
Runtimes on HCC

• Direct Task Stealing

• Evaluation

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

HETEROGENEOUS CACHE COHERENCE (HCC)

Page 5 of 26

• We study three exemplary software-
centric cache coherence protocols:

- DeNovo [1]

- GPU Write-Through (GPU-WT)

- GPU Write-Back (GPU-WB)

• They vary in their strategies to invalidate
stale data and propagate dirty data

• Prior work on Spandex [2] has studied how
to efficiently integrate different protocols
into HCC systems

Stale Data
Invalidation

Dirty Data
Propagation

Write
Granularity

MESI Writer
Owner,

Write-Back
Cache Line

DeNovo Reader
Owner,

Write-Back
Flexible

GPU-WT Reader
No-Owner,

Write-Through
Word

GPU-WB Reader
No-Owner,

Write-Back
Word

[1] H. Sung and S. V. Adve. DeNovoSync: Efficient Support for Arbitrary
Synchronization without Writer-Initiated Invalidations. ASPLOS 2015.

[2] J. Alsop, M. Sinclair, and S. V. Adve. Spandex: A Flexible Interface for
Efficient Heterogeneous Coherence. ISCA 2018.

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

DYNAMIC TASK PARALLELISM

Page 6 of 26

• Tasks are generated dynamically at run-time
• Diverse current and emerging parallel patterns:

- Map (for-each)
- Fork-join
- Nesting

• Supported by popular frameworks:
- Intel Threading Building Blocks (TBB)
- Intel Cilk Plus
- OpenMP

• Work-stealing runtimes provide automatic
load-balancing

Pictures from Robinson et al., Structured Parallel Programming: Patterns for Efficient Computation, 2012

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

DYNAMIC TASK PARALLELISM

Page 6 of 26

• Tasks are generated dynamically at run-time
• Diverse current and emerging parallel patterns:

- Map (for-each)
- Fork-join
- Nesting

• Supported by popular frameworks:
- Intel Threading Building Blocks (TBB)
- Intel Cilk Plus
- OpenMP

• Work-stealing runtimes provide automatic
load-balancing

long fib(int n) {
if (n < 2) return n;
long x, y;
parallel_invoke(
[&] { x = fib(n - 1); },
[&] { y = fib(n - 2); }

);
return (x + y);

}

void vvadd(int a[], int b[], int dst[],
int n) {

parallel_for(0, n, [&](int i) {
dst[i] = a[i] + b[i];

});
}

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

DYNAMIC TASK PARALLELISM

Page 6 of 26

• Tasks are generated dynamically at run-time
• Diverse current and emerging parallel patterns:

- Map (for-each)
- Fork-join
- Nesting

• Supported by popular frameworks:
- Intel Threading Building Blocks (TBB)
- Intel Cilk Plus
- OpenMP

• Work-stealing runtimes provide automatic
load-balancing

class FibTask : public task {
int n, *sum;

void execute() {
if (n < 2) {
*sum = n;
return;

}
long x, y;
FibTask a(n - 1, &x);
FibTask b(n - 2, &y);
this->reference_count = 2;
task::spawn(&a);
task::spawn(&b);
task::wait(this);
*sum = x + y;

}
}

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

WORK-STEALING RUNTIMES

Page 7 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Check local task queue

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

WORK-STEALING RUNTIMES

Page 7 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Check local task queue

Execute dequeued task

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

WORK-STEALING RUNTIMES

Page 7 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Check local task queue

Execute dequeued task

Steal from another queue

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Work in

Progress

Task
Queues

Core 0 Core 1 Core 2 Core 3

WORK-STEALING RUNTIMES

Page 7 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Work in

Progress

Task
Queues

Core 0 Core 1 Core 2 Core 3

Task A

WORK-STEALING RUNTIMES

Page 7 of 26

A

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Work in

Progress

Task
Queues

Core 0 Core 1 Core 2 Core 3

Task B

Task A

Spawn Task B

WORK-STEALING RUNTIMES

Page 7 of 26

A

B

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Work in

Progress

Task
Queues

Core 0 Core 1 Core 2 Core 3

Task B

 Dequeue Task B

WORK-STEALING RUNTIMES

Page 7 of 26

A

B

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Work in

Progress

Task
Queues

Core 0 Core 1 Core 2 Core 3

Task C

Task B

Spawn Task C

WORK-STEALING RUNTIMES

Page 7 of 26

A

B

C

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Work in

Progress

Task
Queues

Core 0 Core 1 Core 2 Core 3

Task B

Spawn Task D

Task D

Task C

WORK-STEALING RUNTIMES

Page 7 of 26

A

B

C D

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Work in

Progress

Task
Queues

Core 0 Core 1 Core 2 Core 3

Task CTask D

Steal Task D Steal Task C

Task B

WORK-STEALING RUNTIMES

Page 7 of 26

A

B

C D

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Work in

Progress

Task
Queues

Core 0 Core 1 Core 2 Core 3

Task CTask D

Task E Task F

Spawn Task FSpawn Task E

WORK-STEALING RUNTIMES

Page 7 of 26

A

B

C D

F E

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Work in

Progress

Task
Queues

Core 0 Core 1 Core 2 Core 3

Task CTask DTask E Task F

Steal Task E Steal Task F

WORK-STEALING RUNTIMES

Page 7 of 26

A

B

C D

F E

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

EFFICIENTLY SUPPORTING DYNAMIC TASK PARALLELISM ON HCC

Page 8 of 22

• Background

• Implementing Work-Stealing
Runtimes on HCC

• Direct Task Stealing

• Evaluation

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Page 9 of 22

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

WORK-STEALING RUNTIMES ON SOFTWARE-CENTRIC CACHE COHERENCE

• Shared task queues must be coherent
• DAG-Consistency [1]:

- Child tasks read up-to-date data
from parent

- Parent read up-to-date data from
(finished) children

[1] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H.
Randall. An Analysis of Dag-Consistent Distributed Shared-Memory
Algorithms. SPAA 1996.

WORK-STEALING RUNTIMES ON SOFTWARE-CENTRIC CACHE COHERENCE

Page 10 of 22

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

• Supporting shared queues:

- Lock-acquire -> invalidation

- Lock-release -> cache flush

cache_invalidate();

cache_flush();

cache_invalidate();

cache_flush();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

WORK-STEALING RUNTIMES ON SOFTWARE-CENTRIC CACHE COHERENCE

Page 10 of 22

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

• Supporting shared queues:

- Lock-acquire -> invalidation

- Lock-release -> cache flush

• Stolen task on HCC:

- Invalidate before execution

- Flush after execution

cache_invalidate();

cache_flush();

cache_invalidate();

cache_flush();

cache_invalidate();

cache_flush();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

WORK-STEALING RUNTIMES ON SOFTWARE-CENTRIC CACHE COHERENCE

Page 10 of 22

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

• Supporting shared queues:

- Lock-acquire -> invalidation

- Lock-release -> cache flush

• Stolen task on HCC:

- Invalidate before execution

- Flush after execution

• Ensure parent-child
synchronization

cache_invalidate();

cache_flush();

cache_invalidate();

cache_flush();

cache_invalidate();

cache_flush();

cache_invalidate();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

WORK-STEALING RUNTIMES ON SOFTWARE-CENTRIC CACHE COHERENCE

Page 10 of 22

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

• Supporting shared queues:

- Lock-acquire -> invalidation

- Lock-release -> cache flush

• Stolen task on HCC:

- Invalidate before execution

- Flush after execution

• Ensure parent-child
synchronization

• No-op when invalidation or
flush is not required

cache_invalidate();

cache_flush();

cache_invalidate();

cache_flush();

cache_invalidate();

cache_flush();

cache_invalidate();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Task

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Task

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Task

Task

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Task

Task

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Task

Task

Task

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Task

Task

Task

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Task

Task

Task Task

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Task

Task

Task Task

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Task

Task

Task Task

Task

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Task

Task

Task Task

Task

Page 11 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

COOPERATIVE EXECUTION

• Same runtime loop runs on both big
and tiny cores

• Invalidations and flushes are no-ops on
big cores with MESI

• Enables seamless work-stealing
between big cores and tiny core

Task

Task

Task Task

TaskTaskTask

Task Task

EFFICIENTLY SUPPORTING DYNAMIC TASK PARALLELISM ON HCC

Page 12 of 26

• Background

• Implementing Work-Stealing
Runtimes on HCC

• Direct Task Stealing

• Evaluation

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

THE OVERHEADS OF WORK-STEALING RUNTIMES ON HCC

Page 13 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

• Invalidation and/or flush on
all accesses to task queues

• Only need to maintain data
consistency between parent
and child.

• In work-stealing runtimes,
steals are relatively rare, but
every task can be stolen.

• Hard to know whether child
tasks are stolen

• Cost of AMOs.

cache_invalidate();

cache_flush();

cache_invalidate();

cache_flush();

cache_invalidate();

cache_flush();

cache_invalidate();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

IMPROVING WORK-STEALING RUNTIMES ON HCC

Page 14 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

• What we want to achieve
cache_invalidate();

cache_flush();

cache_invalidate();

cache_flush();

cache_invalidate();

cache_flush();

cache_invalidate();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

IMPROVING WORK-STEALING RUNTIMES ON HCC

Page 14 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

• What we want to achieve

- No Inv/Flush when
accessing the local task
queue

cache_invalidate();

cache_flush();

cache_invalidate();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

IMPROVING WORK-STEALING RUNTIMES ON HCC

Page 14 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

• What we want to achieve

- No Inv/Flush when
accessing the local task
queue

- No invalidation if children
not stolen

cache_invalidate();

cache_flush();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

IMPROVING WORK-STEALING RUNTIMES ON HCC

Page 14 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

• What we want to achieve

- No Inv/Flush when
accessing the local task
queue

- No invalidation if children
not stolen

- No AMO if child not stolen

cache_invalidate();

cache_flush();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

IMPROVING WORK-STEALING RUNTIMES ON HCC

Page 14 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task_queue[tid].lock_acquire();
task* t = task_queue[tid].dequeue();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
else {
int vid = choose_victim();
task_queue[tid].lock_acquire();
t = task_queue[vid].steal();
task_queue[tid].lock_release();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
}

• What we want to achieve

- No Inv/Flush when
accessing the local task
queue

- No invalidation if children
not stolen

- No AMO if child not stolen

• Our technique: direct task
stealing (DTS) instead of
indirect task stealing through
shared task queues

cache_invalidate();

cache_flush();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

USER-LEVEL INTERRUPT (ULI)

Page 15 of 26

• DTS is based on lightweight
inter-processor user-level
interrupt.

• Included in recent ISAs (e.g.
RISC-V).

• Similar to active messages
[1] and ADM [2].

[1] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Messages:
A Mechanism for Integrated Communication and Computation. ISCA
1992.

[2] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible Architectural Support
for Fine-Grain Scheduling. ASPLOS 2010.

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

USER-LEVEL INTERRUPT (ULI)

Page 15 of 26

• DTS is based on lightweight
inter-processor user-level
interrupt.

• Included in recent ISAs (e.g.
RISC-V).

• Similar to active messages
[1] and ADM [2].

[1] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Messages:
A Mechanism for Integrated Communication and Computation. ISCA
1992.

[2] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible Architectural Support
for Fine-Grain Scheduling. ASPLOS 2010.

Send Interrupt

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

USER-LEVEL INTERRUPT (ULI)

Page 15 of 26

• DTS is based on lightweight
inter-processor user-level
interrupt.

• Included in recent ISAs (e.g.
RISC-V).

• Similar to active messages
[1] and ADM [2].

[1] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Messages:
A Mechanism for Integrated Communication and Computation. ISCA
1992.

[2] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible Architectural Support
for Fine-Grain Scheduling. ASPLOS 2010.

Send Interrupt

Jump to a handler

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

USER-LEVEL INTERRUPT (ULI)

Page 15 of 26

• DTS is based on lightweight
inter-processor user-level
interrupt.

• Included in recent ISAs (e.g.
RISC-V).

• Similar to active messages
[1] and ADM [2].

[1] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Messages:
A Mechanism for Integrated Communication and Computation. ISCA
1992.

[2] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible Architectural Support
for Fine-Grain Scheduling. ASPLOS 2010.

Send Interrupt

Jump to a handler

Send an ACK/NACK

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Page 16 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

IMPLEMENTING DIRECT-TASK STEALING WITH ULI

P P
Parent
Task

Victim Thief

Work
In-Progress

Task Queues
(Private)

Shared LLC

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Page 16 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

IMPLEMENTING DIRECT-TASK STEALING WITH ULI

P P
Parent
Task

Victim Thief

Work
In-Progress

Task Queues
(Private)

Shared LLC

Child Task

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Page 16 of 26

Send Interrupt

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

IMPLEMENTING DIRECT-TASK STEALING WITH ULI

P P
Parent
Task

Victim Thief

Work
In-Progress

Task Queues
(Private)

Shared LLC

Child Task

ULI with id

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Page 16 of 26

Send Interrupt

Jump to a handler

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

IMPLEMENTING DIRECT-TASK STEALING WITH ULI

P P
Parent
Task

Victim Thief

Work
In-Progress

Task Queues
(Private)

Shared LLC

Child Task

ULI with id

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Page 16 of 26

Send Interrupt

Jump to a handler

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

IMPLEMENTING DIRECT-TASK STEALING WITH ULI

P P
Parent
Task

Victim Thief

Work
In-Progress

Task Queues
(Private)

Shared LLC

Child Task

Flush

ULI with id

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Page 16 of 26

Send Interrupt

Jump to a handler

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

IMPLEMENTING DIRECT-TASK STEALING WITH ULI

P P
Parent
Task

Victim Thief

Work
In-Progress

Task Queues
(Private)

Shared LLC

Child Task

Flush

ULI with id

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Page 16 of 26

Send Interrupt

Jump to a handler

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

IMPLEMENTING DIRECT-TASK STEALING WITH ULI

P P
Parent
Task

Victim Thief

Work
In-Progress

Task Queues
(Private)

Shared LLC

Child Task

Flush

*

ULI with id

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Page 16 of 26

Send Interrupt

Jump to a handler

Send an ACK/NACK

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

IMPLEMENTING DIRECT-TASK STEALING WITH ULI

P P
Parent
Task

Victim Thief

Work
In-Progress

Task Queues
(Private)

Shared LLC

Child Task

Flush

*

ULI with id

ACK

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Page 16 of 26

Send Interrupt

Jump to a handler

Send an ACK/NACK

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

IMPLEMENTING DIRECT-TASK STEALING WITH ULI

P P
Parent
Task

Victim Thief

Work
In-Progress

Task Queues
(Private)

Shared LLC

Child Task

Flush

*

ULI with id

ACK

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

Page 16 of 26

Send Interrupt

Jump to a handler

Send an ACK/NACK

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

IMPLEMENTING DIRECT-TASK STEALING WITH ULI

P P
Parent
Task

Victim Thief

Work
In-Progress

Task Queues
(Private)

Shared LLC

Child Task

Flush

*

ULI with id

ACK

WORK-STEALING RUNTIMES WITH DTS

Page 17 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task* t = task_queue[tid].dequeue();
if (t) {
t->execute();
if (t->parent->child_stolen)
amo_sub(t->parent->ref_count, 1);

else
t->parent->ref_count -= 1;

}
else {
t = steal_using_dts();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
if (p->has_stolen_child)
cache_invalidate();

}

cache_invalidate();

cache_flush();

• DTS achieves:

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

WORK-STEALING RUNTIMES WITH DTS

Page 17 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task* t = task_queue[tid].dequeue();
if (t) {
t->execute();
if (t->parent->child_stolen)
amo_sub(t->parent->ref_count, 1);

else
t->parent->ref_count -= 1;

}
else {
t = steal_using_dts();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
if (p->has_stolen_child)
cache_invalidate();

}

cache_invalidate();

cache_flush();

• DTS achieves:
- Access task queues

without locking

uli_disable();

uli_enable();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

WORK-STEALING RUNTIMES WITH DTS

Page 17 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task* t = task_queue[tid].dequeue();
if (t) {
t->execute();
if (t->parent->child_stolen)
amo_sub(t->parent->ref_count, 1);

else
t->parent->ref_count -= 1;

}
else {
t = steal_using_dts();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
if (p->has_stolen_child)
cache_invalidate();

}

cache_invalidate();

cache_flush();

• DTS achieves:
- Access task queues

without locking
- No AMO unless the

parent has a child
stolen

uli_disable();

uli_enable();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

WORK-STEALING RUNTIMES WITH DTS

Page 17 of 26

void task::wait(task* p) {
while (p->ref_count > 0) {
task* t = task_queue[tid].dequeue();
if (t) {
t->execute();
if (t->parent->child_stolen)
amo_sub(t->parent->ref_count, 1);

else
t->parent->ref_count -= 1;

}
else {
t = steal_using_dts();
if (t) {
t->execute();
amo_sub(t->parent->ref_count, 1);

}
}

}
if (p->has_stolen_child)
cache_invalidate();

}

cache_invalidate();

cache_flush();

• DTS achieves:
- Access task queues

without locking
- No AMO unless the

parent has a child
stolen

- No invalidation unless a
child is stolen

uli_disable();

uli_enable();

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

EFFICIENTLY SUPPORTING DYNAMIC TASK PARALLELISM ON HCC

Page 18 of 26

• Background

• Implementing Work-Stealing
Runtimes on HCC

• Direct Task Stealing

• Evaluation

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

EVALUATION METHODOLOGY

Page 19 of 26

• gem5 (Ruby and Garnet2.0) cycle-Level simulator

- 4 big core: OOO, 64KB L1D cache

- 60 tiny core: in-order, 4KB L1D cache

• Total cache capacity: 16 tiny cores = 1 big core

• Baselines:

- O3x8: eight big cores

- big.TINY/MESI

• big.TINY with HCC:

- big.TINY/HCC

- big.TINY/HCC-DTS

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

A big.TINY architecture combines a few big OOO

cores with many tiny IO cores on a single die

using heterogeneous cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

EVALUATION METHODOLOGY

Page 20 of 26

• 13 dynamic task-parallel application kernels
from Cilk-5 and Ligra benchmark suites

• Optimize task granularity for the
big.TINY/MESI baseline

• We use moderate input data sizes and
moderate parallelism on a 64-core system
to be representative of larger systems
running larger input sizes (weak scaling)

• See paper for 256-core case study to
validate our weak-scaling claim

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

PERFORMANCE: BIG.TINY/MESI VS. O3X8

Page 21 of 26

TABLE III. SIMULATED APPLICATION KERNELS

Cilkview Speedup over Serial IO Speedup over b.T/MESI

b.T/ b.T/HCC b.T/HCC-DTS

Name Input GS PM DInst Work Span Para IPT O3⇥1 O3⇥4 O3⇥8 MESI dnv gwt gwb dnv gwt gwb

cilk5-cs 3000000 4096 ss 456M 524M 0.9M 612.1 31.9K 1.65 4.92 9.78 18.70 1.01 1.01 1.02 1.01 0.99 1.01
cilk5-lu 128 1 ss 155M 170M 4.8M 35.5 6.5K 2.48 9.46 17.24 23.93 0.91 0.37 1.00 0.85 0.34 1.06
cilk5-mm 256 32 ss 124M 184M 0.4M 449.3 8.7K 11.38 11.76 22.04 41.23 1.00 0.89 0.94 0.98 0.93 1.11
cilk5-mt 8000 256 ss 322M 416M 0.5M 829.3 135K 5.71 19.70 39.94 57.43 0.71 1.05 0.69 0.72 1.04 0.70
cilk5-nq 10 3 pf 100M 180M 0.7M 274.9 0.4K 1.57 3.87 7.03 2.93 1.01 1.18 1.09 0.56 1.52 1.76
ligra-bc rMat_100K 32 pf 80M 129M 1.1M 117.9 0.4K 2.05 6.29 13.06 11.48 0.96 0.96 1.01 1.01 1.25 1.60
ligra-bf rMat_200K 32 pf 151M 252M 1.2M 203.3 0.4K 1.80 5.36 11.25 12.80 0.97 0.95 0.98 0.89 1.10 1.32
ligra-bfs rMat_800K 32 pf 236M 351M 0.9M 402.6 0.5K 2.23 6.23 12.70 15.63 1.02 1.05 1.10 1.08 1.23 1.52
ligra-bfsbv rMat_500K 32 pf 152M 201M 0.7M 277.5 0.5K 1.91 6.17 12.25 14.42 1.01 0.98 0.98 1.00 1.06 1.18
ligra-cc rMat_500K 32 pf 226M 278M 0.7M 383.5 0.6K 3.00 9.11 20.66 24.12 0.82 0.94 0.99 0.91 1.08 1.24
ligra-mis rMat_100K 32 pf 183M 243M 1.3M 177.7 0.5K 2.43 7.70 15.61 19.01 0.88 0.89 0.92 0.97 1.07 1.35
ligra-radii rMat_200K 32 pf 364M 437M 1.4M 311.4 0.7K 2.80 8.17 17.89 25.94 0.83 0.81 0.85 1.00 1.03 1.17
ligra-tc rMat_200K 32 pf 286M 342M 1.0M 334.9 3.5K 1.49 4.99 10.89 23.21 1.01 0.86 0.98 1.07 0.92 1.05

geomean 2.56 7.26 14.70 16.94 0.93 0.89 0.96 0.91 1.00 1.21

Input = input dataset; GS = task granularity; PM = parallelization methods: pf = parallel_for and ss = recursive spawn-and-sync; DInsts =
dynamic instruction count in millions; Work = total number of x86 instructions; Span = number of x86 instructions on the critical path; Para =
logical parallelism, defined as work divided by span; IPT = average number of instructions per task; Work, span, and IPT are analyzed by
Cilkview; b.T = big.TINY; HCC = heterogeneous cache coherence; dnv = DeNovo; gwt = GPU-WT; gwb = GPU-WB.

C. Benchmarks

We port 13 dynamic task-parallel applications from Cilk
v5.4.6 [24] and Ligra [62] to use our work-stealing run-
time systems (see Table III). We select applications
with varied parallelization methods: applications from Cilk
mainly use recursive spawn-and-sync parallelization (i.e.,
parallel_invoke); applications from Ligra mainly use
loop-level parallelization (i.e., parallel_for). Ligra appli-
cations also exhibit non-determinism, as they typically use
fine-grained synchronization such as compare-and-swap in
their code. cilk5-cs performs parallel mergesort algorithm;
lu calculates LU matrix decomposition; cilk5-mm is blocked
matrix multiplication; cilk5-mt is matrix transpose; cilk5-
nq uses backtracking to solve the N-queen problem; ligra-
bc calculates betweeness centrality of a graph; ligra-bf uses
Bellman-Ford algorithm to calculate the single-source short-
est path in a graph; ligra-bfs performs bread-first search
on graphs; ligra-bfsbv is a bit-vector optimized version of
bread-first search; ligra-cc computes connected components
in graphs; ligra-mis solves the maximum independent set
problem; ligra-radii computes the radius of a given graph;
ligra-tc counts the number of triangles in a graph. A more
detailed description for these benchmarks can be found in
previous work [24, 62].

D. Task Granularity

Task granularity (i.e., the size of the smallest task) is an im-
portant property of task-parallel applications. Programmers
can control task granularity by dividing the work into more
(fine-grained) or less (coarse-grained) tasks. Task granularity
presents a fundamental trade-off: fine-grained tasks increase
logical parallelism, but incur higher runtime overheads than
coarse-grained tasks. We use a hybrid simulation-native ap-
proach to choose the task granularity for each application. We
sweep the granularity and use Cilkview [28] to analyze the

Figure 4. Speedup and Logical Parallelism of ligra-tc Running on
a 64-core System. Task Granularity = the number of triangles pro-
cessed by each task.

logical parallelism. We evaluate the speedup over serial code
for each granularity on a simulated manycore processor with
64 tiny cores. We select suitable granularity for each appli-
cation to make sure it achieves the best or close to the best
speedup over serial execution (see instruction-per-task (IPT)
in Table III). As an example, Figure 4 shows the speed up
and the logical parallelism of ligra-tc with different granular-
ity. It demonstrates that both a too big and a too small gran-
ularity lead to sub-optimal performance: the former due to
lack of parallelism, and the latter due to runtime overheads. A
smaller granularity penalizes HCC configurations more heav-
ily, and the benefits of DTS technique would be more pro-
nounced. Our choice of task granularity aims to optimize the
performance of our baseline, not the relative benefits of our
proposed DTS technique.

VI. RESULTS

Table III summarizes the speedup of the simulated config-
urations. Figure 5 illustrates the speedup of each big.TINY
HCC configuration relative to big.TINY/MESI. Figure 6

TABLE III. SIMULATED APPLICATION KERNELS

Cilkview Speedup over Serial IO Speedup over b.T/MESI

b.T/ b.T/HCC b.T/HCC-DTS

Name Input GS PM DInst Work Span Para IPT O3⇥1 O3⇥4 O3⇥8 MESI dnv gwt gwb dnv gwt gwb

cilk5-cs 3000000 4096 ss 456M 524M 0.9M 612.1 31.9K 1.65 4.92 9.78 18.70 1.01 1.01 1.02 1.01 0.99 1.01
cilk5-lu 128 1 ss 155M 170M 4.8M 35.5 6.5K 2.48 9.46 17.24 23.93 0.91 0.37 1.00 0.85 0.34 1.06
cilk5-mm 256 32 ss 124M 184M 0.4M 449.3 8.7K 11.38 11.76 22.04 41.23 1.00 0.89 0.94 0.98 0.93 1.11
cilk5-mt 8000 256 ss 322M 416M 0.5M 829.3 135K 5.71 19.70 39.94 57.43 0.71 1.05 0.69 0.72 1.04 0.70
cilk5-nq 10 3 pf 100M 180M 0.7M 274.9 0.4K 1.57 3.87 7.03 2.93 1.01 1.18 1.09 0.56 1.52 1.76
ligra-bc rMat_100K 32 pf 80M 129M 1.1M 117.9 0.4K 2.05 6.29 13.06 11.48 0.96 0.96 1.01 1.01 1.25 1.60
ligra-bf rMat_200K 32 pf 151M 252M 1.2M 203.3 0.4K 1.80 5.36 11.25 12.80 0.97 0.95 0.98 0.89 1.10 1.32
ligra-bfs rMat_800K 32 pf 236M 351M 0.9M 402.6 0.5K 2.23 6.23 12.70 15.63 1.02 1.05 1.10 1.08 1.23 1.52
ligra-bfsbv rMat_500K 32 pf 152M 201M 0.7M 277.5 0.5K 1.91 6.17 12.25 14.42 1.01 0.98 0.98 1.00 1.06 1.18
ligra-cc rMat_500K 32 pf 226M 278M 0.7M 383.5 0.6K 3.00 9.11 20.66 24.12 0.82 0.94 0.99 0.91 1.08 1.24
ligra-mis rMat_100K 32 pf 183M 243M 1.3M 177.7 0.5K 2.43 7.70 15.61 19.01 0.88 0.89 0.92 0.97 1.07 1.35
ligra-radii rMat_200K 32 pf 364M 437M 1.4M 311.4 0.7K 2.80 8.17 17.89 25.94 0.83 0.81 0.85 1.00 1.03 1.17
ligra-tc rMat_200K 32 pf 286M 342M 1.0M 334.9 3.5K 1.49 4.99 10.89 23.21 1.01 0.86 0.98 1.07 0.92 1.05

geomean 2.56 7.26 14.70 16.94 0.93 0.89 0.96 0.91 1.00 1.21

Input = input dataset; GS = task granularity; PM = parallelization methods: pf = parallel_for and ss = recursive spawn-and-sync; DInsts =
dynamic instruction count in millions; Work = total number of x86 instructions; Span = number of x86 instructions on the critical path; Para =
logical parallelism, defined as work divided by span; IPT = average number of instructions per task; Work, span, and IPT are analyzed by
Cilkview; b.T = big.TINY; HCC = heterogeneous cache coherence; dnv = DeNovo; gwt = GPU-WT; gwb = GPU-WB.

C. Benchmarks

We port 13 dynamic task-parallel applications from Cilk
v5.4.6 [24] and Ligra [62] to use our work-stealing run-
time systems (see Table III). We select applications
with varied parallelization methods: applications from Cilk
mainly use recursive spawn-and-sync parallelization (i.e.,
parallel_invoke); applications from Ligra mainly use
loop-level parallelization (i.e., parallel_for). Ligra appli-
cations also exhibit non-determinism, as they typically use
fine-grained synchronization such as compare-and-swap in
their code. cilk5-cs performs parallel mergesort algorithm;
lu calculates LU matrix decomposition; cilk5-mm is blocked
matrix multiplication; cilk5-mt is matrix transpose; cilk5-
nq uses backtracking to solve the N-queen problem; ligra-
bc calculates betweeness centrality of a graph; ligra-bf uses
Bellman-Ford algorithm to calculate the single-source short-
est path in a graph; ligra-bfs performs bread-first search
on graphs; ligra-bfsbv is a bit-vector optimized version of
bread-first search; ligra-cc computes connected components
in graphs; ligra-mis solves the maximum independent set
problem; ligra-radii computes the radius of a given graph;
ligra-tc counts the number of triangles in a graph. A more
detailed description for these benchmarks can be found in
previous work [24, 62].

D. Task Granularity

Task granularity (i.e., the size of the smallest task) is an im-
portant property of task-parallel applications. Programmers
can control task granularity by dividing the work into more
(fine-grained) or less (coarse-grained) tasks. Task granularity
presents a fundamental trade-off: fine-grained tasks increase
logical parallelism, but incur higher runtime overheads than
coarse-grained tasks. We use a hybrid simulation-native ap-
proach to choose the task granularity for each application. We
sweep the granularity and use Cilkview [28] to analyze the

Figure 4. Speedup and Logical Parallelism of ligra-tc Running on
a 64-core System. Task Granularity = the number of triangles pro-
cessed by each task.

logical parallelism. We evaluate the speedup over serial code
for each granularity on a simulated manycore processor with
64 tiny cores. We select suitable granularity for each appli-
cation to make sure it achieves the best or close to the best
speedup over serial execution (see instruction-per-task (IPT)
in Table III). As an example, Figure 4 shows the speed up
and the logical parallelism of ligra-tc with different granular-
ity. It demonstrates that both a too big and a too small gran-
ularity lead to sub-optimal performance: the former due to
lack of parallelism, and the latter due to runtime overheads. A
smaller granularity penalizes HCC configurations more heav-
ily, and the benefits of DTS technique would be more pro-
nounced. Our choice of task granularity aims to optimize the
performance of our baseline, not the relative benefits of our
proposed DTS technique.

VI. RESULTS

Table III summarizes the speedup of the simulated config-
urations. Figure 5 illustrates the speedup of each big.TINY
HCC configuration relative to big.TINY/MESI. Figure 6

• Work-Stealing runtimes enable
cooperative execution between big and
tiny cores

• Total cache capacity: 4 big cores + 60
tiny cores = 7.8 big cores

• big.TINY achieves better performance
by exploiting parallelism and
cooperative execution

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

PERFORMANCE: BIG.TINY/MESI VS. O3X8

Page 21 of 26

TABLE III. SIMULATED APPLICATION KERNELS

Cilkview Speedup over Serial IO Speedup over b.T/MESI

b.T/ b.T/HCC b.T/HCC-DTS

Name Input GS PM DInst Work Span Para IPT O3⇥1 O3⇥4 O3⇥8 MESI dnv gwt gwb dnv gwt gwb

cilk5-cs 3000000 4096 ss 456M 524M 0.9M 612.1 31.9K 1.65 4.92 9.78 18.70 1.01 1.01 1.02 1.01 0.99 1.01
cilk5-lu 128 1 ss 155M 170M 4.8M 35.5 6.5K 2.48 9.46 17.24 23.93 0.91 0.37 1.00 0.85 0.34 1.06
cilk5-mm 256 32 ss 124M 184M 0.4M 449.3 8.7K 11.38 11.76 22.04 41.23 1.00 0.89 0.94 0.98 0.93 1.11
cilk5-mt 8000 256 ss 322M 416M 0.5M 829.3 135K 5.71 19.70 39.94 57.43 0.71 1.05 0.69 0.72 1.04 0.70
cilk5-nq 10 3 pf 100M 180M 0.7M 274.9 0.4K 1.57 3.87 7.03 2.93 1.01 1.18 1.09 0.56 1.52 1.76
ligra-bc rMat_100K 32 pf 80M 129M 1.1M 117.9 0.4K 2.05 6.29 13.06 11.48 0.96 0.96 1.01 1.01 1.25 1.60
ligra-bf rMat_200K 32 pf 151M 252M 1.2M 203.3 0.4K 1.80 5.36 11.25 12.80 0.97 0.95 0.98 0.89 1.10 1.32
ligra-bfs rMat_800K 32 pf 236M 351M 0.9M 402.6 0.5K 2.23 6.23 12.70 15.63 1.02 1.05 1.10 1.08 1.23 1.52
ligra-bfsbv rMat_500K 32 pf 152M 201M 0.7M 277.5 0.5K 1.91 6.17 12.25 14.42 1.01 0.98 0.98 1.00 1.06 1.18
ligra-cc rMat_500K 32 pf 226M 278M 0.7M 383.5 0.6K 3.00 9.11 20.66 24.12 0.82 0.94 0.99 0.91 1.08 1.24
ligra-mis rMat_100K 32 pf 183M 243M 1.3M 177.7 0.5K 2.43 7.70 15.61 19.01 0.88 0.89 0.92 0.97 1.07 1.35
ligra-radii rMat_200K 32 pf 364M 437M 1.4M 311.4 0.7K 2.80 8.17 17.89 25.94 0.83 0.81 0.85 1.00 1.03 1.17
ligra-tc rMat_200K 32 pf 286M 342M 1.0M 334.9 3.5K 1.49 4.99 10.89 23.21 1.01 0.86 0.98 1.07 0.92 1.05

geomean 2.56 7.26 14.70 16.94 0.93 0.89 0.96 0.91 1.00 1.21

Input = input dataset; GS = task granularity; PM = parallelization methods: pf = parallel_for and ss = recursive spawn-and-sync; DInsts =
dynamic instruction count in millions; Work = total number of x86 instructions; Span = number of x86 instructions on the critical path; Para =
logical parallelism, defined as work divided by span; IPT = average number of instructions per task; Work, span, and IPT are analyzed by
Cilkview; b.T = big.TINY; HCC = heterogeneous cache coherence; dnv = DeNovo; gwt = GPU-WT; gwb = GPU-WB.

C. Benchmarks

We port 13 dynamic task-parallel applications from Cilk
v5.4.6 [24] and Ligra [62] to use our work-stealing run-
time systems (see Table III). We select applications
with varied parallelization methods: applications from Cilk
mainly use recursive spawn-and-sync parallelization (i.e.,
parallel_invoke); applications from Ligra mainly use
loop-level parallelization (i.e., parallel_for). Ligra appli-
cations also exhibit non-determinism, as they typically use
fine-grained synchronization such as compare-and-swap in
their code. cilk5-cs performs parallel mergesort algorithm;
lu calculates LU matrix decomposition; cilk5-mm is blocked
matrix multiplication; cilk5-mt is matrix transpose; cilk5-
nq uses backtracking to solve the N-queen problem; ligra-
bc calculates betweeness centrality of a graph; ligra-bf uses
Bellman-Ford algorithm to calculate the single-source short-
est path in a graph; ligra-bfs performs bread-first search
on graphs; ligra-bfsbv is a bit-vector optimized version of
bread-first search; ligra-cc computes connected components
in graphs; ligra-mis solves the maximum independent set
problem; ligra-radii computes the radius of a given graph;
ligra-tc counts the number of triangles in a graph. A more
detailed description for these benchmarks can be found in
previous work [24, 62].

D. Task Granularity

Task granularity (i.e., the size of the smallest task) is an im-
portant property of task-parallel applications. Programmers
can control task granularity by dividing the work into more
(fine-grained) or less (coarse-grained) tasks. Task granularity
presents a fundamental trade-off: fine-grained tasks increase
logical parallelism, but incur higher runtime overheads than
coarse-grained tasks. We use a hybrid simulation-native ap-
proach to choose the task granularity for each application. We
sweep the granularity and use Cilkview [28] to analyze the

Figure 4. Speedup and Logical Parallelism of ligra-tc Running on
a 64-core System. Task Granularity = the number of triangles pro-
cessed by each task.

logical parallelism. We evaluate the speedup over serial code
for each granularity on a simulated manycore processor with
64 tiny cores. We select suitable granularity for each appli-
cation to make sure it achieves the best or close to the best
speedup over serial execution (see instruction-per-task (IPT)
in Table III). As an example, Figure 4 shows the speed up
and the logical parallelism of ligra-tc with different granular-
ity. It demonstrates that both a too big and a too small gran-
ularity lead to sub-optimal performance: the former due to
lack of parallelism, and the latter due to runtime overheads. A
smaller granularity penalizes HCC configurations more heav-
ily, and the benefits of DTS technique would be more pro-
nounced. Our choice of task granularity aims to optimize the
performance of our baseline, not the relative benefits of our
proposed DTS technique.

VI. RESULTS

Table III summarizes the speedup of the simulated config-
urations. Figure 5 illustrates the speedup of each big.TINY
HCC configuration relative to big.TINY/MESI. Figure 6

TABLE III. SIMULATED APPLICATION KERNELS

Cilkview Speedup over Serial IO Speedup over b.T/MESI

b.T/ b.T/HCC b.T/HCC-DTS

Name Input GS PM DInst Work Span Para IPT O3⇥1 O3⇥4 O3⇥8 MESI dnv gwt gwb dnv gwt gwb

cilk5-cs 3000000 4096 ss 456M 524M 0.9M 612.1 31.9K 1.65 4.92 9.78 18.70 1.01 1.01 1.02 1.01 0.99 1.01
cilk5-lu 128 1 ss 155M 170M 4.8M 35.5 6.5K 2.48 9.46 17.24 23.93 0.91 0.37 1.00 0.85 0.34 1.06
cilk5-mm 256 32 ss 124M 184M 0.4M 449.3 8.7K 11.38 11.76 22.04 41.23 1.00 0.89 0.94 0.98 0.93 1.11
cilk5-mt 8000 256 ss 322M 416M 0.5M 829.3 135K 5.71 19.70 39.94 57.43 0.71 1.05 0.69 0.72 1.04 0.70
cilk5-nq 10 3 pf 100M 180M 0.7M 274.9 0.4K 1.57 3.87 7.03 2.93 1.01 1.18 1.09 0.56 1.52 1.76
ligra-bc rMat_100K 32 pf 80M 129M 1.1M 117.9 0.4K 2.05 6.29 13.06 11.48 0.96 0.96 1.01 1.01 1.25 1.60
ligra-bf rMat_200K 32 pf 151M 252M 1.2M 203.3 0.4K 1.80 5.36 11.25 12.80 0.97 0.95 0.98 0.89 1.10 1.32
ligra-bfs rMat_800K 32 pf 236M 351M 0.9M 402.6 0.5K 2.23 6.23 12.70 15.63 1.02 1.05 1.10 1.08 1.23 1.52
ligra-bfsbv rMat_500K 32 pf 152M 201M 0.7M 277.5 0.5K 1.91 6.17 12.25 14.42 1.01 0.98 0.98 1.00 1.06 1.18
ligra-cc rMat_500K 32 pf 226M 278M 0.7M 383.5 0.6K 3.00 9.11 20.66 24.12 0.82 0.94 0.99 0.91 1.08 1.24
ligra-mis rMat_100K 32 pf 183M 243M 1.3M 177.7 0.5K 2.43 7.70 15.61 19.01 0.88 0.89 0.92 0.97 1.07 1.35
ligra-radii rMat_200K 32 pf 364M 437M 1.4M 311.4 0.7K 2.80 8.17 17.89 25.94 0.83 0.81 0.85 1.00 1.03 1.17
ligra-tc rMat_200K 32 pf 286M 342M 1.0M 334.9 3.5K 1.49 4.99 10.89 23.21 1.01 0.86 0.98 1.07 0.92 1.05

geomean 2.56 7.26 14.70 16.94 0.93 0.89 0.96 0.91 1.00 1.21

Input = input dataset; GS = task granularity; PM = parallelization methods: pf = parallel_for and ss = recursive spawn-and-sync; DInsts =
dynamic instruction count in millions; Work = total number of x86 instructions; Span = number of x86 instructions on the critical path; Para =
logical parallelism, defined as work divided by span; IPT = average number of instructions per task; Work, span, and IPT are analyzed by
Cilkview; b.T = big.TINY; HCC = heterogeneous cache coherence; dnv = DeNovo; gwt = GPU-WT; gwb = GPU-WB.

C. Benchmarks

We port 13 dynamic task-parallel applications from Cilk
v5.4.6 [24] and Ligra [62] to use our work-stealing run-
time systems (see Table III). We select applications
with varied parallelization methods: applications from Cilk
mainly use recursive spawn-and-sync parallelization (i.e.,
parallel_invoke); applications from Ligra mainly use
loop-level parallelization (i.e., parallel_for). Ligra appli-
cations also exhibit non-determinism, as they typically use
fine-grained synchronization such as compare-and-swap in
their code. cilk5-cs performs parallel mergesort algorithm;
lu calculates LU matrix decomposition; cilk5-mm is blocked
matrix multiplication; cilk5-mt is matrix transpose; cilk5-
nq uses backtracking to solve the N-queen problem; ligra-
bc calculates betweeness centrality of a graph; ligra-bf uses
Bellman-Ford algorithm to calculate the single-source short-
est path in a graph; ligra-bfs performs bread-first search
on graphs; ligra-bfsbv is a bit-vector optimized version of
bread-first search; ligra-cc computes connected components
in graphs; ligra-mis solves the maximum independent set
problem; ligra-radii computes the radius of a given graph;
ligra-tc counts the number of triangles in a graph. A more
detailed description for these benchmarks can be found in
previous work [24, 62].

D. Task Granularity

Task granularity (i.e., the size of the smallest task) is an im-
portant property of task-parallel applications. Programmers
can control task granularity by dividing the work into more
(fine-grained) or less (coarse-grained) tasks. Task granularity
presents a fundamental trade-off: fine-grained tasks increase
logical parallelism, but incur higher runtime overheads than
coarse-grained tasks. We use a hybrid simulation-native ap-
proach to choose the task granularity for each application. We
sweep the granularity and use Cilkview [28] to analyze the

Figure 4. Speedup and Logical Parallelism of ligra-tc Running on
a 64-core System. Task Granularity = the number of triangles pro-
cessed by each task.

logical parallelism. We evaluate the speedup over serial code
for each granularity on a simulated manycore processor with
64 tiny cores. We select suitable granularity for each appli-
cation to make sure it achieves the best or close to the best
speedup over serial execution (see instruction-per-task (IPT)
in Table III). As an example, Figure 4 shows the speed up
and the logical parallelism of ligra-tc with different granular-
ity. It demonstrates that both a too big and a too small gran-
ularity lead to sub-optimal performance: the former due to
lack of parallelism, and the latter due to runtime overheads. A
smaller granularity penalizes HCC configurations more heav-
ily, and the benefits of DTS technique would be more pro-
nounced. Our choice of task granularity aims to optimize the
performance of our baseline, not the relative benefits of our
proposed DTS technique.

VI. RESULTS

Table III summarizes the speedup of the simulated config-
urations. Figure 5 illustrates the speedup of each big.TINY
HCC configuration relative to big.TINY/MESI. Figure 6

• Work-Stealing runtimes enable
cooperative execution between big and
tiny cores

• Total cache capacity: 4 big cores + 60
tiny cores = 7.8 big cores

• big.TINY achieves better performance
by exploiting parallelism and
cooperative execution

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

PERFORMANCE: BIG.TINY/HCC VS. BIG.TINY/MESI

Page 22 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Big cores always use MESI, tiny cores use:

• dnv = DeNovo

• gwt = GPU-WT

• gwb = GPU-WB

• HCC configurations has slightly worse performance than

big.TINY/MESI

• DTS improves performance of work-stealing runtimes on HCC

EXECUTION TIME BREAKDOWN: BIG.TINY/HCC VS. BIG.TINY/MESI

Page 23 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Big cores always use MESI, tiny cores use:

• dnv = DeNovo

• gwt = GPU-WT

• gwb = GPU-WB

• The overhead of HCC comes from data load, data store, and AMO

• DTS mitigates these overheads

EXECUTION TIME BREAKDOWN: BIG.TINY/HCC VS. BIG.TINY/MESI

Page 23 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Big cores always use MESI, tiny cores use:

• dnv = DeNovo

• gwt = GPU-WT

• gwb = GPU-WB

• The overhead of HCC comes from data load, data store, and AMO

• DTS mitigates these overheads

EFFECTS OF DTS

Page 24 of 26

• DTS reduces the number of
cache invalidations

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

shows the hit rate of L1 data caches. Figure 7 presents the
execution time breakdown of the tiny cores. Figure 8 shows
the total memory traffic (in bytes) on the on-chip network.

A. Baseline Runtime on big.TINY/MESI
On 11 out of 13 applications, big.TINY/MESI has better

performance than O3⇥8. The baseline work-stealing run-
time enables collaborative execution and load balancing be-
tween the big and tiny cores in big.TINY/MESI. cilk5-nq per-
forms worse on big.TINY/MESI than O3⇥8 because the run-
time overheads outweigh the parallel speedup (as discussed in
Section V-D). Overall, our big.TINY/MESI vs. O3⇥8 results
demonstrate the effectiveness of unlocking more parallelism
using a big.TINY system compared to an area-equivalent tra-
ditional multi-core configuration O3⇥8.

B. Work-Stealing Runtime on HCC
We now discuss our work-stealing runtime on HCC (shown

in Figure 3(b)) by analyzing the performance and energy of
big.TINY/HCC-dnv, big.TINY/HCC-gwt, and big.TINY/HCC-
gwb.

Compared with big.TINY/MESI, big.TINY/HCC-dnv has
decreased L1 hit rate due to its reader-initiated invalidation
strategy, as shown in Figure 6. This decrease in L1 hit rate
causes a slight increase in memory traffic, as shown in the
cpu_req and data_resp categories in Figure 8. The impact of
these negative effects on performance is modest on most of
the applications, except for cilk5-mt. cilk5-mt has a signifi-
cant performance degradation due to additional write misses
caused by invalidation. This effect can be seen in the in-
creased data store latency and write-back traffic (see Fig-
ure 8).

big.TINY/HCC-gwt is a write-through and no write-
allocate protocol. In GPU-WT, a write miss does not refill
the cache. Therefore, big.TINY/HCC-gwt is unable to exploit
temporal locality in writes, resulting in significantly lower L1
hit rate compared to both big.TINY/MESI and big.TINY/HCC-
dnv. The network traffic of big.TINY/HCC-gwt is also signif-
icantly higher than others, especially in the wb_req category.
The reason is every write (regardless of hit or miss) updates
the shared cache (write-through). The latency for AMOs and
network traffic are also increased (shown in Figure 7 and Fig-
ure 8 respectively). big.TINY/HCC-gwt has slightly worse
performance and significantly more network traffic compared
to big.TINY/MESI and big.TINY/HCC-dnv in all applications
except cilk5-lu, where it performs significantly worse.

big.TINY/HCC-gwb has similar performance to
big.TINY/HCC-gwt when dealing with AMOs. How-
ever, the write-back policy allows big.TINY/HCC-gwb to
better exploit temporal locality. On all applications except
cilk5-mt, big.TINY/HCC-gwb has less memory traffic, higher
L1 hit rate, and better performance than big.TINY/HCC-
gwt. big.TINY/HCC-gwb is less efficient in memory traffic
compared big.TINY/HCC-dnv due to its lack of ownership
tracking: every private cache needs to propagate dirty data
through the shared cache.

In summary, our baseline work-stealing runtime on HCC
has moderately worse performance than the big.TINY/MESI

TABLE IV. CACHE INVALIDATION, FLUSH, AND HIT RATE

Invalidation Decrease (%) Flush Decrease (%) Hit Rate Increase (%)

App dnv gwt gwb gwb dnv gwt gwb

cilk5-cs 99.42 99.28 99.50 98.86 1.80 2.45 1.30
cilk5-lu 98.83 99.78 99.53 98.40 1.12 7.12 2.94
cilk5-mm 99.22 99.67 99.62 99.12 30.03 42.19 36.80
cilk5-mt 99.88 99.73 99.93 99.82 12.45 2.70 6.56
cilk5-nq 97.74 97.88 98.32 95.84 16.84 28.87 27.04
ligra-bc 94.89 97.04 97.33 93.80 7.64 21.43 14.99
ligra-bf 29.02 38.14 40.24 21.63 7.22 17.14 11.17
ligra-bfs 94.18 95.85 95.90 91.23 3.48 15.76 8.00
ligra-bfsbv 39.31 47.36 50.74 29.46 3.10 12.65 7.56
ligra-cc 98.03 98.17 98.16 95.89 3.11 11.11 6.17
ligra-mis 97.35 98.28 98.36 96.16 5.62 16.29 11.10
ligra-radii 95.97 98.17 98.19 95.75 3.62 11.00 7.03
ligra-tc 10.83 15.99 17.02 7.52 1.59 3.55 3.02

Comparisons of big.TINY/HCC-DTS with big.TINY/HCC. In-
vDec = % decrease in cache line invalidations. FlsDec = % decrease
in cache line flushes. HitRateInc = % increase in L1 D$ hit rate.

configuration on almost all applications. These results
demonstrate that HCC can effectively reduce hardware com-
plexity with a small performance and energy penalty.

C. Evaluation of HCC with DTS

In Section IV, we motivate DTS by observing that synchro-
nization is only needed when a task is stolen. DTS avoids
using cache invalidations and/or flushes unless a steal actu-
ally happens. We compare the results of HCC configura-
tions without DTS (big.TINY/HCC-*) with those with DTS
(big.TINY/HCC-DTS-*). We profile the number of invali-
dated and flushed cache lines for each configuration. We
summarize the reduction in the number of invalidations and
flushes in Table IV. We also calculate the increase in L1 hit
rate of big.TINY/HCC-DTS-* configurations compared with
corresponding big.TINY/HCC-* (HCC without DTS) config-
urations.

In all three HCC protocols across all benchmarks,
big.TINY/HCC-DTS-* have significantly lower number of
cache invalidations. ligra-bf and ligra-bfsbv show a reduc-
tion of 30–50%. ligra-tc has a reduction of 10–20%. The rest
of the benchmarks each has more than 90% reduction. The
number of flushes is also reduced on big.TINY/HCC-DTS-
gwb. 10 of 13 benchmarks have a reduction of more than
90%. In ligra-tc, ligra-bfsbf, and ligra-bf, DTS achieves less
flush reduction due to the relatively higher number of steals.

Table IV shows the reduction in invalidations translates to
higher L1 hit rate. The effect of increasing L1 hit rate is less
significant on big.TINY/HCC-DTS-dnv because it has higher
L1 hit rate to begin with (due to its ownership-based dirty
propagation). The increase in L1 hit rates also leads to re-
duced network traffic. Figure 8 shows big.TINY/HCC-DTS-*
have reduced network traffic in cpu_req and data_resp. In
big.TINY/HCC-DTS-gwb, wb_req traffic is also significantly
reduced, due to the reduction in flushes. However, DTS can-
not help reduce wb_req traffic in big.TINY/HCC-DTS-gwt
since each write still causes a write-through to the shared
cache.

EFFECTS OF DTS

Page 24 of 26

• DTS reduces the number of
cache invalidations

• DTS reduces the number of
cache flushes

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

shows the hit rate of L1 data caches. Figure 7 presents the
execution time breakdown of the tiny cores. Figure 8 shows
the total memory traffic (in bytes) on the on-chip network.

A. Baseline Runtime on big.TINY/MESI
On 11 out of 13 applications, big.TINY/MESI has better

performance than O3⇥8. The baseline work-stealing run-
time enables collaborative execution and load balancing be-
tween the big and tiny cores in big.TINY/MESI. cilk5-nq per-
forms worse on big.TINY/MESI than O3⇥8 because the run-
time overheads outweigh the parallel speedup (as discussed in
Section V-D). Overall, our big.TINY/MESI vs. O3⇥8 results
demonstrate the effectiveness of unlocking more parallelism
using a big.TINY system compared to an area-equivalent tra-
ditional multi-core configuration O3⇥8.

B. Work-Stealing Runtime on HCC
We now discuss our work-stealing runtime on HCC (shown

in Figure 3(b)) by analyzing the performance and energy of
big.TINY/HCC-dnv, big.TINY/HCC-gwt, and big.TINY/HCC-
gwb.

Compared with big.TINY/MESI, big.TINY/HCC-dnv has
decreased L1 hit rate due to its reader-initiated invalidation
strategy, as shown in Figure 6. This decrease in L1 hit rate
causes a slight increase in memory traffic, as shown in the
cpu_req and data_resp categories in Figure 8. The impact of
these negative effects on performance is modest on most of
the applications, except for cilk5-mt. cilk5-mt has a signifi-
cant performance degradation due to additional write misses
caused by invalidation. This effect can be seen in the in-
creased data store latency and write-back traffic (see Fig-
ure 8).

big.TINY/HCC-gwt is a write-through and no write-
allocate protocol. In GPU-WT, a write miss does not refill
the cache. Therefore, big.TINY/HCC-gwt is unable to exploit
temporal locality in writes, resulting in significantly lower L1
hit rate compared to both big.TINY/MESI and big.TINY/HCC-
dnv. The network traffic of big.TINY/HCC-gwt is also signif-
icantly higher than others, especially in the wb_req category.
The reason is every write (regardless of hit or miss) updates
the shared cache (write-through). The latency for AMOs and
network traffic are also increased (shown in Figure 7 and Fig-
ure 8 respectively). big.TINY/HCC-gwt has slightly worse
performance and significantly more network traffic compared
to big.TINY/MESI and big.TINY/HCC-dnv in all applications
except cilk5-lu, where it performs significantly worse.

big.TINY/HCC-gwb has similar performance to
big.TINY/HCC-gwt when dealing with AMOs. How-
ever, the write-back policy allows big.TINY/HCC-gwb to
better exploit temporal locality. On all applications except
cilk5-mt, big.TINY/HCC-gwb has less memory traffic, higher
L1 hit rate, and better performance than big.TINY/HCC-
gwt. big.TINY/HCC-gwb is less efficient in memory traffic
compared big.TINY/HCC-dnv due to its lack of ownership
tracking: every private cache needs to propagate dirty data
through the shared cache.

In summary, our baseline work-stealing runtime on HCC
has moderately worse performance than the big.TINY/MESI

TABLE IV. CACHE INVALIDATION, FLUSH, AND HIT RATE

Invalidation Decrease (%) Flush Decrease (%) Hit Rate Increase (%)

App dnv gwt gwb gwb dnv gwt gwb

cilk5-cs 99.42 99.28 99.50 98.86 1.80 2.45 1.30
cilk5-lu 98.83 99.78 99.53 98.40 1.12 7.12 2.94
cilk5-mm 99.22 99.67 99.62 99.12 30.03 42.19 36.80
cilk5-mt 99.88 99.73 99.93 99.82 12.45 2.70 6.56
cilk5-nq 97.74 97.88 98.32 95.84 16.84 28.87 27.04
ligra-bc 94.89 97.04 97.33 93.80 7.64 21.43 14.99
ligra-bf 29.02 38.14 40.24 21.63 7.22 17.14 11.17
ligra-bfs 94.18 95.85 95.90 91.23 3.48 15.76 8.00
ligra-bfsbv 39.31 47.36 50.74 29.46 3.10 12.65 7.56
ligra-cc 98.03 98.17 98.16 95.89 3.11 11.11 6.17
ligra-mis 97.35 98.28 98.36 96.16 5.62 16.29 11.10
ligra-radii 95.97 98.17 98.19 95.75 3.62 11.00 7.03
ligra-tc 10.83 15.99 17.02 7.52 1.59 3.55 3.02

Comparisons of big.TINY/HCC-DTS with big.TINY/HCC. In-
vDec = % decrease in cache line invalidations. FlsDec = % decrease
in cache line flushes. HitRateInc = % increase in L1 D$ hit rate.

configuration on almost all applications. These results
demonstrate that HCC can effectively reduce hardware com-
plexity with a small performance and energy penalty.

C. Evaluation of HCC with DTS

In Section IV, we motivate DTS by observing that synchro-
nization is only needed when a task is stolen. DTS avoids
using cache invalidations and/or flushes unless a steal actu-
ally happens. We compare the results of HCC configura-
tions without DTS (big.TINY/HCC-*) with those with DTS
(big.TINY/HCC-DTS-*). We profile the number of invali-
dated and flushed cache lines for each configuration. We
summarize the reduction in the number of invalidations and
flushes in Table IV. We also calculate the increase in L1 hit
rate of big.TINY/HCC-DTS-* configurations compared with
corresponding big.TINY/HCC-* (HCC without DTS) config-
urations.

In all three HCC protocols across all benchmarks,
big.TINY/HCC-DTS-* have significantly lower number of
cache invalidations. ligra-bf and ligra-bfsbv show a reduc-
tion of 30–50%. ligra-tc has a reduction of 10–20%. The rest
of the benchmarks each has more than 90% reduction. The
number of flushes is also reduced on big.TINY/HCC-DTS-
gwb. 10 of 13 benchmarks have a reduction of more than
90%. In ligra-tc, ligra-bfsbf, and ligra-bf, DTS achieves less
flush reduction due to the relatively higher number of steals.

Table IV shows the reduction in invalidations translates to
higher L1 hit rate. The effect of increasing L1 hit rate is less
significant on big.TINY/HCC-DTS-dnv because it has higher
L1 hit rate to begin with (due to its ownership-based dirty
propagation). The increase in L1 hit rates also leads to re-
duced network traffic. Figure 8 shows big.TINY/HCC-DTS-*
have reduced network traffic in cpu_req and data_resp. In
big.TINY/HCC-DTS-gwb, wb_req traffic is also significantly
reduced, due to the reduction in flushes. However, DTS can-
not help reduce wb_req traffic in big.TINY/HCC-DTS-gwt
since each write still causes a write-through to the shared
cache.

EFFECTS OF DTS

Page 24 of 26

• DTS reduces the number of
cache invalidations

• DTS reduces the number of
cache flushes

• DTS improves L1 hit rate

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

shows the hit rate of L1 data caches. Figure 7 presents the
execution time breakdown of the tiny cores. Figure 8 shows
the total memory traffic (in bytes) on the on-chip network.

A. Baseline Runtime on big.TINY/MESI
On 11 out of 13 applications, big.TINY/MESI has better

performance than O3⇥8. The baseline work-stealing run-
time enables collaborative execution and load balancing be-
tween the big and tiny cores in big.TINY/MESI. cilk5-nq per-
forms worse on big.TINY/MESI than O3⇥8 because the run-
time overheads outweigh the parallel speedup (as discussed in
Section V-D). Overall, our big.TINY/MESI vs. O3⇥8 results
demonstrate the effectiveness of unlocking more parallelism
using a big.TINY system compared to an area-equivalent tra-
ditional multi-core configuration O3⇥8.

B. Work-Stealing Runtime on HCC
We now discuss our work-stealing runtime on HCC (shown

in Figure 3(b)) by analyzing the performance and energy of
big.TINY/HCC-dnv, big.TINY/HCC-gwt, and big.TINY/HCC-
gwb.

Compared with big.TINY/MESI, big.TINY/HCC-dnv has
decreased L1 hit rate due to its reader-initiated invalidation
strategy, as shown in Figure 6. This decrease in L1 hit rate
causes a slight increase in memory traffic, as shown in the
cpu_req and data_resp categories in Figure 8. The impact of
these negative effects on performance is modest on most of
the applications, except for cilk5-mt. cilk5-mt has a signifi-
cant performance degradation due to additional write misses
caused by invalidation. This effect can be seen in the in-
creased data store latency and write-back traffic (see Fig-
ure 8).

big.TINY/HCC-gwt is a write-through and no write-
allocate protocol. In GPU-WT, a write miss does not refill
the cache. Therefore, big.TINY/HCC-gwt is unable to exploit
temporal locality in writes, resulting in significantly lower L1
hit rate compared to both big.TINY/MESI and big.TINY/HCC-
dnv. The network traffic of big.TINY/HCC-gwt is also signif-
icantly higher than others, especially in the wb_req category.
The reason is every write (regardless of hit or miss) updates
the shared cache (write-through). The latency for AMOs and
network traffic are also increased (shown in Figure 7 and Fig-
ure 8 respectively). big.TINY/HCC-gwt has slightly worse
performance and significantly more network traffic compared
to big.TINY/MESI and big.TINY/HCC-dnv in all applications
except cilk5-lu, where it performs significantly worse.

big.TINY/HCC-gwb has similar performance to
big.TINY/HCC-gwt when dealing with AMOs. How-
ever, the write-back policy allows big.TINY/HCC-gwb to
better exploit temporal locality. On all applications except
cilk5-mt, big.TINY/HCC-gwb has less memory traffic, higher
L1 hit rate, and better performance than big.TINY/HCC-
gwt. big.TINY/HCC-gwb is less efficient in memory traffic
compared big.TINY/HCC-dnv due to its lack of ownership
tracking: every private cache needs to propagate dirty data
through the shared cache.

In summary, our baseline work-stealing runtime on HCC
has moderately worse performance than the big.TINY/MESI

TABLE IV. CACHE INVALIDATION, FLUSH, AND HIT RATE

Invalidation Decrease (%) Flush Decrease (%) Hit Rate Increase (%)

App dnv gwt gwb gwb dnv gwt gwb

cilk5-cs 99.42 99.28 99.50 98.86 1.80 2.45 1.30
cilk5-lu 98.83 99.78 99.53 98.40 1.12 7.12 2.94
cilk5-mm 99.22 99.67 99.62 99.12 30.03 42.19 36.80
cilk5-mt 99.88 99.73 99.93 99.82 12.45 2.70 6.56
cilk5-nq 97.74 97.88 98.32 95.84 16.84 28.87 27.04
ligra-bc 94.89 97.04 97.33 93.80 7.64 21.43 14.99
ligra-bf 29.02 38.14 40.24 21.63 7.22 17.14 11.17
ligra-bfs 94.18 95.85 95.90 91.23 3.48 15.76 8.00
ligra-bfsbv 39.31 47.36 50.74 29.46 3.10 12.65 7.56
ligra-cc 98.03 98.17 98.16 95.89 3.11 11.11 6.17
ligra-mis 97.35 98.28 98.36 96.16 5.62 16.29 11.10
ligra-radii 95.97 98.17 98.19 95.75 3.62 11.00 7.03
ligra-tc 10.83 15.99 17.02 7.52 1.59 3.55 3.02

Comparisons of big.TINY/HCC-DTS with big.TINY/HCC. In-
vDec = % decrease in cache line invalidations. FlsDec = % decrease
in cache line flushes. HitRateInc = % increase in L1 D$ hit rate.

configuration on almost all applications. These results
demonstrate that HCC can effectively reduce hardware com-
plexity with a small performance and energy penalty.

C. Evaluation of HCC with DTS

In Section IV, we motivate DTS by observing that synchro-
nization is only needed when a task is stolen. DTS avoids
using cache invalidations and/or flushes unless a steal actu-
ally happens. We compare the results of HCC configura-
tions without DTS (big.TINY/HCC-*) with those with DTS
(big.TINY/HCC-DTS-*). We profile the number of invali-
dated and flushed cache lines for each configuration. We
summarize the reduction in the number of invalidations and
flushes in Table IV. We also calculate the increase in L1 hit
rate of big.TINY/HCC-DTS-* configurations compared with
corresponding big.TINY/HCC-* (HCC without DTS) config-
urations.

In all three HCC protocols across all benchmarks,
big.TINY/HCC-DTS-* have significantly lower number of
cache invalidations. ligra-bf and ligra-bfsbv show a reduc-
tion of 30–50%. ligra-tc has a reduction of 10–20%. The rest
of the benchmarks each has more than 90% reduction. The
number of flushes is also reduced on big.TINY/HCC-DTS-
gwb. 10 of 13 benchmarks have a reduction of more than
90%. In ligra-tc, ligra-bfsbf, and ligra-bf, DTS achieves less
flush reduction due to the relatively higher number of steals.

Table IV shows the reduction in invalidations translates to
higher L1 hit rate. The effect of increasing L1 hit rate is less
significant on big.TINY/HCC-DTS-dnv because it has higher
L1 hit rate to begin with (due to its ownership-based dirty
propagation). The increase in L1 hit rates also leads to re-
duced network traffic. Figure 8 shows big.TINY/HCC-DTS-*
have reduced network traffic in cpu_req and data_resp. In
big.TINY/HCC-DTS-gwb, wb_req traffic is also significantly
reduced, due to the reduction in flushes. However, DTS can-
not help reduce wb_req traffic in big.TINY/HCC-DTS-gwt
since each write still causes a write-through to the shared
cache.

EFFECTS OF DTS

Page 24 of 26

• DTS reduces the number of
cache invalidations

• DTS reduces the number of
cache flushes

• DTS improves L1 hit rate

• DTS improves overall
performance

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

shows the hit rate of L1 data caches. Figure 7 presents the
execution time breakdown of the tiny cores. Figure 8 shows
the total memory traffic (in bytes) on the on-chip network.

A. Baseline Runtime on big.TINY/MESI
On 11 out of 13 applications, big.TINY/MESI has better

performance than O3⇥8. The baseline work-stealing run-
time enables collaborative execution and load balancing be-
tween the big and tiny cores in big.TINY/MESI. cilk5-nq per-
forms worse on big.TINY/MESI than O3⇥8 because the run-
time overheads outweigh the parallel speedup (as discussed in
Section V-D). Overall, our big.TINY/MESI vs. O3⇥8 results
demonstrate the effectiveness of unlocking more parallelism
using a big.TINY system compared to an area-equivalent tra-
ditional multi-core configuration O3⇥8.

B. Work-Stealing Runtime on HCC
We now discuss our work-stealing runtime on HCC (shown

in Figure 3(b)) by analyzing the performance and energy of
big.TINY/HCC-dnv, big.TINY/HCC-gwt, and big.TINY/HCC-
gwb.

Compared with big.TINY/MESI, big.TINY/HCC-dnv has
decreased L1 hit rate due to its reader-initiated invalidation
strategy, as shown in Figure 6. This decrease in L1 hit rate
causes a slight increase in memory traffic, as shown in the
cpu_req and data_resp categories in Figure 8. The impact of
these negative effects on performance is modest on most of
the applications, except for cilk5-mt. cilk5-mt has a signifi-
cant performance degradation due to additional write misses
caused by invalidation. This effect can be seen in the in-
creased data store latency and write-back traffic (see Fig-
ure 8).

big.TINY/HCC-gwt is a write-through and no write-
allocate protocol. In GPU-WT, a write miss does not refill
the cache. Therefore, big.TINY/HCC-gwt is unable to exploit
temporal locality in writes, resulting in significantly lower L1
hit rate compared to both big.TINY/MESI and big.TINY/HCC-
dnv. The network traffic of big.TINY/HCC-gwt is also signif-
icantly higher than others, especially in the wb_req category.
The reason is every write (regardless of hit or miss) updates
the shared cache (write-through). The latency for AMOs and
network traffic are also increased (shown in Figure 7 and Fig-
ure 8 respectively). big.TINY/HCC-gwt has slightly worse
performance and significantly more network traffic compared
to big.TINY/MESI and big.TINY/HCC-dnv in all applications
except cilk5-lu, where it performs significantly worse.

big.TINY/HCC-gwb has similar performance to
big.TINY/HCC-gwt when dealing with AMOs. How-
ever, the write-back policy allows big.TINY/HCC-gwb to
better exploit temporal locality. On all applications except
cilk5-mt, big.TINY/HCC-gwb has less memory traffic, higher
L1 hit rate, and better performance than big.TINY/HCC-
gwt. big.TINY/HCC-gwb is less efficient in memory traffic
compared big.TINY/HCC-dnv due to its lack of ownership
tracking: every private cache needs to propagate dirty data
through the shared cache.

In summary, our baseline work-stealing runtime on HCC
has moderately worse performance than the big.TINY/MESI

TABLE IV. CACHE INVALIDATION, FLUSH, AND HIT RATE

Invalidation Decrease (%) Flush Decrease (%) Hit Rate Increase (%)

App dnv gwt gwb gwb dnv gwt gwb

cilk5-cs 99.42 99.28 99.50 98.86 1.80 2.45 1.30
cilk5-lu 98.83 99.78 99.53 98.40 1.12 7.12 2.94
cilk5-mm 99.22 99.67 99.62 99.12 30.03 42.19 36.80
cilk5-mt 99.88 99.73 99.93 99.82 12.45 2.70 6.56
cilk5-nq 97.74 97.88 98.32 95.84 16.84 28.87 27.04
ligra-bc 94.89 97.04 97.33 93.80 7.64 21.43 14.99
ligra-bf 29.02 38.14 40.24 21.63 7.22 17.14 11.17
ligra-bfs 94.18 95.85 95.90 91.23 3.48 15.76 8.00
ligra-bfsbv 39.31 47.36 50.74 29.46 3.10 12.65 7.56
ligra-cc 98.03 98.17 98.16 95.89 3.11 11.11 6.17
ligra-mis 97.35 98.28 98.36 96.16 5.62 16.29 11.10
ligra-radii 95.97 98.17 98.19 95.75 3.62 11.00 7.03
ligra-tc 10.83 15.99 17.02 7.52 1.59 3.55 3.02

Comparisons of big.TINY/HCC-DTS with big.TINY/HCC. In-
vDec = % decrease in cache line invalidations. FlsDec = % decrease
in cache line flushes. HitRateInc = % increase in L1 D$ hit rate.

configuration on almost all applications. These results
demonstrate that HCC can effectively reduce hardware com-
plexity with a small performance and energy penalty.

C. Evaluation of HCC with DTS

In Section IV, we motivate DTS by observing that synchro-
nization is only needed when a task is stolen. DTS avoids
using cache invalidations and/or flushes unless a steal actu-
ally happens. We compare the results of HCC configura-
tions without DTS (big.TINY/HCC-*) with those with DTS
(big.TINY/HCC-DTS-*). We profile the number of invali-
dated and flushed cache lines for each configuration. We
summarize the reduction in the number of invalidations and
flushes in Table IV. We also calculate the increase in L1 hit
rate of big.TINY/HCC-DTS-* configurations compared with
corresponding big.TINY/HCC-* (HCC without DTS) config-
urations.

In all three HCC protocols across all benchmarks,
big.TINY/HCC-DTS-* have significantly lower number of
cache invalidations. ligra-bf and ligra-bfsbv show a reduc-
tion of 30–50%. ligra-tc has a reduction of 10–20%. The rest
of the benchmarks each has more than 90% reduction. The
number of flushes is also reduced on big.TINY/HCC-DTS-
gwb. 10 of 13 benchmarks have a reduction of more than
90%. In ligra-tc, ligra-bfsbf, and ligra-bf, DTS achieves less
flush reduction due to the relatively higher number of steals.

Table IV shows the reduction in invalidations translates to
higher L1 hit rate. The effect of increasing L1 hit rate is less
significant on big.TINY/HCC-DTS-dnv because it has higher
L1 hit rate to begin with (due to its ownership-based dirty
propagation). The increase in L1 hit rates also leads to re-
duced network traffic. Figure 8 shows big.TINY/HCC-DTS-*
have reduced network traffic in cpu_req and data_resp. In
big.TINY/HCC-DTS-gwb, wb_req traffic is also significantly
reduced, due to the reduction in flushes. However, DTS can-
not help reduce wb_req traffic in big.TINY/HCC-DTS-gwt
since each write still causes a write-through to the shared
cache.

NOC TRAFFIC: BIG.TINY/HCC VS. BIG.TINY/MESI

Page 25 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Big cores always use MESI, tiny cores use:

• dnv = DeNovo

• gwt = GPU-WT

• gwb = GPU-WB

• HCC configurations increase network traffic due to invalidations and

flushes

• DTS can reduce network traffic, therefore reduce energy

• HCC+DTS achieves similar energy with big.TINY/MESI

NOC TRAFFIC: BIG.TINY/HCC VS. BIG.TINY/MESI

Page 25 of 26

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

Big cores always use MESI, tiny cores use:

• dnv = DeNovo

• gwt = GPU-WT

• gwb = GPU-WB

• HCC configurations increase network traffic due to invalidations and

flushes

• DTS can reduce network traffic, therefore reduce energy

• HCC+DTS achieves similar energy with big.TINY/MESI

TAKE-AWAY POINTS

Page 26 of 26

• We present a work-stealing runtime for HCC
systems:

- Provides a Cilk/TBB-like programming
model

- Enables cooperative execution between
big and tiny cores

• DTS improves performance and energy
efficiency

• Using DTS, HCC systems achieve better
performance and similar energy efficiency
compared to full-system hardware-based
cache coherence

tiny
L1s

DIR
L2

DIR
L2

L1s

R
L1h

L1s

MC

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

DIR
L2

L1s

L1s

L1s

DIR
L2

L1s

L1h

L1s

L1s

L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

tiny tiny tiny tiny tiny tiny tiny

tiny tiny tiny tiny tiny tiny tiny tiny

big tiny big tiny big tiny big tiny

This work was supported in part by the Center for

Applications Driving Architectures (ADA), one of six

centers of JUMP, a Semiconductor Research

Corporation program cosponsored by DARPA, and

equipment donations from Intel.

Motivation • Background • Implementing Work-Stealing on HCC • DTS • Evaluation

