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As emerging domains demand higher performance under stringent constraints on power and

energy, computer architects are increasingly relying on a combination of parallelization and spe-

cialization to improve both performance and energy efficiency. However, the combination of par-

allelism and specialization is also steadily increasing on-chip asymmetry in the form of spatial

heterogeneity and temporal variation, which poses key challenges in the form of widely varying

utilization in space (i.e., across different components) and in time (i.e., used at different times

across varying performance levels). Fine-grain on-chip asymmetry requires analogously fine-grain

power-control techniques in order to power (or not power) different components to different levels

at just the right times to significantly reduce waste. At the same time, traditional walls of abstrac-

tion have broken down, allowing a cross-stack co-design approach across software, architecture,

and VLSI to provide new, previously inaccessible information to precisely control new hardware

mechanisms.

This thesis explores novel fine-grain voltage and frequency scaling techniques to improve both

performance and energy efficiency with software, architecture, and VLSI co-design. First, I ex-

plore architecture-circuit co-design and leverage recent work on fully integrated voltage regulation

to enable realistic fine-grain voltage and frequency scaling for homogeneous systems of little cores

at microsecond timescales. Second, I broaden the scope to heterogeneous systems of big and little

cores and specialize for productive software task-based parallel runtimes. Third, I investigate much

finer-grain asymmetry that can be exploited within coarse-grain reconfigurable arrays, which have

recently attracted significant interest due to their flexibility and potential for reducing data move-

ment energy. Finally, I describe my work on four silicon prototypes including a mixed-signal test

chip and three digital ASIC test chips that support different aspects of my thesis.

Throughout my thesis, I take a software, architecture, and VLSI co-design approach and fo-

cus on exploiting information newly exposed across layers of abstraction. I leverage a vertically



integrated research methodology spanning across applications, runtimes, architecture, cycle-level

modeling, RTL, VLSI CAD tools, SPICE-level modeling, and silicon prototyping to evaluate the

potential benefit of fine-grain voltage and frequency scaling techniques.
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CHAPTER 1
INTRODUCTION

Emerging application domains are increasing the demand for higher compute performance.

Domains including machine learning, self-driving vehicles, augmented and virtual reality, and

intelligence on the edge have either promised or have already delivered real-world impact. Despite

(or perhaps due to) these successes, there is significant interest in further increasing performance

across the computing spectrum from servers to mobile platforms and even further to the edge.

Unfortunately, achieving higher performance is not a straightforward endeavour and is in fact

bottlenecked by one of the most critical grand challenges in the computing industry.

High-performance design techniques are bottlenecked by the power wall as well as the en-

ergy wall. Today, both power and energy have become first-class design constraints across all

computing platforms. Specifically, high-performance design techniques require more power and

generate more heat within the device. Each computing platform today operates under an effec-

tive power cap (i.e., the power wall) that is largely pre-determined by form factor, packaging,

and cooling technology. Similarly, for battery-powered devices, which range from mobile phones

to energy-harvesting systems operating in harsh environments, applying high-performance design

techniques that are very energy-inefficient drain the energy storage too quickly for the device to

be useful. Dennard constant-field scaling [DGY+74] briefly mitigated these concerns through the

early 2000s, but challenges in supply voltage scaling continue to prevent further scaling. Today,

these constraints threaten to worsen [Hor14] to the point where only a limited fraction of the chip

can be active at once, with the remaining unpowered portion known as dark silicon [Tay13].

Architects have responded to the power and energy walls primarily with one of two high-level

approaches: parallelism and specialization. With parallelism, architects step back from complex

power-hungry circuits and towards smaller and more energy-efficient circuits before integrating

as many as possible on a chip. Highly energy-efficient execution is possible as long as there is

sufficient parallelism. With specialization, architects improve efficiency by trading off flexibil-

ity, for example by reducing programmability or by narrowing the circuit capability to a specific

domain. Figure 1.1 draws a spectrum of various specialization approaches that range from ac-

celerating parallel patterns [PZK+17, Bat10, KJT+17], to exploiting properties of spatial architec-
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purpose processors are the most flexible but also the least efficient. A full spectrum of accelerators work to reduce
control, data, and memory access latency and energy by giving up the flexibility to execute arbitrary workloads.

tures [CKES17, KKV+18, GHS11, PPA+13], to accelerating only specific algorithms like convo-

lution [CKES17, QHS+13], and finally to small highly efficient but fixed-function ASICs.

This thesis is motivated by three high-level observations. The first observation is that the com-

bination of parallelism and specialization is steadily increasing on-chip asymmetry in the form of

spatial heterogeneity and temporal variation (Section 1.1). The second observation is that on-chip

asymmetry results in widely varying utilization in space (i.e., across different components) and in

time (i.e., used at different times across varying performance levels), which potentially demands

very fine-grain power-control techniques in order to power (or not power) the different components

to different levels at the right times without significant waste (Section 1.2). The final observation is

that traditional walls of abstraction have broken down, allowing a cross-stack co-design approach

across software, architecture, and VLSI to provide new, previously inaccessible information to

control novel fine-grain power-control techniques (Section 1.3).

1.1 A Growing Trend Towards On-Chip Asymmetry

The combination of parallelism and specialization is steadily increasing on-chip asymmetry in

the form of spatial heterogeneity and temporal variation. Figure 1.2 illustrates both cases and also

calls attention to reconfigurable architectures that create asymmetry at configuration time.

Spatial heterogeneity can be observed in Figure 1.2(a), which shows an annotated die photo

for the Samsung Exynos-5422 Octa Mobile Processor [sam19], an eight-core mobile SoC which,

while somewhat dated (released in 2014), still demonstrates how SoCs today integrate a large

number of heterogeneous IP on the same die. The Exynos integrates four “big” A15 cores and

four “little” A7 cores together with various specialized IP blocks for display, camera, audio, video

encoding and decoding, and graphics acceleration. Focusing on more recent announcements, the
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Figure 1.2: On-Chip Asymmetry – The growing popularity of parallelism and specialization is also increasing on-
chip asymmetry in the form of spatial heterogeneity and temporal variation. (a) Spatial heterogeneity demonstrated
by the Samsung Exynos Octa Mobile Processor with four big cores, four little cores, and various IP blocks for dis-
play, camera, audio, and video processing; (b) Temporal variation illustrated with an activity profile of a convex hull
application kernel on a system with four big cores and four little cores (green = executing task; light-gray = waiting
for work; see methodology in Chapter 3); (c) Configured asymmetry visualized in a coarse-grain reconfigurable array
with unutilized tiles (M = memory bank, L = load, S = store).

Apple A12 Bionic chip integrates six cores with two “performance” cores and four “efficiency”

cores while also integrating a second-generation “Bionic” neural engine with eight processing

elements [Gwe19]. Turning towards the edge, the GreenWaves Technologies GAP8 is an ultra-

low-power processor that integrates eight tiny cores with a convolutional hardware accelerator and

is designed for intelligence on the edge [Whe18]. Finally, the Microsoft HoloLens is a mixed-

reality head-mounted display with a custom-made Holographic Processing Unit that integrates 28

custom DSPs that process and compute on sensor data. These examples indicate that SoCs across

a range of computing platforms are increasingly incorporating spatial heterogeneity.

Temporal variation can be observed in Figure 1.2(b), which shows a simplified block diagram

for an eight-core processor similar to the Samsung Exynos-5422 with four big cores and four little

cores. The figure also shows an activity profile of the system running a convex hull application ker-

nel (collected in cycle-level simulation, see methodology in Chapter 3). Each row corresponds to

either a little core or a big core. Green corresponds to a task executing on that core, and light gray

indicates that core is waiting for work. The activity varies across all eight cores at the microsecond

timescale, indicating that there is significant activity imbalance at runtime for this specific work-

load and dataset. Although this is just one example, similar occurrences of temporal variation also
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likely manifest in the Samsung Exynos, the Apple A12 Bionic chip, the Microsoft HoloLens, and

in any other device that integrates and manages many components together.

Reconfigurable architectures can potentially create either form of on-chip asymmetry at con-

figuration time. Figure 1.2(c) shows the block diagram of a coarse-grain reconfigurable array

(CGRA), a class of spatial architectures that has received significant attention in recent years due to

its properties in reducing data movement to and from main memory (also refer back to Figure 1.1).

CGRAs are programmed using dedicated spatial compilers that convert application workloads into

dataflow graphs (DFGs) which are then mapped to the CGRA fabric. The fabric is configured to

interconnect different tiles according to the DFG mapping before executing the kernel with input

data. Figure 1.2(c) shows the DFG for a small workload with only four compute operators. When

mapped to the 25-tile CGRA, on-chip asymmetry arises because not every tile and memory bank

will be utilized on every cycle, and different tiles execute different functions (e.g., multiplication,

addition, memory access, routing).

1.2 The Need for Fine-Grain Power Control

Fundamentally, both forms of on-chip asymmetry reflect a potential imbalance in utilization

across the chip or over time. Two well-known power-control mechanisms can actively exploit this

utilization imbalance with different tradeoffs, assuming that other power-management techniques

including clock gating and data gating have already been applied. Power-gating provides a PMOS

header switch that connects or disconnects the logic from the power grid. This approach eliminates

both static power (i.e., leakage) and dynamic power (i.e., switching) but also invalidates volatile

state (e.g., SRAM banks) which may require significant energy to restore. Dynamic voltage and

frequency scaling (DVFS) lowers the voltage of the power grid as well as the frequency of the

circuit, quadratically reducing dynamic energy while retaining volatile state. We can visualize the

control granularity for either of these power-control mechanisms along a spectrum in both the

space and time dimensions. Figure 1.3 illustrates a rough sketch of a two-dimensional space with

spatial control granularity on the y-axis and temporal control granularity on the x-axis.

Finer spatial control granularities imply that power-control regions are smaller (i.e., big cores

are larger than little cores, which are larger than functional units). Referring back to the Samsung

Exynos-5422 Octa Mobile Processor in Figure 1.2(a), it is clear that the annotated blocks should
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grain in both space and time, a corresponding exploration of fine-grain power-control mechanisms is necessary to
balance utilization in both dimensions.

not all be fully powered on all the time (e.g., camera). This observation is true within blocks as

well. For example, a sequential application would not make use of more than one core inside the

A15 cluster. We could potentially subdivide the A15 cluster into four finer-grain regions with one

per core. However, doing the same for the A7 cluster might require a more flexible power-control

mechanism designed for regions many times smaller than before. In Figure 1.3, this trend would be

represented by moving from the lower row (i.e., “big core” spatial control granularity) up toward

the middle row (i.e., “little core” spatial control granularity).

Finer temporal control granularities indicate the ability to quickly adapt to changes (e.g., at

the millisecond, microsecond, or nanosecond timescales). Referring back to the octacore activity

profile for the convex hull application kernel in Figure 1.2(b), the activity varies at the microsec-

ond timescale. Although we could power each core throughout the entire kernel, it would be

more efficient to manipulate each core’s power-control region to take advantage of microsecond-

scale periods of low activity. In Figure 1.3, this capability corresponds to the center region with

microsecond-scale, per-core (little and big) power control.

Placing the state of the art into perspective, the majority of past literature and industry chips

have assumed DVFS-based, coarse-grain power-control in both space and time dimensions (see

“Traditional Power-Control Mechanisms” in Figure 1.3), with the oldest works assuming even sim-

pler systems with a single power-control region for the entire chip. These works primarily assume
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off-chip switching regulators that operate at low switching frequencies with large high-Q passives

to reduce parasitic switching losses, and they have longer control latencies due to slow switching

speeds and parasitics between the on-chip load and the off-chip regulator, resulting in voltage scal-

ing response times on the order of tens to hundreds of microseconds [PSCP10, Mif01, BPSB00].

Academia has recently displayed a clear trend toward finer-grain power-control techniques in both

architecture and circuit research communities [BM09, KGWB08, TCM+09, LCVR03, DWB+10,

CC06, RWB09, DM06, LK09, AGS05, RES+13, LK14, MPT+12, SAD+02, JTH+13, MYN+11,

RL14,WM15,LPD+14,KCZ+17]. And industry has followed suit with a limited form of per-core

voltage scaling available in Intel Haswell and Broadwell [Kan13, MBH+14] as well as in AMD

Ryzen Mobile [Kan17]. This trend corresponds to an initial push towards the center region in

Figure 1.3. As on-chip asymmetry continues to increase, exploration of finer-grain power-control

techniques will continue to grow in importance.

1.3 Breaking Through Walls of Abstraction for Better Control

Fine-grain power-control mechanisms are important. However, of perhaps even greater im-

portance is the application-level information that determines when and where these mechanisms

should be applied. Today, there is an exciting undercurrent throughout the entire field of computer

engineering that is transforming how we address these challenges.

The majority of past work prior to this new era has assumed that available information is limited

by traditional walls of abstraction in the computing stack. For example, many prior architecture

works that explore fine-grain DVFS try to predict when to actuate voltage and frequency changes

based on hardware performance counters [WJMC04, MCGG06, HM07, SAD+02, WJMC05]. The

authors in [MCGG06] use performance counters and per-access energy registers to estimate energy

within each domain (at a sampling interval) before using a state machine to profile several DVFS

modes and decide on the optimal voltages and frequencies. These profiling schemes are delicate,

take time to execute, and do not scale well, eating into the available benefit afforded by finer-grain

power-control techniques.

Today, the traditional walls of abstractions in the computing stack have broken down, enabling

far more information to pass between software, architecture, and VLSI layers than previously

possible. For example, software-architecture co-design has become commonplace to explore the
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design space of machine learning accelerators and spatial architectures [CKES17, KKV+18, ea19,

GHS11, PPA+13]. Meanwhile, an architecture-VLSI co-design approach has enabled research on

reliable computing for deep space and high-radiation environments using architectural modular

redundancy [KMRM19]. As the walls of abstractions break down further, it is becoming more

feasible to explore research not only pair-wise but also across software, architecture, and VLSI all

at once, exposing useful information across the stack. In this new era of computer architecture,

there is great potential to improve on the state of the art by carefully orchestrating this previously

inaccessible information.

1.4 Thesis Overview

This thesis explores novel fine-grain voltage and frequency scaling techniques with the goal of

exploiting on-chip asymmetry in both the space and time dimensions to improve both performance

and energy efficiency. Differentiating from previous work, I focus on a software, architecture, and

VLSI co-design approach to provide control for these techniques using previously inaccessible

information newly exposed across layers of abstraction. I further differentiate by exploring the

potential for specializing these techniques for productive task-based parallel runtimes as well as

for coarse-grain reconfigurable arrays. Figure 1.4 summarizes the focus of each chapter.

Chapter 2 explores realistically enabling fine-grain voltage and frequency scaling for homoge-

neous systems of little cores at microsecond timescales by leveraging recent work on fully inte-

grated voltage regulation. On-chip voltage regulators have notable key challenges, including lower

on-chip conversion efficiencies and on-die area overheads. In this chapter, I demonstrate how care-

ful software, architecture, and circuit co-design can not only mitigate circuit-level challenges for

integrated voltage regulation but also resolve architecture-level bottlenecks in homogeneous mul-

ticores, resulting in more energy-efficient and performant systems. This work was published at the

Int’l Symp. on Microarchitecture (MICRO) in 2014 [GTB+14]. I was an equally contributing first

author on this work as the core architect, and I worked with Waclaw Godycki who had expertise

on mixed-signal design.

Chapter 3 broadens the scope to heterogeneous multicore systems while also specializing the

techniques for the domain of productive task-based parallel runtimes. This work focuses on fine-

grain voltage and frequency scaling for both big and little cores at microsecond timescales. In

7



milliseconds
(ms)

microseconds
(us)

nanoseconds
(ns)

finer-grain
in time

finer-grain
in space

Functional Unit

Big Core

B B

Little Core

Chapter 2

Chapter 3

Chapter 4

Software Architecture VLSI

Chapter 2
SPMD

Little Multicore
Dynamic Capitance

MIMD Sharing

Chapter 3
Task-Based Big / Little

Parallel Runtime Multicore

Chapter 4
Spatial Compiler

CGRA
Rational Clocking

Dataflow Graph with Elasticity

Figure 1.4: Thesis Overview – This thesis explores fine-grain voltage and frequency scaling in both space and time
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Distribution Networks; Chapter 3: Asymmetry-Aware Work-Stealing Runtimes; Chapter 4: Ultra-Elastic Coarse-
Grain Reconfigurable Arrays.

addition, while the previous chapter relied on simple static work distribution and sped up lagging

cores, in this chapter we focus on productive task-based parallel runtimes that use sophisticated

work-stealing algorithms for better load balancing. I argue that work-stealing algorithms are a

natural fit for managing on-chip asymmetry at the software level. This chapter explores how these

software runtimes can be made aware of underyling asymmetry in the architecture and VLSI lay-

ers to create more efficient schedules and to dynamically tune processing elements. I propose an

asymmetry-aware work-stealing runtime based on three key software/hardware techniques: work-

pacing, work-sprinting, and work-mugging. Work-pacing and work-sprinting are novel techniques

that greatly improve both performance and energy efficiency of the runtime by sprinting (i.e., in-

creasing voltage and frequency) threads that are executing tasks and resting (i.e., decreasing volt-
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age and frequency) threads that are waiting for work in the steal loop. I also propose infrastructure

to enable work-mugging, which moves tasks from slower little cores to faster big cores in the low-

parallel region. This work was published at the Int’l Symp. on Computer Architecture (ISCA) in

2016 [TWB16]. I was the lead author for this work.

Chapter 4 narrows the focus to coarse-grain reconfigurable arrays (CGRAs). Here, I explore

fine-grain voltage and frequency scaling for each tile and memory subbank at reconfiguration

timescales, which may vary from hundreds of nanoseconds to milliseconds. CGRAs have become

increasingly popular as specialized compute fabrics due to their potential for high performance

while reducing control and data-movement energy. However, widespread industry adoption has

been limited due to the complexity of compiler scheduling algorithms that must optimize across

many constraints. Recent work on elastic CGRAs promises to significantly mitigate compiler-level

challenges with hardware-managed flow control. In this chapter, I propose ultra-elastic CGRAs

which capitalize on new opportunities in elastic CGRAs, enabling support for configurable per-tile

fine-grain power control and significantly improved dataflow efficiency. I am the lead author of

this work, and it is currently unpublished.

Chapter 5 describes my work on four silicon prototypes to support various aspects of my the-

sis. I tested two of these prototypes in our digital ASIC/FPGA prototyping lab, with the other two

chips tested by collaborators. Together with my collaborators, the results from my silicon pro-

totyping experience were published at top-tier chip and design-automation conferences including

Hot Chips, VLSI, IEEE TCAS I and IEEE MICRO. The chips include a mixed-signal test chip

and three digital ASIC test chips. Of these chips, I was the project lead for two chips (BRGTC1

in IBM 130 nm [TWS+16] and BRGTC2 in TSMC 28 nm [TJAH+18]) and Cornell University

student lead for the DARPA-funded, multi-university project on developing the Celerity SoC in

TSMC 16 nm [AAHA+17,DXT+18,RZAH+19]. For the DCS test chip, I helped with full-custom

design and also worked on the post-silicon testing process [BTG+17].

The primary contributions of this thesis are:

• A novel approach for fine-grain voltage and frequency scaling for homogeneous systems of

little cores at microsecond timescales based on switched-capacitor-based integrated voltage

regulators using a novel dynamic capacitance sharing technique.
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• A novel approach for fine-grain power control for heterogeneous multicore systems at mi-

crosecond timescales specialized for task-based parallel runtimes using a set of three tech-

niques based on balancing marginal utility.

• A novel proposal for ultra-elastic CGRAs which capitalize on new opportunities in elastic

CGRAs, enabling support for configurable per-tile fine-grain power control and significantly

improved dataflow efficiency.

• A deep design-space exploration of these ideas using a vertically integrated research method-

ology that in many cases extends from cycle-level modeling down to silicon prototyping.

1.5 Collaboration and Funding

This thesis would not have been possible without support from all of the members of the Batten

Research Group and others. My advisor Christopher Batten was a key source of inspiration and

guidance, helping to transform ideas and guide them in interesting directions. The number of

times I have had ideas that became many times more interesting through his intervention cannot

be understated.

The work on reconfigurable power distribution networks presented in Chapter 2 was an inter-

disciplinary project with an architecture half and a circuits half. I was the architecture lead, and

the circuits portion was led by Waclaw Godycki and Professor Alyssa Apsel. Waclaw designed the

SPICE-level DC-DC converters used in the project and worked with me at the architecture-circuit

interface to accurately model voltage transients in my architectural cycle-level models based on

gem5. Waclaw also later led the tapeout for the DCS test chip that is briefly introduced in Sec-

tion 5.1. When the chip came back, Ivan Bukreyev led the post-silicon testing as well as the chip

characterization paper [BTG+17]. Finally, I would also like to thank Derek Lockhart and Yunsup

Lee who established the initial ASIC CAD toolflow that I later leveraged and adapted to build the

65 nm energy model used in this work.

I led the asymmetry-aware work-stealing runtime work presented in Chapter 3, but Moyang

Wang was integral to the success of the project. He designed the work-stealing runtime from

scratch (inspired by Intel TBB). We then worked together on instrumenting the runtime to enable

the new techniques. Moyang added the exception handler for the work-mugging thread swap to the
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work-stealing runtime. Moyang also helped port a wide variety of benchmarks to our architecture

including PBBS, Cilk, and PARSEC application kernels.

I led the ultra-elastic CGRA work presented in Chapter 4, but a strong team of students worked

with me throughout the project. Peitian Pan and Yanghui Ou led the RTL for the CGRA, helped

implement special circuitry for ratiochronous clock-domain crossings, characterized energy for

the tiles and CGRAs, and measured the throughput. Cheng Tan implemented the LLVM-based

compiler, transformed C benchmarks into DFGs, and mapped them onto the RTL and my analytical

model. This project only took shape due to the tremendous contributions from these three.

I was the lead for the BRGTC1 project, but the chip would have been impossible without

immense support from Moyang Wang, Bharath Sudheendra, Nagaraj Murali, Suren Jayasuriya,

Shreesha Srinath, Taylor Pritchard, Robin Ying, Eric Tang, Rohan Agarwal, and Cameron Haire.

Moyang was the verification lead for our PyMTL core. Bharath and Nagaraj were integral in bring-

ing up much of the physical backend flow in Synopsys ICC, since we started the project with little

real-world physical backend expertise ourselves. On that note, Suren provided invaluable advice

as I worked through Calibre DRC and LVS and many other physical design topics. Shreesha wrote

the bubble-sorting accelerator attached to our core using commercial high-level synthesis tools.

Taylor designed the PyMTL RTL for the host interface surrounding the eight-bit asynchronous

channel. Robin Ying led the design of the full-custom LVDS receiver before handing it off to

me to integrate with our digital flow. Eric and Rohan designed the breakout board that pulled the

pins of our (packaged) die out to headers for preliminary post-silicon validation. Finally, Cameron

brought up the post-silicon validation flow at our bench using the logic analyzer, pattern generator,

and DC power analyzer. I also thank Ivan Bukreyev, who helped me connect the core power trunks
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CHAPTER 2
RECONFIGURABLE POWER DISTRIBUTION

NETWORKS

This chapter explores realistically enabling fine-grain voltage and frequency scaling for ho-

mogeneous systems of little cores at microsecond timescales by leveraging recent work on fully

integrated voltage regulation. On-chip voltage regulators have notable key challenges, including

lower on-chip conversion efficiencies and on-die area overheads. In this chapter, I demonstrate how

careful software, architecture, and circuit co-design can not only mitigate circuit-level challenges

for integrated voltage regulation but also resolve architecture-level bottlenecks in homogeneous

multicores, resulting in more energy-efficient and performant systems.

2.1 Introduction

Monolithic integration using a standard CMOS process provides a tremendous cost incentive

for including more and more functionality on a single die. This system-on-chip (SoC) integra-

tion enables both low-power embedded platforms and high-performance processors to include a

diverse array of components such as processing engines, accelerators, embedded flash memories,

and external peripheral interfaces. Almost every computing system requires closed-loop voltage

regulators that, at first glance, seem like another likely target for monolithic integration. These reg-

ulators convert the noisy voltage levels available from the system’s environment into the multiple

fixed or adjustable voltage levels required by the system, and they are usually based on efficient

switch-mode circuits. These regulators have traditionally been implemented off-chip for two key

reasons: (1) limited availability of high-speed switching with suitable parasitic losses; and (2) lim-

ited availability of integrated energy-storage elements with suitable energy densities. The eco-

nomic pressure towards monolithic integration has simply not outweighed the potential reduction

in efficiency.

Recent technology trends suggest that we are entering a new era where it is now becoming

feasible to reduce system cost by integrating switching regulators on-chip. High-speed switch-

ing efficiencies have increased with technology scaling, reducing the need for very high-density

inductors and capacitors. This trend is evident in industry, especially in Intel’s recent Haswell

microprocessors which use in-package inductors with on-chip regulators to provide fast-changing
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supply voltages for different chip modules [Kan13, MBH+14]. At the same time, materials im-

provements such as integrated in-package magnetic materials (e.g., Ni-Fe [SPW+11]) and new in-

tegrated on-chip capacitor organizations (e.g., deep-trench capacitors [AKK+13, CMJ+10]) have

improved the density of the energy storage elements that are available. The future of on-chip volt-

age regulation offers interesting opportunities and significant challenges, and this has sparked in-

terest from the circuit research community [HSH+05,LSA11,LCSA13,WS11,SPW+11,HKB+05,

KH11, ASL+09, KBW12, GSA14] and to a lesser degree in the architecture research commu-

nity [YLH+12, KGWB08, ASSK11, CCK07, ZJKS11, ZYFL10].

In addition to reduced system cost, one of the key benefits of on-chip regulation is the po-

tential for fine-grain voltage scaling (FGVS) in level (i.e., many different voltage levels), space

(i.e., per-core regulation), and time (i.e., fast transition times between levels). Dynamic volt-

age and frequency scaling (DVFS) is perhaps one of the most well-studied techniques for adap-

tively balancing performance and energy efficiency. DVFS has been leveraged to improve en-

ergy efficiency at similar performance [BM09, GC97, KGWB08, TCM+09, LCVR03], operate at

an energy-minimal or energy-optimized point [DWB+10, CC06], improve performance at simi-

lar peak power [RWB09, DM06, LK09, AGS05, PDS+13, RES+13, LK14], and mitigate process

variation [MPT+12]. Most of these studies have assumed off-chip voltage regulation best used for

coarse-grain voltage scaling. Traditional off-chip switching regulators operate at low switching fre-

quencies due to the availability of large high-Q passives and the desire to reduce parasitic switching

losses. They also have longer control latencies due to slow switching speeds and parasitics between

the on-chip load and the off-chip regulator, resulting in voltage scaling response times on the or-

der of tens to hundreds of microseconds [PSCP10, Mif01, BPSB00]. On-chip switching regulators

can leverage faster control loops and are tightly integrated with the on-chip load enabling voltage

scaling response times on the order of hundreds of nanoseconds. Traditional off-chip switching

regulators are expensive, bulky, and obviously require dedicated power pins and on-chip power

distribution networks limiting the number of independent on-chip power domains; on-chip switch-

ing regulators can be located close to each core enabling per-core voltage scaling.

In this chapter, we use an architecture and circuit co-design approach to explore the potential

system-level benefit of FGVS enabled by integrated voltage regulation and techniques to mitigate

the overhead of this regulation. Section 2.2 describes our target system: a sub-Watt eight-core
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embedded processor design implemented in a TSMC 65 nm process using a commercial standard-

cell-based ASIC toolflow.

Section 2.3 uses architectural-level modeling to explore a new FGVS controller called the fine-

grain synchronization controller (FG-SYNC+) that exploits the specific opportunities of fine-grain

scaling in level, space, and time. Inspired by Miller et al.’s recent work on Booster SYNC [MPT+12],

FG-SYNC+ uses a thread library instrumented with hint instructions to inform the hardware about

which cores are doing useful work vs. useless work (e.g., waiting for a task or waiting at a bar-

rier). FG-SYNC+ improves upon this prior work in several ways by leveraging the ability of

on-chip voltage regulation to provide multiple voltage levels and using additional hints to inform

the hardware of how each core is progressing through its assigned work. Booster SYNC improves

performance at the expense of increased average power (i.e., the “boost budget”). Other DVFS

controllers usually improve energy efficiency at similar performance or improve performance un-

der a conservative peak power limit fixed at design time. FG-SYNC+ has a more ambitious goal of

improving performance and energy efficiency while maintaining similar average power. To do this,

FG-SYNC+ exploits the fine-grain activity imbalance often found in multithreaded applications.

For example, Figure 2.1 illustrates the activity of an eight-core system on three multithreaded

applications and highlights potential opportunities for increasing the voltage of active cores and

decreasing the voltage of waiting cores. Note that exploiting this fine-grain imbalance is simply

out-of-reach for traditional off-chip regulators.

Section 2.4 uses circuit-level modeling to explore the practical design of an integrated voltage

regulator suitable for use by FG-SYNC+. Much of the prior work in this area explores inductor-

based regulators, but we argue that carefully designed on-chip switched-capacitor (SC) regulators

can potentially mitigate many of the challenges involved in on-chip regulation. We explore designs

with a single-fixed voltage regulator (SFVR) and multiple adjustable voltage regulators (MAVR).

Unfortunately, per-core voltage regulation can incur significant area overhead and longer responses

times than one might expect. This is mostly because each MAVR regulator must be designed to

efficiently support the peak power that can be consumed by the fastest operating mode. Our study

of FG-SYNC+ enables us to make a key observation: MAVR is significantly over-designed, since

all cores can never be in the fastest operating mode. Based on this observation, we propose a

new approach called reconfigurable power distribution networks (RPDNs). RPDNs include many

small “unit cells” shared among a subset of the cores in the design. Each unit cell contains the fly-
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Figure 2.1: Activity Profile for Select Applications on Eight Cores – Variation in activity across cores produces
opportunities for FGVS. Black = active; gray = waiting for join; white = waiting for work.

back capacitance and regulator switches required for a SC regulator; the unit cells can be flexibly

reconfigured through a switch fabric and combined with per-core control circuitry to effectively

create multiple SC regulators “on-demand”. This reconfiguration reduces area overhead by avoid-

ing the over-provisioning inherent in MAVR, improves response time when changing the target

output voltage by leveraging the adjustable flyback capacitance in addition to the adjustable reg-

ulation frequency, and can potentially improve efficiency in leaky processes by reducing flyback

capacitance at low current.

In Section 2.5, we describe our detailed evaluation methodology based on a combination of

circuit-, gate-, register-transfer-, and architectural-level modeling; in Section 2.6, we use this

methodology to explore the system-level implication of combining FG-SYNC+ with RPDN. These

results suggest a promising new approach that can facilitate fine-grain voltage scaling with low-

overhead in future multicore processors. In Section 2.7, we discuss the impact of di/dt noise on

RPDN and the implications of scaling RPDN to larger networks, higher power densities, and dif-

ferent technologies.

The contributions of this work are: (1) we propose a new controller called FG-SYNC+ that

improves performance and energy efficiency at similar average power; (2) we propose a novel ap-

proach to on-chip regulator design based on the idea of reconfigurable power distribution networks;

and (3) we use a vertically integrated research methodology to explore the FGVS design space.
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2.2 Target System

Although much of our analysis is applicable to larger high-performance systems, we choose

to focus on the smaller low-power systems that will likely be the first to integrate significant on-

chip voltage regulation. Our target system is an embedded processor composed of: eight in-order,

single-issue, five-stage, RISC cores; private, coherent 16 KB instruction and data L1 caches; and a

shared 512 KB unified L2 cache.

We implemented the core and L1 memory system for this design in RTL and used a commercial

standard-cell-based CAD toolflow targeting a TSMC 65 nm process to generate layout for one core.

Section 2.5 describes our research methodology in greater detail. We assume the external supply

voltage is 2.2 V and that FGVS should provide up to four voltage levels: 1.0 V for the nominal

supply; 0.7 V for a slow, low-power execution mode (resting mode); 1.15 V for a fast, high-power

execution mode (sprinting mode); and 1.33 V for an even faster execution mode (super-sprinting

mode), all within the acceptable process operating range. Analysis of the placed-and-routed design

indicates each core is approximately 0.75 mm2 and can run at 333 MHz at 1 V. We predict that

more aggressive RTL and circuit design could increase this clock frequency by 2× or more.

First-order estimates suggest the full eight-core system would be approximately 6 mm2. When

running a reasonable workload, each core/L1 consumes approximately 20 mW, and when wait-

ing for work or a synchronization primitive, each core/L1 consumes approximately 3 mW. This

implies that the power for all eight cores and L1 memory system (excluding the L2 cache) can

range from 100–200 mW when doing useful work and that the peak power density of the cores

and L1 memory system is approximately 25 mW/mm2. For all designs we assume (potentially

multiple) on-chip phase-locked-loops (PLLs) to enable fast frequency adjustment based on recent

low power designs [DMS+13,FDD+06]. We will use this target system to help drive the design of

FG-SYNC+ and RPDN.

2.3 FGVS Architecture Design: FG-SYNC+

In this section, we explore a new fine-grain synchronization controller (FG-SYNC+) using

architecture-level modeling. Section 2.5 includes more details about our evaluation methodology.

After introducing the basic FG-SYNC+ controller, we use three sensitivity studies to understand
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the implication of varying: (1) the number of voltage levels, (2) the number of voltage domains,

(3) and voltage-settling response times. Insights from this section will help motivate our design-

space exploration of on-chip voltage regulation in Section 2.4.

2.3.1 Basic FG-SYNC+ Controller

The goal of FG-SYNC+ is to improve performance at the same average power. FG-SYNC+

rests cores that are not doing useful work, creating power slack to sprint cores that are doing useful

work. Inspired by previous work on Booster SYNC [MPT+12], we instrument synchronization

primitives in the threading library with hint instructions to inform the hardware which threads are

doing useful work. This elegant approach avoids the need for complex prediction heuristics by

exploiting application-level information to efficiently sprint the most critical cores. FG-SYNC+

extends Booster SYNC in two ways: (1) by carefully using the multiple voltage levels available

with on-chip regulation and (2) by including hints indicating the progress of each thread.

The hint instructions toggle activity bits in each core. FG-SYNC+ reads these bits every sam-

pling period and uses a lookup table to map activity patterns to DVFS modes. In the example

table in Figure 2.2, if all cores are doing useful work, then FG-SYNC+ runs the entire system

at nominal voltage and frequency (first row). As more cores are waiting, FG-SYNC+ rests the

waiting cores and uses the resulting power slack to sprint or super-sprint active cores. We design

lookup tables offline using our RTL-based energy model to ensure that the power of each config-

uration will remain below the average power of all cores running at nominal voltage (i.e., with no

DVFS). Booster SYNC only provides two voltage levels since it relies on fast switching between

two off-chip voltage regulators, thus Booster SYNC improves performance by increasing power

consumption. FG-SYNC+’s use of multiple levels enables balancing sprinting and resting cores to

improve performance at the same average power.

FG-SYNC+ includes additional “work left” hint instructions embedded in the thread library’s

parallel_for function to inform the hardware how many iterations the core has left to process.

This gives FG-SYNC+ insight into the relative progress of each core in a multithreaded application.

Without these additional hints, FG-SYNC+ can determine which cores are active but not which of

these cores are most critical. The “work left” hint instructions enable FG-SYNC+ to sprint those

cores that have the most work to do, potentially reducing the overall execution time.
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Figure 2.2: Lookup Table Mapping Activity Patterns to DVFS Modes – FG-SYNC+ uses activity information to
rest cores that are waiting, creating power slack to sprint cores that are doing useful work. A = core doing useful work;
w = core waiting; r = core resting at 0.7 V; N = core in nominal mode at 1.0 V; S = core sprinting at 1.15 V; X = core
super-sprinting at 1.33 V.
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Figure 2.3: FGVS Exploration in Level, Space, and Time – Normalized energy efficiency and speedup over a
baseline system with no DVFS. Points are applications simulated with the given controller. (a) Comparison between
2-level controllers; nominal paired with different resting and sprinting levels. (b) Comparison between different 3-
level and 4-level controllers. (c) Using a 4-level controller, comparison between different numbers of voltage domains.
(d) Using a 4-level controller with 8 domains, sweep response time per 0.15 V step. The black triangles in plots (b),
(c), and (d) represent the same controller with very fine-grain voltage scaling in all three dimensions (i.e., 4-level,
8-domain, 0 ns response time).

2.3.2 FG-SYNC+ with Fine-Grain Scaling in Level

We begin our study assuming a system with very fine-grain voltage scaling in space and time:

eight voltage domains (i.e., per-core voltage regulation) and instantaneous voltage-settling re-

sponse time. Then we scale the number of available voltage levels and study the impact on perfor-

mance and energy efficiency. Note that with one voltage level (1.0 V), FG-SYNC+ is identical to

the baseline system with no DVFS since it can neither rest nor sprint.

Supporting two voltage levels enables adding either a rest or a sprint level. Figure 2.3(a) com-

pares different 2-level FG-SYNC+ controllers running a diverse set of multithreaded applications

on our target system. Each controller pairs the nominal level with either the resting, sprinting, or

20



super-sprinting level. The upper-right quadrant in these normalized energy efficiency vs. perfor-

mance plots has improved performance and energy efficiency compared to the baseline. Points

above the isopower line use less power than the baseline, and points below it use more power than

the baseline. Figure 2.3(a) shows that choosing a rest level (0.7 V) improves energy efficiency

with no speedup. Some applications even slow down because cores that are waiting for work in a

spin-loop respond more slowly to newly-available work. Choosing a sprinting level (i.e., 1.15 V or

1.33 V, similar in spirit to Booster SYNC) increases performance but also significantly increases

average power. With only two levels, we are forced to choose between performance or energy

efficiency.

Supporting three voltage levels enables adding both a rest and a sprint level. Figure 2.3(b)

compares 3-level and 4-level FG-SYNC+ controllers. FG-SYNC+ can now improve both perfor-

mance and energy efficiency by resting waiting cores and sprinting active cores. Choosing either

sprint (1.15 V) or super-sprint (1.33 V) as our third level improves both performance and energy

efficiency, but choosing super-sprint offers greater performance while still staying under the base-

line power. Supporting four voltage levels enables adding rest, sprint, and super-sprint levels.

FG-SYNC+ gains the ability to super-sprint 1–2 cores or to more evenly sprint 3–7 cores (see

Figure 2.2). In short, FG-SYNC+ can use the fourth level to better utilize power slack, further

increasing performance and more closely tracking the isopower line.

These results motivate supporting at least three levels to benefit from FGVS. For the remainder

of this work, we will assume supporting four levels. Note that systems like Booster that use off-

chip regulators will find it costly to support more than two levels, since this would require either

more resources for additional power pins and on-chip power networks or poorer quality regulation.

2.3.3 FG-SYNC+ with Fine-Grain Scaling in Space

We now explore how FG-SYNC+ performs with fewer than eight voltage domains. With two

domains, cores 0–3 and 4–7 are grouped into quads; with four domains, neighboring cores are

grouped into pairs. All cores in a group must scale their voltages together. Therefore, a core waiting

for work cannot rest unless all other cores in the same group are also waiting. If a core sprints,

the whole group must sprint as well. In contrast, cores in the 8-domain system can independently

scale voltage and frequency. Note that with one voltage domain, FG-SYNC+ cannot sprint without
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Figure 2.4: Lookup Table Mapping Activity Patterns to DVFS Modes (Four Domains) – Compare and contrast
with eight domains in Figure 2.2. In the circled pairs, FG-SYNC+ with four domains must choose between either
running the waiting core at a non-resting level (energy-inefficient) or running the busy core at rest (lower performance).

significantly increasing the average power over the baseline; therefore it cannot offer a performance

benefit at the same average power.

Figure 2.3(c) compares FG-SYNC+ with 2–8 voltage domains. Each controller has four volt-

age levels and instantaneous voltage-settling response time. With two domains, FG-SYNC+ can

improve energy efficiency by resting one quad given that all cores in the quad are waiting for work,

and active cores in the other quad can be sprinted for modest performance gains. We cannot super-

sprint an active quad without exceeding the average power of the baseline. FG-SYNC+ with four

domains significantly improves: (1) energy efficiency by enabling more cores to rest in pairs and

(2) performance by enabling a single pair to super-sprint when all other pairs are resting.

Having eight domains (i.e., per-core voltage regulation) enables FG-SYNC+ to independently

optimize each core’s voltage and frequency for its activity. Figure 2.3(c) shows that having eight

domains significantly improves energy efficiency over four domains. Compare the lookup table for

four domains in Figure 2.4 with the lookup table for eight domains in Figure 2.2. Notice that for

the circled pairs in the 4-domain table, FG-SYNC+ must choose between running a waiting core

at a non-resting level or running an active core at the resting level, sacrificing either performance

or energy-efficiency. In this study, if a domain has at least one active core we choose to run the

entire quad at the best voltage level for that active core. This prioritizes performance over energy

efficiency for the 2- and 4-domain configuration. The 8-domain configuration does not need to

make this trade-off and is able to improve both performance and energy efficiency.

Figure 2.5(a,b) illustrates the impact of coarser voltage domains on application performance

for the SPLASH-2 LU factorization benchmark. Rows represent cores, black strips represent core

activity, and colors represent DVFS modes. In Figure 2.5(a), FG-SYNC+ is heavily constrained
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Figure 2.5: Application Activity Plots for FG-SYNC+ – Rows show controller decisions per-core (rest = blue, nomi-
nal = pink, sprint = orange, super-sprint = deep red). Horizontal black strips above cores show when that core is active.
(a,b) illustrates the impact of using multiple voltage domains over the full execution of SPLASH-2 LU factorization;
(c,d) illustrates the impact of faster voltage-settling response times over a small excerpt from the execution of radix
sort.

and is forced to inefficiently run a quad at nominal or sprint, even though few cores in the quad are

actually doing useful work. In Figure 2.5(b), per-core voltage regulation enables FG-SYNC+ to

independently rest waiting cores, sprint several active cores, or even super-sprint one or two active

cores, resulting in an execution time reduction of 20%.

This study motivates very fine-grain regulation in space to improve performance and energy

efficiency. For the remainder of this work, we will assume per-core voltage regulation.

2.3.4 FG-SYNC+ with Fine-Grain Scaling in Time

We assume that after FG-SYNC+ makes a decision to change the voltage and frequency of a

domain, it must wait until the voltage has settled before making a new decision. As in [KGWB08,

CHM+01], we assume that cores continue running even during voltage transitions. When scaling

voltage up, the change in frequency must lag the change in voltage, and when scaling voltage down,

frequency must lead the voltage. Both of these constraints ensure that the design always meets

cycle time constraints. Together, this means that if FG-SYNC+ decides to scale the voltage up, the

new frequency will not take effect immediately, and FG-SYNC+ cannot make a new decision until

the new voltage has settled. Note that there is additional energy overhead during this transition
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as the core slowly scales voltage while staying locked at the frequency of the lower DVFS mode.

For example, when scaling from (0.7 V, frequency f1) to (1.0 V, frequency f2), transition energy is

paid during the time the core runs at f1 and is transitioning voltages between 0.7 V and 1.0 V.

Figure 2.3(d) illustrates the impact of these overheads on performance and energy efficiency.

We use a simplistic model where we linearly increase the voltage-settling response time per 0.15 V

step. First note that a relatively slow 1000 ns response time increases the likelihood that FG-

SYNC+ will not be able to adjust to fine-grain activity imbalance and indeed the inability to rapidly

make controller decisions leads to sharp slowdowns over the baseline. A response time of 100 ns

allows FG-SYNC+ to adjust quickly to fine-grain activity imbalance in our applications; this is fast

enough to closely track the results for ideal (0 ns) response time.

Energy efficiency is balanced as we scale to finer-grain response times. On one hand, slow

response times actually improve energy efficiency because cores spend more time waiting at lower

(and more energy-efficient) DVFS modes until voltage settles, while still doing useful work; on the

other hand, fast response times also improve energy efficiency by enabling FG-SYNC+ to quickly

switch to more energy-efficient modes in response to fine-grain activity imbalance.

Figure 2.5(c,d) illustrates the performance overhead of slow response times more clearly, com-

paring a partial execution of a radix sorting application kernel with 1 µs and 100 ns voltage-settling

response times. The performance overhead of slow response time can be seen in Figure 2.5(c) from

the delay between the time that the core becomes active (black on the activity strip) and the time

that FG-SYNC+ raises the core frequency (color change from blue to red). In Figure 2.5(d), the

faster 100 ns response time enables FG-SYNC+ to quickly adapt to fine-grain core activity, causing

the black activity strips and FG-SYNC+ decisions to “line up”.

2.3.5 FG-SYNC+ Summary

There are several important insights from this study: (1) to improve both performance and

energy efficiency at the same average power, at least three levels are required and four levels

results in additional benefits; (2) increasing the granularity of voltage scaling in space results in

increased performance and energy; (3) systems require voltage settling response times on the order

of 100 ns to exploit fine-grain activity balance.
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2.4 FGVS Circuit Design: RPDNs

The three primary types of step-down voltage regulators are linear regulators, inductor-based

switching regulators, and capacitor-based switching regulators. These regulators can be evaluated

based on four key metrics: (1) integration complexity, i.e., does the regulator require extra non-

standard fabrication steps?; (2) area overhead and power density, i.e., how much regulator area is

required to deliver a certain amount of power?; (3) power efficiency, i.e., ratio of the output power

to the supplied input power; and (4) response time, i.e., how fast can the target output voltage be

adjusted?

Linear voltage regulators (also called linear dropout (LDO) regulators) are an example of a

non-switching regulator. LDOs use a power MOSFET as a variable resistor, with a high-gain am-

plifier wrapped in a feedback configuration to reduce output resistance. At first glance, the lack of

energy storage elements seems to imply LDOs will have much lower area overheads. However, a

large decoupling capacitor is still required because the feedback loop in LDOs has limited band-

width. As such, 10–15% of the chip area must be reserved for decoupling capacitance to maintain

supply integrity for processor cores and logic during large current steps [HKB+05]. In addition,

the maximum achievable power efficiency is the ratio of the output/input voltages since the LDO

effectively acts as an adjustable resistance. This means that LDOs are highly inefficient for large

voltage drops.

Inductor-based switching voltage regulators (also called Buck converters) are the traditional

off-chip regulators of choice due to the potential for high power efficiency over wide voltage

and current ranges; they also have excellent voltage regulation capabilities. However, in a fully

on-chip buck converter, the efficiency is severely limited by the size and parasitics of the induc-

tor. Reduction of these parasitics is the key to an efficient buck converter as shown in recently

published work [HSH+05, ASL+09, KH11, KBW12]. These designs have reasonable efficiencies

only for relatively low step-down ratios, which makes them less suitable for the wide dynamic

range required for FGVS. These regulators also provide relatively low power densities on the order

of 0.2 W/mm2. Unfortunately, solutions with higher power densities require magnetic materials,

complicated post-fabrication steps, or interposer chips [WH08, SPW+11].

Capacitor-based switching voltage regulators (also called switched-capacitor (SC) regulators)

work by alternately switching a set of capacitors with a given divide ratio from series (charge up) to
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shunt configuration (discharge). This switching must be fast enough to maintain the output voltage

across a load. SC regulators are capable of excellent efficiencies, however, they can only support

certain discrete voltage divide ratios (e.g., 3:1, 2:1, 3:2) and usually require more than eight phases

to reduce ripple losses [See09]. The regulation and output voltage range shortcomings of SC

converters are balanced by their potential for higher power densities of 0.8–2 W/mm2 [SNL+10,

LSA11, CMJ+10] when using energy-dense on-chip capacitors. Note that in contrast to Buck

converters, the energy density of MOS, MIM, and deep trench capacitors is sufficient to avoid the

need for any off-chip or in-package energy storage elements. Due to the nature of operation, half of

the capacitance in a SC regulator is always seen between the regulator output and ground thereby

acting as an effective decoupling capacitance [LSA11]. This means that an explicit decoupling

cap may not be necessary, which can further reduce the area overhead of SC regulators. Unlike

buck converters which are fundamentally impossible to scale for smaller loads without incurring

prohibitive losses, SC regulators can be scaled by simply adjusting the size of the capacitor and the

switches. Consequently, SC regulators can be easily subdivided into modules that can be added

together in parallel based on demand. All of the above reasons motivate our interest in exploring

on-chip SC regulators for FGVS.

Based on the results from Section 2.3, a 4-level, 8-domain FG-SYNC+ configuration provided

the best performance and energy efficiency. In the remainder of this section, we will consider three

different integrated voltage regulator designs suitable for use with the target system described in

Section 2.2: (1) a baseline design which uses a single integrated fixed-voltage regulator (SFVR);

(2) multiple adjustable voltage regulators (MAVR) with one regulator per core; and (3) a new

approach based on a reconfigurable power distribution network (RPDN).

2.4.1 SFVR: Single Fixed-Voltage Regulator

A single fixed-voltage regulator (SFVR) provides a good baseline to compare against more

sophisticated regulation schemes. Figure 2.6(a) illustrates a basic 2:1 switched-capacitor design.

In series mode, the flyback capacitor is connected in series with the load (cores), and the input

voltage source charges up the flyback capacitor. In parallel mode, the flyback capacitor is con-

nected in parallel with the load, and the input voltage source is disconnected. In parallel mode,

the flyback capacitor acts as an energy source that is discharged to supply power to the cores. As

the converter switches between the series and parallel modes, the output voltage will gradually
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Figure 2.6: SFVR – (a) 2:1 topology converts Vin to Vin/2 for eight cores; S = switches closed during serial mode;
P = switches closed during parallel mode; control unit monitors Vout to regulate the switching frequency; 16 phases
are included to reduce ripple (only four phases shown for simplicity). (b) for a fixed voltage, power efficiency varies
as a function of output current and flyback capacitance area.

converge to half the input voltage. Faster switching frequencies reduce voltage ripple but decrease

efficiency due to switching losses. The switching frequency is also used for fine-grain control of

the output voltage. An SFVR control unit monitors the output voltage and adjusts the switching

frequency in order to keep the output voltage constant across load current variations. Realistic SC

regulators almost always include support for switching multiple phases of the signal in parallel

to further minimize ripple. Larger flyback capacitors require more area, but can enable slower

switching frequencies and therefore higher efficiencies for a given output voltage and load current.

Figure 2.6(b) illustrates this trade-off using an analytical circuit-level model described in more de-

tail in Section 2.5. For a fixed output voltage, as the regulator area increases, the curve moves to

the right and broadens, indicating that (1) higher efficiencies can be achieved for the same output

current and (2) higher output current can be achieved for the same efficiency. For our TSMC 65 nm

process, we explored a variety of different SFVR designs and ultimately chose a configuration that

can provide 80% efficiency at 1 V with an area of 0.26 mm2 (4% of the core/L1 area). It may be

possible to further reduce the area overhead by re-purposing the mandatory on-chip decoupling

capacitance as flyback capacitance [LSA11].

2.4.2 MAVR: Multiple Adjustable-Voltage Regulators

To enable fine-grain voltage scaling in space and level, we require multiple adjustable voltage

regulators (MAVR). Given the voltage levels from Section 2.3, we use the more complicated fly-
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is over-provisioned for the sake of high efficiency at super-sprint.

back capacitor topology shown in Figure 2.7(a). For a 2.2 V input, MAVR achieves the highest

efficiency at the following discrete voltage ratios: 1.0 V@2:1 = 82.7% and 1.33 V@3:2 = 80%.

Adjusting the switching frequency enables the two remaining target voltage levels: 0.7 V@2:1 =

62% and 1.15 V@3:2 = 75%. Figure 2.7(b) illustrates the efficiency vs. area trade-off in MAVR.

A regulator that must support both nominal and super-sprinting modes requires significantly more

area compared to a regulator that only supports the nominal mode. Super-sprinting is simply not

possible if the regulator area is less than 0.05 mm2 since the regulator cannot switch fast enough

to provide the required output current. For our TSMC 65 nm process, we explored a variety of

different MAVR designs and ultimately chose a per-core regulator area of 0.08 mm2 which allows

efficient voltage regulation from resting to super-sprint. Due to the high output power variation

between core operating modes, each AVR control unit must handle significantly larger switching

frequency variation than its SFVR counterpart. In order to keep the output voltage stable at low

power, the AVR control unit’s feedback loop must be slow enough to avoid voltage overshoots; this

in turn leads to long voltage-settling response times. Figure 2.8 uses detailed transistor-level sim-

ulations to illustrate the response time of various operating mode transitions for a single regulator

in MAVR. Section 2.5 describes the methodology used for this analysis in more detail. Most tran-

sitions take several microseconds, with the nominal to super-sprint transition taking 2.9 µs. While

MAVR does enable FGVS, it does so with high area overhead and long response times.
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across resting (r), nominal (N), sprinting (S), and super-sprinting (X) cores in the sub-RPDN.

2.4.3 RPDN: Reconfigurable Power Distribution Networks

Based on our insight from Section 2.3, we make the key observation that MAVR is significantly

over-provisioned for FG-SYNC+. Each per-core regulator in MAVR must independently support

the super-sprinting mode, but only one or two cores will ever be using this mode at any given

time. While it might be possible to use thread migration and a fixed assignment of cores to voltage

levels [RWB09, YLH+12], thread migration can introduce non-trivial performance and energy

overheads. We take an architecture and circuit co-design approach to design reconfigurable power

distribution networks (RPDNs) that meet the needs of FG-SYNC+ while reducing area overhead.

RPDN allows sprinting cores to effectively “borrow” energy storage from resting cores to avoid

over-provisioning the aggregate energy storage.
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Figure 2.9 illustrates a simple example of an RPDN for two cores. The RPDN control unit

configures the RPDN switch fabric to connect RPDN unit cells to supply power to each of the

cores. In this example, there are four unit cells and each cell is a small switched-capacitor converter

capable of 2:1 and 3:2 operation. The RPDN switch fabric is a two-input, two-output crossbar. The

RPDN switch fabric is initially configured such that cells A and B supply core 0 while cells C and

D supply core 1. If core 0 is waiting while core 1 is active, the RPDN switch fabric can be

reconfigured such that cell A supplies low power to core 0 while cells B–D supply high power to

core 1. Essentially, core 1 can borrow energy storage from core 0 on-demand.

The design in Figure 2.9 is greatly simplified to illustrate the basic concept of RPDNs. Our

actual RPDN design includes 32 unit cells with eight phases per cell and can power eight cores.

Preliminary estimates show that scaling the RPDN switch fabric across all eight cores incurs signif-

icant losses. In response, we partitioned the RPDN into two isolated sub-RPDNs. Each sub-RPDN

has half of the 32 unit cells to distribute to a four-core partition. Each unit cell uses a multi-level

SC regulator design that enables 2:1 and 3:2 step-down conversions, similar to the regulator shown

in Figure 2.7(a), except with only 8 phases. Based on TSMC 65 nm transistor-level models, the

sub-RPDN switch fabric introduces a 0.25–0.75% efficiency degradation with 8% extra converter

area.

Figure 2.10 shows the efficiency vs. output power for a single core as a function of the number

of cells allocated to that core for a cell area of 0.011 mm2. Four cells are required to efficiently

support the nominal mode, while seven cells are required to efficiently support the super-sprinting

mode. Since the sprinting mode uses a different flyback capacitor topology, it is able to achieve

reasonable efficiency with the same number of cells as the nominal mode. Resting mode consumes

very little power, so a single cell is sufficient. The inset in Figure 2.9 shows how unit cells of one

sub-RPDN can be allocated to four cores operating in four different modes. The two cores operat-

ing in the nominal and sprinting modes are allocated four cells each. The resting core only requires

a single cell, so the super-sprinting core “borrows” three cells from the resting core. MAVR must

provision for the worst case, so each per-core regulator must include flyback capacitance equivalent

to seven cells. RPDN provides an average of just four cells per core, and then uses reconfiguration

to create seven-cell regulators for super-sprinting on-demand.

The RPDN architecture offers obvious advantages in terms of area savings. Based on our an-

alytical model described in Section 2.5, we compute the area overhead for SFVR, MAVR, and
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Figure 2.11: RPDN Transient Response – Transistor-level transient simulation of a sub-RPDN illustrating the benefit
of capacitance reallocation. Four cores start at nominal, then three cores move to sprint, super-sprint, and rest and then
back to nominal.

RPDN to be 4%, 10%, and 6% respectively. This means that RPDN provides area savings of 40%

over MAVR when supporting per-core supply regulation across the same number of cores. In addi-

tion to reducing area overhead, RPDN also significantly reduces the voltage-settling response time.

For resting cores, RPDN uses 15% of MAVR’s area which allows the RPDN control loop to be

much faster. Furthermore, when switching between different operating modes, RPDN changes ca-

pacitance in addition to the SC divide ratio and switching frequency. This means the RPDN control

loop has to make a significantly smaller switching frequency adjustment in order to accommodate

the new operating mode. Figure 2.11 shows the transient response for one sub-RPDN where each
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PDN Power Efficiency Transient Voltage
Area for Vout = Response (ns) Scaling

(mm2) 0.7V 1.0V 1.33V Min Typ Max Space Time

SFVR 0.26 n/a 80% n/a n/a n/a n/a No No
MAVR 0.64 62% 82.7% 80% 164 1950 3850 Yes Yes
RPDN 0.37 62% 81.8% 80% 36 120 226 Yes Yes

Table 2.1: Comparison of SFVR, MAVR, and RPDN

core switches to a different operating mode. The response time for the nominal to super-sprint

transition takes just 150 ns.

2.4.4 Summary of Power Distribution Networks

Table 2.1 summarizes the trade-offs discussed throughout this section. While on-chip voltage

regulation offers the potential for fast and flexible control, it also incurs various overheads. In

the case of SFVR, no flexibility is offered. MAVR provides the flexibility for fine-grain voltage

scaling, but at the cost of high area overhead and long response times. Finally, RPDN offers an

interesting middle ground. RPDN enables the flexibility of MAVR with significantly reduced area

overhead and faster response times.

2.5 Evaluation Methodology

We used a vertically integrated evaluation methodology that uses a mix of circuit-, gate-,

register-transfer-, and architectural-level modeling. Circuit-level modeling is used to character-

ize each power distribution network (PDN); gate- and register-transfer-level modeling are used to

build accurate area and energy models of our target embedded processor; and architectural-level

modeling is used to analyze the system-level impact of each PDN.

2.5.1 Circuit-Level Modeling

We performed SPICE-level circuit simulations of all SC regulators with Cadence Spectre using

models from a TSMC 65 nm process. We also used an analytical SC model to enable faster design-

space exploration of regulator efficiency vs. power, supply voltage, and area as well as for estimat-
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Figure 2.12: Tapeout-Ready Layout of a sub-RPDN Test Chip – We use the SPICE-level extracted model to
validate accuracy of our analytical model for efficiency, area, and transient response.

ing the transient response. Our analytical SC model, which computes switching losses, gate drive

losses, bottom plate losses, and series resistive losses, is based on prior work by Seeman [See09].

After carefully extracting capacitor density, bottom plate capacitance, and switch parasitics from

the Cadence 65 nm PDK, our analytical model and Cadence simulation results match closely in

both absolute efficiency and area numbers. To properly account for a realistic RPDN switch fab-

ric and clock distribution overheads, we performed a full-chip layout of a 16-cell sub-RPDN (see

Figure 2.12). SPICE-level simulations were also used to help determine the relationship between

voltage and frequency for our cores across different operating modes. We used nine delay stages

consisting of multiple FO4 loaded inverters, NAND, and NOR gates connected in a loop, such that

the total delay in the loop matches our RTL cycle time for a given voltage. We used the change in

delay vs. supply voltage as a model for core voltage-frequency scaling. Finally, we augmented our

SC analytical model to account for shunt losses due to capacitor leakage. We used this augmented

model to study scaling towards leakier processes, as described in Section 2.7.

2.5.2 Gate- and RTL Modeling

To estimate power, we created an instruction-level energy model derived from a realistic RTL

implementation of an in-order, single-issue scalar core and L1 memory system. The RTL model

is synthesized and placed-and-routed using a combination of Synopsys DesignCompiler, IC Com-

piler, and PrimeTime PX with a TSMC 65 nm standard-cell library characterized at 1 V. We then

ran a suite of energy microbenchmarks that are each designed to measure the energy of a specific

instruction. For example, the addiu energy microbenchmark warms up the instruction cache (to

isolate the energy solely due to the instruction under test) and then executes 100 addiu instruc-
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tions in sequence. We ran this microbenchmark on: (1) the synthesized gate-level design to obtain

bit-accurate traces that are fed into PrimeTime power simulations for power estimates, and (2) on

the RTL simulator to obtain cycle counts for the execution. Coupled with the cycle time of the

placed-and-routed design, we can calculate the energy per addiu instruction.

Only a subset of instructions are characterized in this way. For instance, sll and srl are

similar enough that we only needed to characterize one of these instructions. Separate energy

microbenchmarks are used to quantify the energy per taken-branch versus a not-taken-branch.

Similarly, we tested cases for load and store hits and misses separately. In general, we see a range of

60–75 pJ per arithmetic instruction, with higher ranges for long-latency and memory instructions.

We used these results to build an energy dictionary containing the energy for every instruction.

The energy dictionary can be applied to an RTL or cycle-level trace containing the distribution

of dynamic instruction types to produce a total energy and power estimate for the simulation.

Furthermore, we can leverage the voltage-frequency relationship derived from our circuit-level

modeling to scale the energy and power of the nominal configuration to other voltage-frequency

pairs.

2.5.3 Cycle-Level Modeling

We use the gem5 simulator [BBB+11] in syscall emulation mode to model a multicore pro-

cessor with eight single-issue in-order cores, each with private 16 KB L1 I/D caches and sharing

a 1 MB L2 cache. We have extended gem5 to enable architecture and circuits co-design in several

ways.

Multithreading Support in Syscall Emulation Mode – We modified gem5’s address space map-

ping to allow cores to share memory in syscall emulation mode, and added support for a simple

multi-threading library that pins threads to cores.

Software Hints – We modified gem5 to toggle an activity bit in each core after executing the

new activity hint instruction. We also added support for the "work left" hint instructions to pass

thread progress information from parallelized loops to the hardware.

Dynamic Frequency Scaling Support – We modified gem5’s clock domains and clocked ob-

ject tick calculations to support dynamic frequency scaling. Cores can independently scale their

frequency, but we centralized control of all clock domains in the FG-SYNC+ controller.
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Integration with RTL-Based Power Model – We modified gem5 to capture detailed, per-core

instruction counts that occur not only in each DVFS mode, but also in each DVFS mode transition

to properly account for energy overheads during these transitions. Using these statistics and our

energy dictionary, we calculate energy/power for each configuration.

Integration with Circuits – We integrated voltage settling response times from circuit-level

simulations for each mode transition into our gem5 frequency scaling framework. We use these

response times to delay frequency change events to simulate realistic voltage scaling. We also

use our circuit-level analytical SC regulator model (verified with SPICE simulations) to integrate

regulator energy efficiencies into our power model to obtain realistic energy and power overheads.

2.5.4 Application Kernels and Benchmarks

We use a variety of custom application kernels as well as selected PARSEC, SPLASH-2, and

PBBS benchmarks on our architectural-level model to analyze the system-level benefit of various

configurations (see Table 2.2).

bfs computes the shortest path from a given source node to every reachable node in a graph us-

ing the breadth-first-search algorithm and is parallelized across the wavefront using double buffer-

ing. bilat performs a bilateral image filter with a lookup table for the distance function and an

optimized Taylor series expansion for calculating the intensity weight. dither generates a black-

and-white image from a gray-scale image using Floyd-Steinberg dithering. Work is parallelized

across the diagonals of the image, so that each thread works on a subset of the diagonal. A data-

dependent conditional allows threads to skip work if an input pixel is white. rsort performs an

incremental radix sort on an array of integers. During each iteration, individual threads build local

histograms of the data, and then a parallel reduction is performed to determine the mapping to a

global destination array. Atomic memory operations are necessary to build the global histogram

structure. kmeans implements the k-means clustering algorithm. Assignment of objects to clus-

ters is parallelized across objects. The minimum distance between an object and each cluster is

computed independently by each thread and an atomic memory operation updates a shared data

structure. Cluster centers are recomputed in parallel using one thread per cluster. mriq computes a

calibration matrix used in magnetic resonance image reconstruction algorithms. pbbs-dr is a PBBS

application for 2D Delaunay Mesh refinement. Work is parallelized across the bad triangles. Par-

allel threads move through reserve and commit phases and will only perform retriangulation if all
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the neighbors they marked were reserved successfully. Newly generated bad triangles are assigned

to other threads. pbbs-knn is a PBBS application that, given an array of points in 2D, finds the

nearest neighbor to each point using a quadtree to speed up neighbor lookups. Quadtree genera-

tion is parallelized at each depth of the tree so that each thread works on a separate sub-quadrant.

The quadtree is used to find the nearest neighbor to each point in parallel. pbbs-mm is a PBBS

application for maximal matching on an undirected graph. Work is parallelized across the edges

in the graph. Parallel threads move through reserve and commit phases. Threads attempt to mark

the endpoints of the assigned edge with the edge ID. In the commit phase, threads will only mark

its edge as part of the maximal matching if both endpoints were reserved successfully. splash2-fft

is a SPLASH-2 benchmark that performs a complex 1D version of a radix-sqrt(n) six-step FFT

algorithm. Cores are assigned contiguous sets of rows in partitioned matrices. Each core trans-

poses contiguous sub-matrices from every other core and transposes one locally. splash2-lu is a

SPLASH-2 benchmark that performs a matrix factorization into a lower and upper triangular ma-

trix. Parallelization is across square blocks of size B and this parameter is picked so that blocks

fit in the cache. strsearch implements the Knuth-Morris-Pratt algorithm to search a collection of

byte streams for the presence of substrings. The search is parallelized by having all threads search

for the same substrings in different streams. The deterministic finite automatas used to model

substring-matching state machines are also generated in parallel. viterbi decodes frames of con-

volutionally encoded data using the Viterbi algorithm. Iterative calculation of survivor paths and

their accumulated error are parallelized across paths. Each thread performs an add-compare-select

butterfly operation to compute the error for two paths simultaneously, which requires unpredictable

accesses to a lookup table.

2.6 Evaluation Results

In this section, we compare the SFVR, MAVR, and RPDN designs. We evaluate the perfor-

mance, energy efficiency, and power of our applications as they run on our target system with each

type of power distribution network (PDN). We choose a 4-level, 8-domain FG-SYNC+ controller

based on the FGVS study in Section 2.3. From our circuit-level study in Section 2.4, we account

for realistic voltage-settling response times and regulator power efficiencies in each DVFS mode

for varying load currents.
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Performance Energy Trans

App DInsts SFVR (µs) MAVR RPDN SFVR (µJ) MAVR RPDN MAVR RPDN

bfs 58 101 1.04 1.25 17 0.61 0.64 350 693
bilateral 6540 3254 1.00 1.00 767 0.97 0.98 1 3
dither 2762 4121 0.67 1.38 749 0.76 0.68 360 1939
kmeans 483 355 0.69 1.05 74 0.96 0.91 309 970
mriq 8318 8409 1.27 1.27 1640 0.72 0.72 3 6
pbbs-dr 20057 39785 0.92 1.21 7010 0.59 0.61 429 2966
pbbs-knn 645 850 1.26 1.28 158 0.66 0.68 53 63
pbbs-mm 305 714 0.62 1.02 117 0.67 0.60 452 3836
rsort 268 220 0.83 1.07 42 0.81 0.85 336 754
splash2-fft 4146 2226 1.00 1.00 502 0.97 0.98 9 18
splash2-lu 7780 13045 1.46 1.46 2390 0.68 0.69 5 9
strsearch 1434 1101 1.08 1.09 212 0.91 0.92 17 28
viterbi 3522 4465 0.48 1.03 798 0.75 0.74 558 4599

Table 2.2: Application Performance and Energy – DInsts = dynamic instruction count in thousands; Trans = tran-
sitions per ms. MAVR/RPDN performance and energy results are normalized to SFVR.
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Figure 2.13: System-Level Evaluation for SFVR, MAVR, and RPDN – (a) MAVR and RPDN energy efficiency
vs. performance normalized to SFVR. Lines connect the same application using both MAVR and RPDN. Raw numbers
are given in Table 2.2. (b) Power breakdowns for SFVR, MAVR, and RPDN (S, M, R, respectively) normalized to
SFVR. Bar stacks show leakage power, aggregate core power, regulator power efficiency overhead, and transition
power overhead.

Figure 2.13(a) compares MAVR and RPDN energy efficiency and speedup, both normalized

to SFVR. The raw numbers are given in Table 2.2. MAVR has sharp slowdowns for many ap-

plications, modest speedups for others, and very high energy efficiency across most applications.

Notice that sharp slowdowns generally occur for applications with higher transitions per millisec-

ond (e.g., dither, kmeans, viterbi, see Table 2.2). This implies that MAVR response times are too

slow for FG-SYNC+ to adapt to the fine-grain activity imbalance. RPDN has higher performance

as well as higher energy efficiency across most applications, including those with higher transi-
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tions per millisecond, all at similar average power compared to SFVR. Notice that the results in

Figure 2.13(a) look very similar to those in Figure 2.3(d). Table 2.1 explains the similarity: the

typical MAVR voltage-settling response time is on the order of 1000 ns while the typical RPDN

response time is on the order of 100 ns. RPDN’s order-of-magnitude faster response time is a key

enabler for achieving good performance and energy efficiency when exploiting fine-grain activity

imbalance with FGVS.

Figure 2.13(b) shows power breakdowns for each application running on our target system with

each type of PDN. The results for SFVR include the power of eight cores running the application

at nominal voltage, the power lost in the 2:1 SC converter with an 80% conversion efficiency,

and leakage power overhead. MAVR consumes significantly less power than SFVR by resting

waiting cores, but MAVR has difficulty exploiting this power slack to improve performance due to

slow response times. The impact of response time is tightly linked to how often cores transition.

A delayed decision is very likely to remain optimal for applications that transition only rarely;

these applications have speedups even with slow response times (e.g., splash2-lu, mriq, strsearch).

Applications with the greatest slowdowns consume the least power (e.g., viterbi). This indicates

that they spend most of their time executing slowly in low-power modes. RPDN closely tracks

the average power of SFVR by resting cores and trading power slack for improved performance.

RPDN actually achieves lower average power compared to SFVR for some applications. The extra

power slack is an opportunity for further optimization using a more aggressive online controller.

The results for regulator power efficiency overhead show that RPDN does not sacrifice regulator

efficiency in exchange for performance. Leakage power and transition power remain fairly small

for each type of PDN.

Figure 2.13 shows that in general, MAVR can offer high energy efficiency but suffers significant

slowdowns compared to SFVR due to slow response times. RPDN enables higher performance and

energy efficiency at the same or lower average power compared with SFVR, while reducing the

area overhead by 40% compared to MAVR. These results suggest RPDN is an attractive option for

enabling realistic fine-grain voltage scaling in future embedded systems.
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2.7 Discussion

In this section, we discuss the impact of di/dt noise, as well as RPDN scalability for higher core

counts, higher power densities, and different technologies.

Noise – On-chip power management can potentially diminish di/dt noise issues. One key mo-

tivation for moving power management on-chip is to reduce the impact of PCB wires and package

parasitics (e.g., bond pads). In addition, using on-chip step-down voltage converters reduces the

package supply-plane impedance since lower current is delivered for the same power. Lastly, for

on-chip SC regulators, a portion of the flyback capacitance effectively acts as additional decou-

pling capacitance. While the additional wiring required for RPDN will introduce some parasitic

inductance at high frequency, on-chip wires are short compared to board- and package-level wires.

Future work can potentially investigate a detailed characterization of di/dt noise for various inte-

grated regulator designs.

Scaling Core Count – Scaling core count by directly scaling the RPDN switch fabric (i.e.,

each RPDN cell connected to every core) complicates wiring and has high efficiency losses. In

this work, we addressed scalability by partitioning the RPDN into two sub-RPDNs, where each

sub-RPDN is assigned to a cluster of four cores. We carefully picked our rest, nominal, sprint,

and super-sprint levels such that the cells in a single RPDN partition can support any DVFS mode

decision made by FG-SYNC+ at high efficiency. When scaling to larger core counts, there may be

certain configurations where there simply is not enough intra-partition energy storage to support

the desired operating modes. The FGVS controller would need to account for these scenarios and

react accordingly. Future work can potentially explore more sophisticated RPDN switch fabrics.

For example, one could imagine RPDN fabrics that provide just “nearest neighbor” connectivity

or use multiple stages of switching.

Scaling to Higher Power Densities – Our target system has a power density of 25 mW/mm2 at

nominal voltage, but our findings in this chapter still hold true for higher power densities. PDN

area overhead increases roughly linearly with core power density; this means that high-power,

high-complexity cores will still benefit from RPDN area savings over MAVR. For example, a

4× increase in core power density to 100 mW/mm2 would have 4× larger area overheads for the

integrated PDN compared to the core, but the relative area savings of RPDN are the same (i.e.,
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Figure 2.14: RPDN Power Efficiency vs. Output Power For Single Core in a Leakier 65 nm Process – Each cell
is 0.015 mm2. The 7-cell RPDN curve also represents MAVR area. RPDN tracks the optimal efficiency across all
curves, either matching or outperforming MAVR in each operating mode.

RPDN area overhead of 24% versus MAVR area overhead of 42% still means RPDN saves 40%

area compared to MAVR).

Scaling to Different Technologies – Integration of switching regulators on-chip is a recent phe-

nomenon and is a direct result of the impacts of technology scaling. Earlier CMOS generations

did not allow for integration of efficient switching regulators due to low-quality switches and low

energy-density passives that required high switching frequencies. Analog components generally

do not improve with aggressive scaling, but switching voltage regulators are an exception. Better

switches in smaller technology nodes such as 28 nm and beyond are likely to improve SC regula-

tor efficiency rather than degrade it. Furthermore, advances in technology that increase capacitor

density (e.g., deep-trench capacitors [AKK+13, CMJ+10]) have the potential to make integrated

regulators for high-power systems both relevant and efficient. Finally, as CMOS technology scales,

there is potential for increased leakage. In this case, RPDN offers an additional benefit compared

to MAVR. Figure 2.14 shows energy efficiency vs. output power for a single core as a function of

the number of cells allocated to that core (similar to Figure 2.10), except for a leakier 65 nm pro-

cess with rest, nominal, sprint, and super-sprint levels scaled accordingly. Notice that in a leakier

process at low power, using seven cells results in lower power efficiency compared to using just

one cell. RPDN enables reduced flyback-capacitor leakage by using just a single cell when cores

are operating in a low-power resting mode.

40



2.8 Related Work

Most of the previous work in on-chip voltage regulation explores the design space between

off-chip and on-chip regulators while focusing on the potential for energy savings at similar per-

formance. [KGWB08] conducted sensitivity studies for on-chip Buck regulators and contrasted

their lower efficiencies and faster response times with slow, efficient off-chip regulators. The

authors took into account overheads for various off-chip and on-chip cases and concluded that on-

chip per-core voltage regulation could reduce energy, albeit at large area overhead. The authors

determined the optimal supply voltage for each benchmark offline and did not explore online con-

trollers. [LCVR03] focused on multiprogrammed applications with an emphasis on saving energy

on memory- vs. cpu-bound applications, rather than on exploiting fine-grain activity imbalance in

multithreaded workloads.

Other works, such as [YLH+12] recognized similar trade-offs as we do in on-chip voltage

conversion. The work proposed to use an S-factor-based algorithm to identify workloads with

potential for energy savings and then to migrate these threads to a dedicated core powered by an

on-chip regulator. With offline training, each application is identified and binned at runtime for mi-

gration. This approach was only shown to save energy with multiprogrammed workloads. Taking

the same approach for multithreaded applications with fine-grain activity imbalance would likely

incur high migration overhead, but the process of identifying workloads offline can complement

our work by allowing our controllers to search for complex application-level patterns. In [DR07],

an online learning algorithm for power scaling is proposed that could be implemented on top of

our controller to help identify long-term application behaviors.

A switched-capacitor converter is used for dynamic voltage-frequency control in [JLB+15]. In

this work, the SC converter alternates between different topologies while the core frequency tracks

the output voltage ripple. [ASSK11, CCK07] considers Buck converters and focuses on jointly

optimizing power consumption of the converter and the core by finding the lowest computational

energy point; they considered only steady-state responses. [MPT+12] elected to switch cores be-

tween two supply rails. This approach requires dedicated supply rails and incurs non-trivial supply

pin overhead, which is increasingly important in future technologies [HSN+07]. In addition, care

must be taken when switching cores between different supply rails by either scheduling power

gating events [RGH+09], reducing the supply plane impedance, or by increasing decoupling ca-
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pacitance [DGP+12]. Integrated SC converters allow dynamic regulation without the need for

large decoupling capacitance while simultaneously relaxing the impedance requirements placed

on power-supply routing by utilizing higher off-chip voltages.

2.9 Conclusion

Recent trends in technology and the drive to integrate more functionality on chip have gener-

ated significant interest in an on-chip voltage regulation, with the goal of reducing cost and en-

abling fine-grain voltage scaling (FGVS). In this chapter we present a new controller, FG-SYNC+,

specifically designed for FGVS. Our FG-SYNC+ analysis demonstrates the importance of exploit-

ing fine-grain scaling in level, space, and time. We used insights from our analysis to motivate

a new voltage regulation scheme based on the idea of reconfigurable power distribution networks

(RPDNs). RPDNs avoid the need to over-provision per-core voltage regulators, thereby reduc-

ing regulator area overhead while simultaneously improving performance. Our promising results

suggest that there is an important opportunity for architecture and circuit co-design of integrated

voltage regulation in future systems.
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CHAPTER 3
ASYMMETRY-AWARE WORK-STEALING RUNTIMES

Chapter 2 demonstrated great benefit from applying fine-grain power control to homogeneous

multicore systems running general applications. This chapter broadens the scope to heterogeneous

multicore systems while also specializing the techniques for the domain of productive task-based

parallel runtimes. This work focuses on fine-grain voltage and frequency scaling for both big and

little cores at microsecond timescales. In addition, while the previous chapter relied on simple

static work distribution and sped up lagging cores, in this chapter we focus on productive task-

based parallel runtimes that use sophisticated work-stealing algorithms for better load balancing. I

argue that work-stealing algorithms are a natural fit for managing on-chip asymmetry at the soft-

ware level. This chapter explores how these software runtimes can be made aware of underyling

asymmetry in the architecture and VLSI layers to create more efficient schedules and to dynami-

cally tune processing elements.

3.1 Introduction

Work stealing is a well-known approach to task distribution that elegantly balances task-based

parallelism across multiple worker threads [BS84, RHH84]. In a work-stealing runtime, each

worker thread enqueues and dequeues tasks onto the tail of its task queue. When a worker finds

its queue empty, it attempts to steal a task from the head of another worker thread’s task queue.

Work stealing has been shown to have good performance, space requirements, and communica-

tion overhead in both theory [BL99] and practice [BJK+96, FLR98]. Optimizing work-stealing

runtimes remains a rich research area [CL05,CM08,BM09,LSL12,DLS+09,CCHG12], and work

stealing is a critical component in many popular concurrency platforms including Intel’s Cilk++,

Intel’s C++ Threading Building Blocks (TBB), Microsoft’s .NET Task Parallel Library, Java’s

Fork/Join Framework, X10, and OpenMP. Most of the past research and current implementa-

tions use asymmetry-oblivious work-stealing runtimes. In this work, we propose asymmetry-aware

work-stealing (AAWS) runtimes, which exploit both static asymmetry (e.g., different core microar-

chitectures) and dynamic asymmetry (e.g., per-core dynamic voltage/frequency scaling) to improve

the performance and energy efficiency of multicore processors.
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Single-ISA heterogeneous processors integrate multiple cores with different microarchitec-

tures onto a single die in order to provide distinct energy-performance operating points [KTR+04,

KFJ+03]. These processors exhibit static asymmetry that is fixed at design time. Systems based

on ARM’s big.LITTLE architecture, which composes “big” ARM Cortex-A15/A57 out-of-order

cores with “little” Cortex-A7/A53 in-order cores [Kre11,Gre11], are commercially available from

Samsung [Gwe14b], Qualcomm [Gwe14a], Mediatek [Dem13], and Renesas [Gwe13]. There has

been significant interest in new techniques for effectively scheduling software across these big

and little cores, although most of this prior work has focused on either multiprogrammed work-

loads [KTR+04, KFJ+03, ARKK13, VCJE+12] or on applications that use thread-based parallel

programming constructs [JSMP12, JSMP13, LLK09, SMQP09]. However, there has been less re-

search exploring the interaction between state-of-the-art work-stealing runtimes and static asym-

metry. A notable exception is Bender et al.’s theoretical work [BR02] and abstract discrete-event

modeling [JB02] on an enhanced Cilk scheduler for heterogeneous systems. Others have also

explored combining work-stealing with work-sharing, critical-path scheduling, and/or core affin-

ity to more effectively schedule tasks across statically asymmetric systems [MWK+06, CCHG12,

CIOQ15, CRB+15].

Dynamic voltage/frequency scaling (DVFS) is an example of dynamic asymmetry that is ad-

justable at runtime. Much of the prior work on DVFS has assumed off-chip voltage regulation

best used for coarse-grain voltage scaling [BPSB00, IBC+06, IM06]. Recent architecture/circuit

co-design of fine-grain DVFS (either through multi-rail voltage supplies [MPT+12,Dre11] or fully

integrated voltage regulators [JLB+15,SGS+14,KGWB08,GTB+14,FBB+15,GSSK12]) suggests

that sub-microsecond voltage transition times may be feasible in the near future. There has been

significant interest in new techniques for exploiting fine-grain DVFS to improve the performance

and/or energy efficiency of multiprogrammed workloads [KGWB08,EE11] or on applications that

use thread-based parallel programming constructs [BM09,GTB+14,MPT+12,LMH04,CGR+08].

Again, there has been relatively little research exploring the interaction between work-stealing run-

times and dynamic asymmetry. A notable exception is recent work by Ribic et al. that proposes

reducing the voltage/frequency of thieves and increasing the voltage/frequency of workers with

deep task queues [RL14].

Recent studies have demonstrated the potential benefit of combining static and dynamic asym-

metry [LPD+14, AML+10, GRSW04]. A key observation is that static asymmetry through het-
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erogeneous core types offers larger marginal utility but must be fixed at design time, while dy-

namic asymmetry in the form of DVFS offers smaller marginal utility but can be varied at run

time [AML+10]. These past works have focused on coarse-grain multiprogrammed workloads.

To our knowledge, this is the first work to explore the interaction between static asymmetry, dy-

namic asymmetry, and work-stealing runtimes. We argue that work-stealing runtimes are a natural

fit for managing asymmetry. Assuming fully strict programs with high-parallel slack [FLR98],

a work-stealing runtime will naturally exploit asymmetry without modification; faster cores will

execute tasks more quickly and then simply steal work as necessary from slower cores. However,

our work shows there are still important opportunities for AAWS runtimes to improve performance

and energy efficiency.

In Section 3.2, we develop a simple first-order model to provide insight into optimizing the

aggregate throughput and energy efficiency of an AAWS runtime. Our model predicts that the

maximum throughput will occur when the marginal utility (i.e., performance) vs. marginal cost

(i.e., power) of each core is equal. This is an intuitive application of a fundamental principle

in economics known as the Law of Equi-Marginal Utility. Others have also observed this im-

portant design guideline in the context of design-space exploration of processor microarchitec-

ture [AML+10] and market-based multi-resource allocation in multicore processors [WM15]. We

use numerical analysis to study the potential benefit of a marginal-utility-based approach in AAWS

runtimes for both high-parallel (HP) and low-parallel (LP) regions.

In Section 3.3, we propose three new hardware/software mechanisms to enable AAWS run-

times: work-pacing, work-sprinting, and work-mugging. Work-pacing is a novel technique that di-

rectly applies a marginal-utility-based approach in the HP region by increasing the voltages of little

cores and decreasing the voltages of big cores to improve both performance and energy efficiency.

Work-sprinting is a novel technique similar to work-pacing that applies a marginal-utility-based

approach in the LP region, while also exploiting additional power slack generated from resting

waiting cores. Work-pacing and work-sprinting require a fine-grain DVFS controller specifically

designed for an AAWS runtime as well as lightweight hint instructions that allow the AAWS run-

time to inform the hardware when cores are active or waiting. While work-sprinting can provide

some benefit in LP regions, it is also fundamentally limited by the work-stealing scheduler’s task

distribution algorithm. Our first-order modeling suggests that when distributing power among busy

cores in the LP region, sprinting a little core while resting a big core is usually suboptimal com-
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pared to resting a little core and sprinting a big core. To address this issue, we revisit previous

theoretical work on work-mugging [BR02, JB02]. Work-mugging allows a waiting big core to

“mug” an active little core by preemptively migrating a task from the little core to the big core. We

describe a practical implementation of work-mugging in multicore systems that relies on user-level

inter-core interrupts.

In Section 3.4, we outline our vertically integrated research methodology. We have devel-

oped our own C++ work-stealing runtime inspired by Intel TBB which uses Chase-Lev task

queues [CL05] and occupancy-based victim selection [CM08]. We have ported 20 application

kernels to our work-stealing runtime. These kernels are selected from the PBBS [SBF+12],

PARSEC [BKSL08], Cilk [FLR98], and UTS [OHL+06] benchmark suites and represent diverse

application-level characteristics. We evaluate the performance of two eight-core systems (4 big & 4

little; 1 big & 7 little) using the cycle-level gem5 simulator [BBB+11], and we evaluate power and

energy efficiency using a detailed power/energy model that leverages component models within

McPAT [LAS+13] as well as energy estimates from our own VLSI implementation of a single-

issue in-order RISC processor. In Section 3.5, we use this methodology to explore the potential

performance and energy efficiency benefits of AAWS runtimes. On a system with four big and

four little cores, an AAWS runtime achieves speedups from 1.02–1.32× (median: 1.10×). At the

same time, all but one kernel achieves improved energy efficiency with a maximum improvement

of 1.53× (median: 1.11×).

The key contributions of this work are: (1) we develop a marginal-utility-based approach to

both quantify the potential benefit of AAWS runtimes and motivate specific hardware/software

techniques; (2) we propose new work-pacing and work-sprinting techniques that directly apply

a marginal-utility-based approach within AAWS runtimes; (3) we provide a practical implemen-

tation of the previously proposed work-mugging technique suitable for use in AAWS runtimes;

and (4) we use a vertically integrated research methodology that spans software, architecture, and

VLSI to make the case that holistically combining static asymmetry, dynamic asymmetry, and

work-stealing runtimes can improve both performance and energy efficiency in future multicore

systems.
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Figure 3.1: Activity Profile for Convex Hull Application on Statically Asymmetric System – Only a subset of the
entire activity profile is shown. Cores L0–3 are “little” in-order cores; cores B0–3 are “big” out-of-order cores. Green =
executing task; light-gray = waiting in work-stealing loop; HP = high-parallel; LP = low-parallel. See Section 3.4 for
simulation methodology.

3.2 A Marginal-Utility-Based Approach

Figure 3.1 shows an activity profile for an example application running on a system with four

big cores and four little cores and an asymmetry-oblivious work-stealing runtime. Notice that the

application includes a mix of both high-parallel (HP) and low-parallel (LP) regions. During HP

regions, the work-stealing runtime is able to adapt to the static asymmetry by distributing more

tasks to the bigger cores resulting in good throughput and a relatively balanced profile. During LP

regions, some cores are active, while other cores are waiting in the work-stealing loop. Notice that

there is usually a small LP region near the end of an HP region, since the work-stealing runtime is

unable to redistribute work at infinitely small granularities.

AAWS runtimes attempt to improve performance and energy efficiency in both the HP and LP

regions by making the work-stealing runtime aware of the underlying static and dynamic asymme-

try. In this section, we use first-order modeling and numerical analysis (similar to [HM08,WL08])

to motivate the three techniques we will explore in this chapter: work-pacing, which targets the HP

region; work-sprinting, which focuses on the LP region; and work-mugging, which also focuses

on the LP region.

3.2.1 First-Order Model

The scripts for our analytical model and a description of their usage are available online1.
1AAWS analytical model scripts: https://github.com/cornell-brg/torng-aaws-scripts-isca2016
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Consider a multicore system comprised of NB big cores and NL little cores, with NBA, NBW ,

NLA, NLW big/little active/waiting cores. Assume both big and little cores have the same nominal

voltage (VN) and nominal frequency ( fN), and that the system can individually scale the voltage of

each core from Vmin to Vmax. Waiting cores can execute the work-stealing loop while “resting” at

Vmin to save power while still enabling correct execution.

We assume that frequency is a linear function of voltage (validated using circuit-level simula-

tion, see Section 3.4). The frequency of each active core is thus:

fBi = k1VBi + k2 (i = 1,2, ...,NBA)

fL j = k1VL j + k2 ( j = 1,2, ...,NLA) (3.1)

where k1, k2 are fitted parameters, fBi is the frequency of big core i, VBi is the voltage of big core i,

and so on.

The throughput of an active core is measured in instructions per second (IPS) and is a function

of the average instructions per cycle (IPC) of a given core type:

IPSBAi = IPCB fBi (i = 1,2, ...,NBA)

IPSLA j = IPCL fL j ( j = 1,2, ...,NLA) (3.2)

To simplify our discussion we define β = IPCB/IPCL.

We use the aggregate throughput of all active cores as an approximation for the performance

of the overall application. If we assume compute-bound tasks and perfect task-balancing through

work-stealing in the HP region, then increasing the total throughput will indeed reduce the overall

execution time of the HP region. The performance of the LP region is more subtle, since by

definition the LP region cannot take advantage of work-stealing until more work is generated.

Increasing the throughput of one core at the expense of another core may or may not improve

execution time depending on when cores reach the next synchronization point. Fortunately, resting

waiting cores in the LP region can generate power slack that can be reallocated to the active cores.

This means in practice, we are usually increasing the performance of all active cores in the LP

region, and thus using the aggregate throughput can still provide useful insight into how to scale

the relative voltages of each core. Given these caveats, we model the total performance of the
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multicore system as:

IPStot =
NBA

∑
i=1

IPSBAi +
NLA

∑
j=1

IPSLA j (3.3)

The core power includes both dynamic and static power and is modeled as:

PBAi = αB IPCB fBi V 2
Bi +VBi IB,leak (i = 1,2, ...,NBA)

PLA j = αL IPCL fL j V 2
L j +VL j IL,leak ( j = 1,2, ...,NLA) (3.4)

The factors αB and αL capture the relative energy overhead of a big core compared to a little core.

To simplify our discussion, we define α = αB/αL as the energy ratio of a big core to a little core at

nominal voltage and frequency. We calculate the leakage current by assuming an architect targets

leakage power to consume a certain percentage (denoted as λ ) of the total power of a big core at

nominal voltage. We assume a little core’s leakage current is a fraction (denoted by γ) of the big

core’s leakage current. We use PBN , PLN , PBW , and PLW to refer to the power consumed by big and

little cores running at nominal VN or waiting at Vmin.

The total power is the aggregate power across all cores:

Ptotal =
NBA

∑
i=1

PBAi +
NLA

∑
j=1

PLA j +NBW (PBW )+NLW (PLW ) (3.5)

3.2.2 Marginal Utility Optimization Problem

In Figure 3.2, we use our first-order model to generate energy vs. performance estimates for a

system with four big and four little cores (denoted as 4B4L). The array of plotted points represent

selections of different (VBi, VL j) pairs, with all estimates normalized to the nominal system (1.0 V,

1.0 V). We assume that all cores are busy with useful work. Points in the lower-right quadrant

generally have higher voltage and frequency, suggesting that performance can easily be improved

at the expense of energy efficiency and at higher power. Points in the upper-left quadrant generally

have lower voltage and frequency, suggesting that energy efficiency can easily be improved at the

expense of performance with lower power. However, points in the upper-right quadrant suggest

that careful tuning of the voltages and frequencies of the big and little cores can potentially improve

performance and energy efficiency at the same time.

Our goal is to create an optimization problem to find the pareto-optimal points in the upper-

right quadrant. As a basic heuristic, we use average system power at nominal voltage to constrain

our optimization problem, effectively targeting a pareto-optimal system that draws similar power
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Figure 3.2: Pareto-Optimal Frontier for 4B4L System –
Projected energy efficiency vs. performance of a busy 4B4L
system across different (VBi, VL j) pairs. Points normalized
to (1.0 V, 1.0 V) system. Diagonal line is isopower. Open
circle = pareto-optimal isopower system. α = 3, β = 2.

compared to the nominal system (denoted by the open circle). The target system power is therefore

the aggregate power of all cores running at nominal voltage and frequency:

Ptarget = NB (PBN)+NL (PLN) (3.6)

More specifically, our optimization problem searches for the optimal voltages for active big

(VBi) and little (VLi) cores such that the total throughput (IPStot) is maximized while maintaining

the power target (Ptarget). We use the method of Lagrange multipliers to solve this optimization

problem, and we rewrite the final result in terms of the marginal performance vs. marginal power

as follows:

∂PBAi

∂ IPSBAi
=

∂PLA j

∂ IPSLA j
(i = 1,2, ...,NBA; j = 1,2, ...,NLA) (3.7)

This is an intuitive application of a fundamental principle in economics known as the Law of

Equi-Marginal Utility. At the optimum operating point the marginal utility (i.e., performance)

vs. marginal cost (i.e., power) of each core must be equal. If this was not the case, then an

arbitrage opportunity would exist: we could “sell” expensive performance to reclaim power on

one core and “buy” more performance at a cheaper price (power) on another core. Others have

also recognized that the Law of Equi-Marginal Utility provides an elegant digital design princi-

ple [AML+10,WM15], although here we are applying this principle in a slightly different context.

Unfortunately, a closed-form solution for the optimum VBi and VL j can be complex, so in the

remainder of this section we use numerical analysis to explore using a marginal-utility-based ap-

proach in both the HP and LP regions. Unless otherwise noted we will assume the following

parameters: k1 = 7.38×108, k2 = -4.05×108, VN = 1 V, Vmin = 0.7 V, Vmax = 1.3 V, fN = 333 MHz,

λ = 0.1, γ = 0.25. These parameters are derived from VLSI modeling for the target voltage range

and system described in Section 3.4.
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(a) Power vs. IPS (b) Total IPS vs. VBi and VL j

Figure 3.3: 4B4L System w/ All Cores Active – (a) Power vs. performance curves across the DVFS operating points
for each core type, green = little, blue = big, circle = nominal; (b) blue = ∂PBAi/∂ IPSBAi (axis not shown), green =
∂PLA j/∂ IPSLA j (axis not shown), red = IPStot (axis on left) assuming VL j and VBi shown on x-axis (VL j on top, VBi on
bottom) with constant Ptarget . (a–b) star = optimal operating point, dot = feasible operating point, α = 3, β = 2.

3.2.3 Marginal Utility in the High-Parallel Region

Figure 3.3 uses the first-order model developed in the previous subsections to plot the power

and performance of a 4B4L system. This is a common configuration found in commercially avail-

able ARM big.LITTLE systems [Gwe14b, Gwe14a]. We can immediately see the benefit of static

asymmetry in Figure 3.3(a). The big core offers higher performance at higher power, while the

little core offers lower performance at lower power. Figure 3.3(b) shows the marginal utility of

the big core (blue curve) and little core (green curve) as well as IPStot . As expected, IPStot is

maximized when the marginal utilities are equal. The optimal operating point is VBi = 0.86 V

and VLi = 1.44 V with a theoretical speedup of 1.12× over running all cores at VN . Since 1.44 V

>Vmax, the best feasible operating point is VBi = 0.93 V and VLi = Vmax with a theoretical speedup

of 1.10×. Figure 3.4 shows how the optimal and feasible speedup varies as a function of α and β .

A marginal-utility-based approach is most effective when the big core has moderate performance

benefit for large energy overhead (i.e., α/β > 1.0), which matches the conventional wisdom con-

cerning big vs. little cores. This wisdom is supported by data collected by ARM during pre-silicon

design-space exploration of Cortex-A7 and Cortex-A15 cores [Gre11] as well as by our own results

(see Section 3.5).

This analysis suggests a marginal-utility-based approach can offer respectable speedups in the

HP region, and thus motivates our interest in our new work-pacing technique. It is important

to note, that a marginal-utility-based approach requires holistically considering static asymmetry,

dynamic asymmetry, and a work-stealing runtime. With a thread-based parallel programming

51



1.0 1.5 2.0 2.5 3.0 3.5 4.0

¯

1.0

1.5

2.0

2.5

3.0

3.5

4.0

®
1.000

1.025

1.050

1.075
1.100
1.125

1.150

1.0 1.5 2.0 2.5 3.0 3.5 4.0

¯

1.0

1.5

2.0

2.5

3.0

3.5

4.0

®

1.000

1.025

1.050

1.0751.1
00

1
.1

2
5

(a) Optimum Speedup (b) Feasible Speedup

Figure 3.4: Theoretical Speedup for 4B4L System vs. α and β – (a) optimum speedup ignoring Vmin and Vmax; (b) =
feasible speedup within Vmin and Vmax. Speedups relative to all cores running at VN .
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(a) Power vs. IPS (b) Total IPS vs. VBi and VL j

Figure 3.5: 4B4L System w/ 2B2L Active – Assume we rest inactive cores at Vmin. See Figure 3.3 for legend. α = 3,
β = 2.

framework instead of work-stealing, slowing down the big core would likely create a significantly

lagging thread hurting the overall execution time. Without static asymmetry, the Law of Equi-

Marginal Utility tells us that the optimal approach is to simply run all homogeneous cores at VN

during the HP region. Without dynamic asymmetry, there is no opportunity to adaptively “trade”

performance vs. power and thus no way to balance the marginal utilities in the HP region.

3.2.4 Marginal Utility in the Low-Parallel Region

Figure 3.5 plots the power and performance of a 4B4L system in the LP region with two active

big cores and two active little cores. We can rest the waiting cores, generating power slack that can

then be reallocated to the active cores. The resulting optimal operating point is VBi = 1.02 V and

VLi = 1.70 V with a theoretical speedup of 1.55× over running all cores at VN . Obviously running

52



the little core at 1.70 V is not feasible, so the best feasible operating point is VBi = 1.16 V and VLi =

Vmax with a theoretical speedup of 1.45×.

Note that we can potentially further improve performance by moving tasks from little to big

cores. As shown in Figure 3.5(a) the little core often reaches Vmax before it can completely exploit

the power slack generated from resting cores. Moving tasks to a big core increases peak perfor-

mance and thus can help accelerate LP regions. As an example, assume there is a single remaining

task in a 4B4L system and we must decide whether to execute this task on a little or big core. Our

first-order model predicts that the optimum operating point when using a little core is VL = 2.59 V,

but the feasible operating point is Vmax with a theoretical speedup of 1.6× over running this task on

the little core at VN . If we instead move this final task to a big core, the optimum operating point is

VB = 1.51 V, and the feasible operating point is again Vmax with a theoretical speedup of 3.3× over

running this task on the little core at VN . Moving work from little to big cores in the LP range can

significantly improve performance if we take into account the feasible voltage range.

This analysis suggests that a marginal-utility-based approach can be useful in the LP region,

but our analysis also motivates our interest in a practical implementation of work-mugging. Work-

mugging can preemptively move work from little to big cores, and thus helps keep big cores busy

during the LP region. Again a holistic approach is required: using just dynamic or static asymmetry

during the LP region is unlikely to fully exploit the generated power slack.

3.2.5 Leakage Sensitivity Study

The analytical modeling used in this section has assumed that the big core consumed 10% static

leakage power (i.e., λ = 0.1) at nominal voltage and frequency (refer to the parameters listed at the

end of Section 3.2.2). In this subsection, we discuss and sweep the leakage parameter λ in order to

analyze the first-order impact of leakage on opportunities for balancing marginal utility in a 4B4L

system. The results show that the high-level conclusions of this section remain the same across a

wide range of leakage power assumptions.

Comparison with High and Low Leakage – We split each of Figures 3.2 to 3.5 into two

versions, one with higher leakage (i.e., λ = 0.5) and one with lower leakage (i.e., λ = 0.1).

Compare the two plots in Figure 3.6 (versions of Figure 3.2). To first order, the system on the

left with higher leakage tends to achieve lower energy efficiency across all points, where each point

corresponds to a different (VBi, VL j) pair. This result is not surprising because leakage power scales
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Figure 3.6: Leakage Comparison for Pareto-Optimal Frontier of 4B4L System – Respins of Figure 3.2 with
different leakage parameters. (a) high leakage with λ = 0.5, (b) low leakage with λ = 0.1. The plot shows the
projected energy efficiency vs. performance of a busy 4B4L system across different (VBi, VL j) pairs. Points normalized
to (1.0 V, 1.0 V) system. Diagonal line is isopower. Open circle = pareto-optimal isopower system. α = 3, β = 2.
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(a) λ = 0.5 (b) λ = 0.1

Figure 3.7: Leakage Comparison for 4B4L System w/ All Cores Active – Respins of Figure 3.3 with different
leakage parameters. (a) high leakage with λ = 0.5, (b) low leakage with λ = 0.1. For both cases, (I) Power vs.
performance curves across the DVFS operating points for each core type, green = little, blue = big, circle = nominal;
(II) blue = ∂PBAi/∂ IPSBAi (axis not shown), green = ∂PLA j/∂ IPSLA j (axis not shown), red = IPStot (axis on left)
assuming VL j and VBi shown on x-axis (VL j on top, VBi on bottom) with constant Ptarget . (I–II) star = optimal operating
point, dot = feasible operating point, α = 3, β = 2.

linearly with voltage, while dynamic power scales cubically with voltage. Note that the pareto-

optimal isopower point denoted by the open circle does not change, implying that the potential

benefit of exploiting marginal utility imbalance using the AAWS techniques is likely to be similar

for systems with either lower or higher leakage.

Compare Figure 3.7(a) and Figure 3.7(b) (versions of Figure 3.3) as well as Figure 3.9(a) and

Figure 3.9(b) (versions of Figure 3.5). We can see how leakage impacts the slope of the power

versus performance curves across the DVFS operating range for each core type. Lower leakage

results in steeper slopes. Again, this is not surprising due to the scaling of leakage power and

dynamic power. In lower leakage systems, dynamic power dominates, which results in a greater
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Figure 3.8: Leakage Comparison for Theoretical Speedup for 4B4L System vs. α and β – Respins of Figure 3.4
with different leakage parameters. (a) high leakage with λ = 0.5, (b) low leakage with λ = 0.1. For both cases,
(I) optimum speedup ignoring Vmin and Vmax; (II) = feasible speedup within Vmin and Vmax. Speedups relative to all
cores running at VN .
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(a) λ = 0.5 (b) λ = 0.1

Figure 3.9: Leakage Comparison for 4B4L System w/ 2B2L Active – Respins of Figure 3.5 with different leakage
parameters. (a) high leakage with λ = 0.5, (b) low leakage with λ = 0.1. For both cases, assume we rest inactive cores
at Vmin. See Figure 3.5 for legend. α = 3, β = 2.

relative impact on system power when scaling voltage. In higher leakage systems, static power is

more significant, resulting in a shallower curve. In both Figure 3.7 and Figure 3.9, note that the

highest throughput does not change significantly and still occurs when the marginal utility curves

intersect (i.e., when the marginal utilities are equal). The high-level conclusions of this section are

therefore the same for both low-leakage and high-leakage systems.

Finally, compare Figure 3.8(a) and Figure 3.8(b) (versions of Figure 3.8). We see that the

theoretical speedups do not vary significantly with leakage. Recall that the analytical modeling

thus far has assumed β = 2 and α = 3. For both higher and lower leakage, the theoretical optimum

speedup is roughly the same (i.e., between 1.100 and 1.125) for the 4B4L system. Similarly, for

both higher and lower leakage, the feasible speedup within Vmin and Vmax is roughly the same (i.e.,

about 1.100).
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(a) 4B4L System w/ All Cores Active (b) 4B4L System w/ 2B2L Active

Figure 3.10: Leakage Parameter Sweeps – Each row of plots is identical to Figures 3.3 and 3.5, but with a different
value of λ . The first row sets λ = 0.0; second row sets λ = 0.1; third row sets λ = 0.2; fourth row sets λ = 0.5.

Leakage Sweep – We now sweep the leakage parameter λ in order to analyze the first-order

impact of leakage on opportunities for balancing marginal utility in a 4B4L system. Figure 3.10(a)

and Figure 3.10(b) are new plots that do not appear in the previous subsections. Each row in

Figure 3.10(a) corresponds to Figure 3.3 with a specific value of λ , and similarly, each row in

Figure 3.10(b) corresponds to Figure 3.5 with a specific value of λ . Starting from the first row

with zero leakage and moving down to the fourth row with 50% leakage, we see that the power

versus performance curves slowly become shallower for both systems, just as we saw earlier.

In both Figure 3.10(a) and (b), notice that the optimal operating point (denoted by the star)

occurs at slightly higher VL as leakage increases. For example, the optimum VL in Figure 3.10(b)

56



with zero leakage is 1.62 V, but with λ = 0.5, the optimum VL is 1.69 V. With higher leakage,

the little cores must travel further along the power versus performance curve to balance marginal

utility with the big core. Notice that the feasible operating point does not change, since the little

core quickly hits Vmax in both figures. Finally, notice that the highest throughput still occurs where

the marginal utility curves intersect.

Conclusions – We presented side-by-side comparisons for different leakage values with the

AAWS analytical model. We also briefly surveyed the impact of leakage by sweeping λ . We find

that the high-level conclusions of this section remain consistent across a wide range of leakage

power assumptions.

3.3 AAWS Runtimes

In this section, we describe how AAWS runtimes can use three new hardware/software tech-

niques: work-pacing, work-sprinting, and work-mugging. We also describe two simpler tech-

niques, serial-sprinting and work-biasing, which we include in our aggressive baseline runtime.

3.3.1 Work-Pacing and Work-Sprinting

Work-pacing uses a marginal-utility-based approach to maximize throughput in the HP region

by increasing the voltage of little cores and decreasing the voltage of big cores. Work-sprinting

combines the power slack generated from resting waiting cores in the LP region with a marginal-

utility-based approach to again maximize throughput. An efficient implementation of work-pacing

and work-sprinting requires lightweight changes to both the hardware and software.

Work-pacing and work-sprinting require the AAWS software runtime to inform the hardware

of when threads are either actively executing tasks or waiting in the work-stealing loop. We pro-

pose instrumenting the work-stealing loop in the AAWS runtime with hint instructions, such that

each hint instruction toggles an activity bit indicating the status of each core. This is similar to

past work on lightweight DVFS controllers for applications that use thread-based parallel pro-

gramming frameworks [MPT+12,GTB+14]. When a worker thread enters the work-stealing loop,

it will wait until its second steal attempt before using the hint instruction to toggle the activity

bit. When combined with occupancy-based victim selection [CM08] as opposed to random victim
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Figure 3.11: 4B4L System w/ Hardware Support for AAWS Runtimes – Work-pacing and work-sprinting require
fully integrated voltage regulators for fine-grain DVFS (i.e., per-core, sub-microsecond scaling to potentially many
voltage levels) as well as a customized DVFS controller. Work-mugging requires user-level interrupts to enable rapid
communication between cores. B0–B3 = big cores, L0–L3 = little cores, VR = fully integrated voltage regulator.

selection [FLR98], this avoids unnecessary activity bit transitions that could adversely impact the

customized DVFS controller described later in this subsection. Although this elegant approach is

reactive, it also avoids the need for prediction heuristics [CGR+08, BM09].

As shown in Figure 3.1, HP and LP region timescales can be on the order of a few microsec-

onds. Unfortunately, traditional off-chip switching regulators can have voltage scaling response

times on the order of tens to hundreds of microseconds [BPSB00, PSCP10]. Multi-rail voltage

supplies offer very fast response times on the order of tens of nanoseconds [MPT+12, Dre11],

but they offer limited voltage levels making them a poor fit for the many voltage levels required

by our marginal-utility-based approach. We propose leveraging recent circuit-level research on

fully-integrated switching regulators [LSA11,LCSA13,KBW12]. Architects are increasingly mak-

ing the case for integrated voltage regulation as a way to reduce system cost and enable fine-

grain DVFS for per-core, sub-microsecond scaling to potentially many voltage levels [JLB+15,

KGWB08, GTB+14, YLH+12, GSSK12]. Indeed, the Intel Haswell processor uses in-package

inductors with on-chip regulators to provide fast-changing per-core supplies [Kan13].

Figure 3.11 illustrates a 4B4L system that can potentially leverage an AAWS runtime. Each

core has its own private L1 instruction and data cache along with a shared, banked L2 cache.

The activity bits controlled by the hint instructions are read by a global DVFS controller, which

then decides how to set the supply voltages of fully integrated per-core voltage regulators. While
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distributed DVFS controllers are certainly possible [WM15], the added complexity is probably

not warranted for smaller-scale systems. We propose using a simple lookup-table-based DVFS

controller to map activity information into appropriate voltage levels. The marginal-utility-based

analysis from the previous section along with estimated values for α and β can be used to create a

lookup table that performs generally well across a wide range of application kernels. For a 4B4L

system, there are five possible values for the number of active little (big) cores, including zero.

The lookup table would therefore include 25 entries. More sophisticated adaptive algorithms that

update the lookup tables based on performance and energy counters are possible and an interesting

direction for future work.

3.3.2 Work-Mugging

The goal of work-mugging is to preemptively migrate work from little cores to big cores dur-

ing the LP region. Our first-order modeling argues for using the big cores when possible during

the LP region, since bigger cores have a higher feasible performance limit. Previous theoretical

work [BR02] and abstract discrete-event modeling [JB02] have made the case for work-mugging,

although these past works did not propose a concrete way to actually implement work-mugging.

As with work-pacing and work-sprinting, an efficient implementation of work-mugging requires

lightweight changes to both the hardware and software.

We propose using fast user-level interrupts to enable one core to redirect the control flow of

another core. These user-level interrupts are essentially a simple implementation of previous ideas

on asynchronous direct messages [SYK10] and active messages [vECGS92]. A “mugger” can

use a new mug instruction to mug a “muggee”. The mug instruction takes two input values stored

in registers. One indicates which core to mug and the other contains the address of the user-

level interrupt handler. Other than the handler address, all data is communicated through shared

memory. This form of user-level interrupts requires a simple, low-bandwidth inter-core network

with approximately four-byte messages (see Figure 3.11).

We modify the AAWS runtime so that when a worker thread running on a big core enters the

work-stealing loop, it will attempt to steal work twice before considering work-mugging. If at

least one little core is active, then the big core selects a little core to mug using the mug instruction.

Each core’s runtime keeps information about that core’s activity and task queue occupancy in

shared memory, so that every core can easily determine which cores are active and which cores
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are waiting. The mugger and muggee store their user-level architectural state to shared memory,

synchronize at a barrier, and then load the other thread’s user-level architectural state. The overall

effect is that a big core begins executing a task which was previously executing on a little core,

while the little core enters the work-stealing loop. A subtle yet critical implementation detail

involves ensuring that a big core always executes the sequential part of the program after the

parallel region (i.e., logical thread 0). Otherwise, a little core can end up executing the serial

region. We modify the AAWS runtime so at the end of a parallel region, logical thread 0 checks to

see if it is running on a big core. If not, it simply uses a mug instruction to mug any big core.

While work-mugging can help preemptively move work from little to big cores, it can also

cause additional L1 cache misses as the task’s working set is gradually migrated. This overhead is

somewhat mitigated by the good locality properties of a work-stealing runtime and by the fact that

little cores do not mug work back from a big core during the LP region.

3.3.3 Serial-Sprinting and Work-Biasing

Instruction hints can also be used to inform the hardware of truly serial regions (as opposed to

an LP region which just happens to have one task remaining). An obvious extension is to allow

the DVFS controller to sprint the single active big core during these serial regions. Since this is a

relatively straight-forward optimization, we include serial-sprinting in our baseline work-stealing

runtime. Our application workloads have relatively short serial regions. So while serial-sprinting

does not hurt performance, it also does not offer much benefit (approximately 1–2%).

A simple non-preemptive scheme we call work-biasing involves preventing little cores from

stealing work unless all big cores are active. Work-biasing has the effect of “biasing” work to-

wards the big cores, but the non-preemptive nature of work-biasing means there are few oppor-

tunities to have a meaningful impact on the work distribution. Indeed, the prior theoretical work

on work-mugging also suggests the importance of preemption [BR02]. Even so, work-biasing can

sometimes have a small benefit (approximately 1%) and never hurts performance, so we include

work-biasing in our baseline work-stealing runtime.

We choose to include serial-sprinting and work-biasing in our baseline runtime to ensure that it

is as aggressive as possible, but this does mean our baseline runtime includes a very limited form

of asymmetry awareness.
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Technology TSMC 65nm LP, 1.0V nominal voltage

ALU 4/10-cycle Int Mul/Div, 6/6-cycle FP Mul/Div, 4/4-cycle FP Add/Sub

Little Core 1-way, 5-stage in-order, 32 Phys Regs, 333MHz nominal frequency

Big Core 4-way, out-of-order, 128 Phys Regs, 32 Entries IQ and LSQ, 96 Entries ROB,
Tournament Branch Pred, 333MHz nominal frequency

Caches 1-cycle, 1-way, 16KB L1I, 1-cycle 2-way 16KB L1D per core; 20-cycle, 8-way,
shared 1MB L2; MESI protocol

OCN Crossbar topology, 2-cycle fixed latency

DRAM 200ns fixed latency, 12.8GB/s bandwidth SimpleMemory model

Table 3.1: Cycle-Level System Configuration

3.4 Evaluation Methodology

We use a vertically integrated research methodology spanning software, architecture, and VLSI.

In this section, we describe our target system, applications, baseline runtime, cycle-level perfor-

mance modeling, and energy modeling.

3.4.1 Target System

Although much of our analysis is applicable to larger high-performance systems, we focus on

the smaller embedded systems that are already integrating static and dynamic asymmetry [Gwe14b,

Gwe14a, Dem13, Gwe13]. Table 3.1 includes details on the core microarchitectures and memory

system. We study two eight-core configurations: a 4B4L system with four big and four little

cores similar to commercial products [Gwe14b, Gwe14a] and a 1B7L system with one big core

and seven little cores. We target a 32-bit RISC architecture with 32 general-purpose registers

and hardware floating point. We specifically target an older technology (TSMC 65nm LP) and a

lower-frequency, single-issue, in-order little core for two reasons. First, we have our own VLSI

implementation of such a core and thus can pursue a more rigorous energy-modeling strategy (see

Section 3.4.5). Second, we have access to SPICE-level models of integrated voltage regulators

in this technology that help us to accurately estimate DVFS transition overheads. We expect the

high-level conclusions of our work to hold for high-performance target systems.
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3.4.2 Benchmark Suite

We have ported 20 C++ application kernels to our RISC architecture and work-stealing run-

time. These kernels are selected from the PBBS (v. 0.1) [SBF+12], PARSEC (v. 3.0) [BKSL08],

Cilk (v. 5.4.6) [FLR98], and UTS (v. 2.1) [OHL+06] benchmark suites and represent diverse

application-level characteristics (see Table 3.3). We include two datasets for qsort and radix, since

they exhibit strong data-dependent variability. bfs-d and bfs-nd capture the impact of deterministic

execution for the same problem. Determinism is a desirable trait that can mitigate the difficulties of

reasoning about both correctness and performance in complex systems [SBF+12]. We list MPKI

for each app, showing that our application kernels are fairly compute-bound. We select applica-

tions with varied parallelization methods. In addition to the conventional parallel_for construct,

our selections exhibit recursive spawn-and-sync parallelization as well as nested loop parallelism

(sampsort and uts). Most PBBS benchmarks parallelize execution with reserve-and-commit phases

to create determinism. For sptree and mis, we choose the non-deterministic versions which use

atomic memory operations to synchronize work. When running on our target systems, our appli-

cation kernels achieve respectable parallel speedup and yet vary widely in the number of tasks and

sizes of tasks. For detailed kernel descriptions, see [SBF+12, BKSL08, FLR98, OHL+06].

3.4.3 Work-Stealing Runtime

Work-stealing runtimes can be divided into several categories (e.g., language-based vs. library-

based, child-stealing vs. continuation-stealing). While we believe that our approach can be ap-

plied to various categories, in this work we choose to focus on a C++ library-based implemen-

tation similar in spirit to Intel TBB. We support syntax similar to TBB’s parallel_for and

parallel_invoke. Our runtime uses child-stealing and supports automatic recursive decom-

position of parallel loops (similar to Intel TBB’s simple_partitioner). We use non-blocking,

dynamically sized Chase-Lev task queues [CL05] and occupancy-based victim selection [CM08].

We have carefully optimized our runtime to minimize memory fences, atomic memory operations,

and false sharing.

We have compared the performance of our baseline runtime to Intel Cilk++ and Intel TBB

on five application kernels from PBBS running natively on an eight-core Intel x86 platform. We

use large datasets and many trials so that it takes ≈30 seconds to run one serial application. The
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Cilk++ TBB Baseline Baseline vs. TBB

dict 4.02 5.02 5.53 +10%
radix 7.05 4.87 5.58 +14%
rdups 3.96 4.36 4.54 +4%
mis 2.75 2.42 2.40 -1%
nbody 7.37 7.10 6.95 -3%

Table 3.2: Performance of Baseline Runtime vs. Intel Cilk++ and Intel TBB on Real System – Numbers are
speedups vs. scalar implementation. Cilk++ = original Cilk implementation of PBBS apps compiled with Intel C++
Compiler 14.0.2. TBB = ported PBBS apps using parallel_for with Intel TBB 4.4 build 20150928. Baseline =
ported PBBS apps using parallel_for with our baseline work-stealing runtime. Each configuration uses eight
threads running on an unloaded Linux server with two Intel Xeon E5620 processors.

Speedup

DInst Num Task Opt IO 1B7L 4B4L L2

Name Suite Input PM (M) Tasks Size (K) Cyc (M) ERatio O3 vs O3 vs IO vs O3 vs IO MPKI

bfs-d pbbs randLocalGraph_J_5_150K p 36.0 2588 14 113.2 2.8 2.2 2.3 5.1 2.9 6.5 14.8
bfs-nd pbbs randLocalGraph_J_5_150K p 58.1 3108 19 113.2 2.8 2.2 1.8 4.0 2.4 5.3 12.3
qsort-1 pbbs exptSeq_10K_double rss 18.8 777 24 26.1 2.5 1.7 2.8 4.7 3.2 5.4 0.0
qsort-2 pbbs trigramSeq_50K rss 20.0 3187 6 38.9 3.1 1.9 3.3 6.3 4.6 8.7 0.0
sampsort pbbs exptSeq_10K_double np 37.5 15522 2 26.1 2.5 1.7 2.5 4.2 3.0 5.1 0.11

dict pbbs exptSeq_1M_int p 45.1 256 151 101.5 2.8 1.7 4.0 6.9 5.1 8.8 7.0
hull pbbs 2Dkuzmin_100000 rss 14.2 882 16 31.6 2.1 2.2 3.4 7.5 4.4 9.8 6.0
radix-1 pbbs randomSeq_400K_int p 42.4 176 240 83.1 2.2 1.8 2.7 4.7 3.1 5.5 7.7
radix-2 pbbs exptSeq_250K_int p 35.1 285 123 56.6 2.1 1.8 2.8 4.9 3.1 5.5 7.5
knn pbbs 2DinCube_5000 p, rss 83.3 3499 23 139.3 2.8 1.7 6.0 9.9 7.0 11.5 0.02

mis pbbs randLocalGraph_J_5_50000 p 5.8 3230 2 11.6 3.6 2.3 3.8 9.0 4.3 10.1 3.5
nbody pbbs 3DinCube_180 p, rss 56.6 485 116 75.1 2.9 1.6 5.6 8.7 7.1 11.1 0.01
rdups pbbs trigramSeq_300K_pair_int p 51.2 288 156 108.4 2.6 1.7 3.5 5.9 4.2 7.1 7.6
sarray pbbs trigramString_120K p 42.1 2434 16 114.7 2.5 2.3 2.6 6.0 2.9 6.8 10.0
sptree pbbs randLocalGraph_E_5_100K p 18.9 482 39 57.2 2.8 2.1 3.0 6.3 3.5 7.3 4.9

clsky cilk -n 128 -z 256 rss 42.0 3645 11 70.4 2.4 1.7 5.1 8.6 6.2 10.5 0.02
cilksort cilk -n 300000 rss 47.0 2056 22 76.2 3.7 1.3 5.7 7.3 6.3 8.1 2.3
heat cilk -g 1 -nx 256 -ny 64 -nt 1 rss 54.3 765 54 64.9 2.3 2.1 4.2 8.8 5.7 11.7 0.04
ksack cilk knapsack-small-1.input rss 30.1 78799 0.3 25.9 2.4 1.9 2.3 4.3 2.7 5.0 0.0
matmul cilk 200 rss 68.2 2047 33 118.8 2.0 3.6 2.7 10.0 4.8 17.4 0.0

bscholes parsec 1024 options p 40.3 64 629 52.7 2.4 1.9 4.2 7.9 5.5 10.4 0.0
uts uts -t 1 -a 2 -d 3 -b 6 -r 502 np 63.9 1287 50 82.6 2.3 2.0 4.4 8.8 5.8 11.6 0.02

Table 3.3: Application Kernels – Suite = benchmark suite. Input = input dataset & options. PM = parallelization
methods: p = parallel_for, np = nested parallel_for, rss = recursive spawn-and-sync. DInsts = dynamic in-
struction count in millions. Num Tasks = number of tasks. Task Size = average task size in thousands of instructions.
Opt IO Cyc = number of cycles of an optimized serial implementation on an in-order core. ERatio = energy ratio of
the serial implementation on O3 over IO (i.e., α in Section 3.2.1). O3 = speedup of the serial implementation on O3
over IO (i.e., β in Section 3.2.1). 1B7L = speedup on one big and seven little cores. 4B4L = speedup on four big
and four little cores. L2 MPKI = L2 misses per one thousand instructions with the parallelized implementation and
baseline runtime on one core.
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speedup results over optimized serial implementations are shown in Table 3.2. Our runtime has

similar performance to Intel TBB and is sometimes slightly faster due to the fact that our runtime

is lighter weight and does not include advanced features like C++ exceptions or cancellations from

within tasks. Section 3.5 uses cycle-level simulation to show that our baseline runtime achieves

very reasonable speedups on both 4B4L and 1B7L systems. These real-system- and simulation-

based results provide compelling evidence for the strength of our baseline runtime. As mentioned

in Section 3.3.3, we also add serial-sprinting and work-biasing (limited forms of asymmetry aware-

ness) to our baseline runtime to ensure it is as aggressive as possible. Our AAWS runtime extends

this baseline runtime as described in Sections 3.3.1 and 3.3.2.

3.4.4 Cycle-Level Performance Modeling

We use the gem5 simulator [BBB+11] in syscall emulation mode for cycle-level performance

modeling of our target systems. Heterogeneous systems are modeled by combining modified

O3CPU and InOrderCPU models. We modified gem5 to toggle an activity bit in each core after

executing the hint instructions. We modified gem5’s clock domains and clocked object tick calcu-

lations to support dynamic frequency scaling. Cores can independently scale their frequency, but

we centralized control of all clock domains in a DVFS controller specialized for AAWS. As de-

scribed in Section 3.3.1, we model a lookup-based DVFS controller that maps activity information

into appropriate voltage levels. We use tables similar to those described in FG-SYNC+ [GTB+14].

We slightly modify this approach by separating little-core activity bits from big-core activity bits.

The number of active little cores and active big cores then maps to appropriate voltage levels ac-

cording to the marginal utility model.

We use SPICE-level models of integrated voltage regulators in this technology to accurately

estimate DVFS mode transition overheads. The transition time from 0.7 V to 1.33 V is roughly

160 ns with a sophisticated scheme as described in [GTB+14]. We model transition overheads

linearly with 40 ns per 0.15 V step in gem5 to capture the general trend, and we include this over-

head in our results. However, transitions happen infrequently with an average of 0.2 transitions per

ten microseconds across our benchmarks (maximum of 0.7). We ran a sensitivity study sweeping

transition overhead to 250 ns per step and saw less than 2% overall performance impact. Through-

out our experiments, we assume that cores can continue executing through the voltage transition
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at the lower frequency, and we also assume that new decisions cannot be made until the previous

transition completes.

We added support for the new mug instruction which can cause one core to initiate an interrupt

on another core. Specific overheads are difficult to isolate but are modeled in our simulators:

pipeline-flush overhead is captured through the gem5 interrupt-handling mechanism; register state

(32 GPRs, exception cause and EPC, thread-ID reg) swapping is done via memory in the exception

handler and captured through gem5 modeling of cache coherence and misses; instruction/data

cache migration overhead is captured the same way; we estimate the inter-core interrupt latency

to be on the order of an L2 access and thus add an explicit 20-cycle latency per-mug. Because

we use multithreaded workloads, we do not model TLB invalidations. Thread-swapping assembly

includes about 80 instructions of mugging assembly code. We observe that work-mugging happens

infrequently (less than 40 per million instructions) and that performance is generally insensitive to

work-mugging overheads. We ran a sensitivity study sweeping the interrupt latency to 1000 cycles

and saw less than 1% overall performance impact.

3.4.5 Energy Modeling

To help estimate energy of a little core, we developed a realistic RTL implementation of an in-

order, single-issue scalar core and L1 memory system. The RTL model is synthesized and placed-

and-routed using a combination of Synopsys Design Compiler, IC Compiler, and PrimeTime PX

with a TSMC 65 nm LP standard-cell library characterized at 1 V. Analysis of the placed-and-

routed design indicates each core is approximately 0.75 mm2 and can run at 333 MHz at 1 V. We

predict that more aggressive RTL and circuit design could increase this clock frequency by 2× or

more. We then ran a suite of 65 energy microbenchmarks that are each designed to measure the

energy used by various components in the core for each instruction. For example, the addiu energy

microbenchmark warms up the instruction cache (to isolate the energy solely due to the instruction

under test) and then executes 100 addiu instructions in sequence. We ran this microbenchmark on

the synthesized gate-level design to obtain bit-accurate traces that are fed into PrimeTime power

simulations for power estimates. Coupled with the cycle time of the placed-and-routed design, we

can calculate the energy per unit used by the addiu instruction.

We experimented with a purely McPAT-based energy model, but we had difficulty validating

the McPAT in-order energy model against our own VLSI results. Since we do not have access
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to RTL for an aggressive superscalar out-of-order processor, we used a hybrid approach. We run

the same energy microbenchmarks mentioned above on gem5’s in-order model to generate event

counts (e.g., register file reads, instruction cache accesses, integer ALU accesses). We then use our

VLSI implementation to carefully calculate the energy for each event. We have developed a simple

energy modeling tool which takes the event counts and our own component-level energy numbers

and produces a total energy estimate. We iterate to ensure that the overall energy of each energy

microbenchmark correlates between our VLSI implementation and our energy model. We then use

McPAT’s component-level models to estimate the energy of various structures within an out-of-

order core but not within an in-order core. Since the absolute energy numbers from McPAT and our

VLSI implementation do not necessarily match, we use the energy of a component that is present

both in our VLSI implementation and McPAT (e.g., the integer ALU or register file read access) to

normalize the McPAT component models. Finally, we account for pipeline register overhead and

leakage power. We then run our energy microbenchmarks on our VLSI implementation, the gem5

in-order model, and the gem5 out-of-order model, and generate detailed energy breakdowns for

every component. We carefully compare all breakdowns for each microbenchmark to ensure that

our energy model matches our intuition.

SPICE-level simulations were used to determine the relationship between frequency and volt-

age for our cores across different operating modes. We used nine delay stages consisting of multi-

ple FO4 loaded inverters, NAND, and NOR gates connected in a loop, such that the total delay in

the loop matches our RTL cycle time for a given voltage. We used the change in delay vs. supply

voltage as a model for core voltage-frequency scaling, and found the linear model described in

Section 3.2.1 to be a good fit. We use the first-order model developed in Section 3.2.1 to estimate

the energy as a function of DVFS scaling.

3.5 Evaluation Results

In this section, we evaluate the performance and energy efficiency of our AAWS runtime with

work-pacing, work-sprinting, and work-mugging against our baseline system.
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Figure 3.12: Activity Profiles for radix-2 on 4B4L – Execution times of (b), (c), and (d) normalized to (a). Each row
corresponds to a core’s activity (black strip) and DVFS operating mode (colored strip) over time. (a) baseline 4B4L
system; (b) applying work-pacing reduces HP region; (c) combining work-pacing and -sprinting reduces both HP and
LP regions; (d) the complete AAWS runtime with work-pacing, sprinting, and mugging reduces execution time by
24%.

3.5.1 Performance of Baseline Work-Stealing Scheduler

Table 3.3 provides detailed performance and energy statistics for optimized serial code running

on our single-core systems as well as for the parallelized versions running on our 1B7L and 4B4L

systems. The big out-of-order core shows reasonable energy efficiency overhead and speedup

compared to the little in-order core, similar to reported ratios collected by ARM during pre-silicon

design-space exploration [Gre11]. The 4B4L system strictly increases performance over the 1B7L

system, although we observe that the additional big cores do not always provide much performance

benefit. Figure 3.12(a) shows per-core activity of the baseline 4B4L system executing radix-2.

Notice that the execution time of radix-2 is limited by LP regions created by lagging little cores.

3.5.2 Performance Analysis of Work-Pacing, Work-Sprinting, and Work-Mugging

In this subsection, we evaluate the performance benefit of work-pacing, work-sprinting, and

work-mugging on both target systems. Figure 3.14 shows detailed execution time breakdowns for

the (a) 4B4L system and the (b) 1B7L system. Each group of bars represents a single application,

and bars incrementally add our techniques. To aid our evaluation, breakdowns within each bar

represent the time spent in the serial region (serial), the HP region (HP), and the LP region. The
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Figure 3.13: Activity Profiles for hull on 4B4L – Execution times of (b), (c), and (d) normalized to (a). Each row
corresponds to a core’s activity (black strip) and DVFS operating mode (colored strip) over time. (a) baseline 4B4L
system; (b) applying work-pacing reduces HP region; (c) combining work-pacing and -sprinting reduces both HP and
LP regions; (d) the complete AAWS runtime with work-pacing, sprinting, and mugging reduces execution time by
29%.

LP region is further broken down into three categories. First, we isolate the LP region within

which the number of inactive big cores is too few to mug all work. In this region, the number

of big inactive cores is fewer than the number of little active cores (BI<LA). Second, we isolate

the LP region within which inactive big cores can mug all work from little cores. In this region,

the number of big inactive cores matches or exceeds the number of little active cores (BI>=LA).

Lastly, we gather the remaining LP region in which mugging is not possible into a single "other LP"

category (oLP). The system with all of our techniques together is represented by base+psm. Note

that the bar with work-mugging alone (base+m) serves as a comparison point without marginal

utility techniques.

We evaluate work-pacing by comparing base+p to base. Work-pacing achieves reasonable

performance benefits despite all cores often being completely busy (i.e., in the HP region) simply

by applying a marginal-utility-based approach to the core voltages and frequencies. However,

optimizing instantaneous system throughput can either mitigate or exacerbate load imbalance with

realistic task sizes. For example, in the execution of sarray (4B4L), radix-1 (1B7L and 4B4L),

and hull (1B7L), benefits are outweighed by newly created lagging threads. Similarly, qsort-1

on 4B4L sees smaller benefit because although the small HP region is sped up, the critical big

core that generates new work is slowed down. Load balancing can also sometimes improve when
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Figure 3.14: Normalized Execution Time Breakdown – (a) 1B7L configuration; (b) 4B4L configuration. Each
group of bars represents a single application. First bar within each group is baseline with work-biasing and serial-
region sprinting (base). Additional bars incrementally add our techniques: work-pacing (base+p); work-pacing
and work-sprinting (base+ps); work-pacing, work-sprinting, and work-mugging (base+psm); work-mugging alone
(base+m). All execution times are normalized to the baseline (base), and speedup is printed above each bar. Kernels
are sorted by speedup for 4B4L base+psm from left to right. See Section 3.5 for breakdown explanations.

lagging threads are coincidentally eliminated, thereby reducing the LP region (e.g., radix-2 1B7L

and 4B4L, qsort-2 1B7L). With α ≈ 3 and β ≈ 2 (see Table 3.3), our analytical modeling suggests

up to 12% benefit in the HP region (see Figure 3.4). Our results suggest that although work-pacing

can sometimes achieve these predicted speedups, newly lagging threads can also limit the potential

benefit. We can significantly mitigate this effect by applying work-sprinting in the LP region.

We evaluate work-sprinting by comparing base+ps to base+p. Work-sprinting rests waiting

cores for power slack and then applies a marginal-utility-based approach to tune the voltage and

frequency of active cores within the LP region. Notice that applications with large LP regions (i.e.,

combination of BI<LA, BI>=LA, and oLP regions) have the greatest performance improvements

(e.g., qsort-1, radix-2, clsky, knn, sarray, qsort-2). Negative latency impacts from work-pacing

are also significantly reduced (e.g., sarray 4B4L, qsort-1 4B4L, radix-1 1B7L and 4B4L). Note

that radix-1 sees little benefit because all four big cores are busy in the LP region, and the resting

little cores do not generate enough power slack to sprint. Datasets can significantly impact the size

of LP regions. In particular, note that qsort-1 sorts an exponentially distributed dataset, making

tasks very short or very long and creating large LP regions that work-sprinting can then exploit.

Although work-sprinting allows little cores to sprint lagging threads, it is often optimal to move
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the work onto big cores and sprint the big cores when possible (i.e., BI>=LA regions). We add the

final AAWS technique, work-mugging, to take advantage of these opportunities for further benefit.

We evaluate work-mugging by comparing base+psm to base+ps as well as base+m to base.

Work-mugging helps the LP region by moving work from slow little cores to fast big cores. First,

notice that work-mugging eliminates all BI<LA and BI>=LA regions (i.e., all opportunities for

work mugging are exhausted). In general, the movement of work between cores can result in

smaller speedups (e.g., bscholes 1B7L, sptree 4B4L) as well as larger speedups (e.g., hull 4B4L,

radix-2 4B4L, sarray 1B7L). Work-mugging provides the greatest benefit on applications with

large BI>=LA regions, in which all work can be mugged onto fast big cores. Performance benefit is

more limited in the BI<LA region in which some work must be left executing slowly on little cores.

Although rarely the case, mugging overheads can cause minor slowdown. For example, qsort-1 on

1B7L experiences slight slowdown with base+m compared to base when many tiny tasks at the

end of the sort are quickly spawned and successively mugged onto the big core, incurring mugging

overhead each time.

Figures 3.12(b-d) show activity profiles for radix-2 executing on the 4B4L system (similar

plots for hull shown in Figures 3.13(b-d)). By comparing Figure 3.12(a) and (b), we can see that

during the HP region, the AAWS runtime tunes performance by raising the voltage of little cores

and lowering the voltage of big cores (also see Figure 3.13(a) and (b)). In Figure 3.12(c), we see

that the AAWS runtime rests waiting cores and then sprints the remaining active cores (also see

Figure 3.13(c)). Most of the leftover work in the LP region is executing on little cores, limiting the

performance benefit from work-sprinting. The little cores quickly reach their maximum voltage

and frequency and leave a large amount of power headroom unused. Finally, Figure 3.12(d) shows

work-mugging shifting tasks from little cores to big cores in the LP region for a total execution

time reduction of 24% (hull reduces by 29% in Figure 3.13(d)).

In summary, work-pacing can provide performance benefit in the HP region as suggested by our

analytical modeling, but due to realistic task sizes, the overall performance can vary widely when

applied alone. The benefits of work-sprinting and work-mugging depend heavily on the presence of

LP regions, which can vary with the application, the algorithm, and the dataset. Either technique

can be applied independently to improve performance in the LP region. However, when non-

ideal work-stealing schedules result in the presence of BI>=LA regions, work-sprinting and work-

mugging can complement each other to provide the largest speedups. Finally, work-mugging and
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DVFS transition overheads have minor performance impacts, likely due to the relative infrequency

of mugs and DVFS transitions.

3.5.3 Performance Versus Energy Analysis

Figure 3.15 shows detailed performance and energy efficiency results for the 4B4L system.

Notice that the general trend is higher performance and higher energy efficiency at similar power

(i.e., tracking the isopower line). A more sophisticated adaptive DVFS control scheme with perfor-

mance and energy counters could track the isopower line more closely, but a simple lookup-table-

based DVFS controller is less complex and can generally improve both performance and energy

efficiency with slight power variation. Figure 3.15(a) compares base, base+p, and base+ps and

shows that work-pacing alone can improve both performance and energy efficiency for many ap-

plications at similar power. Several applications suffer reduced performance and energy efficiency

due to the creation of lagging threads. Work-sprinting increases performance and energy efficiency,

mitigating the impact of lagging threads. Detailed energy breakdown data (not shown) suggests

that work-pacing and work-sprinting save energy because: (1) big cores execute at low-voltage

operating modes, and (2) slower big cores do less work, allowing work to be stolen and executed

on more energy-efficient little cores.

Figure 3.15(b) compares base, base+psm, and base+m. We show results for base+m as a

comparison point without marginal utility techniques. Detailed energy breakdown data suggests

that work-mugging significantly reduces the busy-waiting energy of cores in the steal loop, which

are operating at nominal voltage and frequency without work-sprinting. We therefore notice

that base+m improves both performance and energy efficiency. The complete AAWS runtime

(base+psm) provides the greatest improvements across all applications. The strengths and weak-

nesses of work-pacing, work-sprinting, and work-mugging complement each other to elegantly

adapt to diverse application-level behavior.

3.6 Related Work

While the MIT Cilk project helped recently popularize work-stealing [BL99,BJK+96,FLR98],

the general idea dates to at least the early 1980’s [BS84, RHH84]. There has been tremendous
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work over the past decade on work-stealing runtimes (e.g., optimized task queue implementa-

tions [CL05], alternative victim selection strategies [CM08, BM09], efficiently supporting reduc-

tion operations across tasks [LSL12]). However, very little work explores the interaction between

work-stealing schedulers and either static or dynamic asymmetry with a few notable exceptions.

Bender and Rabin proposed work-mugging as a way to migrate work from slow to fast cores

and analyzed the theoretical impact of work-mugging on performance [BR02]. Follow-up work by

Jovanović and Bender used high-level discrete-event simulation to explore the potential benefits

and overheads of work-mugging [JB02]. We build on this earlier work with a realistic imple-

mentation and a new context. Chronaki et al. propose a dynamic task scheduler with constrained

work stealing that attempts to schedule critical tasks to big cores [CRB+15]. This technique is

most effective in applications with low parallel slack. Costero et al. [CIOQ15] group a big and

little core together into a virtual core for the work-stealing runtime, and use a completely sepa-

rate customized scheduler within the virtual core. Chen et al. propose the workload-aware task

scheduler (WATS) which uses a combination of history-based task-execution-time prediction and

task affinity [CCHG12]. WATS demonstrates good performance but is relatively complex and uses

randomized victim selection in the baseline work-stealing runtimes. Previous work has shown the

benefit of occupancy-based victim selection [CM08]. Ribic et al. proposed a work-stealing runtime

that exploits dynamic asymmetry to improve energy efficiency, and they report reasonable energy

benefits with modest performance loss on a real system [RL14]. Our proposal is fundamentally
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different in that it focuses on improving both performance and energy efficiency by exploiting both

static and dynamic asymmetry.

There has been a wealth of research on scheduling for statically asymmetric systems [KTR+04,

KFJ+03, ARKK13, VCJE+12, JSMP12, JSMP13, LLK09, SMQP09, MWK+06]. Most closely re-

lated to our work are techniques that accelerate applications written with a thread-based parallel

programming framework [JSMP12,JSMP13,LLK09,SMQP09,MWK+06,CIOQ15]. For example,

Joao et al. propose bottleneck identification and scheduling which migrates programmer-identified

bottlenecks to big cores [JSMP12], Lakshminarayana et al. propose progress performance coun-

ters to accelerate lagging threads [LLK09], and Joao et al. propose utility-based acceleration to

accelerate both lagging and bottleneck threads [JSMP13]. These prior works focus on traditional

thread-based parallel programming frameworks as opposed to task-based frameworks based on

state-of-the-art work-stealing runtimes. They do not explore the interaction between static and

dynamic asymmetry.

DVFS is perhaps one of the most well-studied techniques for power management [BPSB00,

IBC+06, IM06, Dre11, JLB+15, SGS+14, GTB+14, KGWB08, EE11, BM09, MPT+12, LMH04,

CGR+08]. Most closely related to our own work are techniques that accelerate multithreaded

applications. For example, Miller et al. and Godycki et al. both propose instrumenting a tradi-

tional thread library to reactively sprint lagging threads in LP regions [MPT+12, GTB+14]. Cai

et al. and Bhattacharjee et al. use instrumentation or prediction to rest waiting threads and sprint

lagging threads [BM09, CGR+08]. While there are certainly similarities between this prior work

and AAWS, there are unique opportunities involved in exploiting static and dynamic asymmetry

within the context of a state-of-the-art work-stealing runtime.

Finally, some important work studies the tradeoffs between static and dynamic asymmetry, al-

beit with multiprogrammed workloads [LPD+14, AML+10, GRSW04]. Azizi et al. use a similar

marginal-utility-based approach to explore circuit/architecture co-design and the impact of voltage

scaling, but their work is purely within the context of VLSI design as opposed to adaptive schedul-

ing for runtime systems [AML+10]. Lukefahr et al. argue that heterogeneous microarchitectures

trump DVFS, but the study is within the context of a novel reconfigurable core (as opposed to static

asymmetry) and uses multiprogrammed workloads scheduled optimally offline [LPD+14]. A key

conclusion in these works is that heterogeneous microarchitectures can offer steeper utility curves,
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while DVFS offers a shallower tradeoff. We see the same tradeoff in Figure 3.3(a), and we exploit

this in our marginal-utility-based approach.

3.7 Conclusion

To our knowledge, this is the first work to explore the interaction between static asymmetry

(in the form of heterogeneous microarchitectures), dynamic asymmetry (in the form of fine-grain

DVFS), and work-stealing runtimes. We argue that work-stealing runtimes are a natural fit for man-

aging asymmetry, but we also argue that there are unique opportunities for an asymmetry-aware

work-stealing runtime. Through a mix of first-order modeling, numerical analysis, runtime soft-

ware development, architecture-level simulation, and VLSI energy modeling, we have attempted

to make the case that holistically combining static asymmetry, dynamic asymmetry, and work-

stealing runtimes can improve performance and energy efficiency in future multicore systems.
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CHAPTER 4
ULTRA-ELASTIC COARSE-GRAIN RECONFIGURABLE

ARRAYS

Chapters 2 and 3 focused on fine-grain voltage and frequency scaling for general-purpose cores.

This chapter narrows the focus to coarse-grain reconfigurable arrays (CGRAs). Here, I explore

fine-grain voltage and frequency scaling for each tile and memory subbank at reconfiguration

timescales, which may vary from hundreds of nanoseconds to milliseconds. CGRAs have become

increasingly popular as specialized compute fabrics due to their potential for high performance

while reducing control and data-movement energy. However, widespread industry adoption has

been limited due to the complexity of compiler scheduling algorithms that must optimize across

many constraints. Recent work on elastic CGRAs promises to significantly mitigate compiler-level

challenges with hardware-managed flow control. In this chapter, I propose ultra-elastic CGRAs

which capitalize on new opportunities in elastic CGRAs, enabling support for configurable per-tile

fine-grain power control and significantly improved dataflow efficiency.

4.1 Introduction

Emerging application domains including machine learning, self-driving vehicles, augmented

and virtual reality, and intelligence on the edge have increased the demand for energy-efficient spe-

cialized compute. Coarse-grain reconfigurable arrays (CGRAs) flexibly map dataflows to a spatial

array of simple processing elements (PEs) and communicate intermediate data directly between

PEs to reduce expensive data-movement energy in the memory hierarchy. CGRAs have been in-

vestigated with novel control schemes [PPA+13], novel network and routing [GHS11, GHN+12],

efficient data movement [PSC+19], in the context of near-DRAM compute [GK16], and many

others [VBP+16, BHME18, PPM09, FWC+18, wav18, OEPM09, MVV+03a, MVV+03b, ECF96,

SLL+00].

However, extracting optimal performance and energy efficiency from the vast compute re-

sources available in CGRAs remains a key challenge. The compiler is perhaps the most chal-

lenging aspect of CGRA optimization, as it must optimize utilization of the entire CGRA subject

to resource contraints [GK16,GHS11,GHN+12,OEPM09,BHME18], potentially support predica-

tion [GK16,GHS11,GHN+12], potentially adapt to dynamic timing behavior unknown at compile
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time (e.g., memory access latencies) [HIT+13], and minimize overheads across both space and

time. As a result, compiler complexity has long been an area of active research [MVV+03a,

MVV+03b, ECF96, SLL+00, OEPM09]. Despite the increasing popularity of CGRAs, these chal-

lenges have largely limited widespread industry adoption [KCC+12, wav18].

Recent work on elastic CGRAs [HIT+13] promises to significantly mitigate compiler-level

challenges with hardware-managed control flow at the cost of modest area, timing, and energy

overheads. Elastic CGRAs take a new approach based on latency-insensitive interfaces to deter-

mine control and data flow dynamically at runtime as operands become available at each tile. With

exact scheduling of operations no longer fixed in advance, complex scheduling is elegantly han-

dled with token propagation at the latency-insensitive interfaces. Other works integrate elasticity in

their interconnects as well [GHS11, GHN+12, FWC+18]. The architecture presented in [HIT+13]

demonstrated modest overheads (26% area overhead, 8% critical path overhead, and 53% energy

overhead) in exchange for significantly reduced compiler complexity, making a strong case for

elasticity as a key enabler for encouraging more widespread adoption of CGRA beyond academia.

Elastic CGRAs also open opportunities to explore new hardware techniques that can capital-

ize on their latency-insensitive interfaces. Specifically, fine-grain dynamic voltage and frequency

scaling (DVFS) can enable small elastic per-tile voltage and frequency domains, allowing chains

of connected tiles to “rest” at lower voltages and frequencies to save energy, while other chains of

connected tiles can “sprint” at higher voltages and frequencies to improve performance. Fine-grain

DVFS has already been demonstrated to improve both performance and energy for multicores in

academia [TCM+09, GTB+14, TWB16, KGWB08, LZW+15] and in industry [Kan13, MBH+14,
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Kan17]. However, enabling fine-grain DVFS at the PE level is not straightforward. Per-domain

fully integrated voltage regulators and PLLs would occupy more area than the PE, and common

alternative clocking schemes based on ring oscillators suffer from high phase noise. Furthermore,

the resulting asynchronous crossings add synchronization latency and require specialized exper-

tise, methodologies, and verification tools [Cum08]. Exponentially rising non-recurring engineer-

ing costs motivate a greater focus on mitigating verifiability challenges [KZVT17]. Previous work

has explored functional-unit-level fine-grain DVFS in various contexts, including within an out-of-

order processor [SAD+02], for inelastic CGRAs [JTH+13, JBH+13], for arbitrary logic partition-

ings [MYN+11], and for individual circuits in isolation [YCZ12]. However, many assumptions are

made (e.g., per-domain PLLs, asynchronous FIFOs, ignoring synchronization latency) that make

achieving both high performance and high energy efficiency a challenging prospect.

In this chapter, we propose ultra-elastic CGRAs (UE-CGRAs), a novel extension to elastic

CGRAs carefully co-designed with the elastic control circuitry to enable configurable per-tile fine-

grain DVFS with reasonable overheads. Figure 4.1 illustrates the vision for the UE-CGRA plat-

form. An example dataflow graph (DFG) with a simple parallel fork-join pattern is mapped onto

a 4× 4 UE-CGRA, which interconnects all tiles with elastic buffers (i.e., tiles wait for all of their

operands before firing). Unutilized tiles are power-gated as in previous literature [wav18]. Re-

maining tiles can be configured for different voltages and frequencies to execute the DFG more

efficiently. For example in Figure 4.1, data moves through the long path more quickly, enabling

the joining tile to fire several cycles earlier than would otherwise be possible. We propose carefully

designed ratiochronous interfaces and multi-rail power supplies to enable fine-grain DVFS at low

overhead. The rest of this chapter describes the complete UE-CGRA platform including the analyt-

ical model (Section 4.2), compiler support (Section 4.3), the architectural template (Section 4.4),

and the VLSI circuitry (Section 4.5) before evaluating our results.

This work makes the following five contributions: (1) a UE-CGRA analytical model for rapid

exploration of performance and energy trade-offs; (2) a UE-CGRA compiler with a simple two-

phase power configuration pass; (3) a UE-CGRA architectural template which implements the

UE-CGRA analytical model; (4) a detailed overview of the VLSI circuitry required for per-tile

fine-grain DVFS with reasonable overheads; and (5) an evaluation of the UE-CGRA design space

using a vertically integrated research methodology spanning register-transfer-, gate-, and transistor-

level modeling.
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4.2 UE-CGRA Analytical Modeling

We provide intuition for the ultra-elastic CGRA computational model using first-order ana-

lytical performance and power modeling. The analytical model is composed of a discrete-event

performance simulator modeling dataflow on the UE-CGRA computational model as well as a

first-order power model to estimate energy.

4.2.1 Discrete-Event Performance Model

We designed a simple discrete-event simulator that models the performance of a dataflow graph

(DFG) executing on both an elastic CGRA and an ultra-elastic CGRA.

Figure 4.2(a) illustrates a toy dataflow graph with thirteen nodes, two live-ins, one live-out,

and one cycle. Each node in the DFG “fires” when all of its input tokens have arrived along the

incoming edges. If any input token has not yet arrived, the node applies backpressure. The node

also stalls if the downstream node is not ready to accept a new token. As time advances, tokens

flow along the DFG until they exit the graph.

The discrete-event simulator models variation in performance by ticking nodes running at

higher voltages at higher frequencies and ticking nodes running at lower voltages at lower fre-

quencies. We model two-entry queues for each edge, and we also model wire delays (i.e., tokens

may only propagate after a cycle time of delay). Specifically, Figure 4.2(b) shows performance

estimates on the x-axis for a simple sweep over different voltage and frequency settings for each

node across all nodes in the DFG (see Section 4.6 for how we selected voltage-frequency pairs).

The circled point corresponds to a 1.4× speedup achieved by “sprinting” the six-node cycle, which

propagates the critical token more quickly. Note that non-critical nodes “rest” and include live-ins

and live-outs (representing SRAMs) and other operators.

Our performance model is able to execute more complex DFGs with multiple live-ins, live-

outs, parallel fork-joins, cyclic inter-iteration dependencies, and with many nodes. Note that any

details that impact mappability to a real CGRA (e.g., routing) are abstracted away. To more closely

model hardware, we restrict the number of incoming and outgoing edges to four for each node in

each direction. Note that we only model CGRAs with single-cycle operations. Compared to a

detailed hardware implementation, our simulator assumes that all nodes map to a unique tile and

that any tile can communicate with any other tile.
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Figure 4.2: UE-CGRA Intuition with Analytical Modeling – A toy dataflow graph is used to provide intuition on
UE-CGRA execution. (a) DFG with thirteen nodes, two live-ins, one live-out, and one cycle. (b) A simple sweep over
individual voltages and frequency settings across all nodes results in varying performance and energy efficiency.

4.2.2 First-Order Energy Model

Consider a CGRA array comprised of NT tiles of which NTA are configured active and NT I are

configured inactive. The CGRA has NS SRAM subbanks along the top and bottom perimeters of

which NSA banks are configured active and NSI banks are configured inactive.

We assume that frequency is a polynomial function of voltage (validated using circuit-level

simulation, see Section 4.6). The frequency of each active tile and SRAM subbank is:

fTAi = k1V 2
TAi + k2VTAi + k3 (i = 1,2, ...,NTA)

fSA j = k1V 2
SA j + k2VSA j + k3 ( j = 1,2, ...,NSA)

where k1, k2, and k3 are fitted parameters, fTAi is the frequency of tile i, VTAi is the voltage of tile i,

and so on.

We assume the throughput of an active tile or SRAM subbank is measured in iterations per

second (IPS) and that the throughput of any active tile or SRAM subbank is equal to the throughput

of the entire CGRA. This is valid because each token processed by the CGRA has visited each

active tile and each SRAM subbank exactly once. Tokens that flow along cyclic recurrence edges

do not count twice, as they represent inputs for the next iteration of computation:

IPSAi = IPCCGRA (i = 1,2, ...,NTA)
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Power estimation is intimately tied to both throughput and latency, and these parameters depend

on the dataflow in the DFG. We use our discrete-event performance simulator to estimate both

throughput and latency for the DFG. We later use this throughput estimate to calculate dynamic

energy, and we also use the latency estimate to calculate static energy. Note that these raw numbers

are never used in isolation. All analytical results are normalized and reported relative to another

design point.

The tile and SRAM subbank powers includes both dynamic and static power and are modeled

as:

PTAi = αi,op IPCCGRA fTAi V 2
TAi +VTAi IT,leak (i = 1,2, ...,NTA)

PSA j = αsram IPCCGRA fSA j V 2
SA j +VSA j IS,leak ( j = 1,2, ...,NSA) (4.1)

The factor αi,op is in the set {αmul,αadd,αsll,αsrl,αand,αcp0} and captures the relative energy

overhead of a tile executing the op operation at nominal voltage VN and nominal frequency FN

compared to a tile executing the mul operation at the same voltage and frequency. Note that αsram

is similarly defined relative to αmul .

We calculate the leakage current by assuming an architect targets leakage power to consume

a certain percentage (denoted as γ) of the total power of a tile executing a multiply at nominal

voltage and frequency.

γ =
VN IT,leak

αmul IPCCGRA fN V 2
N +VN IT,leak

(4.2)

We assume an SRAM bank’s leakage current is a multiplicative factor (denoted by β ) of the tile’s

leakage current.

IS,leak = β IT,leak (4.3)

We use PT I and PSI to refer to the power consumed by tiles and SRAM banks which are inactive.

We assume that these values are both zero, indicating that power-gated tiles consume no additional

power.

The total power is the aggregate power across all tiles and SRAMs:

Ptotal =
NTA

∑
i=1

PTAi +
NSA

∑
j=1

PSA j +NT I (PT I)+NSI (PSI) (4.4)
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4.2.3 Analytical Case Study

The analytical results shown in Figure 4.2(b) sweep different voltage and frequency settings

for each node across all nodes in the DFG using our analytical model. The energy for each node

is modeled with the specific operator running at a specific voltage and frequency. We make the

following assumptions for parameters in the UE-CGRA analytical energy model: k1 = -1161.6,

k2 = 4056.9, k3 = 1689.1, VN = 0.9 V, Vmin = 0.61 V, Vmax = 1.23 V, fN = 750 MHz, γ = 0.1, β = 2.0,

αsram = 0.82 (per 4 kB subbank), αmul = 1.0, αadd = 0.30, αsll = 0.37, αsrl = 0.35, αcp0 = 0.23,

αand = 0.30, αor = 0.33, αxor = 0.42, αeq = 0.23, αne = 0.23, αgt = 0.25, αgeq = 0.25, αlt = 0.25,

αleq = 0.25, αbps = 0.11. These parameters are derived from VLSI modeling for the target voltage

range and system described in Section 4.7.

The circled point combines sprinting and resting for 1.4× speedup and 1.2× energy efficiency.

Note that sprinting the six-node cycle increases energy, but resting non-critical nodes reduces en-

ergy (in particular, live-ins and live-outs represent power-hungry SRAMs). The results also suggest

that resting can enable 2.2× energy efficiency at similar performance.

4.3 UE-CGRA Compiler

In this section, we introduce the UE-CGRA compiler with a simple two-phase power configura-

tion pass. Figure 4.3 provides an overview of our LLVM-based compiler toolflow (see Section 4.6

for details). The compiler takes the C/C++ source code of a compute kernel without any mod-

ifications and generates a mapping onto a target UE-CGRA with a power mapping (i.e., DVFS

configurations for each tile). The UE-CGRA compiler internally leverages the UE-CGRA analyt-

ical model to determine the optimal DVFS modes (i.e., voltage and frequency pairs) for each tile.

Unused tiles are first power-gated as in previous literature [wav18]. We then apply the algorithm

described in Figure 4.4, which conducts the mapping and employs heuristics to achieve a worst-

case time complexity of O(NM) for N nodes and M possible power modes (e.g., rest, nominal,

sprint).

The algorithm first takes advantage of the producer-consumer relationship in dataflow graphs

and groups single chains of nodes (i.e., each node in the chain has one input and one output)

into a single logical power domain, significantly reducing the search space. The algorithm then
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Figure 4.3: UE-CGRA Compiler Flow – The UE-CGRA compiler builds from LLVM to compile simple C programs
iteratively into dataflow graphs. The generic dataflow graph is converted into a UE-CGRA dataflow graph targeting
the UE-CGRA architectural template. This DFG gets mapped to the physical UE-CGRA with concrete dimensions
and routing. Finally, a power mapping pass configures the voltages and frequencies with a performance target, an
energy efficiency target, or both.

1: procedure POWERMAPPING(N, T )
2: for each node n in N do
3: M(n) =V (′sprint ′)
4: end for
5: G = GroupNodes(N)
6: for each group g in G do
7: M(g) =V (′rest ′)
8: if MeasureEnergyDelay(CGRA)< 1.0 then
9: M(g) =V (′nominal′)

10: if MeasureEnergyDelay(CGRA)< 1.0 then
11: M(g) =V (′sprint ′)
12: end if
13: end if
14: end for
15: for each tile t in T do
16: ConstrainTileModes(t)
17: end for
18: ConstrainLeakageCrossings(CGRA)
19: end procedure

Figure 4.4: UE-CGRA Compiler Power Mapping Algorithm – The power mapping algorithm maps tiles to rest,
nominal, and sprint power modes. Heuristics are used to maximize energy-delay product with a preference for higher
performance. N = set of all nodes; T = set of all tiles; M(n) = power mode of node n; V (x) = voltage level for string x.

initializes each node n to a power mode M(n) at sprint voltage V (′sprint ′) before continuing with

the energy-delay-optimization phase and the constraint phase:

Energy-Delay-Optimization Phase – In this phase, the compiler considers each group of

nodes and tries to rest all nodes in the group for an improved energy-delay product. Since all

nodes are initialized to sprint, performance is already maximized and the compiler slowly trades

performance for greater factors of energy efficiency. The algorithm greedily attempts to rest first
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for the greatest potential energy-efficiency benefit before attempting nominal, and then rolling back

to sprint. The MeasureEnergyDelay() function estimates results using the analytical model. At

the end of this phase, we achieve a power mapping with an energy-delay product strictly greater

than that of the starting configuration.

Constraint Phase – The nodes in the DFG may fold onto the same physical tile and therefore

be limited to run at the same voltage and frequency. For example, a tile may execute a multiply with

two inputs while bypassing a third unrelated input to an adjacent tile (i.e., routing through a busy

tile). In this phase, the algorithm identifies all nodes mapped to tile t and chooses a single power

mode in the event of disagreement. The ConstrainTileModes() function implements a small

energy-delay optimization search across the options. Finally, the algorithm handles an additional

constraint on multi-voltage-domain crossings. Low-voltage domains may have significant leakage

current when interfacing with high-voltage domains or simply be unable to communicate (e.g.,

0.61 V to 1.23 V). The algorithm identifies such crossings and either increases the resting voltage

to nominal voltage (0.90 V) or inserts a new node at nominal voltage.

The algorithm in Figure 4.4 prioritizes performance by seeding the initial state to the maximum

performance point (i.e., all sprinting). A variation of the algorithm can also prioritize energy by

initializing all nodes to resting mode.

4.4 UE-CGRA Architecture

In the previous section, we introduced the UE-CGRA compiler flow that maps C programs

and produces configurations for a UE-CGRA instance. In this section, we describe the UE-CGRA

architectural template that composes tiles into a complete UE-CGRA. Figure 4.5(a-b) illustrate

the block diagram of a 4× 4 UE-CGRA and the components within a tile. The tile is carefully

architected to enable both compute and bypassing of data (i.e., routing) on the same cycle. The

design points include:

Input Queues – The input queues from each cardinal direction are not only elastic but are also

designed to interface correctly between two clock domains with known phase relationship (see

Section 4.5). Input queues are normal queues without bypass or pipeline behavior in order to break

the critical paths at the queue boundaries across the entire CGRA. Without pipeline behavior, the
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Figure 4.5: UE-CGRA Architecture and VLSI – Detailed block diagrams: (a) a 4× 4 UE-CGRA with 4 kB SRAM
banks; (b) a UE-CGRA tile contains input queues, muxing, an operator block, a configuration register, a multi-purpose
register (for accumulation and storing constants), a control unit with support for select functionality phi and branches
br. Supported operations: cp0, cp1, add, sub, sll, srl, and, or, xor, eq, ne, gt, geq, lt, leq, mul, phi, br,
nop. (c) Clock checker to detect safe and unsafe edges in ratiochronous clock-domain crossings; (d) Suppressor unit
to disable handshakes on unsafe cycles.

queues must have two entries in order to support full throughput when all tiles are communicating

on the same synchronous clock.

Multi-Purpose Register – A small single-entry register lives alongside the input queues and

can be used for various purposes including storing configured constants, accumulating values, and

implementing phi node behavior for recurrence edges (i.e., cycles in the DFG).

Muxing – Four input muxes select between the four input queues and the multi-purpose regis-

ter. These supply the operands for the compute operator as well as for two bypass paths. Bypassing

enables any input queue to forward data to any output, allowing messages to route through tiles

executing other operations. Five output muxes select between the compute operator output and

the bypass messages before forwarding the message towards one of the four cardinal directions or

towards the multi-purpose register.

Operator – The compute operator supports the following operations in a 32-bit datapath: cp0,

cp1, add, sub, sll, srl, and, or, xor, eq, ne, gt, geq, lt, leq, mul, phi, br, nop. These

operations include control flow (handled as data flow). The multiply operation truncates the upper

half of the result so that the inputs and outputs have identical bitwidths.

Phi Support – Phi nodes have the semantics of a flexible select operation and will fire when

either of two configured input messages arrive. Phi behavior is paired with a recurrence initializa-
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tion unit in the control unit which sends a single valid handshake immediately after reset. Together,

these enable tiles to initialize loops (i.e., cycles) with valid data (e.g., an iteration variable). Be-

cause tiles wait for inputs, if these inputs are not initialized, the tile will never fire.

Branching Support – Branches are decoupled from the branch condition computation. A

tile configured for a branch accepts a message and a select signal which determines whether the

message is redirected towards one output or towards another. The branch bit is tapped from one

operand which is then used as the condition. Note that all control flow is converted into data flow.

The complete UE-CGRA is illustrated in Figure 4.5(a) and is composed of a grid of UE-CGRA

tiles interconnected with queues. Tiles along the north and south perimeters of the array can ac-

cess SRAMs through memory adapters that convert elastic messages to and from SRAM requests.

The configuration phase leverages the existing data network to forward configuration messages

systolically through the array from top to bottom. When the correct messages have arrived at each

tile, the bits are flashed into the configuration registers. The UE-CGRA has 26 configuration bits

which fits within the bandwidth of an inter-tile message. If the configuration message has a larger

bitwidth than the datapath, the configuration phase can be serialized over multiple transactions.

4.5 UE-CGRA VLSI

The previous sections have built upon assumptions about VLSI support in the UE-CGRA plat-

form. In this section, we describe the UE-CGRA VLSI circuitry to enable per-tile fine-grain DVFS

with reasonable overheads. Figure 4.5(b-d) illustrate the primary components of our clocking

scheme.

Ratiochronous Clock-Domain Crossings – UE-CGRA tiles communicate synchronously over

ratiochronous clock-domain crossings. The ratiochronous design pattern enforces rational clock-

ing relationships across domains (e.g., frequency ratios of 1-to-3, 2-to-3). While less flexible than

a fully asynchronous approach, this requirement quantizes an otherwise infinite space of possible

clocking relationships, enabling industry-standard static timing analysis techniques to verify tim-

ing between domains. The ratiochronous family of cross-domain interfaces was initially proposed

by Sarmenta et al., who published the seminal paper on rational clocking for phase-aligned clock

domains [SPW95].
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Suppressor Unit – Ratiochronous crossings have phasic relationships that may require sup-

pression of “unsafe” edges. For example, clock edges at a 2-to-3 crossing repeat periodically at the

least common multiple of six. Many of these edges are not aligned and are therefore “unsafe” for

transmitting data. Because CGRA performance can be significantly affected by frequent periodic

stalling, we extend prior work with an elasticity-aware suppressor unit that enables safe crossings

in the presence of backpressure. Specifically, Figure 4.5(c) implements a traditional unsafe-edge

detector [SPW95] for each crossing between three potential clock domains. Figure 4.5(d) shows

how the empty signal from the input queues is used to implement two edge detectors that allow

handshakes on unsafe edges as long as data has been enqueued for longer than one local clock

cycle.

Bisynchronous Queues – We select a simple two-element bisynchronous normal queue to

interface between two tiles at different clock domains. Messages sent are source-synchronous,

meaning the writing clock is sent along with the data to be written. Because communication be-

tween same-clock-frequency tiles is common, the queue depth must be two elements even if clock

frequencies vary. Static timing analysis is applied assuming nominal frequency across all tiles.

Our design relies on suppressors to eliminate unsafe crossings at the architecture level, meaning

that ASIC tools do not need to address these concerns at the VLSI level. We specifically do not

use asynchronous queues as is assumed in most other literature [SAD+02, YCZ12, JTH+13], as

these complicate verification [Cum08] and add two-to-three-cycle synchronization latency penal-

ties which can significantly reduce performance in the context of a CGRA. Note that synchroniza-

tion latencies in asynchronous queues only appear when the queues are empty or full, but this is

precisely the common case in the context of a CGRA.

Clock Switchers and Dividers – We select between clocks within each tile with a traditional

glitchless clock switcher and generate rational clocks with traditional counter-based clock dividers

(e.g., divide by two, divide by three). Each of these units must be reset with a dedicated clock reset

before the global reset is deasserted. This enables the clock switcher to generate the first edges,

which are then used to reset the registers within the tile.

Multi-Rail Supply Voltages – The research community has studied fine-grain DVFS enabled

either through multi-rail voltage supplies [MPT+12,Dre11,TCM+09] or with fully integrated volt-

age regulators [JLB+15,SGS+14,KGWB08,GTB+14,FBB+15,TWB16,GSSK12,LZW+15]). In

this work, we select a traditional multi-rail supply scheme with three voltages. This enables fast
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br add sub and mul cmp or xor shl shr phi load store rec

latnrm 4 5 1 0 4 1 1 0 1 0 5 4 1 2
fft 1 10 3 0 4 1 0 0 0 0 1 4 4 1
susan 5 7 1 0 2 1 0 0 0 0 5 3 1 5
blowfish 3 8 0 4 0 1 3 3 0 3 3 5 1 2

Table 4.1: Benchmark Kernels – Operator decomposition for each kernel DFG, including the number of recurrence
edges (rec).

reconfiguration time on the order of nanoseconds [TCM+09], at the cost of increased pin count and

hierarchical power grid overhead. Because voltages in the UE-CGRA platform are only changed

at configuration time, inductive di/dt rush currents can be avoided by gradually scaling voltages in

multiple stages.

4.6 Methodology

We use a vertically integrated research methodology spanning software, architecture, and VLSI.

In this section, we describe our benchmarks, LLVM compiler details, architectural modeling, and

VLSI modeling.

4.6.1 Benchmarks

Table 4.1 lists the benchmarks we evaluate. For each benchmark, we list the operation compo-

sition with one operation per column. We also list the number of recurrence edges, representing

the number of inter-iteration dependencies in each kernel’s DFG. We map only the innermost loop.

Each of the benchmarks fits within our 8× 8 UE-CGRA.

4.6.2 Compiler

Our LLVM pass is implemented based on version 3.8.0. We generate a DFG for each kernel

and then structurally map the DFG onto the UE-CGRA. We implement a control dataflow graph

(CDFG) analysis pass to generate the CDFG (i.e., with both control and data dependency edges)

for each compute kernel. The CDFG is tuned (e.g., control-dependency edges are converted to

data-dependency edges) to generate a new DFG that contains only the set of operations supported
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by the UE-CGRA architecture. Our mapper then attempts to map the DFG onto the UE-CGRA ar-

chitecture. To be specific, we map one DFG node at a time onto an available tile in the UE-CGRA.

If a dependent DFG node is already mapped, a valid path to route the data dependencies is calcu-

lated using Dijkstra’s shortest-path algorithm. If a valid routing path is not found, we try to map

the DFG node onto other available tiles. Finally, if no tiles are left, the most recently mapped DFG

node will be re-mapped onto another tile and the process repeats until a valid mapping is reached.

4.6.3 Architecture and VLSI Modeling

We designed a parameterizable elastic CGRA (E-CGRA) and UE-CGRA within a productive

Python-based hardware modeling framework [LZB14, JIB18]. We designed the RTL within this

framework, translated to Verilog, and drove our testing with Python-based test harnesses. We

designed and imported Verilog for all clock-related circuitry in the design.

We then pushed each 8× 8 CGRA through an ASIC toolflow using a combination of Synopsys

and Cadence tools (i.e., Design Compiler, Innovus, PrimeTime PX, and VCS) targeting a TSMC

28 nm process. We ran synthesis, place-and-route, gate-level simulation, and power estimation. We

also ran SPICE-level simulations to help determine the relationship between voltage and frequency

for our process technology across different operating modes. We used 21 delay stages consisting

of multiple FO4 loaded inverters, NAND, and NOR gates connected in a loop, such that the total

delay in the loop matches our gate-level cycle time for a given voltage. We used the change in

delay vs. supply voltage as a model for tile voltage-frequency scaling.

4.6.4 Energy Modeling

We model energy for our 8× 8 E-CGRA and our 8× 8 UE-CGRA with simulation-driven gate-

level power estimation using Synopsys VCS and PrimeTime PX. We simulated each benchmark

separately on both the E-CGRA and the UE-CGRA gate-level model with the modified frequencies

at nominal voltage. We model the energy of the entire UE-CGRA with a collection of data from

both the E-CGRA and the UE-CGRA VLSI implementations. Specifically, this is accounted as

the sum of the energy of the E-CGRA tiles, the suppression logic, and the clock switcher in all

64 UE-CGRA tiles. We scaled each tile to the new voltage according to first-order power scaling

equations, re-accounted for leakage energy, and added global clock energy (which is not scaled to
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Figure 4.6: Tile Area vs. Cycle Latency – Tile areas of IE-CGRA, E-CGRA, and UE-CGRA across different cycle
time targets.

a different voltage). The gate-level simulation is driven by 100 iterations of randomized input data

for fft, susan, and latnrm, and 32 iterations for bf.

We also use simulation-driven gate-level power estimation for each CGRA tile (see Section 4.7.1)

and propagate these values back to the UE-CGRA analytical model as αop values.

4.7 Results

In this section, we evaluate ultra-elastic CGRAs against inelastic CGRAs and elastic CGRAs.

We compare tile area and energy before studying CGRA area and cycle time. We then illustrate

our UE-CGRA compiler mapping for each of our benchmarks along with their power configuration

mappings. Finally, we evaluate performance and energy for each benchmark comparing an 8× 8

E-CGRA and an 8× 8 UE-CGRA.

4.7.1 Tile Area and Energy

We evaluate the energy and area of a single IE-CGRA tile, E-CGRA tile, and UE-CGRA tile

in a 28 nm technology. Figure 4.6 illustrates the tile areas of IE-CGRA, E-CGRA, and UE-CGRA

across different cycle time targets. Area increases as expected for more aggressive cycle time

targets. In general, the E-CGRA tile and UE-CGRA tile are similar in size with a 14% and 17%

overhead over the IE-CGRA tile at a 750 MHz clock target (1.33 ns). Notably, the E-CGRA has

similar overheads over the IE-CGRA as studied in [HIT+13].
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Figure 4.7 shows the energy breakdown for an E-CGRA tile and a UE-CGRA tile across all

available operations. It also shows the area breakdown within each tile. On average, the UE-CGRA

tile consumes 21% more energy across all operations as compared to an elastic tile. The unsafe

clock-domain crossing suppression logic (field unsafe_gen and suppress in Figure 4.7), contributes

to a minimal 1.3% energy overhead compared to an E-CGRA tile. Figure 4.7 also breaks down area

overheads of each tile. Compared to an IE-CGRA tile with limited flow control, the UE-CGRA

tile requires an extra 17% area. The area for logic that implements new functionality (e.g., unsafe

crossing suppression) contributes only a small fraction. Instead, most of the area overhead comes

from the same flow control logic necessary in the E-CGRA tile, as is evidenced by the similar 14%

area overhead of an elastic tile over an inelastic tile.
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Figure 4.8: CGRA Layouts – CGRA layout for IE-CGRA, E-CGRA, and UE-CGRA targeting 750 MHz in
TSMC 28 nm.

4.7.2 CGRA Area and Cycle Time

Figure 4.8 shows the layout of the three 8× 8 CGRAs. The IE-CGRA has the smallest area

(463 µm by 463 µm) due to its simpler architecture and lack of flow control support. The E-CGRA

has slightly larger area (495 µm by 495 µm) with more flexible, hardware-managed flow control.

The UE-CGRA has an area overhead of 14% compared to an E-CGRA due to three global clock

networks, global clock dividers, and per-tile clock switchers and suppression logic.

All three CGRAs target a 750 MHz nominal clock frequency. The IE-CGRA meets the 750 MHz

target, while the E-CGRA and UE-CGRA meet 747 MHz and 708 MHz, respectively. The length

of the critical path grows as we add flow control and fine-grain DVFS functionality to the CGRA.

All three of our CGRA implementations can be more aggressively tuned for higher clock frequen-

cies.

4.7.3 Mapping Kernels

We map our application kernels to an 8× 8 UE-CGRA to evaluate the potential benefits for

both performance and energy. The UE-CGRA compiler power mapping algorithm assigns to each

tile one of three rationally related DVFS power modes: rest (0.61 V, 0.33× frequency), nominal

(0.90 V, 1.00× frequency), and sprint (1.23 V, 1.50× frequency). For reference, Figure 4.9 and

Figure 4.10 illustrate in detail how each operation is mapped to an 8× 8 UE-CGRA.
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Figure 4.10: Kernel DFGs Mapped to UE-CGRA – Detailed mappings for each kernel on an 8× 8 UE-CGRA.

4.7.4 Performance and Energy Efficiency

Performance and gate-level energy estimates are listed in Table 4.2 for the 8× 8 UE-CGRA

relative to the baseline 8× 8 E-CGRA with all tiles running at nominal voltage and frequency. The

results leverage the UE-CGRA compiler with the power mapping algorithm directed to prioritize

energy. Our evaluation shows that an 8× 8 UE-CGRA is able to improve energy efficiency by

up to 2.18× over an 8× 8 E-CGRA on the selected kernels. The energy-optimizing DVFS strat-

egy identifies tiles on non-critical paths that process transactions only once every few cycles and

configures these tiles to rest at lower voltages and frequencies while still (slowly) computing.

Performance estimates for the throughput-optimizing DVFS strategy are listed in Table 4.3.

These results show that the 8× 8 UE-CGRA can improve throughput over the 8× 8 E-CGRA by up

to 1.48× across our benchmarks, which matches our intuition for similar DFGs from Section 4.2.
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Analytical Model VLSI Model
Perf E.Eff Perf E.Eff

fft 1.00 1.85 0.98 2.04

susan 1.00 1.31 0.99 1.58

latnrm 1.00 1.80 0.90 2.18

bf 0.99 1.41 0.87 1.67

Table 4.2: Energy-Optimized UE-CGRA Results – Performance and energy efficiency of the energy-optimizing
DVFS strategy on the 8× 8 UE-CGRA normalized to the 8× 8 E-CGRA. Results are shown for each kernel with both
the analytical model estimate and running on the UE-CGRA VLSI implementation with gate-level energy estimation.

Analytical Model VLSI Model
Perf Perf

fft 1.46 1.44

susan 1.50 1.48

latnrm 1.49 1.35

bf 1.48 1.44

Table 4.3: Performance-Optimized UE-CGRA Results – Performance for the throughput-optimizing DVFS strategy
on the 8× 8 UE-CGRA normalized to the 8× 8 E-CGRA. Results are shown for each kernel with both the analytical
model estimate and running on the UE-CGRA VLSI implementation.

Figure 4.10 shows how the UE-CGRA sprints tiles on the critical path to accelerate the throughput

of the entire dataflow graph. Both the analytical and VLSI results include startup overhead (i.e.,

the time for the first token to propagate through the DFG) and the performance is therefore slightly

less than the expected 1.5× .

4.8 Related Work

Reconfigurable spatial architectures are an active area of research [GHN+12, GHS11, GK16,

PPA+13,VBP+16,BHME18,PPM09,FWC+18,wav18,OEPM09,MVV+03a,MVV+03b,ECF96,

SLL+00]. Well-known CGRAs include ADRES [MVV+03b], RaPiD [ECF96], and MorphoSys [SLL+00].

While some literature focuses on static CGRAs with single-functionality tiles, the majority of tra-

ditional CGRA research focuses on dynamic CGRAs which reconfigure tile functionality at run-

time [OEPM09, PPM09] with dedicated scheduling algorithms [MVV+03a]. More recently, less

traditional CGRAs have become popular including the DySER architecture with circuit-switched
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interconnection [GHS11, GHN+12], the triggered instructions paradigm [PPA+13], the HRL ar-

chitecture which combines CGRA datapaths with FPGA-inspired control hardware in the context

of near-DRAM compute [GK16], and CGRAs targeting vision, object detection, and learning ap-

plications [VBP+16,BHME18,FWC+18,wav18], including in industry [wav18]. The tremendous

flexibility of CGRAs and the importance of reducing data movement energy [PSC+19] promises a

continuing interest in the CGRA space in multiple research communities.

Fine-grain DVFS has been studied with multi-rail voltage supplies [MPT+12,Dre11,TCM+09]

and with fully integrated voltage regulators [JLB+15, SGS+14, KGWB08, GTB+14, FBB+15,

TWB16,GSSK12,LZW+15]). Kim et al.’s initial system-level analysis of per-core DVFS sparked

significant interest in the architecture community based on the energy-saving potential of per-

core regulators [KGWB08]. While the majority of works prioritized saving energy, Godycki

et al. proposed leveraging the power headroom from resting inactive cores to sprint active ones

for performance [GTB+14]. Torng et al. proposed a similar scheme targeting work-stealing

runtimes based on specialized knowledge of steal loop activity from hints embedded in the run-

time [TWB16]. These works primarily explored fine-grain DVFS at the core granularity where

per-domain regulators and PLLs might still be practical. Dreslinski explored multi-rail fine-grain

DVFS to mitigate the performance loss of near-threshold compute [Dre11]. Truong et al. built a

167-processor array with per-core DVFS and provided a detailed account of the multi-rail sup-

plies with power switches [TCM+09]. Interest in per-core DVFS is also increasing in indus-

try [Kan13, MBH+14, Kan17].

There have been relatively fewer works that explore fine-grain DVFS at the PE level. Semeraro

et al. [SAD+02] explored fine-grain DVFS across subunits of an out-of-order processor. They

assumed asynchronous FIFOs and per-domain PLLs, both of which are likely to be intractable for

CGRAs with very small domains. Jafri et al. [JTH+13] explored fine-grain DVFS for CGRAs

targeting parallel application kernels mapped onto different partitions of the CGRA, running each

full kernel at a different power mode. They configure the PEs themselves into dedicated tiles

running synchronizer logic. Muramatsu et al. [MYN+11] explored fine-grain DVFS for a RISC-V

core partitioned into a 6× 7 grid, with each partition running at the lower of two voltages until a

canary circuit signals a timing violation warning. Jafri et al. [JBH+13] explored a ratiochronous

design approach in the context of CGRAs, but they focused their study on power and energy and
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not on performance. They again configure PEs into synchronizers, and they do not explore the

characteristics of elasticity.

There is a long history of research on GALS systems [Cha84, GOK+06, TGL07, IM02]. The

most well-known GALS implementations were based on a pausible-clocking scheme with per-

domain ring oscillators. The chips built at ETH Zurich were particularly well-known for this ap-

proach [GOK+06]. Intel has experimented with a mesochronous GALS chip with 80 tiles running

at the same frequency but with unknown phase [VHR+07]. More recently, NVIDIA’s research

team designed a spatial accelerator with GALS domains enabled by pausible bisynchronous fi-

fos [KKV+18].

The ratiochronous family of cross-domain interfaces was initially proposed by Sarmenta et al.,

who published the seminal paper on rational clocking for phase-aligned clock domains [SPW95].

Chabloz et al. continued exploring rational clocking and focused particularly on the case without

phase alignment as an alternative approach to fully asynchronous GALS [CH09, CH10b, CH10a,

Cha12, CH13]. Mekie et al. explored utilizing knowledge of the protocol to detect when data

would not be transmitted, using this extra information to simplify the design of the ratiochronous

interface. These works focused on the interface and communication mechanisms rather than archi-

tectural implications. The work most similar to this work in terms of the approach to ratiochronous

design was proposed by Yadav et al. [YCZ12], who proposed a similar scheme of phase-aligned

ratiochronous blocks dynamically supplied with PMOS power switches to enable fine-grain DVFS.

Their approach primarily focused on single blocks in isolation and did not explore ratiochronous

communication across multiple blocks, and they also assumed asynchronous FIFOs for correct

interfacing. Our work differentiates by (1) avoiding the use of asynchronous FIFOs, (2) reorganiz-

ing the clock generation scheme to preserve phase relationships across domains, (3) relaxing the

restrictive requirement for the critical path to run at PLL clock frequency, and (4) leveraging static

timing analysis across clock domain crossings. Another closely related work for the approach to ra-

tiochronous design is the RIRI scheme, which also generates rational clocks with a counter-based

circuit and which also focuses on communication across phase-aligned boundaries [WWFY11].

However, their interface circuits were not designed to handle sophisticated communication micro-

protocols. They also restricted the fast clock domain to meet timing with the PLL clock, which our

work does not require, and they do not consider power-supply challenges.
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4.9 Conclusion

This work explored the potential of UE-CGRAs to better orchestrate dataflow for improved

performance and energy efficiency. We demonstrated that co-designing the compiler, architecture,

and VLSI can enable UE-CGRA tiles to sprint through bottlenecks in portions of the DFG while

resting tiles that execute less critical paths. We showed that careful VLSI design can preserve strict

latency requirements between tiles and mitigate leakage concerns. Overall, UE-CGRAs promise to

make CGRAs even stronger candidates for energy-efficient specialized compute that can flexibly

target many emerging application domains.
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CHAPTER 5
SILICON PROTOTYPING WITH FINE-GRAIN VOLTAGE

AND FREQUENCY SCALING

The previous chapters explored fine-grain power-control techniques with analytical model-

ing, cycle-level modeling, RTL modeling, gate-level modeling, and SPICE-level modeling. This

chapter describes my work on four silicon prototypes to support various aspects of my thesis. I

tested two of these prototypes in our digital ASIC/FPGA prototyping lab, with the other two chips

tested by collaborators. The chips include a mixed-signal test chip and three digital ASIC test

chips. Of these chips, I was the project lead for two chips (BRGTC1 in IBM 130 nm [TWS+16]

and BRGTC2 in TSMC 28 nm [TJAH+18]) and Cornell University student lead for the DARPA-

funded, multi-university project on developing the Celerity SoC in TSMC 16 nm [AAHA+17,

DXT+18, RZAH+19]. For the DCS test chip, I helped with full-custom design and also worked

on the post-silicon testing process [BTG+17]. Figure 5.1 shows a timeline of these four silicon

prototypes in the scope of my PhD career.

For each silicon prototype in the following sections, I will describe what the artifact is, what

the research purpose is, how the chip connects to my thesis research, and my role in the project.

5.1 Dynamic Capacitance Sharing (DCS)

The DCS mixed-signal test chip contains four monolithically integrated switched-capacitor

DC-DC converters in 65 nm CMOS. The tapeout was led by Waclaw Godycki and Ivan Bukreyev

from Professor Alyssa Apsel’s research group. Figure 5.2 shows an annotated chip plot. The final

characterization of the test chip was published in the IEEE Transactions on Circuits and Systems I

(IEEE TCAS I) [BTG+17].

5.1.1 Research Purpose

The purpose of the DCS test chip was to directly implement and characterize the voltage reg-

ulator designs that support reconfigurable power distribution networks as presented in Chapter 2,

which was completed entirely in simulation with cycle-level modeling, RTL modeling, VLSI mod-

eling, and SPICE-level modeling. DCS is an acronym that stands for dynamic capacitance sharing,

describing the novel circuits technique for dynamically sharing small units of capacitance across
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2014
2016

2018
2017

DCS (2014)
TSMC 65nm

1mm x 2.2mm
[TCAS'18, MICRO'14]

BRGTC1 (2016)
IBM 130nm
2mm x 2mm

[Poster at
HOTCHIPS'16]

Integrated
Voltage Regulation

Python-Based
Hardware Modeling

Start of PhD
2012

End of PhD
2019

Celerity (2017)
TSMC 16nm FinFET

5mm x 5mm
[IEEE-MICRO'18

CARRV'17, HOTCHIPS'17]

Methodologies for
Rapid ASIC Design

BRGTC2 (2018)
TSMC 28nm

1mm x 1.25mm
[WOSET'18, RISCV'18]

Task-Based
Parallel Runtimes

Figure 5.1: Timeline of Silicon Prototypes – Four silicon prototypes that support my thesis research and how they
were published. DCS is a mixed-signal test chip supporting Chapter 2, and BRGTC1, BRGTC2, and Celerity are
digital ASIC test chips that inspire Chapter 4 as well as future research directions.

Figure 5.2: DCS Test Chip – Four monolithically integrated switched-capacitor DC-DC converters in 65 nm CMOS
demonstrating the dynamic capacitance sharing technique.

multiple on-chip switched-capacitor voltage regulators for significantly reduced on-chip area and

order-of-magnitude faster voltage transition times. The test chip has sixteen clusters and four reg-

ulator control loops and is fabricated in 65-nm bulk CMOS.

The primary goal for a system of DCS converters is to enable a wide range of output voltages

at high efficiency to multiple loads. Our chip characterization results show that these goals were

achieved. For a 2.3 V input, the fabricated DCS converters achieved 0.742 V at 38.1 mA to 1.367 V

at 298 mA output with peak efficiency of 70.9% at 550 mW/mm2 power density. Regulator area

for the four-load network was reduced by up to 70% when operating under a power constraint

compared with the stand-alone per-load regulators capable of supporting an equivalent range of

operating voltages. In short, our DCS converters achieved efficiency competitive with the state of

the art [See09] with the additional desired functionality.
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These silicon results confirm the potential for applying the ideas presented in Chapter 2 to real

systems. On this project, I was in charge of the full-custom layout for the digital control blocks

that interconnect all reconfigurable clusters. I also worked on post-silicon validation at the bench

to characterize the chip.

5.1.2 Chip Details

The majority of the chip area is dominated by the sixteen reconfigurable clusters. Each cluster

has an area of 0.0766 mm2. Switches, drivers, and flying capacitance occupy 90% of the cluster

area, while DCS-specific circuitry occupies 9.4%, with the power demux (5.9%) and clock genera-

tion unit (2.6%) as the major components. Aside from the clusters, the loads and control loops are

also annotated. Each on-chip load is comprised of a 3-bit thermometer-encoded NMOS transistor

bank and a parallel MOS capacitor of about 377 pF. Varying the number of connected parallel

transistors from zero to seven allows rapid load current steps. Each control loop selects one of

the four off-chip reference voltage biases through an analog mux. At runtime, any control loop

can rapidly switch between any of the available reference voltage biases. Cluster allocation, load

configuration, and reference voltage bias selection are all controlled by an on-chip serial periph-

eral interface and can be reconfigured at runtime, emulating a global DVFS controller. Cluster

allocation configurations are programmed off-chip and stored in registers in each cluster, allowing

configuration change on the fly for transient measurements.

To summarize, we found that DCS converters are well-suited for on-chip integration with mul-

tiple DVFS-enabled loads. We show that for cubic power scaling under a power constraint, DCS

can reduce required energy-storage area by up to 70%. For a given fixed area, DCS VRs can in-

crease the range of efficient output voltage regulation while simultaneously improving transient

response times.

5.2 Batten Research Group Test Chip 1 (BRGTC1)

BRGTC1 is a 2×2 mm 1.3 M-transistor test chip in IBM 130 nm designed using PyMTL, a

Python-based hardware modeling framework developed by my colleagues within my research
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Figure 5.3: BRGTC1 Chip Plot and Die Photo – A 2×2 mm 1.3 M-transistor test chip in IBM 130 nm designed
and implemented using our new PyMTL hardware modeling framework. The chip includes a simple pipelined 32-
bit RISC processor, custom LVDS clock receiver, 16 KB of on-chip SRAM, and application-specific accelerators
generated using commercial C-to-RTL high-level synthesis tools.

group (see [LZB14, JIB18]). Figure 5.3 shows an annotated chip plot and a die photo of the chip.

This work appears as a Hot Chips 2016 student poster [TWS+16].

5.2.1 Research Purpose

The research purpose of the chip was to silicon-validate PyMTL-generated RTL. PyMTL brings

compelling productivity benefits to hardware design and verification. The key idea of the frame-

work is to embed a hardware design language within the high-level Python host language and then

to leverage Python’s powerful features (e.g., parameterization, reflection) as well as access to rich

libraries (e.g., full-featured software testing frameworks) to rapidly design, verify, and compose

hardware. See the PyMTL publications from my research group for more details [LZB14, JIB18].

We designed this chip with the second version of PyMTL, but PyMTL3 is available.

This project concluded with successful post-silicon testing of the chip, indicating that our

PyMTL-driven pre-silicon design methodology was robust enough for future research and helping

to provide insight into new ways to make PyMTL more useful for hardware design. Our design

methodology (see Figure 5.4) uses PyMTL not only for design but also for composition with a

commercial high-level synthesis (HLS) toolflow. The PyMTL RTL design is translated to Ver-

ilog RTL to target both a Xilinx-based FPGA backend and a Synopsys-based ASIC backend. The

PyMTL testing framework features integration with mature, full-featured software testing tools

(e.g., pytest). PyMTL-based testing enables using the same test vectors to validate the PyMTL
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Figure 5.4: BRGTC1 Detailed Pre-Silicon Methodology

FL/CL/RTL designs, the Verilog RTL, the programmed FPGA logic, the post-synthesis gate-level

netlist, the post-PAR gate-level netlist, and even the fabricated chip itself. These benefits worked

to reduce the friction across different levels of verification and continued to be useful even dur-

ing post-silicon testing. The PyMTL framework enabled our small team to iterate very rapidly,

pushing the design from RTL to layout (and validated gate-level netlist) in less than a day.

The insights I gained from this silicon prototyping experience greatly contributed to my ap-

proach in addressing the VLSI-specific research challenges in Chapter 4. As a project lead, I was

involved from architecture through to silicon and was also involved in the FPGA emulation, at the

mixed-signal interface (i.e., for the full-custom clock receiver), and at the bench.

5.2.2 Chip Details

In this subsection, I detail our experimental setup and our post-silicon measurements for both

performance and power.

Post-Silicon Experimental Setup – Figure 5.5(a) shows our bench setup with the equipment

we used to run simple programs on BRGTC1 with and without hardware acceleration. We pack-

aged BRGTC1 in a PGA package (CPG08462) and inserted the packaged die into our custom
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Figure 5.5: Experimental Setup – (a) The ATDB2 test card mounts a PGA-packaged BRGTC1 die and is externally
powered, clocked, stimulated with test vectors from a pattern generator, and probed with a logic analyzer; (b) The
BRGTC1 block diagram shows how messages are sent through the host2chip and chip2host ports (both are eight-
bit asynchronous req/ack channels), are synchronized and deserialized by the host interface, and are then routed
towards the core or SRAM banks.

Parameter Value

Die Dimensions 2×2 mm
Transistor Count 1.3 M
Technology IBM 130 nm

Static Timing Freq 246 MHz

Parameter Measurement

Core Voltage 1.2 V
IO Voltage 2.5 V

Static Power 0.97 mW
Idle Power 1.66 mW

Table 5.1: System Parameters and Post-Silicon Resting Measurements

ATDB2 test card in a PGA zif socket (3M5067-ND). The ATDB2 test card is externally clocked

with a Stanford Research Systems CG635 clock generator and is externally powered by an Agilent

N6705B DC power analyzer. The power analyzer supplies both IO and core voltage levels. Finally,

we program the Agilent 16822A pattern generator to provide test stimulus to the chip (e.g., writing

programs to SRAM, communicating with the core), and we also use its logic analyzer capabilities

to probe the requests and responses. All messages pass through the two eight-bit asynchronous

host2chip and chip2host channels. The architectural block diagram in Figure 5.5(b) illustrates

both channels and the internal chip connectivity.

Post-Silicon Resting Measurements – Table 5.1 lists the system parameters and resting mea-

surements of the chip. The static and idle power are measured at the nominal IO and core voltages

at room temperature. The static power was measured with all inputs (including the clock) grounded
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(a) (b)

Parameter Measurement

Experiment Clock Frequency 20 MHz

Dataset Size 2000 integers
Dataset Distribution uniform random

SW Sort Power 3.28 mW
SW Sort Performance 2.23 s
SW Sort Energy 7.32 J

HW-Accel Sort Power 3.13 mW
HW-Accel Sort Performance 0.42 s
HW-Accel Sort Energy 1.32 J

(c)

Figure 5.6: Case Study for Hardware-Accelerated Sorting – BRGTC1 tightly couples a general-purpose core with
an HLS-generated bubble-sort accelerator. (a) Power measurement for software-only sort; (b) Power measurement for
hardware-accelerated sort; (c) Measured case study parameters and calculations.

chip2host_req

chip2host_ack

chip2host_msg

reset

debug

host2chip_msg

host2chip_ack

host2chip_req

Request Message Sent to Chip

Response Acknowledgement from Chip

Figure 5.7: Messages Captured by Agilent 16822A Logic Analyzer – A serialized message is transmitted to the
chip over the eight-bit asynchronous channel using four-phase req/ack handshakes, and the chip generates an acknowl-
edgement message in response with additional handshakes. These specific messages correspond to an SRAM write of
program code and a write acknowledgement from the chip.

and with reset asserted beforehand. The idle power was measured with all inputs grounded but

while driving the clock at 20 MHz and after releasing reset. The core has a freeze bit which keeps

the pipeline frozen during this measurement. The idle power therefore represents mostly clock tree

power and logic that was not clock-gated.

Post-Silicon Accelerator Case Study – BRGTC1 tightly couples a general-purpose core with

an HLS-generated bubble-sort accelerator (see Figure 5.5(b)). This presents the opportunity to

measure the performance and energy of a sorting microbenchmark with and without hardware

acceleration. The case study sorts a uniform-random distribution of 2000 integers filling roughly

8 kB of the on-chip SRAM.
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The software-only sorting microbenchmark is hand-coded in assembly and programmed into

the on-chip SRAM. The core is then released from freeze state to begin computation.

The hardware-accelerated sorting microbenchmark includes special accelerator instructions

that the core uses to write two messages to the accelerator’s internal register space. One message

indicates the starting address of the data and the other is the number of integers to sort. Then the

core blocks until it receives a done signal from the accelerator. The accelerator communicates

directly with memory through the memory arbitration unit and raises its done signal after the

sorting is complete.

The signal waveforms shown in Figure 5.7 are probed from the chip interface within the ATDB2

test card by the Agilent 16822A logic analyzer. The waveforms show a request and a response

message on the eight-bit asynchronous host2chip and chip2host channels. On the request side,

ten four-phase handshakes are required to send the full 80-bit request message, and on the re-

sponse side, seven handshakes are required for the chip to acknowledge with a 56-bit response

message. The logic analyzer allows very detailed observation of the activity at the chip interface.

For example, these specific messages correspond to an SRAM write of program code (and a write

acknowledgement from the chip) for the software-only sorting microbenchmark just before the

core is released from its initial frozen state to begin execution. The logic analyzer has also been

used to inspect many other messages to verify this case study.

We measured power for this case study with the Agilent N6705B DC power analyzer. The

two power waveforms in Figure 5.6 show (a) the software-only bubble sort and (b) the hardware-

accelerated bubble sort. Both scope views have the same scales at 2 mW/div and 500 ms/div, and

it is clear that the hardware-accelerated sort completes more quickly. Figure 5.6(c) lists precise

measurements for performance and power of the two sorts as well as the calculated energy. The

hardware-accelerated sort achieves roughly 5.3× speedup and 5.5× lower energy compared to the

software-only sort.

The insights I gained from this silicon prototyping experience greatly contributed to my ap-

proach in addressing the VLSI-specific research challenges in Chapter 4.
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5.3 Batten Research Group Test Chip 2 (BRGTC2)

BRGTC2 is a small 1×1.25 mm 6.7 M-transistor RISC-V system in TSMC 28 nm. Like BRGTC1,

BRGTC2 is also designed and implemented using PyMTL, our group’s new Python-based hard-

ware modeling framework developed by my colleagues [LZB14, JIB18]. Figure 5.8 shows an

annotated chip plot and a die photo of the chip. A workshop paper about BRGTC2 was published

at the MICRO 2018 RISC-V Day Workshop in Fukuoka, Japan [TJAH+18].

5.3.1 Research Purpose

The first research purpose of this chip was to silicon-validate PyMTL-generated RTL once

again in a more advanced technology node. The second research purpose was to explore new

preliminary ideas on hardware optimization for task-based parallel runtimes following in the spirit

of AAWS runtimes in Chapter 3. Specifically, BRGTC2 integrates hardware for novel smart-

sharing architectures that manage control flow to amortize expensive accesses to shared long-

latency resources (e.g., caches, LLFUs) when executing task-based parallel workloads. The chip

is designed to run a subset of our in-house work-stealing runtime and has been instrumented for

detailed performance and energy characterization.

The ideas explored in BRGTC2 architecture are outside the scope of this thesis. However, the

insights I gained from this silicon prototyping experience contributed to my interest in addressing

the VLSI-specific research challenges in Chapter 4.

5.3.2 Chip Details

In this subsection, I provide an overview of various key aspects of our silicon prototyping

experience with an emphasis on the open-source flow. Specifically, this includes our timeline and

costs, open-source software toolchain and ISA, open-source cycle-level modeling, open-source

RTL modeling, open-source modular VLSI build system, and synthesizable analog IP.

Timeline and Costs – A team of seven graduate students completed the 28 nm SoC in two

months. This design period encompassed developing simple applications, porting an in-house

work-stealing runtime to our RISC-V target, cycle-level design-space exploration of sharing archi-

tectures in gem5 [BBB+11], RTL development and testing of each component including SRAMs

(see Figure 5.9), composition testing at RTL and gate level, SPICE-level modeling of the synthe-
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Figure 5.8: BRGTC2 Chip Plot and Die Photo – A 1×1.25 mm 6.7 M-transistor RISC-V system in TSMC 28 nm
designed and implemented using our new PyMTL hardware modeling framework. The chip includes four RISC-V
RV32IMAF cores which share a 32 kB instruction cache, 32 kB data cache, and a single-precision floating-point
unit along with microarchitectural mechanisms to mitigate the performance impact of resource sharing. The chip
also includes a fully synthesizable high-performance PLL written in SystemVerilog and ported from the Celerity
SoC [DXT+18, AAHA+17, RZAH+19].

sizable PLL, IO floorplanning and physical design, post-place-and-route performance tuning, and

final tapeout. About one person-month was required for me, a student with prior ASIC experience,

to bring up the TSMC 28 nm design flow for the first time, including the process libraries, stan-

dard cell libraries, IO cell libraries, Synopsys DC, Cadence Innovus, and Calibre signoff tools, in

order to pass DRC/LVS for dummy logic surrounded by staggered IO pads and no SRAM blocks.

The entire chip RTL was designed in the final one-month period by seven graduate students using

PyMTL for design, test, and composition. Multi-project wafer services have recently begun to

support advanced technology nodes (e.g., 28 nm) with very small minimum sizes (e.g., 1×1 mm)

at very reasonable pricing (e.g., $14K). We chose the Tiny2 program with MOSIS, selecting a

1×1.25 mm die size and one hundred parts for about $18K. Other services are also available for

university researchers at similar pricing (e.g., Muse Semiconductor). Other costs included packag-

ing (less than $2K for twenty parts), board costs (less than $1K for PCB and assembly), graduate

student salaries, physical IP costs, and EDA tool licenses. The open-source RISC-V ecosystem

helped us avoid any costs associated with the ISA and also helped avoid long communication de-

lays with third parties, which can take months to resolve and can significantly delay a time-sensitive

project. Many small benefits also made a difference (e.g., a very short but descriptive RISC-V ISA

spec saving us from reading thousand-page specs, no time and effort required to bring up and
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Figure 5.9: Block Diagram of BRGTC2 – The chip integrates four RISC-V RV32IMAF cores that support enough
instructions to run a work-stealing runtime. The cores are arranged in a smart-sharing architecture [Sri18]. We paired
the RISC-V ecosystem with productive open-source design tools to build this RISC-V system in TSMC 28 nm with
seven graduate students in two months.

modify a software toolchain, open-source VLSI implementations of previously taped out RISC-V

SoCs for reference including Rocket [AAB+16] and Celerity [DXT+18,AAHA+17,RZAH+19]).

Open-Source Software and ISA – The RISC-V software toolchain was tremendously useful

as an out-of-the-box and standard solution for compiling applications for our system. In particular,

we leveraged recent GCC support with options targeting RV32IMAF, and we were also able to

use inline assembly in our in-house work-stealing runtime library to implement hints and to track

stats. The RISC-V ISA itself was also a tremendous success. Because the ISA is designed as

a small base set of instructions with modular extensions, we were able to apply an incremental

design approach by writing RTL to first support the base set (i.e., RV32I), then add multiply/divide

support (i.e., RV32IM), then add atomic support (i.e., RV32IMA), and finally add floating-point

support (i.e., RV32IMAF). We also leveraged the control and status registers for many custom

purposes including tracking stats.

Open-Source Cycle-Level Modeling – The gem5 simulator system [BBB+11] is a popular

platform for simulator-based cycle-level modeling in the computer architecture research commu-

nity. Multicore support has recently been added for RISC-V [TCB18], providing computer ar-

chitects a critical tool for cycle-level design-space exploration of complex RISC-V systems. We

leveraged RISC-V support on gem5 to explore our sharing architecture shown in Figure 5.9, which

shares caching resources and long-latency functional units. We swept important parameters includ-
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ing the latency to shared resources, the number of each resource to share, the impact of memory

coalescing techniques, the size and capacity of caches and buffers, and the impact of various arbi-

tration schemes.

Open-Source RTL Modeling – We paired the RISC-V ecosystem with our new Python-based

hardware modeling framework, PyMTL [LZB14, JIB18], to build our RISC-V system. PyMTL

leverages the Python programming language to create a highly productive and flexible environment

for test, design, and composition in BRGTC2. Testing in PyMTL enables access to full-featured

software testing frameworks built for Python (e.g., pytest [pyt14]), providing useful features in-

cluding automatic test discovery, modular fixtures, and rich customizable plugins. We leveraged

PyMTL support for two-state simulation and state initialization to one, zero, and random values.

Designing in PyMTL was more accessible than in Verilog for students new to RTL design, avoiding

many well-known quirks of the older language while also enabling a familiar style of debugging

in Python. Composition in PyMTL enabled powerful multi-level co-simulation of functional-level,

cycle-level, and RTL models. For example, to debug an issue with atomics, we swapped in a

functional model of the cache to narrow the bug location down to other components. The PyMTL

framework generates Verilog for our standard ASIC toolflow. Overall, we found the PyMTL frame-

work to be a tremendous success for designing a RISC-V system from scratch with rigorous testing

support.

Open-Source ASIC Flow Organization – The availability of high-quality, community-developed

reference ASIC flows is a tremendously useful resource for both new and experienced chip design-

ers. We designed our RISC-V silicon prototype using a modular VLSI build system1, which we

have open-sourced as a reference organization of the ASIC toolflow for architecture and VLSI re-

searchers interested in silicon prototyping. One of the most challenging aspects of working with

ASIC flows is managing the many moving pieces (e.g., PDK, physical IP libraries, ASIC-specific

tools), which come from many different vendors and yet must still be made to work together co-

herently. Despite the great effort required to successfully assemble a working ASIC flow, teams

typically end up with little reuse across projects as designers frequently tweak steps, target different

technology nodes, or even use different vendors for physical IP. Furthermore, while architectural

design-space exploration tends to require just a few stages (e.g., synthesis, simple floorplanning,

no IO cells, need not be DRC or LVS clean), a full tapeout requires many more stages to guarantee
1Modular VLSI Build System: https://github.com/cornell-brg/alloy-asic
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manufacturability. The key idea behind a modular VLSI build system is to avoid rigidly structured

ASIC flows that cannot be repurposed, and to instead break the ASIC flow into modular steps that

can be re-assembled into different flows. With a modular build system, architecture projects can

omit detailed steps from a chip flow (e.g., use default floorplan, skip IO pads, skip DRC/LVS),

while a VLSI project can include key steps for VLSI research (e.g., custom floorplanning for syn-

chronizer research), while reusing the common steps in between. Our approach also includes the

idea of an ASIC design kit, which is the specific set of physical backend files required to success-

fully build chips, as well as a unified and standard interface to those files. A well-defined interface

enables swapping process and IP libraries without modification to the scripts that use them. Finally,

this approach embraces plugins that hook into steps across the entire ASIC flow for design-specific

customization. We have found that a modular ASIC flow enables productive reuse of steps across

projects, and we have open-sourced our flow for reference.

Synthesizable Analog IP – Our RISC-V system is clocked by a synthesizable PLL that was

first designed for use in the Celerity SoC [DXT+18,AAHA+17,RZAH+19], but has been adapted

for use in a TSMC 28 nm process. Management of analog IP is traditionally a significant challenge

in the design of a complex SoC. Mixed-signal crossings between analog and digital domains are

well-known sources of costly design mistakes, and the communication between analog and digital

design teams adds project management overhead that is nevertheless crucial to the overall success

of the chip. Synthesizable analog IP is an approach that migrates blocks that are traditionally full-

custom into the digital domain to mitigate these challenges. At a high level, the PLL relies on an

array of internal ring oscillators with varying numbers of stages and configurable load capacitances

(i.e., configurable NAND2 loads) controlled by a digital feedback loop. Our design experience

using this PLL was a success, as we would not have been able to quickly design a PLL to generate

programmable clocks from scratch with confidence. To test our design, we ported our PLL as

a GDS from Cadence Innovus to Virtuoso, where we ran SPICE-level extracted simulations. The

synthesizable PLL is planned to be open-sourced, which will provide architects an additional useful

tool for silicon prototyping.

Final Thoughts – This chip follows in the spirit of AAWS in Chapter 3 as an investment

in future exploration of hardware optimizations for task-based parallel runtimes. The insights I

gained from this silicon prototyping experience also contributed to my interest in addressing the

VLSI-specific research challenges in Chapter 4.
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5.4 The Celerity Open-Source 511-Core RISC-V
Tiered Accelerator Fabric

Celerity is a 5× 5 mm 385 M-transistor SoC implemented in an advanced 16 nm technology.

The tapeout was a multi-university effort funded through the DARPA Circuit Realization At Faster

Timescales (CRAFT) program. Figure 5.10 shows an annotated chip plot and die photo of the

chip. This chip appears in multiple venues, including Hot Chips: A Symposium on High Perfor-

mance Chips [AAHA+17], the IEEE Symposium on VLSI Technology & Circuits [RZAH+19],

and IEEE MICRO Top Picks from Hot Chips [DXT+18], for which I was a key contributor.

5.4.1 Research Purpose

The Celerity SoC is a DARPA-funded research vehicle for a range of productive hardware

design and verification tools that are creating excitement in the hardware community including:

synthesizable analog IP (synthesizable PLL, digital LDO), high-level synthesis (complex HLS-

generated binarized neural network accelerator), Python-based hardware modeling (composition

logic, BNN wrapper logic), techniques for area-efficient and high-bandwidth manycore networks

(496-core RISC-V tiled manycore, remote-store programming model), and reuse from open-source

libraries and generators (BaseJump IP, Chisel-generated RISC-V Rocket cores). A key achieve-

ment of the project was implementing the entire SoC in nine months with only twenty gradu-

ate students and faculty spread across four geographical locations and universities (Univerity of

California at San Diego, University of Washington, University of Michigan, and Cornell Uni-

versity). As an architecture research chip, the Celerity SoC also represents a 16 nm 496-core

RISC-V network-on-chip (NoC). The mesh achieves 1.4 GHz at 0.98 V, yielding a peak of 695

Giga RISC-V instructions/s (GRVIS) and a record 812,350 CoreMark benchmark score. The main

feature is the NoC architecture, which uses only 1881 µm2 per router node, enables highly scalable

and dense compute, and provides up to 361 Tb/s of aggregate bandwidth.

In connection to my thesis, my experience working with the Celerity SoC was the greatest

motivating factor for my work on ultra-elastic CGRAs in Chapter 4. Specifically, debugging asyn-

chronous crossings is a challenging problem, and the majority of post-silicon bugs were related to

these crossings. The Celerity SoC’s large manycore array had the potential to be extremely energy-

efficient, but the programmability challenges for utilizing the vast computational resources were
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Figure 5.10: Celerity SoC Chip Plot and Die Photo – A 5× 5 mm 385 M-transistor SoC implemented in an advanced
16 nm technology.

significant. This pair of challenges motivated me to investigate (1) novel approaches to manage

asynchronous crossings in the context of many small and configurable fine-grain workers, and (2)

automatic hardware-managed scheduling as in elastic CGRAs.

Despite this, the architecture also motivates an interesting direction for future work. Chap-

ter 4 focused on CGRA architecture, but many of the key research questions apply to massively

parallel manycores, proposed both from industry (e.g. 64-core Tilera TILE64 [BEA+08], 48-core

Intel SCC [int09], and 72-core Intel Knights Landing [SGC+16]), and academia (e.g., 25-core

Piton [MFN+17], 511-core Celerity [DXT+18], 1000-core KiloCore [BSP+17] and 1024-core

Adapteva Epiphany-V [Olo16]):

• Key Question #1 – How can we better deal with asynchronous crossings for very small

workers which may be configured to exhibit fine-grain asymmetry (manycore tiles are more

programmable than CGRA tiles)?

• Key Question #2 – How can we better utilize the computational resources in massively

parallel manycore arrays for extreme energy-efficiency? The combination of tiny cores and

small scratchpads is reminiscent of the CGRA context. However, manycores come with their

own unique challenges (e.g., coherence, programmability).

A manycore array is very nearly an example of configured asymmetry with a general-purpose

bent. “Configuration” in the manycore context corresponds to programming a sea of tiny cores.
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In conclusion, the Celerity SoC closely relates to my thesis research. At the same time, the

architecture motivates an interesting direction for future work. I now briefly describe my role in

the project. As the Cornell University student lead, I was a key player in integrating all of the pro-

ductive methodologies and tools into the final chip. I collaborated frequently with Prof. Dreslinski

(Michigan) as well as with Prof. Taylor (Washington). In addition to leading the Rocket and BNN

accelerator logical/physical design, I also contributed to project management and team building.

I visited the University of Michigan as an academic exchange student for two months, where I

worked with Prof. Dreslinski and made key contributions to physical design and verification. I de-

veloped our first power strategy as well as our first DRC/LVS-clean block layout. I developed our

gate-level simulation infrastructure and contributed to the final top-level integration, LVS, DRC,

power signoff, and timing closure.
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CHAPTER 6
CONCLUSION

This thesis explored novel fine-grain power-control techniques to exploit fine-grain asymmetry

in both the space and time dimensions to improve both performance and energy efficiency. Differ-

entiating from previous work, I focused on a software, architecture, and VLSI co-design approach

to provide control for these techniques using previously inaccessible information newly exposed

across layers of abstraction. I explored the potential of specializing these fine-grain power-control

techniques for productive and parallel software runtimes as well as for energy-efficient spatial

architectures.

In this chapter, I summarize my thesis contributions and also my thoughts on their potential

long-term impacts. Based on the insights in this thesis, I also describe potential future research

directions.

6.1 Thesis Summary and Contributions

This thesis began with three high-level observations. With architects increasingly relying on

parallelization and specialization, the first observation was that the combination of parallelism and

specialization has steadily increased on-chip asymmetry in both the space and time dimensions.

The second observation was that this on-chip asymmetry can result in widely varying utilization

in space (i.e., across different components) and in time (i.e., used at different times across varying

performance levels), motivating research on very fine-grain power-control techniques in order to

power (or not power) different components to different levels at just the right times to significantly

reduce waste. The final observation was that traditional walls of abstraction have broken down,

allowing a cross-stack co-design approach across software, architecture, and VLSI to provide new,

previously inaccessible information that can be used to control novel fine-grain power-control tech-

niques. I then presented specific techniques and further investigated the contexts of productive

task-based parallel runtimes as well as for coarse-grain reconfigurable arrays.

I first introduced reconfigurable power distribution networks, which realistically enable fine-

grain voltage and frequency scaling techniques for homogeneous systems of little cores at mi-

crosecond timescales by leveraging recent work on fully integrated voltage regulation. Although

on-chip regulators suffer from lower on-chip conversion efficiencies and on-die area overheads, I
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demonstrated how careful software, architecture, and circuit co-design can mitigate those circuit-

level challenges while also resolving architecture-level performance and energy bottlenecks in

homogeneous multicores.

I then narrowed the scope to the domain of productive task-based parallel runtimes. I explored

fine-grain voltage and frequency scaling for both big and little cores at microsecond timescales. I

argued that work-stealing runtimes are a natural fit for managing asymmetry at the software level,

and I showed how these software runtimes can be made aware of underyling asymmetry in the

architecture and VLSI layers to create more efficient schedules and to dynamically tune processing

elements.

Shifting focus to configured asymmetry in CGRAs, I explored fine-grain voltage and frequency

scaling for each tile and memory subbank at reconfiguration timescales which vary from hundreds

of nanoseconds to milliseconds. I built on previous research on elastic CGRAs (which use elas-

ticity to reduce compiler complexity) and proposed ultra-elastic CGRAs, which capitalize on new

opportunities in elastic CGRAs to enable support for configurable per-tile fine-grain power control

and significantly improved dataflow efficiency.

Lastly, I described my work on four silicon prototypes to support various aspects of my thesis.

Besides meeting many other research goals, these prototypes motivate future research on fine-grain

power-control techniques in unexplored contexts. In particular, I showed how the Celerity SoC can

have similar utilization challenges across its massively parallel manycore array as well as across

its three-tier specialization fabric.

The primary contributions of this thesis are:

• A novel approach for fine-grain voltage and frequency scaling for homogeneous systems of

little cores at microsecond timescales based on switched-capacitor-based integrated voltage

regulators using a novel dynamic capacitance sharing technique.

• A novel approach for fine-grain power control for heterogeneous multicore systems at mi-

crosecond timescales specialized for task-based parallel runtimes using a set of three tech-

niques based on balancing marginal utility.

• A novel proposal for ultra-elastic CGRAs which capitalize on new opportunities in elastic

CGRAs, enabling support for configurable per-tile fine-grain power control and significantly

improved dataflow efficiency.
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• A deep design-space exploration of these ideas using a vertically integrated research method-

ology that in many cases extends from cycle-level modeling down to silicon prototyping.

6.2 Potential Long-Term Impacts:
Reconfigurable Power-Distribution Networks

If I consider this work broadly, including beyond the scope of this thesis, then I believe one of

the most important potential long-term impacts will be encouraging the research community to

pursue an architecture and analog circuit co-design approach to leverage the emerging trend

towards integrated voltage regulation. I also see both the specific FG-SYNC+ DVFS controller

and the RPDN approach proposed in this work as having strong potential for long-term impact.

In the rest of this section, I highlight what I feel are the three most important contributions of the

work and the potential long-term impact of each contribution.

Contribution #1 – This work makes a strong case for architecture and analog circuit co-design to

maximize the system-level benefit of the emerging trend towards integrated voltage regulation.

Potential Impact – Encouraging other researchers to think of integrated voltage regulation and the

associated power distribution network as a critical subsystem that should no longer be ignored by

architects, nor studied in isolation by analog circuit designers.

Recent technology trends suggest that we are entering a new era where it is now becoming

feasible to reduce system cost by integrating switching regulators on-chip; however, it is difficult

to design a system with integrated voltage regulation from solely an architecture or an analog

circuit perspective. Architects tend to idealize concepts such as per-core voltage regulation without

considering the intricacies that come with enabling it. Analog circuit designers tend to design

regulators as stand-alone components in a one-size-fits-all approach, which provisions for the worst

case and over-designs for the lightest loads. Architecture and analog circuit co-design enables

control over the whole system and lays the groundwork of expertise necessary for maximizing

the system-level benefit of a design. As an example, this work is based on the key insight that

providing per-core voltage regulation with the traditional approach of multiple adjustable voltage

regulators is significantly over-designed, since all cores can never be in the fastest operating mode
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at once. This observation enables us to propose RPDNs for system-level benefits. I expect that

there is much more research to be done on integrated voltage regulation and the associated power

distribution network, and I encourage the architecture community to consider "architecting" this

critical subsystem.

Contribution #2 – This work proposes a new DVFS controller called FG-SYNC+ that uses lightweight

hints provided by software to improve performance and energy efficiency at similar average power.

Potential Impact – Motivate other researchers and/or industry to adopt the idea of hints to inform

the hardware of fine-grain activity imbalance, and then to create new hint-based fine-grain DVFS

controllers.

In this work, I instrument sychronization primitives in the threading library with (1) activity

hints to inform the hardware which threads are doing useful work and (2) novel “work left” hints

to convey the relative progress of each thread through the thread library’s parallel_for func-

tion. These hints form a lightweight abstraction between hardware and software that enables clean

communication of application-level behavior to the DVFS controller while avoiding complicated

hardware heuristics. The design space of hint-based fine-grain DVFS controllers is rich; in this

work, I propose a novel DVFS controller called FG-SYNC+ that uses a lookup table to map dy-

namic, per-core activity information to per-core DVFS modes. Designing these lookup tables for

multiple voltage levels and domains enables FG-SYNC+ to exploit fine-grain activity imbalance

in multithreaded applications for improved performance and energy-efficiency at the same aver-

age power. Future hint-based fine-grain DVFS controllers may be uniquely positioned to flexibly

balance the performance and energy efficiency requirements of arbitrary subsystems by leveraging

information embedded in well-placed and well-designed hints.

Contribution #3 – This work proposes a novel approach to on-chip regulator design based on the

idea of reconfigurable power distribution networks (RPDNs).

Potential Impact – Motivate other researchers and/or industry to explore new circuit techniques

and designs that leverage (1) dynamically reconfigurable inter-core energy storage and (2) demand-

based power delivery to reduce area overhead. voltage regulation viable.
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RPDN is a novel approach to the design of integrated voltage regulators and the associated

power distribution network. A shared energy storage of many “unit cells” is flexibly reconfigured

through a switch fabric that, combined with per-core control circuitry, effectively enables multiple

SC regulators to be created “on-demand”. RPDN is the first example of integrated voltage regu-

lator design using dynamically reconfigurable inter-core energy storage, and this work unfolds a

potentially broad category of PDN design. There is significant room to explore the design space of

integrated voltage regulators with dynamically reconfigurable inter-core energy storage, including

(1) design with other types of regulators (e.g., buck converters, three-level converters), (2) alter-

native methods to partition shared energy storage, (3) design of new feedback control schemes

for switching regulators specifically designed for reconfiguration, and (4) alternative methods for

scaling the network to support larger numbers of cores. In this broad design space, RPDN is one

example based on switched-capacitor regulators with equally partitioned energy storage; regulators

have their own feedback control loops based on load profiles and configurations stored in lookup

tables; and I chose a specific design approach for addressing scalability (i.e., partitioning the net-

work into sub-RPDNs). I expect that there is more research to be done and I encourage other

researchers to further explore this design space.

6.3 Potential Long-Term Impacts:
Asymmetry-Aware Work-Stealing Runtimes

If I consider this work broadly, including beyond the scope of this thesis, then I believe one of

the most important potential long-term impacts will be steering focus in the computer architecture

research community away from thread-based parallel frameworks and toward task-based parallel

frameworks such as work-stealing runtimes for multithreaded computer architecture research. I

also see the specific methods proposed in this work that integrate the work-stealing runtime with

novel hardware techniques as having strong potential for long-term impact. In the rest of this

section, I highlight what I feel are the three most important contributions of the work and the

potential long-term impact of each contribution.
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Contribution #1 – This work identifies the potential for combining the areas of work-stealing

runtimes, static asymmetry (i.e., single-ISA heterogeneous architectures), and dynamic asymmetry

(i.e., DVFS).

Potential Impact – Encourage other researchers and/or industry to explore how these three open

research areas interact.

This work lies at the intersection between three different areas, including work-stealing run-

times, static asymmetry in the form of single-ISA heterogeneous architectures, and dynamic asym-

metry in the form of DVFS. Previous works have explored these areas pairwise. For example,

Bender et al. [BR02] combines work-stealing runtimes and static asymmetry, studying the theo-

retical properties of work-stealing runtimes given a mix of workers with varying speeds. Ribic

et al. [RL14] combines work-stealing runtimes and dynamic asymmetry, proposing to reduce the

voltage/frequency of thieves and increase the voltage/frequency of workers with deep task queues.

Azizi et al. [AML+10] studies the interplay between static and dynamic asymmetry by varying cir-

cuit and microarchitectural parameters and DVFS to perform an energy-performance cost-benefit

analysis. To my knowledge, we are the first to explore and find benefit from the combination of

these three areas, with the goal of exploring how to use asymmetry awareness to improve the per-

formance and energy efficiency of a work-stealing runtime. I encourage other researchers and/or

industry to further explore how these three open research areas interact.

The focus on task-based parallel runtimes is of particular importance. Previous researchers

have spent significant effort addressing fine-grain thread imbalance for both symmetric and asym-

metric systems using thread-based parallel programming models (e.g., pthreads). However, the

task-based programming model has emerged as an elegant balance between programmer produc-

tivity and expression of parallelism while facilitating dynamic fine-grain load balancing, mitigating

much of the prior challenges based on the thread-based programming model while opening new

opportunities for optimization. In particular, work-stealing runtimes elegantly and naturally dis-

tribute work in systems with static asymmetry while preserving the balance in performance and

energy efficiency across serial and parallel application regions. Computer architects should move

away from thread-based programming models and focus instead on optimizing for productive task-

based programming models.
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Contribution #2 – This work presents three novel software/hardware techniques (work-pacing,

work-sprinting, and work-mugging) that improve performance and energy efficiency of a work-

stealing runtime in the presence of static and dynamic asymmetry.

Potential Impact – Motivate other researchers to explore further software/hardware co-design

opportunities for work-stealing runtimes.

This work proposes building work-stealing runtimes that are aware of the underlying system’s

static and dynamic asymmetry. Awareness of this underlying asymmetry enables the work-stealing

runtime to balance marginal utilities across big and little cores by applying three techniques: work-

pacing, work-sprinting, and work-mugging. These techniques require only lightweight changes to

the software and hardware, but would not be possible without a full-on software/hardware co-

design approach. The experimental results are promising and suggest that work-stealing runtimes

can provide a rich context for software/hardware co-design. For example, although this work

focuses on DVFS, dynamic asymmetry is itself a rich space reaching beyond DVFS (e.g., hybrid

big/little cores, reconfigurable core types, resizable intra-core structures). In addition, a wide range

of potential optimization metrics (e.g., performance, power, real-time constraints) further widens

the design space, increasing the potential for high impact in future multicore systems based on

work-stealing runtimes.

Contribution #3 – This work proposes integrating the work-stealing runtime with the underlying

hardware using lightweight software hints embedded in the runtime.

Potential Impact – Encourage other researchers to consider tighter integration between a work-

stealing runtime and the underlying hardware.

Task-based parallel frameworks expose information that may be performance- or power-critical

(e.g., which threads are in the steal loop, which threads have recently stolen work), but this infor-

mation is often hidden from the hardware. More tightly integrating a work-stealing runtime and

the underlying hardware can expose opportunities for performance or power optimization that

are unique to the specific but widely used paradigm of work-stealing. For example, knowledge

of which threads have recently stolen work can potentially enable locality optimizations within

caches, which may be especially relevant for large systems with many cores. This work proposes
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using lightweight software hints embedded in the runtime to inform the hardware when threads

are in the steal loop and not executing useful work. This scheme provides the DVFS controller

information to decide how to allocate power across cores. I encourage other researchers to explore

the benefits of tightly integrating work-stealing runtimes with the underlying hardware.

6.4 Potential Long-Term Impacts:
Ultra-Elastic Coarse-Grain Reconfigurable Arrays

The most evident potential impact of this work is a clear pull towards closer integration starting

from the compiler, through architecture, and down to VLSI. Traditionally, compiler awareness

extends only to the underlying architecture with general-purpose compilers targeting ISAs and

spatial compilers targeting cycle-level architectural behavior. As this work demonstrates, breaking

an additional layer of abstraction can provide significant benefits to dataflow efficiency, making this

a timely work in the context of recently renewed interest in dataflow for reducing data-movement

energy. I also see the specific methods proposed in this work that enable per-tile fine-grain DVFS

for CGRAs as having strong potential for long-term impact. In the rest of this section, I highlight

what I feel are the three most important contributions of the work and the potential long-term

impact of each contribution.

Contribution #1 – This work makes a strong case for compilers aware of not only architecture-

level but also VLSI-level opportunities and challenges.

Potential Impact – Encourage other researchers and/or industry to further explore how the com-

piler can more closely interact across abstraction layers to extract system-level benefit.

An increasing body of work focuses on reducing not only computational energy but also data-

movement energy [CKES17, PSC+19]. Energy efficiency in both cases is intimately and non-

trivially tied to VLSI, in particular with energy proportional to the square of the voltage and fre-

quency similarly non-trivial in the presence of high leakage. While the compiler has traditionally

been abstracted from VLSI (e.g., for general-purpose computing), architects focusing on special-

ization today must carefully orchestrate data to execute on the most energy-efficient compute units

and to match the most frequent data accesses with the most energy-efficient storage [PSC+19].
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This demands careful decision making at the compiler level (i.e., determines where data lives), at

the architecture level (i.e., determines which units and which types of storage are available), and at

the VLSI level (i.e., determines the actual efficiency of each unit and storage element). This work

brings voltage and frequency to attention as first-class citizens in the compiler flow, representing

a step towards closer integration across the compiler, the architecture, and VLSI. We encourage

computer architects to closely investigate how compilers can make use of new information and

new opportunities across abstractions.

Contribution #2 – This work presents ultra-elastic CGRAs, which enable more efficient dataflow

by capitalizing on new opportunities available for elastic CGRAs.

Potential Impact – Motivate other researchers to explore new opportunities and new hardware

techniques that can capitalize on latency-insensitive interfaces in elastic CGRAs.

Previous works introduced elastic CGRAs primarily to reduce compiler complexity. However,

elastic CGRAs also open new opportunities to explore hardware techniques that can capitalize on

their latency-insensitive interfaces. Latency-insensitive interfaces are well-known to enable very

robust architectures that are “correct by construction” [KKV+18, CMSV01]. It is therefore a sig-

nificant step to take traditional inelastic CGRAs (which are extremely dependent on latency for

correctness) and to relax this requirement. This work capitalizes on this robustness to enable con-

figurable voltage and frequency scaling, a technique which would have destroyed correctness on

a traditional inelastic CGRA. We introduced the novel ultra-elastic CGRA computational model

with innovation across the computing stack (analytical model, compiler, architecture, and VLSI)

to enable configurable per-tile fine-grain DVFS with reasonable overheads. Although this work fo-

cuses primarily on fine-grain DVFS, the potential for latency insensitivity opens the CGRA context

to many new opportunities that were previously infeasible but are now possible without violating

correctness. We hope that other researchers will find inspiration from our approach.

Contribution #3 – This work acknowledges exponentially rising NREs and prioritizes design

techniques that can be robustly verified.

Potential Impact – Encourage other researchers to recognize the impact of design and verification

complexity on design cost for new hardware techniques.
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Exponentially rising NRE costs are motivating a greater focus on verification challenges [KZVT17].

Many architecture works are not designed with these challenges in mind. In this work we specifi-

cally do not use asynchronous queues as is assumed in most other literature on fine-grain DVFS [SAD+02,

YCZ12, JTH+13] for this reason. From the perspective of verification, constraining and verifying

asynchronous clock-domain crossings is a tremendous challenge in a modern design flow and re-

quires specialized expertise, methodologies, and verification tools [Cum08]. From the perspective

of functionality, adding asynchronous queues at tile granularities fundamentally increases the risk

of corrupted messages combinatorially (i.e., with the number of additional asynchronous cross-

ings), even for the most rigorously verified implementations. Finally, from the perspective of per-

formance, asynchronous queues add two-to-three-cycle synchronization latency penalties which

can significantly reduce performance in the context of a CGRA. Note that synchronization laten-

cies in asynchronous queues only appear when the queues are empty or full, but this is precisely

the common case in the context of a CGRA. I encourage other researchers to explore the impact of

new hardware techniques on design and verification complexity in addition to the traditional focus

on performance and energy efficiency.

6.5 Future Work

The ideas in this thesis are just a few steps towards the vision of flexible and efficient fine-

grained power-control mechanisms. There are a number of ways to take the ideas in this thesis

forward.

Extending Information Across Abstractions – The asymmetry-aware work-stealing runtime

chapter showed how application-level information can make a tremendous impact on power and

performance, even if just a single bit of information is exposed (and only exploited by a single

technique). Moving forward, it may be worth investigating systematic approaches to extend more

information across layers in such a way that enables traditional execution (i.e., non-specialized

architectures execute without penalty) while still allowing specialized techniques to easily access

useful information. While it is not a focus of my thesis, my previous work on Loop-Task Accelera-

tors [KJT+17] was an inspiring example of lowering the abstraction of loop-tasks from the software

runtime down to the hardware, providing direct and unambiguous semantics for acceleration.
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Critical-Path-Aware Ultra-Elastic CGRAs – The work presented in Chapter 4 made the most

conservative assumptions about the critical path of the tile architecture. Specifically, it assumed

that every configurable operation had a critical path of the same length (i.e., the worst case). How-

ever, different operations can have very different critical paths. For example, the critical path of a

routing tile is very short compared to the critical path of a multiply tile. If the compiler were to

be made aware of these opportunities, it may be possible to aggressively increase the frequency of

tiles while running at (counterintuitively) lower voltages.

Exploiting Fine-Grain Asymmetry in Software-Coherent Manycores – As alluded to in

Chapter 5, many of the key research questions in Chapter 4 also apply to massively parallel

manycores, proposed both from industry (e.g. 64-core Tilera TILE64 [BEA+08], 48-core In-

tel SCC [int09], and 72-core Intel Knights Landing [SGC+16]), and academia (e.g., 25-core

Piton [MFN+17], 511-core Celerity [DXT+18], 1000-core KiloCore [BSP+17] and 1024-core

Adapteva Epiphany-V [Olo16]). These manycores exhibit configured asymmetry in which the

dataflow across cores is not evenly balanced and in which all cores may not even be configured

to do useful work. Fine-grain power control is applicable here, but there are key challenges in

managing manycores that must be answered in parallel, including addressing how data is loaded,

how coherence is managed, and how applications can efficiently be mapped to these substrates in

the first place. In terms of physical design, one key question is how to combine the capability

for fine-grain power control with a tile-based design approach, which in my experience with the

Celerity SoC significantly reduces design spin time. This would have to be done in such a way as

to not add additional latency between tiles due to synchronization, to avoid increasing leakage, to

mitigate area overheads from margins between core islands, and other considerations.

Exploiting Fine-Grain Asymmetry in CNN accelerators – The work in Chapter 4 focused

on CGRAs, which bear resemblance to many well-known spatial accelerators that target CNNs,

ranging from well-known existing hardware like Eyeriss [CKES17] up to the wafer-scale deep

learning chips built by Cerebras [ea19]. CGRAs are a compelling option for acceleration not only

because of the traits of spatial architectures (e.g., reducing data movement energy, high reuse), but

also because of the flexibility of the substrate. It is possible to map many more applications to a

CGRA than to a CNN accelerator. Despite the flexibility penalty, CNNs have made an outsized

impact on the computing landscape today, and it may be worthwhile to investigate how fine-grain

power-control techniques can apply to CNN-specific spatial architectures.
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Power-Amorphous Architectures – The majority of the literature on fine-grain power control

adapts the power delivery to an architecture. For example, we may configure a power-hungry

accelerator and then allocate power to meet its expected demands. This requires us to budget (with

margin) and add up budgets until we hit the total power cap. It may be worthwhile to think about

conducting this process in the reverse: first allocating power and then having the architecture

naturally adapt to its new bounds. The primary reason why I find this interesting is that as the

number of asymmetric on-chip components grows, the act of summing many small power budgets

and estimating each of their margins quickly becomes a very complex task. If instead we were to

distribute power from the available pool and have architectures naturally reconfigure, speed up, or

slow down without dedicated attention, this challenge could become much more manageable.
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