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ABSTRACT
Latency-insensitive protocols are widely used in hardware stan-

dard libraries and network-on-chip IPs because they enable modular

hardware design and efficient circuit implementation of communi-

cation channels. However, RTL modules with latency-insensitive

protocols at their interfaces (or latency-insensitive RTL modules)
create a verification challenge because subtle design bugs in these

RTL modules may only be triggered after a specific number of

stall cycles on the latency-insensitive interfaces. Verifying latency-

insensitive RTL modules with simulation-based techniques requires

a comprehensive test suite that covers all possible stall cycles up

to a sufficiently large number, which needs significant verification

efforts to build and maintain. In this paper, we propose a formal

verification methodology to detect bugs in latency-insensitive RTL

modules by verifying the stall invariant property of these modules.

We introduce bounded latency equivalence checking (BLEC) to de-

tect violations of the stall invariant property under finite buffering.

BLEC includes a systematic approach to construct a verification

harness which applies ingress and egress stalls and checks if the

DUV egress results are the same under varying stall conditions. We

implement the proposed method with state-of-the-art commercial

formal verification tools and demonstrate its effectiveness with

case studies on a latency-insensitive processing element, a greatest

common divisor unit, and a pipelined RISC-V processor. In all three

case studies, our proposed method can detect subtle design bugs

inserted in the design. With some manual simplifications to the

target RTL modules, existing formal verification tools can provide a

bounded proof of the stall invariant property to many RTL modules.
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1 INTRODUCTION
Latency-insensitive (LI) protocols [8, 10, 11] are an effective hard-

ware design methodology that significantly improves design pro-

ductivity with minimal performance, power, and area overhead [9,

19]. By decoupling the communication and computation aspects of

hardware design, RTL modules with latency-insensitive interfaces

(or simply latency-insensitive modules) offer two major benefits

over the traditional synchronous design paradigm [5, 17]. First,

hardware designers can safely compose modules with latency-

insensitive interfaces without worrying about the potentially vari-
able latencies of upstream and downstream modules. In the case

where the upstream or downstream modules are not generating

valid messages or not ready to accept messages, a stalling event

occurs on the latency-insensitive interface and sequential states are

preserved until an informative event containing the real message

eventually happens [11]. Second, latency-insensitive protocols en-

able more efficient circuit implementation of communication chan-

nels than with the synchronous design paradigm. Inter-module

communication channels designed under a synchronous system

assumption often synthesize into long global wires that limit the

system clock frequency. On the other hand, the communication

between latency-insensitive modules can be pipelined by inserting

relay stations [11] between the modules to achieve higher clock fre-

quency. Because of these benefits, latency-insensitive modules are

virtually ubiquitous across hardware standard libraries, hardware

compositions, and network-on-chip IPs [4, 15, 16, 20, 22, 23].

However, implementing latency-insensitive RTLmodules presents

a unique verification challenge. Figure 1 shows a two-stage pipelined

latency-insensitive RTL module. To handle the potential backpres-

sure from the egress interface or the input delays on the ingress

interface, the design under verification (DUV) has complex control

logic which includes pipeline register enable signals, per-stage orig-

inating stall signals, and a squash signal. Two examples of control

logic bugs are also in this figure. For Bug-A, the ostallA signal is

not propagated to the enable signal of stage B (enB), which means

pipeline register B can be enabled while stage A is originating a

stall and may register incorrect data. For Bug-B, the ostallB sig-
nal is not propagated to the control logic of stage A, which can

lead to data loss because the content of pipeline register B can be

overwritten by outputs from stage A even when stage B is origi-

nating a stall. It is worth noting that these two bugs only manifest

when there is backpressure on the egress interface, and that similar

and subtler bugs might only get triggered with a specific number

of cycles of stalls on the ingress and/or the egress interface. It is
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Figure 1: Examples of Bugs in a Two-Stage Pipelined Latency-
Insensitive RTL Module – the design under verification (DUV) has
complex control logic to adapt to possible delays on the ingress (left)
or the egress (right) interface. Both pipeline registers (A and B) are en-
abled when there is no stall originating from their respective stages;
stage B can also squash stage A due to a hazard that is only visiable
in a later stage. Bug-A is a design bug where the ostallA signal is
not accounted for in the enable signal of stage B (enB); Bug-B shows
a bug where the ostallB signal is not propagated from stage B to
stage A. ostallA/B: signal is asserted if stage A/B originates a stall;
the ostall signals may be propagated to earlier stages; enA/B: enable
signal for pipeline register of stage A/B.

challenging to discover these bugs via simulation-based dynamic

verification techniques. Detecting these bugs in simulation needs

a comprehensive test suite that covers all possible stall cycles (up

to a sufficiently large number) on the DUV’s latency-insensitive

interfaces, which requires significant testing and verification efforts

to build and maintain.

In this paper, we propose a formal verification methodology to

address the verification challenges of latency-insensitive RTL mod-

ules. We make the observation that most correct latency-insensitive

RTL modules have the same behavior even under different number

of stall cycles, which we call the stall invariant property. We pro-

pose bounded latency equivalence checking (BLEC), a technique

that detects violations of the design under verification (DUV)’s stall

invariant property under finite buffering. BLEC constructs a verifi-

cation harness that contains two duplicated DUVs with different

stall conditions and verifies the latency equivalence [10] between

the DUVs using formal verification. A BLEC verification process

generates one of two possible outcomes: (1) BLEC finds a violation

to the stall invariant property of the DUV and provides a waveform

to help identify origin of issues or (2) BLEC proves that the stall

invariant property holds true for the DUV up to a certain number

of stall cycles.

This paper makes the following contributions:

• we introduce the stall invariant property and make the obser-

vation that many bugs in latency-insensitive RTL modules

violate the stall invariant property;

• we propose bounded latency equivalence checking, a for-

mal verification technique to detect violations of the DUV’s

stall invariant property under finite buffering; we implement

bounded latency equivalence checking using state-of-the-art

commercial formal verification tools;

• we demonstrate the effectiveness of our proposed method by

evaluating bounded latency equivalence checking on three

latency-insensitive RTL designs: a latency-insensitive pro-

cessing element, a greatest common divisor (GCD) unit, and

a RISC-V pipelined processor.

2 THE STALL INVARIANT PROPERTY OF
LATENCY-INSENSITIVE RTL MODULES

In this section, we introduce the stall invariant property with the

motivating DUV in Figure 1. Figure 2 (a)-(c) refer to the behaviors

of the DUV without bugs, with Bug-A, with Bug-B, respectively.

We examine the behaviors of the DUV both with and without bugs

and compare the behaviors under different stall conditions. We

make the observation that bugs in RTL modules generally lead to

inconsistent behaviors on the egress LI interface under different

ingress and/or egress stalls.

Events in Latency-Insensitive RTL Modules – The behav-

iors of each design in Figure 2 are characterized by the sequence

of events that occurs on the ingress and egress LI interfaces of the

DUV. Using the terminology from the original latency-insensitive

design theory paper [11], we call events where a message is success-

fully transferred over the LI interface an informative event (cycles
that are marked a, b, c, or × in Figure 2); we call any other events

where a message is not transferred stalling events. We further clas-

sify stalling events into two categories: (1) not-valid (indicated by

symbol − in Figure 2), where the sender of the LI interface is not

valid to send a message at the cycle of the event; (2) not-ready

(indicated by symbol # in Figure 2), where the sender of the LI

interface has valid message to send but the receiver is not ready to

accept that message at the cycle of the event. In an RTL module that

implements a val-rdy LI interface (e.g., DUV in Figure 1), not-valid

stalling events correspond to cycles where val is low and not-ready

stalling events are cycles where val is high but rdy is low.
Stall Conditions of a Latency-Insensitive DUV – The ingress

and egress interfaces of a LI DUV need to be connected to upstream

and downstream modules for the DUV to function properly. An

upstream module can apply input stalls to the DUV by de-asserting

the val signal at cycles it does not have valid messages to send,

which creates a not-valid stalling event. Similarly a downstream

module can apply output stalls to the DUV by de-asserting the rdy
signal at cycles it is not ready to accept messages from DUV, which

can create a not-ready stalling event. For the same sequence of

informative events, we call the cycles where input and output stalls

are applied the stall condition of the DUV. To make our explanations

more clear, we examine three simple stall conditions for each design

in Figure 2: (1) No Stalls, where the ingress interface is always valid

to send a message to the DUV and the egress interface is always

ready to accept a message from the DUV; (2) Ingress Stall, where

the ingress interface is not valid at cycle 2 for illustration purposes;

(3) Egress Stall, where the egress interface is not ready at cycle 3.

Behaviors of the DUV – Figure 2 (a) shows the behaviors of the
correct DUV under the three stall conditions described above. It is

straightforward that the correct design exhibits pipeline behaviors

between its input stage A and output stage B: it always takes two

cycles for amessage to traverse from ingress to egresswhen no stalls

are applied; applying input stalls creates bubbles in the pipeline, as

shown by the not-valid stalling events in cycle 2 and 3 (Ingress Stall);

and applying output stalls stalls the pipeline as shown in cycle 3
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(c) Behaviors of the Design with Bug-B

Figure 2: Behaviors of Designs in Figure 1 under Different Stall Conditions – −: not-val stalling event; #: not-ready stalling event. Three designs
are used in this figure: the correct design as shown in Figure 1, the design with Bug-A (wrong enB signal), and the design with Bug-B (ostallB
signal not forwarded to stage A). Three stall conditions are used in this figure: no stalls: the ingress LI interface is always valid to produce
a message and the egress LI interface is always ready to accept an output message; ingress stall: the ingres LI interface is not valid at cycle
2 (marked with black circle) which leads to a bubble (− at cycle 3) in the correct design’s pipeline; egress stall: the egress LI interface is not
ready at cycle 3 (marked with black circle) which causes the pipeline in the correct design to stall (# at cycle 3). Only the correct design is
stall-invariant because the other two designs have a different sequence of egress informative events (×: incorrect value registered; c: message c
accepted when pipeline stalls) either under ingress stalls (Bug-A) or egress stalls (Bug-B).

(Egress Stall). Figure 2 (b) shows the behaviors of the DUV with

Bug-A, where the pipeline registers of stage B can still be enabled

even when stage A is stalling. Bug-A has the same behaviors as

the correct design when no stalls or only output stalls are applied

because stage A is not stalled in these two cases; however, when

ingress stall is applied on cycle 2, the pipeline registers of stage B

will register invalid data from the stalled stage A, which leads to an

erroneous output message on cycle 3 (marked by red ×). Figure 2
(c) shows the behaviors of the DUV with Bug-B, where stage A is

not stalled when stall B is stalled. Bug-B has the same behaviors as

the correct design when no stalls or only input stalls are applied

because stage B is not stalled in these two cases; however, when

egress stall is applied on cycle 3, message C is lost at this cycle

because stage A does not stall.

The Stall Invariant Property – The example in Figure 2 shows

that some designs have inconsistent behaviors (as determined by

the sequence of informative events on their egress interfaces) under

different stall conditions. We call a latency-insensitive RTL module

stall invariant if the module has the same sequence of informative

events on its egress interfaces under all possible stall conditions.

The stall invariant property is useful for catching bugs that lead to

a different sequence of informative events on the LI interface of the

DUV, which include numerous subtle bugs especially in a pipelined

DUV module. It is worth noting that the stall invariant property

only requires the equivalence of the sequence of egress informative

events and does not imply functional correctness of the DUV.

3 BOUNDED LATENCY EQUIVALENCE
CHECKING

In this section we introduce bounded latency equivalence checking

(BLEC), a formal verification technique that detects violations of

the DUV’s stall invariant property under finite buffering. For a

given latency-insensitive RTL module (the DUV), BLEC constructs

a verification harness with formal assertions that can be verified by

hardware formal property verification (FPV) tools. The FPV tools

can either find a violation of the stall invariant property (which

generally indicates the existence of a design bug) or provide a

potentially bounded proof that the target DUV is stall invariant.

We first introduce the necessary verification modules that are used

in the BLEC verification harness (Section 3.1). We then propose a

systematic method that constructs the BLEC verification harness

for any given latency-insensitive RTL module (Section 3.2).

3.1 Verification Modules
Figure 3 shows the verification harness of a DUV with one ingress

and one egress latency-insensitive interface. The verification har-

ness in Figure 3 exposes five input and output ports:

• val, rdy, and msg: these three ports form the LI interface

that generates input messages to the ingress LI interface of

the DUV.

• stall_ingress and stall_egress: these two ports are stall
variables whose value decides if an ingress stall or an egress
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Figure 3: Verification Harness for a DUV with One Ingress and One Egress LI Interface in Bounded Latency Equivalence Checking –
stall_ingress/egress: stall variables for the ingress/egress LI interface. N: a parameter which detemrines the depth of FIFOs in the ver-
ification harness. Strict path: a path in the harness where no ingress or egress stalls are applied on the DUV. Perturbed path: a path in the
harness where the perturbers apply a random number of stalls on the ingress and egress interface. Eq. checker: equivalence checker; a module
that checks if the result messages from the two paths are the same.

stall is applied on the DUV’s LI interface (1 for stall and 0

for not stall).

As is shown in the figure, the verification harness contains two

duplicated instances of the target DUV with different stall condi-

tions: the DUV in the strict path (i.e., the strict DUV ) has no ingress
or egress stalls under with FIFOs of N elements; the DUV in the

perturbed path (i.e., the perturbed DUV ) has random ingress and

egress stalls injected by perturbers. At the end of both path, a equiv-
alence checker compares the result messages in the output FIFOs

and reports a violation of the stall invariant property if the two

messages are different.

N-Element FIFOs – The verification harness includes four N-

element FIFOs to decouple the LI interfaces of the two DUV in-

stances, where N is a constant determined ahead of the construc-

tion of verification harness. Two FIFOs are inserted between the

ingress LI interfaces of the two DUVs and the top-level ingress LI

interface (val, rdy, msg). These FIFOs decouple the strict DUV from

the ingress stalls of the perturbed DUV, which achieves almost zero

ingress stalls for the strict DUV. Similarly, the two FIFOs between

the egress LI interfaces of the DUVs and the message checker de-

couple the strict DUV from the egress stalls of the perturbed DUV,

which achieves almost zero egress stalls for the strict DUV.

Assuming no ingress stalls nor egress stalls are applied on the

DUV, FPV tools can generate a proof that the DUV is indeed stall

invariant. This can be shown by comparing the behaviors of the

perturbed DUV against the strict DUV: the equivalence checker

ensures that the sequence of egress informative events of the DUV

under all stall conditions (output of the perturbed path) is the same

as if no stalls are applied (output of the strict path); therefore, the

DUV is stall invariant by definition (Section 2).

It is worth noting that even with deep FIFOs (large N’s), the strict

DUV may still experience ingress or egress stalls. The FPV tools

can still prove that the perturbed and strict DUV have the same

sequence of egress informative events. We call this proof a bounded
stall invariant proof because the strict DUV experiences ingress

and/or egress stalls due to finite buffering. The finite buffering

also defines the bounded nature of our proposed BLEC technique:

BLEC is only able to provide bounded stall invariant proofs because

FIFO sizes are finite. The finite size of FIFOs does not affect our

technique’s effectiveness in finding violations of the stall invari-

ant property because stall variant DUVs mostly generate different

sequences of egress informative events under non-zero stalls, not

necessarily zero stalls. Large depths of FIFOs may also have nega-

tive impacts on the performance of the formal property verification

tools. Therefore, we choose a small FIFO depth of two (2) in this

paper to decouple the strict and perturbed DUVs without causing

too much tool performance overhead.

Perturbers – Perturbers are a verification module inserted be-

tween the DUV and FIFOs to inject random stalls to the ingress or

egress LI interface of the DUV (i.e., to perturb the DUVwith random

ingress or egress stalls). A perturber takes as input a stall variable

(stall_ingress and stall_egress input ports in Figure 3), which
decides if stall is applied on the LI interface. As the green-shaded

components in Figure 3 show, the perturbers connect the val and
rdy LI handshake signals and the corresponding negated stall vari-

able with an AND gate. This logic suppresses the LI handshake

(and thus stalls the LI interface) when the stall variable is high.

Equivalence Checker – The equivalence checker is a module

that checks if the results of the egress latency-insensitive inter-

face from the two paths are the same. As shown in Figure 3, the

checker (in red) is interfaced to the two egress FIFOs. The equiv-

alence checker only dequeues from the FIFOs and performs the

equivalence check if both FIFOs are non-empty (i.e., val is asserted).
The behaviors of the equivalence checker can be expressed as a

property of an RTL module, which is boolean expressions between

its signals. In Figure 3, we use the implication operator ( =⇒ ) to

indicate that the equivalence check between s_msg and p_msg only
happens when both s_val and p_val are true.

3.2 Construction of Verification Harness
We demonstrate the verification harness of a DUV with one ingress

and one egress LI interface in the previous section. In this section,
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Algorithm 1 Construction of the BLEC Verification Harness – 𝑠

and 𝑝 in subscripts indicate the module belongs to the strict/perturbed

path; 𝑖 and 𝑒 in subscripts indicate the signal or module is associated with

the ingress interface 𝑖 or the egress interface 𝑒 . 𝑇𝑜𝑝𝐿𝐼𝑖 : toplevel latency-

insensitive interface that generates messages to the LI interface 𝑖 . N-FIFO,

EqChecker: N-element FIFOs, equivalence checkers as introduced in Sec-

tion 3.1. 𝐻 is a set of modules; 𝐻𝑝 is a set of interfaces and ports; 𝐻𝑐 is a

set of tuples where neighboring tuple elements are connected and data flow

through elements in ascending index order.

Require: 𝐷 : The target design under verification.

Require: 𝑁 : The depth of FIFOs in the verification harness.

Ensure: Verification harness𝐻 with ports𝐻𝑝 and connections𝐻𝑐 .

1: function ConstructHarness(𝐷, 𝑁 )

2: 𝐻 ← 𝐷𝑠 ∪ 𝐷𝑝

3: 𝐻𝑝 , 𝐻𝑐 ← ∅
4: for all 𝑖 ∈ IngressLatencyInsensitiveInterface(𝐷) do
5: 𝐻 ← 𝐻 ∪ N-FIFO𝑠,𝑖 ∪ N-FIFO𝑝,𝑖 ∪ Perturber𝑖

6: 𝐻𝑝 ← 𝐻𝑝 ∪ 𝑇𝑜𝑝𝐿𝐼𝑖 ∪ StallVariable𝑖

7: 𝐻𝑐 ← 𝐻𝑐 ∪ (𝑇𝑜𝑝𝐿𝐼𝑖 , N-FIFO𝑠,𝑖 , 𝐷𝑠 )
8: ∪ (𝑇𝑜𝑝𝐿𝐼𝑖 , N-FIFO𝑝,𝑖 , Perturber𝑖 , 𝐷𝑝 )
9: ∪ (StallVariable𝑖 , Perturber𝑖 , )
10: for all 𝑒 ∈ EgressLatencyInsensitiveInterface(𝐷) do
11: 𝐻 ← 𝐻 ∪ N-FIFO𝑠,𝑒 ∪ N-FIFO𝑝,𝑒 ∪ Perturber𝑒

12: ∪ EqChecker𝑒

13: 𝐻𝑝 ← 𝐻𝑝 ∪ StallVariable𝑒

14: 𝐻𝑐 ← 𝐻𝑐 ∪ (𝐷𝑠 , N-FIFO𝑠,𝑒 , EqChecker𝑒 )
15: ∪ (𝐷𝑝 , Perturber𝑒 , N-FIFO𝑝,𝑒 , EqChecker𝑒 )
16: ∪ (StallVariable𝑒 , Perturber𝑒 , )

we describe a systematic method to construct a verification harness

for any latency-insensitive RTL modules.

Algorithm 1 shows the steps to construct a BLEC verification har-

ness for any given latency-insensitive RTL DUV 𝐷 with 𝑁 -element

FIFOs. The algorithm proceeds by enumerating all ingress and

egress LI interfaces of 𝐷 and adds modules, ports, and connections

to the verification harness 𝐻 . For each ingress LI interface 𝑖 of 𝐷 ,

the algorithm adds one toplevel LI interface to generate messages

to 𝑖 , one perturber to apply random stalls on 𝑖 , and two N-element

FIFOs; for each egress LI interface 𝑒 of 𝐷 , the algorithm similarly

adds two FIFOs, one perturber, and one equivalence checker to com-

pare the results of the strict and perturbed paths. The generated

verification harness𝐻 may have multiple equivalence checkers and

a violation of the stall invariant property is found if the FPV tool

finds a failed assertion in any of these checkers.

4 IMPLEMENTATION
In this section, we describe our implementation of the bounded

latency equivalence checking technique in JasperGold, a state-of-

the-art commercial formal property verification tool. Section 4.1

describes the specifications of the key properties in the verification

harness in the SystemVerilog Assertion language. Section 4.2 dis-

cusses how we improve JasperGold’s performance by incorporating

proof acceleration modules into the verification harness.

To provide an overview of our BLEC implementation, Figure 4

shows an example workflow with our implementation of BLEC:

we implement a Verilog parser that assumes the naming of ports

in a latency-insensitive interface, which generates the verification

harness and JasperGold configuration scripts using a templated

approach; the JasperGold FPV tool either finds a counterexample to

the stall invariant property (in which case the designers can debug

the potential design issues with a waveform from the counterex-

ample) or proves the stall invariant property with respect to the

bounded FIFO size (in which case the verification engineer can stop

or increase the FIFO size for higher confidence of the proof).

4.1 Property Specification in SystemVerilog
Assertion

In this section, we discuss how to specify some of the critical as-

sumptions and properties in the SystemVerilog Assertion (SVA)

language [18]. These are assumptions and properties are embedded

in the verification harness and are generated by the Verilog parser

in a templated fashion. While solving the formal property verifi-

cation problem, JasperGold will assume the constraints to be true

and try to find counterexamples to the asserted properties.

Constraints on Toplevel LI Interface – As discussed in Sec-

tion 3.2, each ingress latency-insensitive interface in the target

DUV will add a toplevel LI interface which streams messages to the

ingress interface in the strict and perturbed DUV. However, an un-

constrained LI interface of three ports (val, rdy, and msg) may not

implement the correct LI handshake behaviors. Figure 5 shows two

possible bugs when each of the three ports are allowed to change

independently from each other. Figure 5 (a) shows a bug where the

downstream module may accept a wrong message because msg is
allowed to change while val is asserted. Figure 5 (b) demonstrates

a bug where the downstream module tries to acknowledge a non-

existent transaction because val gets deasserted before a previous

val is acknowledged.
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Figure 5: Bugs in Unconstrained Latency-Insensitive Interface – (a)
msg may change while val is asserted; the downstream module may
sample a wrong message depending on when rdy is asserted. (b) val
may get deasserted before a previously asserted val is acknowledged
by rdy; if rdy is asserted in response to val, the downstream module
may end up acknowledging an non-existent transaction.

To ensure correct LI handshakes, we add the following assump-

tion to the toplevel LI interface to constrain its behavior.

1 li_ifc_asms: assume property (
2 @(posedge clk) disable iff (reset) (
3 (val |-> rdy) or
4 (val |=> ($stable(msg) & $stable(val))
5 s_until_with (val & rdy))
6 )
7 );

In the above assumption, |-> and |=> are implication operators

in the SVA language that indicates the consequent (right hand side of
the operator) is true if the antecedent (left hand side of the operator)
is true [1]. The difference between |-> and |=> is that |-> requires
the consequent to be true at the same cycle when the antecedent is

true; |=> requires the consequent to be true at the next cycle after the
antecedent becomes true. This assumption uses the s_until_with
operator, which indicates that msg and val have to remain stable

at the same cycle val & rdy becomes true. This assumption states

that at any non-reset cycle, if val is asserted, then either val and
rdy are asserted at the same cycle or val and msg remain stable

until the transaction is acknowledged (val & rdy).
Properties of Equivalence Checkers – As mentioned in Sec-

tion 3.1, the equivalence checker checks if the results from the strict

and perturbed paths are the same when both egress FIFOs are not

empty. We formalize this equivalence check into the following SVA

assertion, which guards the check with an antecedent of both val
signals asserted.

1 same_msg_ast: assert property (
2 @(posedge clk) disable iff (reset) (
3 (s_val & p_val) |-> (s_msg == p_msg)
4 )
5 );

However, the same_msg_ast assertion alone is not sufficient to

capture all violations to the stall invariant property. Consider one

category of violations where the perturbed DUV fails to assert the

val signal on the egress interface at all. In this case, the formal prop-

erty verification tool considers this property to be vacuously true
because the antecedent of the same_msg_ast assertion is false [1].

To detect this category of design bugs, we add the following SVA

assertion.
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(a) Register File 1r1w (b) Register File 2r1w

Figure 6: Register Files with Integrated Proof Acceleration RAM –
1r1w: one read port and one write port; 2r1w: two read ports and one
write port.

1 same_vals_ast: assert property (
2 @(posedge clk) disable iff (reset) (
3 (s_val & ~p_val) |->
4 s_eventually (s_val & p_val)
5 and
6 (~s_val & p_val) |->
7 s_eventually (s_val & p_val)
8 )
9 );

The assertion same_vals_ast has the same consequent among

its two clauses which indicates that s_val & p_val will become

true in some future cycle. The s_eventually operator provides

a way to express that some event will happen after a finite but

uncertain number of cycles. This assertion indicates that no matter

which DUV (strict or perturbed) asserts the egress val signal, the
other DUV will eventually assert its val as well.

4.2 Proof Acceleration
To reduce the run time of the verification tool, our BLEC imple-

mentation incorporates JasperGold’s proof acceleration modules

into commonly used RTL modules. Proof acceleration modules are

behavioral modules that have built-in behaviors in JasperGold and

can be verified more efficiently than their manually implemented

RTL counterparts. We specifically target the RTL RAM modules

because (1) they generally contain a large number of states and the

increasing number of states often strongly correlates with longer

tool run time [1]; (2) the RTL RAM modules are widely reused

across IPs including FIFOs, register files, caches, and behavioral

memories.

Figure 6 shows how we integrate the RAM proof acceleration

module into two kinds of register files. For the register file with one

read port and one write port (1r1w), we wrap the proof acceleration

RAM within the regular register file module and connect all ports

accordingly. The read enable port on the proof acceleration RAM

is driven by high voltage because the register file is read every

cycle. For the register file with two read ports and one write port

(2r1w), we duplicate the proof acceleration RAMwithin the register

file module to support simultaneous reads. The write address and

data are applied on both proof acceleration RAM. Since we do not

modify the interface of the register files, our integration of proof

acceleration modules reduces the run time of verification without

changing the RTL code of the DUV.
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Design Flip-Flops Gates RTL Lines FIFO Depth

PE 113 729 143 2

GCD 66 655 490 2

Proc. 5983 86830 4898 2

Table 1: RTL Modules and BLEC Parameters Used in Case Studies –
PE: the latency-insensitive processing element; GCD: the greatest
common divisor unit; Proc.: the RISC-V processor
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Figure 7: Latency-Insensitive PE – N, W: ingress interface on the
north and west side of PE; E, S: egress interface on the east and south
side of PE. acc: accumulation register.

5 CASE STUDIES
In this section, we perform case studies on the following three RTL

modules with our implementation of BLEC to demonstrate its effec-

tiveness in detecting numerous design bugs: a latency-insensitive

processing element (PE), a greatest common divisor (GCD) unit, and

a RISC-V processor. We use JasperGold FPV 2023.03 as our formal

verification tool and run our case studies on a commodity server

with 72 cores of Intel Xeon E7-8867 v4 CPU and 256 GiB of main

memory. Table 1 shows the number of flip-flops, gates, the lines of

RTL code, and the BLEC parameters used in our case studies.

5.1 The Latency-Insensitive Processing Element
The first case study is on a latency-insensitive processing element

(PE) RTL module which is intended to be used as sub-modules of a

latency-insensitive systolic array. Figure 7 shows the architecture

of the PE module. The PE takes input from two LI interfaces at

the north and west side and produces output to the east and south

LI interfaces. The PE also performs multiply-accumulation and

stores the sum into its internal accumulation register. The PE also

forwards the west message to the east side. Depending on the

selection input signal, the PE either forwards the north message or

the accumulation result to the south side.

Bug: Incorrect Ingress Ready Condition – We examine a PE

bug discovered from the commit history of an in-house systolic

array (performing matrix multiplication) git repository. According

to the commit history, the designers created wrong control logic

for the ingress rdy signals: rdy from the east egress interface was

simply bypassed to the west ingress interface and rdy from the

south egress interface was bypassed to the north ingress interface.

This bug created an incorrect ingress ready condition (ingress ready

should be true only if both rdy from the east and the south side

interface are true) which escaped the designer’s unit test because

the behavioral downstream module of PE always applies egress

stalls at the same cycle.

Our implementation of BLEC detects this bug in under ten sec-

onds. JasperGold finds a 5-cycle counterexample to the same_msg_ast
assertion in the equivalence checker: the strict DUV in the coun-

terexample registers msgN and msgW at the same cycle; the perturbed

DUV has one cycle of egress stall on the east interface, which causes

msgW to be registered one cycle later than msgN. This difference in
the timing of registering ingress messages eventually leads to dif-

ferent results from the strict path and the perturbed path.

The PE designer initially identified this bug with a manually

crafted test case which captures the exact timing of egress stalls

required to trigger this bug. With the waveform of this counterex-

ample derived from BLEC, the PE designer is able to identify and

fix the root cause of the failed assertion much faster without ma-

nipulating the timings of egress stalls.

Bounded Proof: PE is Stall Invariant –After fixing the ingress
ready condition bug, we also leverage BLEC to generate a bounded

proof that the PE module is stall invariant. We observe that Jasper-

Gold is not able to converge on the PE design because the single-

cycle multiplier (two 32-bit inputs, one 32-bit output) in the PE

datapath significantly increases the complexity of verification. To

help the FPV tool converge, we leverage the fact that the precise

multiplier functionality is not required in BLEC. Therefore, we

can replace the complex multiplier logic with a much simpler bit-

wise XOR operation to improve converge time. Since the LI hand-

shake logic does not depend on the multiply-accumulate result,

performing this replacement does not affect the equivalence prop-

erties BLEC tries to prove. After replacing the single-cycle multi-

plier with bit-wise XOR gates, JasperGold is able to prove both the

same_msg_ast assertion and the same_vals_ast assertion within

1.5 hours.

5.2 The Greatest Common Divisor Unit
Our second case study design is a greatest common divisor (GCD)

unit which computes the GCD of two input 32-bit integers using

a subtraction-based Euclidean algorithm. Figure 8 shows the RTL

GCD unit and the finite state machine (FSM) in its control unit.

The GCD unit has one ingress LI interface to stream in the two

input integers within a single bundle and one egress LI interface

to stream out the result. In this case study, we examine and detect

two bugs with our BLEC implementation and also prove that the

correct GCD unit is stall invariant.

Bug: Unconditional Transition from CALC to DONE – The

first bug we investigate is when the control FSM transits uncondi-

tionally from the DONE state to the IDLE state. With this bug, the

GCD unit may not send out the result correctly if the downstream

module is not ready in the cycle GCD unit is in the DONE state.

However, this bug is only observed if there is more than one cycle

of stalls on the egress interface, which helps the bug escape some

simulation-based testing that assumes no egress stalls on the DUV.

Our implementation of BLEC detects this bug in under one

minute. JasperGold finds a 7-cycle counterexample to the same_msg_ast
assertion in the equivalence checker: the toplevel LI interface gen-

erates two messages into the two instances of DUV; the egress



MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Peitian Pan et al.

B

A

_

<

Control
val

rdy

msgB

msgA

3-M
U

X
2-M

U
X

enA

enB

selA

selB
lt

zd

GCD Unit

rdy

msg

val

Control FSM

IDLE

CALC DONE

reset

ingress:
val & rdy

B is zero

egress:
val & rdy

IDLE: waiting for input message

CALC: calculating GCD of A and B

DONE: waiting for result to send out

Figure 8: GCD Unit – lt: if A is less than B; zd: if B is zero.

perturber applies one cycle of stall on the egress interface, which

causes the first result of the perturbed DUV to drop; the equivalence

checker therefore finds the first result from the strict DUV and the

second result from the perturbed DUV to be different, triggering a

failed assertion. Verification engineers can deduce from the coun-

terexample waveform that the DUV has different behaviors under

different stall conditions, which helps debugging.

Bug: Wrong Transition Condition from CALC to DONE –
The second bug creates a wrong transition condition where the FSM

only transits to DONE if the egress interface is ready and transits to

IDLE otherwise. With this bug, the GCD unit will function correctly

if there is no egress stalls; but the DUV will not generate valid

output messages if there is egress stalls. Similar to the unconditional

transition bug, this bug can escape simple simulation tests that

assume no egress stalls.

BLEC detects this bug in under one minute. JasperGold identifies

that the same_msgs_ast assertion vacuously passes (i.e., the an-

tecedent condition is unreachable) because under this bug the strict

and the perturbed DUV cannot generate a valid output message at

the same cycle (perturbed DUV has at least one cycle egress stall).

But JasperGold does find a counterexample of infinite length to the

same_vals_ast assertion: the toplevel LI interface generates two
input messages and the strict DUV produces two output messages

before becoming idle; the perturbed DUV does not generate any

output and remains idle for the rest of the trace. Similar to the

unconditional transition bug, verification engineers can leverage

the counterexample to debug the design issue.

Bounded Proof: GCD Unit is Stall Invariant – We also lever-

age BLEC to generate a bounded proof that the GCD unit without

bugs is stall invariant. We make two minor changes to the GCD

unit design to help the FPV tool converge without undermining

the stall invariant proof.

First, we make the observation that for large 32-bit inputs, the

GCD unit may spend a significant number of cycles in the CALC
state to compute the greatest common divisor using the subtraction-

based Euclidean algorithm. Therefore, formally verifying the com-

plete 32-bit GCD unit design is intractable because the FPV tool has

to examine all 32-bit input pairs and step through the Euclidean al-

gorithm calculation to find potential violations of the stall invariant

property. To help the FPV tool converge on the GCD unit design,

we modify the state transition condition from state CALC to DONE to
expedite the GCD computation process. As shown in Figure 8, the

control FSM in the GCD unit transits from CALC to DONE when the

registered B value is zero. We remove this condition and make the

transition to the DONE state unconditional. This change effectively

reduces the number of cycles required to compute the greatest

common divisor.

Second, we apply a similar change to the bitwise-XOR operation

in the latency-insensitive PE to avoid reasoning about complex

computations in the GCD unit datapath. As shown in Figure 8, the

datapath of the GCD unit includes a subtraction operation between

the registered A and B values. We replace the subtraction operation

with a bitwise-AND operation so that the FPV tool can reason about

simpler bitwise-AND operations instead of a 32-bit subtraction.

Both of the above changes do not undermine the stall invari-

ant proof because the changes only affect logic outside of the

GCD unit’s handshake control logic. After applying the above two

changes, JasperGold is able to prove both the same_msg_ast as-

sertion and the same_vals_ast assertion in the GCD verification

harness within 20 minutes.

5.3 The Pipelined RISC-V Processor
Our final case study design is a five-stage pipelined RISC-V pro-

cessor that implements the RV32IM instruction set [3]. Figure 9

shows the simplified datapath and control diagram of the pipelined

processor used in this case study. The target processor RTL module

communicates to the instructionmemory and datamemory through

four memory interfaces: memory requests are transferred through

the imem_req and dmem_req interfaces, and memory responses

come back through the imem_resp and dmem_resp interfaces. In-

ternally, the processor has five pipeline stages: fetch (F), decode

(D), execution (X), memory (M), and write-back (W). The processor

reads the register file at stage D and writes back to the register file

at stage W. The processor has a simple branch predictor that always

predicts not taken. In the event of a branch mis-prediction (jmp or

br_taken), the processor squashes stage F (if a jump instruction)

or stage F and D (if a branch instruction) to discard invalid states.

Each pipeline stage may also originate a stall (ostall signals) in

the event of hazards or when memory responses have not arrived,

which stalls all stages after the originating stage.

The BLEC verification harness of the processor is different from

that of the previous case studies. We make the observation that

the memory request latency-insensitive interfaces of the processor

are inherently stall variant: branch instructions may squash earlier

memory requests and therefore memory response stalls can lead to

different informative memory requests. We choose to implement

equivalence checking on the RISC-V verification interface [24],

which exposes the states of the processor in instruction commit

order and is guaranteed to be stall invariant regardless of instruction

and data memory stalls. The right side of Figure 9 shows some of the

exposed processor states used in our case study. val is the latency-

insensitive valid signal which indicates if the output signals are

valid at a cycle; order is a counter that keeps track of the number

of committed instructions; insn is the 32-bit instruction; pc_rdata
is the PC register value for the current instruction and pc_wdata
is the PC register value for the immediate next instruction; x_wb
is a bit vector that tracks which architectural register is written;
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Addr. Order 18 19 20 21 22 23 24 25

St
ri
ct 0x20 7 F D X M W

0x24 8 F D X M W

0x28 9 F D X M W

Pe
rt
. 0x20 7 F D X M W

0x24 8 F D X M W

0x28 9 F D X M W

Table 2: Counterexample of Stall Invariant Property in Processor
Bug – Perturb.: perturbed DUV. Instructions before order 7 setup
the architectural registers and are omitted here. All three instruc-
tions shown here are branch instructions that are taken. Stages in
blue generate different egress informative events on the processor’s
imem_req interface in the strict DUV and the perturbed DUV. Stages
in red are the root cause (solid arrow) to the difference. The dashed
arrow indicates the causal relationship in the correct processor.

x_wdata is the content of all architectural registers at instruction
commit.

To provide instruction and data memory responses, we also

include a behavioral memory backed by the JasperGold proof accel-

erator described in Section 4.2. To retain generality of our method,

we do not fill the behavioral memory and instead allow the FPV

tool to the memory response message as free variables. To reduce

the FPV tool time, we also add the assumption to the processor

decode stage that all instructions at the decode stage is a valid

RISC-V instruction.

Bug: Not Squashing F/D When Branch is Taken –We exam-

ine a bug where the processor does not correctly squash stage F and

D when a mis-predication happens. For the processor in Figure 9,

this bug is equivalent to clamping the br_taken signal in stage X

to low, which does not discard the invalid instruction at stage D.

JasperGold finds a 27-cycle counterexample to the same_msg_ast
property on the instruction memory request interface within 30

minutes. This counterexample includes 10 valid RISC-V instruc-

tions, 5 of which are integer arithmetic instructions that setup the

architectural register values and the other 5 branch instructions

trigger the bug. Table 2 shows the pipeline diagram of the last three

instructions (all three branches are taken) in the bugged processor

(both strict DUV and perturbed DUV). Blue pipeline stages generate

the different messages (i.e., different PC register values) on the in-

struction memory request interface (i.e., the fetch stage at cycle 21).

In the strict DUV, the X stage at cycle 20 should have squashed the F

stage and fill the PC register with the correct branch target address.

However, at cycle 20 the pipeline stalls, and the existence of the

squash bug eliminates the supposed address update. Instead, the

PC register (stage F) at cycle 21 holds the immediate next address

after the PC register value at cycle 19. In the perturbed DUV, the

pipeline continues to progress at cycle 20, and the PC register at

cycle 21 holds the updated branch target address.

Attempted Bounded Proof: Processor is Stall Invariant –
Despite being able to find violations of the processor’s stall invariant

property within a relatively short period of time, in our case study

JasperGold cannot establish a proof of the equivalence properties

in BLEC verification harness within a reasonable amount of time

(48 hours wall time). The main reason for the extended time to

converge is the processor register file and the instruction and data

memory. The target RISC-V processor includes a register file of

32 32-bit entries, and the instruction and data memory both have

64 32-bit entires (we choose a small number of memory entries

to reduce converge time). These RTL memory modules represent

an enormous state space, which the FPV tool has to exhaustively

search through to eventually generate a bounded proof of the stall

invariant property.

We have attempted several methods to reduce the processor

complexity by introducing extra constraints. For example, we add

assumptions that certain RISC-V instructions will not appear to

reduce the decoder complexity; we remove the support for several

arithmetic operations in the ALU; we also reduce the bitwidth of

the long data bus (x_wdata) in the RVVI to shrink the state space

the FPV tool needs to search through. Future research may need

to further reduce the state space of the verification harness to

eventually establish a bounded proof of the stall invariant property.

5.4 Discussions
Based on our experiences performing the above case studies, we

observe that BLEC is effective at detecting bugs in the given latency-

insensitive RTL modules. Our FPV tool (JasperGold) usually takes a

reasonably short period of time to discover a counterexample to the
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stall invariant property in the original RTL module. As a concrete

example, in the RISC-V processor case study, JasperGold discovers

a counterexample of 27 cycles in the original processor RTL with

uninitialized behavioral instruction and data memory in under 20

minutes.

However, it usually takes the FPV tools significantly longer time

to achieve a bounded proof of stall invariant on the given RTL

module, and some manual changes are necessary to help the FPV

tool converge faster. Fortunately, BLEC is compatible with many

design changes that can significantly reduce tool converge time.

Most of these changes reduce the complexity of the target DUV’s

datapath by replacing complex computations (typically with a large

number of gates) with simpler computations. Since the latency-

insensitive handshake logic of most DUVs do not depend on the

exact values of these computations, those changes generally do not

undermine the stall invariant proof. Concrete examples of those

changes include replacing the multiplication logic with bitwise-

XOR gates (PE case study) and replacing the subtraction logic with

bitwise-AND gates (GCD unit case study).

6 RELATEDWORK
Bounded model checking [12] is a formal verification technique

which verifies if a given transition system obeys the specification

of its intended behaviors. The industry has adopted bounded model

checking based formal verification techniques to verify the func-

tional correctness of large RTL designs [2, 6, 7, 13]. Both these

existing works and our work leverage bounded model checking

based formal verification methods to prove or find counterexam-

ples to the intended behaviors of RTL modules. However, there are

two major differences between the above existing works and our

work. First, existing works mainly focus on verifying the functional

correctness of the RTL modules and our work focuses on finding

violations of the stall invariant property. Second, to achieve a de-

tailed and unambiguous specification, the above existing works

mainly reply on manual specifications of intended behaviors of an

RTL module. This requires intimate knowledge of both the design’s

functionalities and the specification language, which limits formal

methods’ accessibility to a relatively small audience. In contrast,

our proposal democratizes the formal verification techniques by

encapsulating details of the specification into verification modules

(perturbers and equivalence checkers).

Carloni et al. propose a correct-by-construction methodology

to develop latency-insensitive designs using a helper modules in-

cluding channels, relay stations, and shells [9]. Shells are wrapper
modules around the target DUV to enable correct-by-construction

latency-insensitive communications with other LI channels. The

authors claim that a shell can be automatically synthesized from a

given DUV, which reduces the time required to implement a cor-

rect latency-insensitive RTL module. In the face of stalling events,

the shell stalls the wrapped DUV instance through clock gating to

preserve its internal states and only allows state changes when all

input messages have become valid. Comparing to our work, Carloni

et al.’s proposal represents an orthogonal correct-by-construction

solution to the verification challenge of latency-insensitive designs.

Researchers have also explored properties similar to the stall in-

variant property and applied it in other contexts. Dai et al. propose

to leverage formal verification techniques to validate high-level syn-

thesis (HLS) results based on the latency-equivalence of the design

under different inputs [14]. Piccolboni et al. propose to formally ver-

ify the latency equivalence of different high-level synthesis results

to achieve high confidence in HLS results. Piccolboni’s proposal,

KAIROS, assumes an incremental modification workflow and ver-

ifies if the result of each synthesis step produces results that are

latency equivalent to the reference module. Similar to our proposal,

Dai et al. and Piccolboni et al. also construct a verification har-

ness with latency-insensitive input manipulation logic. However,

both our work and their proposals have different focuses and rep-

resent orthogonal efforts on tackling HLS verification issues and a

more traditional ASIC/FPGA prototyping verification challenges.

Suhaib et al. propose to validate LI components by verifying the

latency-equivalence between a LI component and its synchronous

counterpart, both of which are described using a verification model-

ing language [21]. Our work focuses on verifying the stall invariant

property of LI components modeled at RTL, which includes most

of the hardware modules used in ASIC and FPGA prototyping. Wi-

jayasekara investigates a similar property to the stall invariant

property in the context of asynchronous circuits and tackles the

verification challenges in the asynchronous context [25], where as

our work focuses on the correctness of digital LI components.

7 CONCLUSIONS
Despite its success in enabling hardware standard libraries and

numerous network-on-chip IPs, latency-insensitive protocols have

imposed a unique verification challenges on RTL modules where ex-

isting simulation-based dynamic verification techniques require sig-

nificant efforts to build test suites that cover a large number of stall

conditions. In this paper, we propose a formal verification method-

ology to address the verification challenge of latency-insensitive

RTL modules. We introduce the stall invariant property of latency-

insensitive RTL modules and make the observation that most bugs

in LI modules are violations of the stall invariant property. We

propose bounded latency equivalence checking, which constructs a

verification harness accepted by a formal property verification tool

to find inconsistent latency-insensitive behaviors under different

stall conditions. We implement our proposed BLEC technique with

a state-of-the-art commercial formal verification tool and perform

three case studies to evaluate its effectiveness. Our case studies

demonstrate that BLEC can find all injected bugs within relatively

short period of time. The case studies also find existing commercial

formal verification tools can provide a bounded proof of the stall

invariant property on many manually simplified RTL modules.
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