
TOWARDS GRADUALLY TYPED
HARDWARE DESCRIPTION LANGUAGES

Peitian Pan
03/26/2023

A TYPICAL HARDWARE DEVELOPMENT FLOW

Page 1 of 8

How do existing statically and dynamically typed HDLs
accelerate design iterations in this flow?

STATICALLY TYPED HDLS: STATIC CORRECTNESS GUARANTEES

§ Static type checking of generators
• Verilog only checks instances
• proves generator invariants across

for all possible parameters
• promotes high-quality generators

for better design reuse

Page 2 of 8

An Adder Generator in Bluespec with
Static Correctness Guarantee on Matching Bitwidths

DYNAMICALLY TYPED HDLS: PRODUCTIVE TESTING AND VERIFICATION

§ Using PyMTL3 as an example
• Polymorphic test harness

» Enables reuse of simulation setup and TB
• Automatic property generation

» Enables automatic, blackbox verification

Page 3 of 8

A Polymorphic Test
Harness with

Customizable Input
and Output Functions

val

msg

rdy

bar

foo assert property(
val |=> ($stable(val)

s_until_with rdy)
); Automatic Property Generation

through Reflection

THE BEST OF BOTH WORLDS: GRADUALLY TYPED HDLS

Page 4 of 8

Statically Typed
HDLs

Dynamically Typed
HDLs

+ Static correctness
guarantees on
generators

+ Fast simulation

- Limited
testing/verification
productivity

+ High testing/verification
productivity

- No static correctness
guarantees

- Slow simulation

+ Static correctness guarantees

+ High testing/verification
productivity

+ Disciplined mixed-typed
component composition

+ Simulation performance
optimizations

Gradually Typed
HDLs

GT-HDLS: STATIC TYPE CHECKS ON HARDWARE GENERATORS

§ Using PyMTL3 as an example
• Leverage Python type annotation

syntax to annotate bitwidths
• Translate the bitwidth equivalence

invariant into integer constraints
• Use SMT solvers to prove or

disprove the invariant

Page 5 of 8

LHS: n + 1 (from signal definition)
RHS: 1 + n (from semantics of concat and signal definition)

not ((n+1) == (1+n)) for an integer variable n

GT-HDLS: SAFE MIXED-TYPED COMPONENT COMPOSITION

§ The Mixed-Typed Composition Challenge
• Statically typed components expect well-

typed inputs
• errors could propagate long past the origin

given ill-typed inputs
§ Elaboration-time guards
• generators check the given parameters

against annotations
§ Simulation-time guards
• signal assignments check the given values

against its type

Page 6 of 8

A Mixed-Typed Component Composition with Statically
Typed DUT (divider) and Dynamically Typed Test Bench

GT-HDLS: TYPE-BASED PERFORMANCE OPTIMIZATIONS

§ Example: signal coalescing
• A net data structure is used to

represent signal connections
• Unoptimized: each writer-reader pair

needs an assignment every cycle

Page 7 of 8

A net structure of one (1)
driver and five (5) readers. Five

assignments are needed in
every simulated cycle to

implement the net behavior.

The unoptimized simulator
uses assignment because

that’s where the simulation-
time checks happen.

• Optimized
• references instead of assignments;
• assignments still used when

simulation guards are required

CONCLUSION

Page 8 of 8

+ Static correctness guarantees

+ High testing/verification
productivity

+ Disciplined mixed-typed
component composition

+ Simulation performance
optimizations

Gradually Typed
HDLs

Statically Typed
HDLs

Dynamically Typed
HDLs

