
PyMTL: A Unified Framework for Vertically
Integrated Computer Architecture Research

Derek Lockhart, Gary Zibrat, Christopher Batten
Computer Systems Laboratory

School of Electrical and Computer Engineering
Cornell University

1 Abstract

Technology trends prompting architects to consider greater heterogeneity and
hardware specialization have exposed an increasing need for vertically integrated
research methodologies that can effectively assess performance, area, and energy
metrics of future architectures. However, constructing such a methodology with
existing tools is a significant challenge due to the unique languages, design patterns,
and tools used in functional-level (FL), cycle-level (CL), and register-transfer-level
(RTL) modeling. We introduce a new framework called PyMTL that aims to close
this computer architecture research methodology gap by providing a unified
design environment for FL, CL, and RTL modeling. PyMTL leverages the Python
programming language to create a highly productive domain-specific embedded
language for concurrent-structural modeling and hardware design. While the use of
Python as a modeling and framework implementation language provides considerable
benefits in terms of productivity, it comes at the cost of significantly longer simulation
times. We address this performance-productivity gap with a hybrid JIT compilation
and JIT specialization approach. We introduce SimJIT, a custom JIT specialization
engine that automatically generates optimized C++ for CL and RTL models. To
reduce the performance impact of the remaining unspecialized code, we combine
SimJIT with an off-the-shelf Python interpreter with a meta-tracing JIT compiler
(PyPy). SimJIT+PyPy provides speedups of up to 72× for CL models and 200×
for RTL models, bringing us within 4–6× of optimized C++ code while providing
significant benefits in terms of productivity and usability.

2 Motivation

Energy and power constraints in modern computing systems have driven architects to
consider optimizations which reach across the entire computing stack. This has
prompted a need for vertically integrated research approaches that use multiple
modeling methodologies to effectively explore novel architectures at various levels of
abstraction. For example, the incremental design of a specialized accelerator from
algorithm to implementation may leverage the following modeling methodologies:

Instruc(on	 Set	 Architecture	

Algorithms	

Compilers	 Cycle	 Level	

Microarchitecture	

Func(onal	 Level	

VLSI	

Register	 Transfer	 Level	

Sea	 of	 Transistors	

Applica(ons	

Algorithm and ISA
Development

Design Space
Exploration

Area/Energy/Timing Validation
and

Prototype Development

• Functional-level (FL) modeling to
perform algorithmic exploration.

• Cycle-level (CL) modeling for rapid
architectural design space exploration.

• Register-transfer-level (RTL)
modeling for extraction of credible
area, energy, and timing estimation.

We call such a vertically integrated approach to design space exploration a modeling
towards layout methodology. Unfortunately, current tools for FL, CL, and RTL
modeling typically use different programming languages, design patterns, and
software tools that make it difficult for designers to quickly transition between
abstraction levels. This computer architecture research methodology gap makes
it a challenge for architecture researchers to rapidly iterate across the stack and
create a productive, vertically integrated design flow.

FL CL RTL
Modeling Productivity Efficiency Hardware
Languages Level (PLL) Level (ELL) Description (HDL)

MATLAB/Python C/C++ SystemVerilog/VHDL

Modeling Functional: Object Oriented: Concurrent-Structural:
Patterns Data Structures, Classes, Methods, Combinational Logic,

Algorithms Ticks and/or Events Clocked Logic,
Port Interfaces

Modeling 3rd-party Algorithm Computer Architecture Simulator Generators,
Tools Packages and Simulation Frameworks Synthesis Tools,

Toolboxes Verification Tools

Inspired by insights from prior work, we set out to create a new framework
incorporating several key design features to improve the productivity of vertically
integrated design space exploration. These features include:

• Concurrent-structural programming constructs for hardware-centric modeling.
• A unified modeling language for FL, CL, and RTL model descriptions.
• Hardware generation language capabilities to improve RTL design productivity.
• HDL integration to enable co-simulation with Verilog IP.
• Latency-insensitive design to promote component and testbench reuse.

3 PyMTL

PyMTL is a Python-based proof-of-concept frame-
work designed to provide a unified environment
for constructing FL, CL, and RTL models, enabling
productive vertically integrated computer architec-
ture research. PyMTL has been released as open-
source software available via GitHub.

PyMTL
https://www.github.com/cornell-brg/pymtl

The PyMTL framework consists of the following core components:

• A Python DSEL for concurrent-structural hardware modeling
• A Python API for analyzing models described in the PyMTL DSEL
• A Python tool for simulating PyMTL FL, CL, and RTL models
• A Python tool for translating PyMTL RTL models into Verilog
• A Python testing framework for model verification

PyMTL software architecture is designed with model/tool split. The modular nature
of the model/tool split encourages extensibility and provides a simple path for users to
write their own custom tools such as linters, translators, and visualization tools. More
importantly, it provides a clean boundary between hardware modeling logic and sim-
ulator implementation logic letting users focus on hardware design rather than
simulator software engineering.

Model	

Config	

Test	 &	 Sim	
Harness	

Verilog	

Traces	 &	
VCD	

User	 Tool	
Output	

Elaborator	

Simula>on	
Tool	

Transla>on	
Tool	

User	
Tool	

Model	
Instance	

EDA	
Toolflow	

Specifica(on	 Tools	 Output	

4 The PyMTL DSEL

The PyMTL domain-specific embedded language (DSEL) provides several constructs
to enable concurrent-structural modeling within Python, including:

• InPorts, OutPorts, and PortBundles for specifying parameterizable interfaces
• Wires and s.connect for programmatic structural composition of models
• Several decorators for specifying concurrent block execution semantics

(s.tick fl, s.tick cl, s.tick rtl, and s.combinational)
• Bits and BitStruct fixed-bitwidth message types
• The Model base class which provides helpers for inspecting elaborated designs

Below we show three very basic examples of sequential (Register), combinational
(Mux), and structural (MuxReg) models described using the PyMTL DSEL.

class Register(Model):
def __init__(s, nbits):

type = Bits(nbits)
s.in_ = InPort (type)
s.out = OutPort(type)

@s.tick_rtl
def seq_logic():

s.out.next = s.in_

class Mux(Model):
def __init__(s, nbits, nports):

s.in_ = InPort[nports](nbits)
s.sel = InPort (bw(nports))
s.out = OutPort(nbits)

@s.combinational
def comb_logic():

s.out.value = s.in_[s.sel]

class MuxReg(Model):
def __init__(s, nbits=8, nports=4):

s.in_ = [InPort(nbits) for x in range(nports)]
s.sel = InPort (bw(nports))
s.out = OutPort(nbits)

s.reg_ = Register(nbits)
s.mux = Mux (nbits, nports)

s.connect(s.sel, s.mux.sel)
for i in range(nports):

s.connect(s.in_[i], s.mux.in_[i])
s.connect(s.mux.out, s.reg_.in_)
s.connect(s.reg_.out, s.out)

5 Testing PyMTL Models

Testing of PyMTL tools and libraries is performed in Python using the open-source
py.test library. Below is an example test which is parameterized to verify behavior for
a variety of bitwidths and port numbers.

@pytest.mark.parametrize(
'nbits,nports', [(8, 2), (8, 3), (8, 4), (8, 8)

(32, 2), (32, 3), (32, 4), (32, 8)]
)
def test_muxreg(nbits, nports, test_verilog):

instantiate the MuxReg model with th provided parameters
model = MuxReg(nbits, nports)
model.elaborate()

create a Python-wrapped Verilog translation of MuxReg model
if --test-verilog is passsed at the commandline
if test_verilog:

model = TranslationTool(model)

construct a simulator for the MuxReg (or Verilog MuxReg) model
set input vectors and verify output vectors
sim = SimulationTool(model)
for inputs, sel, output in gen_vectors(nbits,nports):

for i, val in enumerate(inputs):
model.in_[i].value = val

model.sel.value = sel
sim.cycle()
assert model.out == output

The SimulationTool is used to construct a Python simulator for the MuxReg model
and verify its behavior. When combined with the TranslationTool, this same test
can be used to validate the PyMTL-generated Verilog translation of the model.

6 Modeling Towards Layout in PyMTL

PyMTL was designed to enable the incremental refinement of a component from
high-level model to bit-precise RTL implementation. The use of port-based and
latency-insensitive interfaces enables the designer to construct a test harness once
and reuse it across abstraction levels to verify FL, CL, and RTL PyMTL models, as
well as to validate Verilog models generated using the TranslationTool.

FL	
Model	

Test	
Harness	

CL	
Model	

Test	
Harness	

RTL	
Model	

Test	
Harness	

Verilog	
RTL	

Model	

Verilog	
RTL	

Model	

Test	
Harness	

The FL model to the right shows
some of the helpers PyMTL pro-
vides to facilitate creating port-
based interfaces for FL and CL
models. PortBundles are used
to concisely describe interfaces
with data, valid, and ready ports.
QueueAdapters provide a simple,
queue-like abstraction to these
ports. This approach allows the
user to use a traditional software
implementation of CRC32 to per-
form the computation.

class CRC32FL(Model):
def __init__(s):

s.in_ = InValRdyBundle (CRCMsgType())
s.out = OutValRdyBundle(32)

s.q0 = InQueueAdapter (s.in_)
s.q1 = OutQueueAdapter(s.out)

@s.tick_fl
def seq_logic():

s.q0.xtick()
s.q1.xtick()
if not s.q0.empty() and not s.q1.full():

t = s.q0.deq()
s.q1.enq(crc32(t.data, t.start))

L1 DCache

L1 ICache

Arbitration

Dot
Product

Accelerator
Processor

The above FL code can be refined into a cycle-
approximate CL model by using timing informa-
tion to delay the result, and then further refined to
an RTL implementation using the low-level con-
structs provided by the PyMTL DSEL. Each of
these models can reuse the same test harness
due to the use of latency-insensitive interfaces.

Please see the paper for an example of using PyMTL to iteratively refine a
dot-product coprocessor design from FL model down to placed-and-routed layout
(shown in diagram above).

7 SimJIT

Python greatly improves the expressiveness, productivity, and flexibility of model
code, but demonstrates poor simulation performance when compared to a statically
compiled language like C++. We address this performance limitation by using a
hybrid just-in-time optimization approach that includes SimJIT, a custom just-in- time
specializer for converting PyMTL models into optimized C++ code. SimJIT consists of
two distinct specializers for cycle-level (SimJIT-CL) and RTL models (SimJIT-RTL).

PyMTL	
RTL	 Model	
Instance	

Transla3on	

Verilator	

LLVM/GCC	 Wrapper	
Gen	

Verilog	
Source	

PyMTL	
CFFI	 Model	
Instance	

RTL	 C++	
Source	

C	 Interface	
Source	

C	 Shared	
Library	

Transla3on	
Cache	

SimJIT-RTL Tool

PyMTL	
CL	 Model	
Instance	

Transla3on	 LLVM/GCC	 Wrapper	
Gen	

PyMTL	
CFFI	 Model	
Instance	

CL	 C++	
Source	

C	 Interface	
Source	

C	 Shared	
Library	

SimJIT-CL Tool

SimJIT-RTL translates
RTL models into Verilog
HDL, then uses Verilator
to generate C++ sim-
ulator source from this
HDL. Generated C++ is
wrapped in Python to cre-
ate a PyMTL compatible
interface.

SimJIT-CL uses a custom
code generator to convert
CL models into Python
wrapped C++ source.
Caching is planned for
future release.

Note that while SimJIT-RTL is fairly robust and ready for use in most research flows,
SimJIT-CL is considered “alpha” software that only works for a limited set of models.

Below we show the performance benefits of our SimJIT specializers for a simple 8x8
mesh network simulated near saturation. Pure Python simulation using the default
CPython interpreter observes a slowdown of 300x/1200x when compared to a
hand-written C++ CL model/Verilog RTL model. The use of PyPy, an alternative
JIT-optimizing Python interpreter, can automatically improve performance of
FL/CL/RTL simulation by 25x/15x/5x, but a large gap remains compared to C++.

SimJIT significantly improves CL/RTL
simulation speed over CPython, but sees
even greater benefit when combined
with PyPy to optimize the unspecial-
ized Python simulation loop and wrapper
code. SimJIT+PyPy is able to close the
gap between C++ and Python to 4.5 ×
for CL models and 6 × for RTL models.

Solid lines show speedup of the simula-
tion loop compared to CPython, dotted
lines additionally include all codegen and
compilation overheads. Solid lines ap-
proximate simulation with caching.

Simulated Cycles

S
im

u
la

tio
n

 S
p

e
e
d

u
p

Simulated CyclesSimulated Cycles

FL Network

CL Network RTL Network

S
im

u
la

tio
n

 S
p

e
e
d

u
p

25x

10x

15x

5x

1x

1x

5x

10x

60x

200x

1000x

1x

5x

10x

30x

75x

150x

300x

1K 10K 100K 1M 10M

1K 10K 100K1K 10K 100K 1M

CPython PyPyCPython PyPy C++ Verilator
SimJIT-CL SimJIT-RTL SimJIT-RTL & PyPySimJIT-CL & PyPy

CPython PyPy

Future work aims to reduce this performance gap even further by generating more
optimized Python-to-C interfaces and possibly even creating parallel simulators.

8 Acknowledgments

This work was supported in part by NSF CAREER Award #1149464, a DARPA Young
Faculty Award, and donations from Intel Corporation and Synopsys, Inc. The authors
acknowledge and thank Shreesha Srinath and Berkin Ilbeyi for their valuable PyMTL
models and thoughtful feedback, Edgar Munoz for his help writing PyMTL models,
and Sean Clark and Matheus Ogleari for their help developing the C++ and Verilog
mesh network models.

Publication: Appears in the Proceedings of the 47th Int’l Symp. on Microarchitecture (MICRO-47), Dec. 2014. URL: http://www.csl.cornell.edu/~cbatten/pdfs/lockhart-pymtl-micro2014.pdf Contact Author: Derek Lockhart, 364 Upson Hall, Ithaca, NY 14853, dml257@cornell.edu

