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As embedded computing applica-
tions become more sophisticated, the demand
for high-performance, low-power information
processing grows. Custom circuits provide the
optimal solution for any processing task, but
rising mask and development costs limit appli-
cation-specific chips to devices that will be sold
in very high volumes. Even then, hardwired
circuits are unsuitable for designs that must
rapidly adapt to changing requirements. Pro-
grammable domain-specific processors are a
more flexible alternative, and they have evolved
to exploit particular forms of parallelism com-
mon to certain classes of embedded applica-
tions. Examples include digital signal
processors, media processors, network proces-
sors, and field-programmable gate arrays. Full
systems, however, often require a heteroge-
neous mix of these cores to be competitive on
complex workloads with a variety of process-
ing tasks. The resulting devices have multiple
instruction sets with different parallel execu-
tion and synchronization models, making
them difficult to program. They are also inef-
ficient when the application workload causes
load imbalance across the heterogeneous cores.

Ideally, a single all-purpose programmable
architecture would efficiently exploit the dif-
ferent types of parallelism and locality present
in embedded applications. Although general-

purpose processors are flexible, they are often
too large, too slow, or burn too much power
for embedded computing. In particular, mod-
ern superscalars expend considerable hardware
resources to dynamically extract limited par-
allelism from sequential encodings of unstruc-
tured applications. All-purpose processors
have a different goal. Embedded applications
often contain abundant structured paral-
lelism, where dependencies can be determined
statically. The challenge is to develop an
instruction set architecture that flexibly
encodes parallel dependency graphs and
improves the performance-efficiency of
processor implementations.

Vector-thread architectural paradigm
The vector-thread (VT) architectural para-

digm describes a class of architectures that
unify the vector and multithreaded execution
models. VT architectures compactly encode
large amounts of structured parallelism in a
form that lets simple microarchitectures attain
high performance at low power by avoiding
complex control and datapath structures and
by reducing activity on long wires.

Abstract model
A VT programming model combines vec-

tor and multithreaded computation. A con-
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ventional control processor interacts with a
vector of virtual processors (VPs), as Figure 1
shows. A virtual processor contains a set of
registers and can execute groups of RISC-like
instructions packaged into atomic instruction
blocks (AIBs). VPs have no automatic pro-
gram counter or implicit instruction fetch
mechanism; rather, all instruction blocks must
be explicitly requested by either the control
processor or the VP itself.

Although we can map applications to VT
in several ways, VT is especially well suited to
executing loops. Each VP executes a single

loop iteration, and the control processor strip-
mines the execution and factors out common
bookkeeping overhead. To execute data-par-
allel code, the control processor uses vector-
fetch commands to broadcast AIBs to all VPs,
as Figure 2a shows. The control processor can
also use vector-load and vector-store com-
mands to efficiently move vectors of data
between memory and the VP registers. To
allow efficient mapping of loop-carried depen-
dencies to VT, VPs are connected in a uni-
directional ring topology, with pairs of sending
and receiving instructions transferring data
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Figure 1. Abstract model of a vector-thread architecture. A control processor interacts with a vector of virtual
processors (VPs). 
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directly between them, as Figure 2b illustrates.
In contrast to software pipelining on VLIW
architectures, the compiler or programmer
need only schedule code for one loop iteration
mapped to one VP, and the hardware dynam-
ically schedules the cross-VP data transfers to
resolve when the data becomes available.

To execute loop iterations with condition-
als or even inner loops, each VP directs its own
control flow using thread fetches to fetch its
AIBs, as Figure 2c shows. By allowing soft-
ware to freely intermingle vector and thread
fetches, a VT architecture can combine the
best attributes of the vector and multithread-
ed execution paradigms. The control proces-
sor can issue a vector-fetch command to
launch a vector of VP threads, each of which
continues to execute as long as the VP issues
thread fetches. Thread fetches break the rigid
control flow of traditional vector machines,
letting the VPs follow independent control
paths. By letting VPs conditionally branch,
VT provides more efficient execution of large
conditionals than traditional vector masking.
Thread fetches also let outer-loop parallelism
map naturally to VT, as VPs can execute
inner-loop iterations that have little or no
available parallelism. In addition to executing
loop iterations, VPs can serve as free-running
threads, operating independently from the
control processor and retrieving tasks from a
shared work queue.

Physical model
A VT machine contains a conventional

control processor and a vector-thread unit
(VTU) that executes the VP code, as Figure 3
illustrates. To exploit the parallelism exposed
by the VT abstract model, the VTU contains
a parallel array of processing lanes. Each lane
contains physical registers, which hold the
state of VPs mapped to the lane, and func-
tional units, which are time-multiplexed
across the VPs.

Unlike traditional vector machines, in a VT
machine the lanes execute decoupled from
each other, and each lane has a small AIB
cache. A lane’s command management unit
(CMU) buffers commands from the control
processor in a queue (cmd-Q) and holds
pending thread-fetch addresses for the lane’s
VPs. The CMU chooses a vector-fetch or
thread-fetch command to process, and looks
up its address in the AIB cache tags. After pro-
cessing an AIB cache hit or miss refill, the
CMU generates an execute directive contain-
ing an index to the AIB cache. For a vector-
fetch command, the execute directive
indicates that all VPs should execute the AIB;
for a thread-fetch command, it identifies a sin-
gle VP to execute the AIB. The CMU sends
execute directives to a queue, and it can over-
lap the AIB cache refill for new fetch com-
mands with the execution of previous ones. 

To process an execute directive, the execu-
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tion cluster reads VP instructions one by one
from the AIB cache and executes them for the
appropriate VP. When processing an execute
directive from a vector-fetch command, the
execution cluster executes all of the instruc-
tions in the AIB for one VP before moving on
to the next.

Scale VT processor
The Scale architecture, an instantiation of

the VT paradigm, aims to provide high per-
formance at low power for a wide range of
embedded applications while using only a
small area. The planned Scale prototype
includes a MIPS-RISC control processor, 32
Kbytes of cache, and a four-lane vector-thread
unit that can execute 16 operations per cycle
and supports up to 128 simultaneously active
virtual processor threads. The estimated area
is only 10 mm2 in 0.18-µm technology. Here,
we give a brief overview of Scale; a more
detailed description and evaluation is avail-
able elsewhere.1,2

To optimize area and energy, Scale parti-
tions lanes (and VPs) into multiple execution
clusters, each containing only a subset of all
possible functional units and a small register
file with few ports. The atomic execution of
AIBs lets Scale expose shared temporary state
that is valid only within an AIB—chain reg-
isters at each ALU input reduce register file
energy, and shared VP registers reduce the reg-
ister file size needed to support a large num-
ber of VPs. Each cluster has independent
control, and intercluster register dependen-
cies are statically partitioned into transport
and writeback micro-ops, enabling decoupled
cluster execution (without requiring dynam-
ic register renaming3). Additionally, the mem-
ory access cluster uses load-data and
store-address queues to enable access/execute
decoupling.4 Decoupling allows each in-order
cluster to execute code for different VPs on
the same cycle, providing an inexpensive form
of simultaneous multithreading to hide large
functional unit or memory latencies.

The Scale memory system uses cache
refill/access decoupling2 to pre-execute vector
loads and issue any needed cache line refills
before regular execution. Scale also provides
segment vector loads and stores, which effi-
ciently pack and unpack multifield records
into VP registers. These mechanisms let Scale

use a conventional cache to amplify memory
bandwidth and tolerate long memory laten-
cies, and avoid complicating the software
interface with a hierarchical vector (or stream)
register file.5,6

To evaluate Scale’s performance and flexi-
bility, we mapped a diverse selection of
embedded benchmarks (including examples
from cryptography and image, audio, and net-
work processing) from the Embedded Micro-
processor Benchmark Consortium (EEMBC)
and other suites. The results in Tables 1 and
2 are based on a detailed execution-driven
simulator,1 and they represent a snapshot of
our ongoing progress in optimizing the
microarchitecture and benchmark mappings.
The simulator modeled a four-lane Scale con-
figuration running at 400 MHz with a 64-bit
wide DDR2 memory interface clocked at 200
MHz. As is standard practice for EEMBC, we
give results for compiled out-of-the-box code
(OTB), which runs on the Scale control
processor, and assembly-optimized code
(OPT), which makes use of the VTU. Total
cycle numbers for non-EEMBC benchmarks
(Table 2) are for the entire application, while
the remaining statistics are for the kernel only
(the kernel excludes benchmark overhead
code and for Li the kernel consists of the
garbage collector only). Results for different
data sets appear separately, or an “All” data set
indicates that results were similar across
inputs. Overall, the results show that Scale can
flexibly provide competitive performance on
a wide range of codes from different domains.

Advantages
VT draws from earlier vector architectures,7

and like vector microprocessors,8-10 the Scale
VT implementation provides high through-
put at low complexity. Vector-fetch com-
mands issue many parallel instructions
simultaneously, while vector-load and vector-
store commands encode data locality and
allow optimized memory access. A vector-
fetch broadcasts an AIB address to all lanes,
which each perform only a single tag check.
The execution cluster then reads instructions
within the AIB using a short index into the
small AIB cache, and the vector-fetch ensures
that each VP in a lane will reuse the AIB
before any eviction is possible. Vector-mem-
ory commands improve performance and save
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memory-system energy by avoiding the addi-
tional arbitration, tag checks, and bank con-
flicts that would occur if each VP requested
elements individually.

In executing loops with cross-iteration
dependencies, VT has many advantages over
VLIW architectures. Loop iterations map to
VPs on parallel lanes, and the dynamic hard-
ware scheduling of explicit cross-VP data
transfers allows execution to automatically
adapt to the software critical path. Further-
more, within a lane, Scale’s cluster decoupling
lets execution dynamically adjust to functional
unit and memory latencies. These features
alleviate the need for loop unrolling, software

pipelining, and static scheduling, enabling
more portable and compact code.

VT provides extremely fine-grained multi-
threading with low overhead; a single vector-
fetch command can launch 100 threads, each
executing 10 instructions. This granularity
lets VT parallelize code more effectively than
conventional simultaneous multithreading
(SMT) and chip multiprocessor (CMP) archi-
tectures. VT factors out bookkeeping code to
the control thread, and vector-fetch and vec-
tor-memory commands efficiently distribute
instructions and data to the VP threads. Addi-
tionally, vector fetches and the cross-VP net-
work provide low-overhead fine-grained
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Table 1. Performance and mapping characterization for benchmarks from the 

Embedded Microprocessor Benchmark Consortium (EEMBC).

Iterations Memory
Data per second Kernel         Per-cycle statistics        Loop access

Benchmark Description set OTB OPT speedup Ops Ld-El St-El Mem-B types types
Rgbcmy RGB to CMYK color conversion — 140 2,080 14.8 6.8 1.2 0.4 3.0 DP VM, SVM

Rgbyiq RGB to YIQ color conversion — 58 2,308 39.8 9.3 1.3 1.3 3.8 DP SVM

Rgbhpg High pass gray-scale filter — 111 4,962 44.6 10.4 2.8 1.0 3.1 DP VM, VP

Text Printer language parsing — 298 440 1.5 0.2 0.0 0.0 0.0 DE VM

Dither Floyd-Steinberg gray-scale dithering — 149 1,027 6.9 5.0 1.1 0.3 0.3 DP, DC VM, SVM, VP

Rotate Binary image 90-degree rotation — 707 17,948 25.4 11.0 0.6 0.6 0.0 DP VM, SVM

Lookup IP route lookup using Patricia Trie — 1,662 9,661 5.8 6.9 0.9 0.0 0.0 DI VM, VP

Ospf Djikstra shortest path first — 6,197 6,995 1.1 1.3 0.2 0.1 0.1 FT VP

Pktflow IP packet processing 512 Kbytes 6,637 124,032 18.7 7.5 1.5 0.1 0.6 DC, XI VM, VP

1 Mbyte 2,362 31,260 13.2 3.7 0.7 0.1 4.2

2 Mbytes 1,206 16,274 13.5 3.7 0.7 0.1 4.2

Pntrch Pointer chasing, searching linked list — 8,828 38,639 4.4 2.3 0.3 0.0 0.0 FT VP

Fir Finite impulse response filter — 57,362 6,331,117 110.4 6.9 1.7 0.1 0.5 DP VM, SVM

Fbital Bit allocation for DSL modems Typ 860 22,767 26.5 3.6 0.5 0.2 0.0 DC, XI VM, VP

Step 12,533 286,944 22.9 2.3 0.4 0.0 0.0

Pent 1,304 61,387 47.1 3.4 0.5 0.0 0.0

Fft 256-pt fixed-point complex FFT All 6,577 123,959 18.8 3.8 1.7 1.4 0.1 DP VM, SVM

Viterb Soft decision Viterbi decoder All 1,561 16,316 10.5 5.0 0.5 0.5 0.1 DP VM, SVM

Autocor Fixed-point autocorrelation Data1 280,259 3,208,985 11.5 3.2 1.2 0.1 0.1 DP VM

Data2 1,889 64,143 34.0 7.9 2.8 0.0 0.0

Data3 1,980 79,000 39.9 9.5 3.3 0.0 0.0

Conven Convolutional encoder Data1 2,858 2,676,480 936.4 10.3 0.9 0.2 0.9 DP VM, VP

Data2 3,320 3,476,749 1,047.1 11.1 1.1 0.3 0.9

Data3 4,216 4,294,149 1,018.4 10.3 1.4 0.3 1.4

Note: The abbreviations in the table, as well as in Table 2, are: out-of-the-box code (OTB), assembly-optimized code (OPT), VTU

compute operations (Ops), load elements (Ld-El), store elements (St-El), and DRAM bytes (Mem-B). Loop types parallelized in the

Scale mappings include: data-parallel loop with no control flow (DP), data-parallel loop with conditional thread fetches (DC), loop

with cross-iteration dependencies (XI), data-parallel loop with inner-loop (DI), loop with data-dependent exit condition (DE), and

free-running threads (FT). Memory access types include: unit-stride and strided vector memory accesses (VM), segment vector

memory accesses (SVM), and individual VP loads and stores (VP).



synchronization, and a shared first-level cache
enables low-overhead memory coherence.

VT seamlessly combines vector and thread-
ed execution. Unlike polymorphic architec-
tures, which must explicitly switch modes,11,12

Scale can exploit fine-grained data-, thread-,
and instruction-level parallelism simultane-
ously. Although some architectures can extract
fine-grained parallelism from a wider range of
loops, VT handles many common parallel loop
types while avoiding heavyweight interthread
synchronization on shared global registers13 and
speculative execution with dynamic checks for
memory dependencies.14 In comparison to
exposed architectures,6,15 VT provides a high-
level virtual processor abstraction, so software
can encode parallelism without exposing
machine details such as the number of physical
registers and processing units.

Conclusion
VT exploits fine-grained parallelism and

locality more effectively than traditional
superscalar, VLIW, or multithreaded archi-
tectures. VT’s flexibility enables new ways of
parallelizing codesfor example, by letting
vector-memory commands feed directly into
threaded code. The Scale prototype demon-
strates that VT is well-suited to all-purpose
embedded computing, letting a single com-
pact design provide competitive performance
across a range of applications. In the future,
we expect that the vector-thread paradigm will
prove to be widely applicable across comput-
ing domains. MICRO
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