Accelerating Irregular Algorithms on GPGPUs Using Fine-Grain Hardware Worklists

Ji Kim and Christopher Batten

Cornell University

IEEE/ACM International Symposium on Microarchitecture 2014 (MICRO-47)
Amorphous Data Parallelism

- Explored in-depth by Pingali et al. in PLDI 2011
- Generalization of conventional data parallelism
 - **Conflict**: Tasks can conflict with each other
 - **Dynamic**: New tasks can be generated dynamically
 - **Morph**: Tasks can modify the underlying data structure dynamically
- Difficult to map amorphous data parallelism to GPGPUs
Target Benchmarks (LonestarGPU)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Conflict</th>
<th>Dynamic</th>
<th>Morph</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BFS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSSP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MST</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Burtscher et al. A Quantitative Study of Irregular Programs on GPUs. IISWC 2012.
Previous Work on Software Optimizations

• *The Tao of Parallelism in Algorithms*, Pingali et al. (PLDI 2011)

• *A Quantitative Study of Irregular Programs on GPUs*, Burtscher et al. (IISWC 2012)

• *Data-Driven versus Topology-Driven Irregular Computations on GPUs*, Nasre et al. (IPDPS 2013)

• Many others…

What can architects do to accelerate amorphous data parallel applications on GPGPUs?
Presentation Outline

• Motivation

Mapping Irregular Algorithms to GPGPUs

• Developing Optimized Software Baselines

• Fine-Grain Hardware Worklists

• Evaluation
Motivation GPGPU Mapping SW Optimizations HWWL Evaluation

Topology-Driven Approach

def **topo_driven**:
 idx = get_tid()
 my_node = nodes[idx]
 if check(my_node):
 compute(my_node)
 *done_ptr = false

def **main**:
 done = false
 while not done:
 done = true
 topo_driven<<<N>>>(nodes, &done)

• Low work efficiency!
Motivation
GPGPU Mapping
SW Optimizations
HWWL
Evaluation

Topology-Driven Approach

```python
def topo_driven:
    idx = get_tid()
    my_node = nodes[idx]
    if check( my_node ):
        compute( my_node )
        *done_ptr = false

def main:
    done = false
    while not done:
        done = true
        topo_driven<<<N>>>( nodes, &done )

• Low work efficiency!
```
Motivation GPGPU Mapping SW Optimizations HWWL Evaluation

Topology-Driven Approach

```
def topo_driven:
    idx = get_tid()
    my_node = nodes[idx]
    if check( my_node ):
        compute( my_node )
        *done_ptr = false

def main:
    done = false
    while not done:
        done = true
        topo_driven<<<N>>>( nodes, &done )
```

- Low work efficiency!
def topo_driven:
 idx = get_tid()
 my_node = nodes[idx]
 if check(my_node):
 compute(my_node)
 *done_ptr = false

def main:
 done = false
 while not done:
 done = true
 topo_driven<<<N>>>(nodes, &done)

• Low work efficiency!
Data-Driven Approach

```python
def data_driven:
    while idx = wl.pull():
        my_node = nodes[idx]
        compute( my_node )
        for all neighbors of my_node:
            if check( neighbor ):
                wl.push( idx )

def main:
    init wl<<<N>>>( nodes, wl )
    data_driven<<<M>>>( nodes, wl )
```

- High Memory Contention!
- SW Worklist Overhead!
Data-Driven Approach

```python
def data_driven:
    while idx = wl.pull():
        my_node = nodes[idx]
        compute( my_node )
        for all neighbors of my_node:
            if check( neighbor ):
                wl.push( idx )

def main:
    init_wl<wl>( nodes, wl )
data_driven<wl>( nodes, wl )
```

- High Memory Contention!
- SW Worklist Overhead!
Data-Driven Approach

```python
def data_driven:
    while idx = wl.pull():
        my_node = nodes[idx]
        compute( my_node )
        for all neighbors of my_node:
            if check( neighbor ):
                wl.push( idx )

def main:
    init_wl<<<N>>>( nodes, wl )
    data_driven<<<M>>>( nodes, wl )
```

- High Memory Contention!
- SW Worklist Overhead!
Data-Driven Approach

Motivation
GPGPU Mapping
SW Optimizations
HWWL
Evaluation

def data_driven:
 while idx = wl.pull():
 my_node = nodes[idx]
 compute(my_node)
 for all neighbors of my_node:
 if check(neighbor):
 wl.push(idx)

def main:
 init wl<<N>>(nodes, w1)
 data_driven<<M>>(nodes, w1)

• High Memory Contention!
• SW Worklist Overhead!
Data-Driven Approach

```python
def data_driven:
    while idx = wl.pull():
        my_node = nodes[idx]
        compute( my_node )
        for all neighbors of my_node:
            if check( neighbor ):
                wl.push( idx )

def main:
    init_wl<<N>>>( nodes, wl )
data_driven<<M>>>( nodes, wl )
```

- High Memory Contention!
- SW Worklist Overhead!
Data-Driven Approach

Motivation
GPGPU Mapping
SW Optimizations
HWWL
Evaluation

- High Memory Contention!
- SW Worklist Overhead!

```
def data_driven:
    while idx = wl.pull():
        my_node = nodes[idx]
        compute( my_node )
        for all neighbors of my_node:
            if check( neighbor ):
                wl.push( idx )

def main:
    init_wl<<<N>>>( nodes, wl )
    data_driven<<<M>>>( nodes, wl )
```
Presentation Outline

• Motivation
• Mapping Irregular Algorithms to GPGPUs
• Developing Optimized Software Baselines
• Fine-Grain Hardware Worklists
• Evaluation
Developing Optimized SW Baselines

- LonestarGPU 1.02 only has topology-driven
- LonestarGPU 2.0 released but not better in all cases
- Missing some state-of-the-art optimizations
 - Double-buffering
 - Work chunking
 - Work donating
 - Variable kernel config
Double-Buffered Data-Driven Approach

def data_driven:
 for wid in range(start, end):
 idx = inwl.pull(wid)
 my_node = nodes[idx]
 compute(my_node)
 for all neighbors of my_node:
 if check(neighbor):
 outwl.push(neighbor.idx)

def main:
 init_wl<<N>>>(nodes, inwl)
 while not inwl.empty():
 data_driven<<M>>>(nodes, inwl, outwl)
 swap(outwl, inwl)

• Less load balancing!
Double-Buffered Data-Driven Approach

```python
def data_driven:
    for wid in range(start, end):
        idx = inwl.pull(wid)
        my_node = nodes[idx]
        compute(my_node)
        for all neighbors of my_node:
            if check(neighbor):
                outwl.push(neighbor.idx)

def main:
    init_wl<<N>>(nodes, inwl)
    while not inwl.empty():
        data_driven<<M>>(nodes, inwl, outwl)
        swap(outwl, inwl)
```

- Less load balancing!
Double-Buffered Data-Driven Approach

```python
def data_driven:
    for wid in range(start, end):
        idx = inwl.pull(wid)
        my_node = nodes[idx]
        compute(my_node)
        for all neighbors of my_node:
            if check(neighbor):
                outwl.push(neighbor.idx)

def main:
    initwl<<N>>(nodes, inwl)
    while not inwl.empty():
        data_driven<<M>>(nodes, inwl, outwl)
        swap(outwl, inwl)
```

- Less load balancing!
Double-Buffered Data-Driven Approach

```python
def data_driven:
    for wid in range(start, end):
        idx = inwl.pull(wid)
        my_node = nodes[idx]
        compute(my_node)
        for all neighbors of my_node:
            if check(neighbor):
                outwl.push(neighbor.idx)

def main:
    init_wl<<N>>(nodes, inwl)
    while not inwl.empty():
        data_driven<<M>>(nodes, inwl, outwl)
        swap(outwl, inwl)
```

- Less load balancing!
Double-BUFFERED DATA-DRIVEN APPROACH

Motivation GPGPU Mapping SW Optimizations HWWL Evaluation

Def data_driven:
 for wid in range(start, end):
 idx = inwl.pull(wid)
 my_node = nodes[idx]
 compute(my_node)
 for all neighbors of my_node:
 if check(neighbor):
 outwl.push(neighbor.idx)

Def main:
 init_wl<<<<N>>>(nodes, inwl)
 while not inwl.empty():
 data_driven<<<<M>>>(nodes, inwl, outwl)
 swap(outwl, inwl)

• Less load balancing!
Double-Buffered Data-Driven Approach

```python
def data_driven:
    for wid in range( start, end ):
        idx = inwl.pull( wid )
        my_node = nodes[idx]
        compute( my_node )
        for all neighbors of my_node:
            if check( neighbor ):
                outwl.push( neighbor.idx )

def main:
    init_wl<<N>>>( nodes, inwl )
    while not inwl.empty():
        data_driven<<M>>>( nodes, inwl, outwl )
        swap( outwl, inwl )

• Less load balancing!
```
Double-Buffered Data-Driven Approach

```python
def data_driven:
    for wid in range( start, end ):
        idx = inwl.pull( wid )
        my_node = nodes[idx]
        compute( my_node )
        for all neighbors of my_node:
            if check( neighbor ):
                outwl.push( neighbor.idx )

def main:
    init_wl<<N>>>( nodes, inwl )
    while not inwl.empty():
        data_driven<<M>>>( nodes, inwl, outwl )
        swap( outwl, inwl )
```

- Less load balancing!
Double-Buffered Data-Driven Approach

```python
def data_driven:
    for wid in range(start, end):
        idx = inwl.pull(wid)
        my_node = nodes[idx]
        compute(my_node)
        for all neighbors of my_node:
            if check(neighbor):
                outwl.push(neighbor.idx)

def main:
    init_wl<<<N>>>(nodes, inwl)
    while not inwl.empty():
        data_driven<<<M>>>(nodes, inwl, outwl)
        swap(outwl, inwl)
```

- Less load balancing!
Comparison of LonestarGPU Versions

- Experiments on NVIDIA Tesla C2075 GPU
- Choose best topology- and data-driven for each benchmark
- Data-driven outperforms topology-driven in most cases
Room for Improvement

- Even with optimizations, data-driven approaches still have some weaknesses:
 - Memory contention on pushes
 - Suboptimal load balancing
 - SW overhead from worklist

- Significant time and effort to implement optimizations, performance not always guaranteed!

Can we use hardware to address these weaknesses?
Presentation Outline

- Motivation
- Mapping Irregular Algorithms to GPGPUs
- Developing Optimized Software Baselines
- Fine-Grain Hardware Worklists
- Evaluation
Fine-Grain Hardware Worklist (HWWL) Banks

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlpull</td>
<td>Pulls work ID from HWWL. If bank is empty: return WAIT if work in other banks, otherwise return DONE.</td>
</tr>
<tr>
<td>wlpush</td>
<td>Pushes work ID to HWWL, throws exception if overflow buffer is full.</td>
</tr>
</tbody>
</table>
HWWL Intra-Core Work Redistribution (Threshold)

- **Greedy** banks with more work than threshold **donate**
- **Needy** banks with less work than threshold **receive**
- Priority based on round-robin arbitration
HWWL Intra-Core Work Redistribution (Threshold)

- **Greedy** banks with more work than threshold **donate**
- **Needy** banks with less work than threshold **receive**
- Priority based on round-robin arbitration

Motivation | GPGPU Mapping | SW Optimizations | HWWL | Evaluation
HWWL Intra-Core Work Redistribution (Threshold)

- **Greedy** banks with more work than threshold **donate**
- **Needy** banks with less work than threshold **receive**
- Priority based on round-robin arbitration
HWWL Intra-Core Work Redistribution (Threshold)

- **Greedy** banks with more work than threshold **donate**
- **Needy** banks with less work than threshold **receive**
- Priority based on round-robin arbitration
HWWL Intra-Core Work Redistribution (Threshold)

- Simple design, low overhead
- A few banks can monopolize most of the work due to occupancy-agnostic priorities
HWWL Intra-Core Work Redistribution (Threshold)

- Simple design, low overhead
- A few banks can monopolize most of the work due to occupancy-agnostic priorities
HWWL Intra-Core Work Redistribution (Threshold)

- Simple design, low overhead
- A few banks can monopolize most of the work due to occupancy-agnostic priorities
HWWL Intra-Core Work Redistribution (Threshold)

- Simple design, low overhead
- A few banks can monopolize most of the work due to occupancy-agnostic priorities
HWWL Intra-Core Work Redistribution (Threshold)

- Simple design, low overhead
- A few banks can monopolize most of the work due to occupancy-agnostic priorities
HWWL Intra-Core Work Redistribution (Sorting)

- Tradeoff complexity for better load balancing
- Sort banks based on amount of work
- Banks with most work donate to banks with least work
HWWL Intra-Core Work Redistribution (Sorting)

- Tradeoff complexity for better load balancing
- Sort banks based on amount of work
- Banks with most work donate to banks with least work
HWWL Intra-Core Work Redistribution (Sorting)

- Tradeoff complexity for better load balancing
- Sort banks based on amount of work
- Banks with most work donate to banks with least work
HWWL Intra-Core Work Redistribution (Sorting)

- Tradeoff complexity for better load balancing
- Sort banks based on amount of work
- Banks with most work donate to banks with least work
Motivation

- GPGPU Mapping
- SW Optimizations

HWWL

Evaluation

HWWL Intra-Core Work Redistribution (Sorting)

- Trade off complexity for better load balancing
- Sort banks based on amount of work
- Banks with most work donate to banks with least work
HWWL Intra-Core Work Redistribution (Sorting)

- Tradeoff complexity for better load balancing
- Sort banks based on amount of work
- Banks with most work donate to banks with least work
HWWL Intra-Core Work Redistribution (Sorting)

- Tradeoff complexity for better load balancing
- Sort banks based on amount of work
- Banks with most work donate to banks with least work
HWWL Intra-Core Work Redistribution (Sorting)

- **Tradeoff complexity for better load balancing**
- **Sort banks based on amount of work**
- **Banks with most work donate to banks with least work**

![HWWL Intra-Core Work Redistribution Diagram](image)

Motivation

GPGPU Mapping

SW Optimizations

HWWL

Evaluation
HWWL Inter-Core Work Redistribution

- Inter-core redistribution network with tree topology
- 2 hops to any destination
HWWL Inter-Core Work Redistribution

- **Donate** if # greedy banks > # needy banks
HWWL Inter-Core Work Redistribution

• Also explored monolithic sorting network (global information)
HWWL Work Spilling

- Virtualization unit manages per-core overflow buffer
- If banks are full on a push, inject spill request to load-store queue
- Guaranteed coalescing for spill requests
HWWL Work Spilling

- Virtualization unit manages per-core overflow buffer
- If banks are full on a push, inject spill request to load-store queue
- Guaranteed coalescing for spill requests
HWWL Work Spilling

- Virtualization unit manages per-core overflow buffer
- If banks are full on a push, inject spill request to load-store queue
- Guaranteed coalescing for spill requests
HWWL Work Spilling

- Virtualization unit manages per-core overflow buffer
- If banks are full on a push, inject spill request to load-store queue
- Guaranteed coalescing for spill requests
HWWL Work Refilling (Interval-Based)

- Periodically check if banks are not full and work is in overflow buffer
- Reserve entries and inject refill request into load-store queue (1-bit to mark as refill)
- Refill responses are routed to virtualization unit for writeback
HWWL Work Refilling (Interval-Based)

- Periodically check if banks are not full and work is in overflow buffer.
- Reserve entries and inject refill request into load-store queue (1-bit to mark as refill).
- Refill responses are routed to virtualization unit for writeback.

Motivation GPGPU Mapping SW Optimizations HWWL Evaluation
HWWL Work Refilling (Interval-Based)

- Periodically check if banks are not full and work is in overflow buffer
- Reserve entries and inject refill request into load-store queue (1-bit to mark as refill)
- Refill responses are routed to virtualization unit for writeback
HWWL Work Refilling (Interval-Based)

- Periodically check if banks are not full and work is in overflow buffer
- Reserve entries and inject refill request into load-store queue (1-bit to mark as refill)
- Refill responses are routed to virtualization unit for writeback
HWWL Work Refilling (Interval-Based)

- Periodically check if banks are not full and work is in overflow buffer
- Reserve entries and inject refill request into load-store queue (1-bit to mark as refill)
- Refill responses are routed to virtualization unit for writeback
HWWL Work Refilling (Interval-Based)

- Periodically check if banks are not full and work is in overflow buffer.
- Reserve entries and inject refill request into load-store queue (1-bit to mark as refill).
- Refill responses are routed to virtualization unit for writeback.
Presentation Outline

• Motivation
• Mapping Irregular Algorithms to GPGPUs
• Developing Optimized Software Baselines
• Fine-Grain Hardware Worklists
• Evaluation
Methodology

- Evaluate highly optimized LonestarGPU benchmarks on GPGPU-Sim 3.0 (GTX480 configuration)
- 4 cores with 16 lanes each (scalability study in paper)
- Private 16KB L1$, unified 786KB L2$
- FIFO-based DRAM model
Performance: HWWL Banks (No Redistro)

HWWL results normalized to best of topology- or data-driven implementations running on nominal GPGPU
Performance: HWWL Banks (No Redistro)

- Up to 67% reduction in memory stalls
- Up to 16% reduction in dynamic instructions
Benchmarks with less inherent load balancing perform worse!
Performance: HWWL Work Redistribution

Motivation GPGPU Mapping SW Optimizations HWWL Evaluation

Benchmarks

Speedup

- BFS
- BH
- DMR
- MST
- SP
- SSSP

- topo
- data
- none
- threshold
- lsoring
- gsorting

HWWL Work Redistribution Evaluation
Performance: HWWL Work Redistribution

Performance from improved load balancing (order of magnitude decrease in WAIT tokens pulled)
Performance: HWWL Work Redistribution

In some cases, threshold-based redistribution yields undesirable work distributions (few banks hog)
Performance: HWWL Work Redistribution

Motivation GPGPU Mapping SW Optimizations HWWL Evaluation
Performance: HWWL Work Redistribution

Sorting-based redistribution increases complexity for improved load balancing
Performance: HWWL Work Redistribution

- BFS
- BH
- DMR
- MST
- SP
- SSSP

Motivation

GPGPU Mapping

SW Optimizations

Evaluation
Providing global bank information to monolithic sorter only helps marginally in isolated cases
Choose local sorting-based redistribution
Performance: HWWL Spilling/Refilling

Focus on interval-based virtualization (minimal overhead for improved performance on simpler compute operators)
Performance: HWWL Spilling/Refilling

Virtualization does not significantly hurt performance in most cases.
Performance: HWWL Spilling/Refilling

32 entries is enough to achieve most of potential performance
Overall HWWL Performance

- Realistic HWWL with 32 entries per bank, local sorting work redistribution, and interval-based virtualization
- Speedups ranging from 1.2—2.4X over the best SW implementation

2.5% of GPGPU regfile area for banks

~160 um^2 for sorting network
Take-Away Points

• Software optimizations can be effective, but require significant programmer effort and time, performance not guaranteed

• Relatively simple hardware support can ease the burden on the programmer while improving performance on algorithms difficult to map to GPGPUs

Sponsored by:
NDSEG Fellowship
NSF CAREER Award
Intel
NVIDIA

Special thanks to LonestarGPU team!