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1 Abstract

In this paper, we propose a novel fine-grain hardware worklist for GPGPUs that
addresses the classic weaknesses of data-driven implementations of irregular
algorithms. A set of distributed hardware worklist banks are tightly integrated with
the GPGPU lanes are used to reduce memory contention and software overheads.
We also detail multiple work redistribution schemes of varying complexity that can be
employed to improve load balancing. Furthermore, a virtualization mechanism
supports seamless work spilling and refilling. We evaluate challenging irregular
algorithms from the LonestarGPU benchmark suite on a cycle-level simulator. We
found that using hardware worklists on a GPGPU yields speedups ranging from
1.2–2.4⇥ over highly optimized software baselines on a nominal GPGPU.

2 Motivation

GPGPUs excel at exploiting conventional data parallelism to achieve high
performance and energy efficiency. However, it is much more challenging to map
more irregular amorphous data parallel applications to GPGPUs which allows tasks
to have conflicting accesses, to be generated dynamically, and to modify the
underlying data structure. Even aggressive software optimizations do not fully mitigate
issues with memory contention, suboptimal load balancing, and software overhead.
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Example Amorphous Data Parallel Applications

Barnes-Hut
N-Body

Breadth-First
Search

Delaunay Mesh
Refinement

Minimum
Spanning Tree

Survey
Propagation

Single-Source
Shortest-Path

. Breadth-First Search – Calculates number of hops from a source node to all other
nodes in an unweighted graph.

. Barnes-Hut N-Body – Performs an N-body simulation using an octree.

. Delaunay Mesh Refinement – Fixes triangles in a mesh that violate geometric
constraints.

. Minimum Spanning Tree – Computes a subset of nodes in a weighted graph that
spans all nodes with a minimum cost.

. Survey Propagation – Heuristic SAT solver to determine the probability of a boolean
statement being true.

. Single-Source Shortest Path – Calculates cost from a source node to all other
nodes on a weighted graph.

3 Mapping Irregular Algorithms to GPGPUs

Irregular algorithms iteratively apply a set of operators on a subset of elements in the
data structure which are referred to as active nodes. The check operator determines
whether or not the element assigned to the thread is an active node or not. The
compute operator performs the actual work required for the algorithm to progress and
can generate more work by activating inactive nodes. There are two standard
approaches to mapping irregular algorithms to GPGPUs.

Topology-Driven Approach

. Work is determined based on
thread index

. All elements are visited whether or
not they are active

. Number of threads spawned is
equal to the number of elements

def topo_driven:
  idx = get_tid()
  my_node = nodes[idx]  
  if check( my_node ):
    compute( my_node )
    *done_ptr = false

def main:
  done = false
  while not done:
    done = true
    topo_driven<<<N>>>( nodes )
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Data-Driven Approach

. Work is determined by accessing a
shared software worklist

. Only active nodes are visited

. Number of threads spawned is
equal to the number of hardware
threads

def data_driven:
  while idx = wl.pull():
    my_node = nodes[idx]
    compute( my_node )
    for all neighbors of my_node:
      if check( neighbor ):
        wl.push( idx )

def main:
  init_wl<<<N>>>( nodes, wl )
  data_driven<<<M>>>( nodes, wl )
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State of the Art Software Optimizations

We used benchmarks from multiple versions of the LonstarGPU benchmark suite and
added our own implementations of software optimizations from previous work in order
to select highly optimized topology- and data-driven implementations of each
benchmark.

. Double-buffering

. Work chunking

. Atomic-reduced updates

. Work donating

. Hierarchical worklist

. Variable kernel configuration

def data_driven:
  for wid in range( start, end ):
    idx = inwl.pull( wid )  
    my_node = nodes[idx]
    compute( my_node )
    for all neighbors of my_node:
      if check( neighbor ):
        outwl.push( neighbor.idx )

def main:
  init_wl<<<N>>>( nodes, inwl )
  while not inwl.empty():
    data_driven<<<M>>>( nodes, inwl, outwl )
    swap( inwl, outwl )
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4 Fine-Grain Hardware Worklists

Fine-grain hardware worklists (HWWL) are implemented as distributed banks tightly
integrated with the GPGPU lanes in order to reduce memory operations when
interacting with the worklist. A work redistribution unit facilitates dynamic load
balancing between banks within a core as well as across cores via a special
redistribution network. A virtualization unit allows work that does not fit in the banks
to seamless spill to an overflow buffer in memory and refill empty banks as necessary.

ISA Modifications

Instruction Description
wlinit r d, r s Initializes overflow buffer for virtualization.
wlcfg r s Configure partition mode (0=single,1=double).
wlpull r d, r s Pulls work ID from HWWL, if local bank is empty: return

WAIT if there is more work in system, or DONE otherwise.
wlpush r s, r t Pushes work ID to HWWL, throws exception if overflow

buffer is full.
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. Distributed Banks – Push units
move work from the GPGPU
register file to the HWWL banks and
pull units move work in the opposite
direction.

. Work Redistribution – The
threshold-based and
sorting-based schemes tradeoff
hardware complexity for load
balancing capabilities.

. Virtualization – The on-demand
and interval-based schemes
tradeoff energy efficiency for
virtualization performance.

Detailed Microarchitecture
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. Specialized network with
tree topology takes two
hops from source to
destination.
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receive based per-core
metadata.
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5 Evaluation

We used GPGPU-Sim 3.0 with four cores (16 lanes each) and a FIFO-based DRAM
model. We compared the performance of highly optimized topology- and data-driven
implementations of irregular algorithms from the LonestarGPU benchmark suite
running on a nominal GPGPU to double-buffered data-driven implementations using
fine-grain hardware worklists. All results are normalized to the best of the two
software baselines.
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Single-Buffer vs. Double-Buffer with Hardware Worklists
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(a) Single-Buffered Implementation
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. Experiment on Breadth-First
Search.

. Single-buffered data-driven
implementation achieves
higher resource utilization than
double-buffered variant by
overlapping super-steps
together.

. Performance degradation from
increased memory-access
irregularity and larger cache
footprint outweighs the
benefits.

. Using magic memory shows
that without these limitations,
single-buffer can be viable
when using hardware worklists.
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