
PRODUCTIVE AND EXTENSIBLE HARDWARE
MODELING, SIMULATION, AND VERIFICATION

METHODOLOGIES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Shunning Jiang

August 2021

© 2021 Shunning Jiang

ALL RIGHTS RESERVED

PRODUCTIVE AND EXTENSIBLE HARDWARE MODELING, SIMULATION, AND

VERIFICATION METHODOLOGIES

Shunning Jiang, Ph.D.

Cornell University 2021

As Dennard scaling broke down in the 2000s and Moore’s Law slowed down in the 2010s,

computer engineers have been exploring new ways to extract more computing performance with-

out increasing the power density or the transistor count. Various specialized hardware accelera-

tors are integrated into existing multi-core architectures, creating heterogeneous system-on-chips

(SoC). However, as more heterogeneous SoCs are built, the number of different hardware blocks

in a single SoC is rapidly increasing. This trend significantly increases the non-recurring engi-

neering (NRE) cost required to build new SoCs. Maximizing the reuse of hardware blocks across

and inside SoC designs is one of the key ways to reduce the NRE cost. This requires both flex-

ible parameterization of a single hardware design block and versatile composition of numerous

different hardware design blocks. To enable and maximize such reuse of hardware blocks, pro-

ductive hardware modeling methodologies play a critical role in the modern computer engineering

workflow.

This thesis takes an engineering research approach to explore productive and extensible hard-

ware modeling, simulation, and verification methodologies. I identify four major challenges in

state-of-the-art productive hardware modeling methodologies and formulate each challenge into a

stand-alone research question. Then, I propose several techniques to address these research ques-

tions: (1) native in-memory intermediate representation (NIMIR), a novel modular framework

architecture, to improve the flexibility and extensibility of hardware generation and simulation

frameworks (HGSF); (2) unified modular ordering constraints (UMOC), a novel modeling tech-

nique coupled with scheduling algorithms, to unify cycle- and register-transfer-level modeling and

achieve high model fidelity with little effort; (3) Mamba++, a series of HGSF-aware just-in-time

compilation (JIT) techniques and JIT-aware HGSF design techniques, to close the simulation per-

formance gap in HGSFs; and (4) PyH2, our vision and techniques for testing various hardware

designs leveraging open-source software, to reduce testing/verification time for agile hardware de-

sign flows. Finally, in addition to addressing each individual research question, I created PyMTL3,

a new hardware generation and simulation framework which incorporates the techniques proposed

in this thesis. By implementing the techniques inside a real hardware modeling framework, the

practicality of the proposed techniques is demonstrated. PyMTL3 has been used in courses at

Cornell University, in various research projects, and in several advanced-node chip tape-outs.

BIOGRAPHICAL SKETCH

Shunning Jiang was born on April 18, 1993 to Dahuo Jiang and Zhijin Chen in Shaoxing,

Zhejiang, China. At a young age, he found himself not only interested in but also capable of

computing and programming. He started casually writing some BASIC and Pascal programs at

Shaoxing Beihai Elementary School, participated in National Olympiad in Informatics in Province

from junior group to senior group at Shaoxing No.1 Junior Middle School and Shaoxing No.1

High School, and was very fortunate to have a chance to participate in the National Olympiad in

Informatics. During these years he discovered that he was slightly more interested in computer

engineering related fields than computer science related fields.

Shunning was accepted to Shanghai Jiaotong University as an undergraduate student after he

was the highest ranked Bronze medal finalist (oops) in National Olympiad in Informatics. He at-

tended the undergraduate program (ACM Honored Class/Computer Science in Zhiyuan College)

and met Shuang Chen who became his wife four years later. He struggled with various hardcore

math curriculums in the first few years, but enjoyed courses and projects in compiler, computer ar-

chitecture, operating system, and database. He spent a lot of time dating his girlfriend in the library

and tried really hard to make academic progress. He made up his mind to pursuit a doctoral degree

in the US after trying out some research projects in Advanced Computer Architecture Laboratory

at SJTU and Xtra Computing Group at Nanyang Technological University.

Shunning decided to join Cornell University as a Ph.D. student. He started to work with Pro-

fessor Christopher Batten after he realized he liked Prof. Batten’s perspective in computer engi-

neering research. He picked up a few projects, but he chose to become an all-around computer en-

gineer specialized in hardware modeling methology. He did one internship at Google right before

his daughter was born, where he worked on automatically scheduling Halide image-processing

pipelines. He believes the whole Ph.D. journey at Cornell University was very worthwhile. He

sometimes wishes the last one and half year of his Ph.D. career had not been affected by the

COVID-19 global pandemic.

iii

This document is dedicated to my parents, my beloved wife Shuang Chen,

and my daughter Carly Xin Jiang.

iv

ACKNOWLEDGEMENTS

My graduate career is totally different from what I imagined before coming to Ithaca. I am

really grateful to those who have supported me throughout this journey.

First of all, I would like to thank my advisor Christopher Batten. I vividly remember many

moments in the last six years. At the very beginning, Chris told me that I needed to improve

my English speaking skills before joining the Batten Research Group, otherwise he would not be

able to communicate with me efficiently. In one semester, his phone call at 5:10pm every day

during his walk home always brought disruptive and ground-breaking ideas to my ongoing work.

During the second summer, Chris and I met every single afternoon to push the research progress

as fast as we could. After Carly was born in my fourth year, Chris always reminded me to balance

work and life. During two months in my fifth year, Chris, Yanghui, Peitian, and I submitted five

papers, skied with Princeton folks, and traveled to a DARPA meeting in Salt Lake City. There were

countless brainstorming session in Rhodes Hall, over the beam robot, and of course, over Zoom

during the COVID-19 months. Chris made me understand the importance of open and honest

communications, the importance of asking any question whether it is stupid or not, the importance

of teaching, etc. I also want to thank the rest of my thesis committee, Prof. José Martínez and Prof.

Christina Delimitrou, for their guidance, feedback, and support for me and my family along the

way. José usually provides different but useful perspectives to my questions. Christina is always

encouraging and supportive.

I would like to thank members of the Batten Research Group for guidance and collaboration.

I am thankful to Ji Kim and Shreesha Srinath for sharing their wisdoms in computer architecture

during my junior years. I was very fortunate to have Christopher Torng as a role model for more

than half of my six years in BRG, influencing me with his working ethics, research methodology,

and ways of thinking. I was also very fortunate to collaborate with the wizard hacker Berkin

Ilbeyi on various projects, where I was always surprised at how fast Berkin came up with a cool

solution. Moyang Wang was a really good friend to share those ups and downs. Khalid Al-Hawaj,

I have learnt a lot from you, and I hope your knowledge continues to grow indefinitely. Tuan Ta,

it was great fun to work with you on the BRG-I2OL processor project and I really enjoyed those

cheerful daily conversations with you. Lin Cheng, you have become the next-gen wizard hacker

in BRG. The progression and inheritance in BRG was pretty magical, ha! In 2017, I was getting

help on hacking PyPy from Berkin when Lin was not even in BRG. Then in 2020 I was getting

v

help from Lin. I would like to thank Yanghui Ou and Peitian Pan for working with me in those

key components of my thesis. Without you guys I would have to spend more time working on

those projects alone. I also hope I had good influence on you two. Nick Cebry, keep up the great

work you have been doing. Also as a member of the Computer Systems Laboratory, I would like

to thank all my friends at CSL. Thanks Yuan Zhou, Weizhe Hua, Yu Gan and Yanqi Zhang for

many things in work and life. I also want to thank Ritchie Zhao, Steve Dai, Hanchen Jin, Sachille

Atapattu, Nitish Srivastava, Helena Caminal, and Mark Buckler for their support. Thanks Prof.

Zhiru Zhang and Prof. Adrian Sampson for advices and feedbacks.

I owe so much to all the people who nurtured me along the way from a kid who liked to

hack computers to an experienced researcher/engineer with a doctor of philosophy in computer

engineering. I remember the days when I sat in the middle school computer room learning from

Ms. Sijie Wang. Then Ms. Heli Chen and Mr. Hongxiang Shao gave me a chance to learn

more about algorithms and competitive programming in high school. Prof. Yong Yu brought

me into the prestigious ACM honored class undergraduate program and part of Zhiyuan College.

Prof. Xiaoyao Liang and Prof. Naifeng Jing provided me with immersive experience of computer

architecture research in my junior year. I want to thank Prof. John Hopcroft for bringing the whole

batch of students to Cornell in the summer right before my senior year, where I was fortunate

enough to meet Mr. (now Dr.) Xiaodong Wang in a party held by Prof. David Gries. I want to

thank Prof. Bingsheng He and Prof. Xueyan Tang me how to write a research paper in Singapore.

Thanks to Dr. Jing Pu for kindly hosting me at Google for an inspirational internship.

Finally, I would like to thank my wife Shuang Chen for literally everything in the last ten years.

There are simply no words that can describe how much you mean to me. Carly Jiang, you are the

silly little girl who has changed my life. This thesis would not be possible without my parents and

my parents-in-law who came to a different country to help take care of Carly so that I am able

to work in the office as usual. I also want to thank Ithaca Community Childcare Center (IC3) for

providing Carly a COVID-free environment during weekdays in the last year.

In terms of funding, this thesis was supported in part by Cornell Graduate School Fellowship,

Richard E. Lunquist Graduate Award, NSF SHF Award #1527065, NSF CRI Award #1512937,

AFOSR YIP Award #FA9550-15-1-0194, DARPA SDH Award #FA8650-18-2-7863, DARPA POSH

Award #FA8650-18-2-7852, DARPA CRAFT Award #HR0011-16-C-0037, a research gift from

Xilinx, Inc., and the the Center for Applications Driving Architectures (ADA), one of six centers

vi

of JUMP, a Semiconductor Research Corporation program co-sponsored by DARPA. This work

was also supported by equipment, tool, and/or physical IP donations from Intel, Xilinx, Synopsys,

Cadence, and ARM. The U.S. Government is authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright notation theron. Any opinions, findings, and

conclusions or recommendations expressed in this publication are those of the author(s) and do not

necessarily reflect the views of any funding agency.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . viii
List of Figures . xi
List of Tables . xii
List of Abbreviations . xiii

1 Introduction 1
1.1 State-of-the-Art Hardware Modeling Methodologies 2
1.2 Key Challenges in HGSFs . 7
1.3 Thesis Overview . 9
1.4 Collaboration and Funding . 13

2 PyMTL3: A Productive and Extensible Framework for Hardware
Modeling, Simulation, and Verification 16
2.1 Introduction . 16
2.2 Native In-Memory Intermediate Representation 19

2.2.1 Motivation . 19
2.2.2 NIMIR Architecture . 20

2.3 The PyMTL3 Framework . 23
2.3.1 PyMTL3 Embedded DSL . 24
2.3.2 PyMTL3 NIMIR and Elaboration . 28
2.3.3 PyMTL3 Passes . 28

2.4 Developer’s Case Study: Supporting Delay-Annotated Gate-Level Modeling 33
2.4.1 Adding Embedded DSL Primitives . 33
2.4.2 Adding NIMIR Data Structures and APIs 36
2.4.3 Adding Event-Driven Scheduling Passes 37

2.5 PyMTL3 for Open-Source Hardware . 41
2.6 Conclusion . 42

3 UMOC: Unified Modular Ordering Constraints to Unify CL and RTL Modeling 43
3.1 Introduction . 43
3.2 Related Work and Motivation . 45
3.3 Unified Modular Ordering Constraints . 47

3.3.1 RTL Scheduling with Implicit Constraints 48
3.3.2 CL Scheduling with Explicit Constraints 48
3.3.3 Achieving Both Fidelity and Modularity 49
3.3.4 Unified Directed Graph (UDG) . 50

3.4 UMOC Implementation in PyMTL3 . 52
3.4.1 Modeling Primitives . 52
3.4.2 Building the Unified Directed Graph . 54
3.4.3 Scheduling the UDG for Simulation . 56

viii

3.5 Case Studies . 56
3.5.1 Processor/Accelerator Composition . 57
3.5.2 Many-Core/Cache/Network Composition 58

3.6 Conclusion . 60

4 Mamba++: Framework/JIT Co-Optimization for Fast Hardware Simulation 61
4.1 Introduction . 61
4.2 Motivation: Simulation Performance Comparison 64
4.3 Background on Meta-Tracing JITs . 67
4.4 Mamba JIT-Aware HGSF Design Techniques . 69
4.5 Mamba HGSF-Aware JIT Optimization Techniques 73
4.6 Case Study for Mamba Techniques . 74

4.6.1 Experiment Settings . 74
4.6.2 Results and Analysis . 75

4.7 Pitfalls of Static Scheduling . 77
4.7.1 Reduced Modeling Productivity . 77
4.7.2 Difficulty in Supporting Blackbox HDL Co-Simulation 79

4.8 Mamba++: Hierarchical Static Scheduling . 80
4.8.1 HSS Baseline Algorithm . 81
4.8.2 HSS JIT-Aware Optimizations . 81

4.9 Case Study for Hierarchical Static Scheduling . 82
4.9.1 Experiment Settings . 83
4.9.2 Results and Analysis . 85

4.10 Conclusion . 87

5 PyH2: Productive Testing Methodologies for Agile Hardware Design 89
5.1 Introduction . 89
5.2 Background . 92

5.2.1 PyMTL3 . 92
5.2.2 PyTest . 93
5.2.3 CRT, IDT, and Hypothesis PBT . 94

5.3 PyH2G: PyH2 for RTL Design Generators . 95
5.3.1 Challenge in Testing RTL Design Generators 95
5.3.2 PyH2G Implementation . 96
5.3.3 Case Study: On-Chip Network Generator 96

5.4 PyH2P: PyH2 for Processors . 99
5.4.1 Challenge in Testing Processors . 99
5.4.2 PyH2P Implementation . 99
5.4.3 Case Study: PicoRV32 Processor . 100

5.5 PyH2O: PyH2 for Object-Oriented Hardware Data Structures 102
5.5.1 Challenge in Testing Hardware Data Structures 103
5.5.2 PyH2O Implementation . 103
5.5.3 Case Study: Reorder Buffer Data Structure 104

5.6 Conclusion . 106

ix

6 Conclusion 107
6.1 Thesis Summary and Contributions . 107
6.2 Future Work . 109

6.2.1 Making PyMTL3 and Chisel/FIRRTL Interoperate 109
6.2.2 Unified Scheduling for FL, CL, RTL, and Delay-Annotated GL Models . . 110
6.2.3 Exploring Fully Offloaded Simulation to Verilator Inside PyMTL3 111
6.2.4 Exploring PyMTL3/Synopsys VCS Co-simulation 112
6.2.5 Exploring the Spectrum Between Constructive and Transformative Hard-

ware Design . 112

Bibliography 114

x

LIST OF FIGURES

1.1 Different Generations of Productive Hardware Modeling Methodologies 3
1.2 Thesis Overview and Breakdown in the HGSF Workflow 10

2.1 LLVM vs. FIRRTL vs. NIMIR . 21
2.2 PyMTL3 Overview . 25
2.3 PyMTL3 Code Example . 26
2.4 VerilogTBGenPass Completes the PyMTL3 Testing Spectrum 31
2.5 Example Design for Delay-Annotated Gate-Level Modeling 34
2.6 PyMTL3 EDSL Implementation to Support Delay-Annotated GL Modeling 35
2.7 PyMTL3 NIMIR Implementation to Support Delay-Annotated GL Modeling . . . 37
2.8 Preprocessing NIMIR Metadata For Event-Driven Scheduling 38
2.9 Event-Driven Scheduling Implementation for Delay-Annotated GL Models 39
2.10 GTKWave Screenshot of the D Flip-Flop Simulation 40

3.1 Modeling a Cycle-Level Processor/Accelerator Tile 46
3.2 CL and RTL Process Examples using UMOC . 50
3.3 PyMTL3 Buffered Incrementer Units Using UMOC Primitives 53
3.4 Example of UMOC’s Scheduling and Simulation Scheme 55
3.5 Tiled many-core with mixed CL/RTL components 59

4.1 Simulation Performance Comparison of Hardware Development Workflows 66
4.2 Examples of PyPy JIT Trace . 68
4.3 Meta-Traces of One Simulated Cycle . 70
4.4 Simulation Performance of RISC-V 1-Core and 32-Core Including Overheads . . 75
4.5 Scalable Steady State Simulation Performance of 1–32 RV32IM Cores 76
4.6 Static Scheduling Reduces Behavioral Modeling Productivity 78
4.7 Verilog Blackbox Co-Simulation . 79
4.8 HSS Algorithm Execution . 80
4.9 HSS Optimized Execution . 82
4.10 PyMTL3 RV32IMAF Modular Processor Diagram 83
4.11 Fine-Tuned gcc Optimization Options Based on -O1 87

5.1 Background on Testing Methodologies . 93
5.2 PyH2G Strategy Example . 97
5.3 PyH2G Case Study: PyOCN RingNet . 98
5.4 PyH2P Strategy Example . 100
5.5 PyH2P Case Study: PicoRV32 Processor . 101
5.6 PyH2O Case Study: Reorder Buffer . 105

xi

LIST OF TABLES

3.1 Simulation Cycle Count Results Under Different Scheduling Schemes for CL/RTL
Proc/Accel Case Study . 57

4.1 Mamba Performance . 72
4.2 UDG Characteristics . 84
4.3 Mamba++ Simulation Results . 86

xii

LIST OF ABBREVIATIONS

SoC systems-on-chip
NRE non-recurring engineering
HDL hardware description language
HPF general-purpose graphics processing unit
HGF single-instruction multiple-data
HGSF single-instruction multiple-thread
JIT reduced instruction set computer
API application programming interface
DSL domain-specific language
DUT design under test
TB test bench
FPGA field-programmable gate array
ASIC application-specific integrated circuit
RTL register-transfer level
CL cycle level
FL functional level
IR intermediate representation
IP intellectual property
EDA electronic design automation
NIMIR native in-memory intermediate representation
RTLIR register-transfer level intermediate representation
UMOC unified modular ordering constraints
HLS high-level synthesis
AST abstract syntax tree
VCD value change dump
SCC strongly connected components
TLM transactional-level modeling
UDG unified directed graph
DAG directed acyclic graph
MDU multiply/divide unit
FPU floating point unit
HSS hierarchical static scheduling
AOT ahead-of-time
TLB translation lookaside buffer
UVM universal verification methodology
CRT complete-random testing
IDT iterative-deepened testing
PBT property-based testing
ISA instruction set architecture

xiii

CHAPTER 1
INTRODUCTION

The twentieth century witnessed almost exponential growth in single-core computing perfor-

mance thanks to Dennard scaling [DGY+74] and Moore’s Law [Moo65]. However, in the 2000s,

Dennard scaling broke down due to the increasing power density and heat dissipation, which dras-

tically increased the complexity to extract more single-core performance. To fully utilize the in-

creasing transistor count without enlarging the power envelope, the mainstream computing plat-

forms raced towards multi-core and multi-processor architectures [KFJ+03, KTR+04, EBA+11]

running various parallel applications [ope08, Rei07, MRR12, ARKK13]. Then, in the 2010s, the

slowdown of Moore’s Law delayed the delivery of new technology nodes with higher transistor

density. As a result, computer engineers have been radically exploring ways to extract more com-

puting performance without increasing the transistor count. Hardware specialization, an approach

to trade off flexibility for performance and/or energy-efficiency, quickly becomes an appealing

option. Various specialized hardware accelerators are integrated into existing multi-core archi-

tectures, which becomes a new type of computing platform called heterogeneous system-on-chip

(SoC) [WJM08,Tay13]. As of today, heterogeneous SoCs can be found in almost all contemporary

computing devices. State-of-the-art computing chips [KJJ+20,VSS+20,PMH+21] usually include:

(1) asymmetric multi-core processors such as a mix of out-of-order cores, in-order cores, and cores

with different frequency domains [Gre11, LK09]; (2) various domain-specific programmable ar-

chitecture such as general-purpose graphics processing units [KDK+11], programmable manycore

accelerators [MFN+17,RZAH+19,KJT+17,Bol12,SGC+16,BCC+17], and coarse-grained recon-

figurable arrays [PFKM06, PZK+17, GHN+12]; and/or (3) many highly specialized accelerators

such video/audio codecs, neural network accelerators [CKES17], and data encryption/decryption

engines.

However, as computer engineers build more heterogeneous SoCs, the number of different hard-

ware blocks in a single SoC is rapidly increasing. This trend leads to significant increasing non-

recurring engineering (NRE) costs of building new SoCs [SWD+12]. Maximizing the reuse of

hardware blocks across/inside SoC designs is one of the key ways to reduce the NRE cost, which

requires both flexible parameterization of a single hardware design block and versatile composition

of numerous different hardware design blocks. To enable and maximize such reuse of hardware

1

blocks, productive hardware modeling methodologies play a critical role in the modern computer

engineering workflow.

This thesis proposes new techniques to enable state-of-the-art hardware modeling methodolo-

gies to better reduce NRE costs in heterogeneous SoCs. This thesis also presents a new open-source

hardware modeling framework that incorporates these new techniques.

1.1 State-of-the-Art Hardware Modeling Methodologies

Computer engineers have been combating against the high NRE costs caused by the parameter-

ization and composition challenges from heterogeneous SoC design. Developing a pool of highly

parametrized and thoroughly tested hardware “generators” is a compelling solution to increase the

reuse of hardware blocks across different chips or even inside the same chip. Several generations of

productive hardware modeling frameworks with different workflows have been built to effectively

architect, build, verify, and maintain highly parametrized RTL blocks.

Hardware Description Languages (HDL) – Probably the most prevalent approach of building

hardware is to write register-transfer level (RTL) descriptions using HDLs (e.g., VHDL [Ped20],

Verilog [TM08]). HDLs were originally introduced in the 1970s to accommodate the explosion of

the number of transistors in a chip by raising the level of abstraction from the transistor level to the

register-transfer level [Lie84]. Having been used for almost half a century, these HDLs are well-

supported by the stable standards, industry-grade commercial HDL compilers, as well as decades

of engineering training and practice. Figure 1.1(a) shows the HDL workflow where the designer:

manually writes both the RTL design under test (DUT) and test bench (TB) in Verilog; compiles

the DUT and TB into a simulator; uses the simulator to iteratively verify and evaluate the DUT;

and eventually pushes the DUT through an FPGA/ASIC toolflow. The iterative development cycle

(i.e., designer ! DUT ! simulation ! designer) is contained within a single language.

However, the limited general-purpose programming capabilities and parametrization power

provided by HDLs makes it difficult to effectively create highly parametrized and configurable

hardware generators. Even though the HDL standards are constantly receiving upgrades that make

these HDLs slightly more object-oriented (e.g., SystemVerilog [SDF06] superceded Verilog IEEE

standard in 2008 [iee21]), those are mostly incremental changes that do not change the static nature

of the language. For testing and verification, HDLs only provides limited high-level programming

2

HDL
(Verilog)

RTL DUT'

Simulation

(f) Co-Simulation Library Built In Productive Languages

FPGA
ASIC

synthesize

Test Bench

Mixed
(Verilog+Perl)

RTL DUT

HDL
(Verilog)

generate RTL DUT'

Simulation

Test Bench'generate

TB (limited)

Host Language
(Scala)

RTL DUT

HDL
(Verilog)

generate RTL DUT'

Simulation

TB
generate TB (limited) Test Bench

Host Language
(Python)

RTL DUT

FPGA
ASIC

HDL
(Verilog)

generate
RTL DUT'

Simulation synthesize

Test Bench

HDL
(Verilog)

RTL DUT

Simulation

cosim

(a) Hardware Description Language (HDL) (b) Hardware Preprocessing Framework (HPF)

(c) Hardware Generation Framework (HGF) (d) Hardware Generation and Simulation Framework (HGSF)

Test Bench

Host Language
(Python)

RTL DUT

FPGA
ASIC

HDL
(Verilog)

generate
RTL DUT'

Simulation synthesize

cosim

(e) HGSF with Mixed CL/RTL Modeling

CL DUT

FPGA
ASIC

synthesize

FPGA
ASIC

synthesize

FPGA
ASIC

synthesize

Test Bench

TB Language
(Python)

cosim

Figure 1.1: Workflows of Different Generations of Productive Hardware Modeling Methodologies – RTL =
register-transfer level; CL = cycle-level; DUT = design under test; DUT’ = generated DUT; TB = test bench; TB* =
TB with limited functionality; TB’ = generated TB; Sim = simulation.

capabilities for effectively building test benches. Although HDLs sometimes resort to external

C++ libraries (e.g., VPI [DPR96] in Verilog) to incorporate more high-level programming capabil-

ities, they are still far from sufficient to accommodate the rapidly evolving algorithms in modern

specialized accelerators.

Hardware Preprocessing Frameworks (HPF) – Early attempts to make HDLs more produc-

tive focused on building hardware preprocessing frameworks that intermingle a high-level lan-

3

guage for macro-processing and a low-level HDL for logic modeling (e.g., Scheme mixed with

Verilog in Verischemelog [JB99], Perl mixed with Verilog in Genesis2 [SAW+10]). Figure 1.1(b)

shows an HPF workflow using Genesis2 [SAW+10] where the designer: writes the DUT and TB in

a mix of Perl and Verilog; uses Perl to preprocess the DUT and TB into pure Verilog; and then tran-

sitions to the traditional HDL workflow. The use of a high-level language provides parametrization

power and high-level constructs that HDLs lack. The simulation is still done in Verilog, which

means the credibility of industry-standard HDLs is preserved.

The major drawback of mixed-language HPFs is that the high-level language only acts as a

simple text preprocessor without any understanding of hardware semantics. This creates an abrupt

semantic gap in the hardware description, since engineers must simultaneously design, verify, and

reason about designs written in a high-level language (for parameterization, static elaboration, test

bench generation) and a low-level HDL (for behavioral modeling). As shown in Figure 1.1(b), the

iterative development cycle (i.e., designer ! DUT ! generated DUT ! simulation ! designer)

stretches across two languages. For testing and verification, the designers cannot use high-level

data structures provided by the high-level language at runtime, because these frameworks only

use the high-level languages for macro processing. Thus the designers have to use the same test-

ing/verification flow as HDLs.

Hardware Generation Frameworks (HGF) – Taking one step forward, true hardware gen-

eration frameworks address the semantic gap found in HPFs by completely embedding parame-

terization, static elaboration, test bench generation, and behavioral modeling in a unified high-

level “host” language (e.g., Haskell in Lava [BCSS98], standard ML in HML [LL00], Scala in

Chisel [BVR+12], Python in Stratus [BDM+07], PHDL [Mas07]). Figure 1.1(c) shows an HGF

workflow using Chisel [BVR+12] where the designer: writes the DUT and TB in Scala using the

Chisel library; executes the Scala program to generate a Verilog DUT and TB; and then transi-

tions to the traditional HDL workflow. Being able to describe hardware using a single embedded

domain-specific language (EDSL) means the high-level language features can be fully utilized dur-

ing the hardware generation process, which eliminates the mixed-language description in HPFs.

However, HGFs still generate and simulate low-level HDL code. This creates a modeling/sim-

ulation language gap that may require the designer to frequently cross language boundaries during

iterative development. A few HGFs are able to generate test benches but usually with limited

functionalities, since not all high-level code is translatable to HDL. For example, it is difficult to

4

translate the manipulation of Python deque/dictionary data structures to Verilog. Designers need

to manually write more sophisticated Verilog TBs to run complex tests. In summary, HGF work-

flows still create a potentially frustrating language gap by stretching the iterative development cycle

across multiple languages (i.e., designer ! DUT ! generated DUT ! simulation ! designer, as

shown in Figure 1.1(c)).

Hardware Generation and Simulation Frameworks (HGSF) – The drawbacks in HPFs and

HGFs have inspired researchers to build completely unified hardware generation and simulation

frameworks (HGSFs) where parameterization, static elaboration, test bench generation, behavioral

modeling, and a simulation engine are all embedded in a single general-purpose high-level lan-

guage (e.g., Java in JHDL [BH98], Haskell in ClaSH [BKK+10], Python in MyHDL [Dec04],

PyRTL [CTD+17], Migen [mig], PyHDL [HMLT03]). Figure 1.1(d) shows an HGSF workflow

using PyMTL [LZB14] where the designer: writes the DUT and TB completely in Python us-

ing the PyMTL library; uses Python-based simulation to verify and evaluate the DUT; iteratively

improves the design within Python; occasionally co-simulates the generated HDL code with the

Python test bench; and only transitions to the traditional HDL workflow to push the DUT through

an FPGA/ASIC toolflow. A key feature of HGSFs is the ability to use a simulation engine writ-

ten in the host language to drastically reduce the iterative development cycle and eliminate any

semantic gap. The designer avoids crossing any language boundaries for development, testing,

and evaluation, and can use the complete expressive power of the host language for verification,

debugging, instrumentation, and profiling. Python has been chosen by most modern HGSFs as the

host language because Python is currently the most popular programming language for its high

productivity and its large open-source community [pyp21].

By rapidly iterating inside the high-level language, HGSFs are able to realize the agile hardware

manifesto [LWC+16]. Moreover, it is worth noting that simulating inside a high-level language

brings up a synergy between RTL modeling methodologies and cycle-level modeling methodolo-

gies. Computer architects often leverage hardware emulators/simulators to build cycle-level (CL)

models of the hypothetical hardware architecture [You07, BBB+11, PACG11, RCBJ11, BYF+09,

SBM+19,AKPJ09,LSC+10,boo11]. Compared to RTL models, CL models include less hardware

detail, only capture the approximate timing behavior and number of critical hardware events, and

usually cannot be converted to hardware. However, the biggest advantages of CL models are the

faster simulation speed and easier modification/enhancement. This allows computer architects to

5

explore and evaluate novel architectural/microarchitectural techniques using classic software en-

gineering paradigms including object-oriented programming, high-level programming languages,

and high-level data structures. For example, a CL cache model can be a Python class that models

the tag arrays using double-ended queues, which makes it easy to explore the cache replacement

policy. By enabling CL modeling and CL/RTL composition, the iteration inside the high-level lan-

guage can be faster, and gradually replacing CL blocks with newly developed RTL blocks makes it

easier to: (1) maintain the integration tests, end-to-end tests, and performance regressions, and (2)

steadily improve the model fidelity of the whole design. Figure 1.1(e) shows an enhanced version

of the HGSF flow where CL models and RTL models can be co-simulated and iteratively improved

in the host language. SystemC [Pan01] and PyMTL [LZB14] are two frameworks that supports

mixed CL/RTL modeling and composition in a single language.

Moreover, simulation in Python-based HGSFs appears to be very useful for testing and verifica-

tion for specialized accelerators. Python-based programming makes it relatively easy to implement

the algorithms to create golden reference models. For example, commonly used machine-learning

libraries (e.g., Tensorflow [ABC+16], PyTorch [PGM+19], TVM [CMJ+18]) are built in Python,

which can be leveraged for testing machine-learning accelerators.

These opportunities make Python-based HGSFs very compelling for reducing the NRE costs

in the era of heterogeneous SoCs.

Co-Simulation Libraries Built in Productive Programming Languages – Embedding the

modeling/simulation of hardware inside productive languages is not the only way to leverage pro-

ductive languages for hardware design. As previously mentioned, Verilog Procedural Interface

(VPI) enables a Verilog simulator to co-simulate models built in productive high-level languages

with Verilog models, as long as these languages can be integrated with C/C++. Engineers have

been building co-simulation libraries to improve the productivity of building test benches instead

of designs, as those models built in high-level languages usually do not include RTL semantics.

Figure 1.1(h) shows the workflow of using a co-simulation library with Verilog models. CocoTB is

a representative co-simulation framework that builds hook functions in Python and triggers them

in the Verilog simulator events using Python/C++ integration mechanisms. Such co-simulation

libraries only target test benches and golden reference models, while complicating the ability to

leverage the full power of the high-level language. Also, if the model is built using an HPF/HGF,

6

the workflow requires the designer to deal with at least three different languages (e.g., Verilog +

Perl + Scala) at the same time, which can be cumbersome.

1.2 Key Challenges in HGSFs

This thesis aims to address the following four challenges in the state-of-the-art hardware gen-

eration and simulation frameworks.

Improving the Flexiblity and Extensibility of HGSFs – Many of the aforementioned state-of-

the-art productive hardware modeling frameworks are relatively monolithic. The lack of flexiblity

and extensibility in these monolithic frameworks makes it much more difficult to perform con-

tinuous development for feature extensions after the initial release. This is because those frame-

works leverage various meta-programming mechanisms to create a handy and convenient embed-

ded domain-specific language, but fail to separate the implementation of these mechanisms. There

have been attempts to design intermediate representations (IR) [IKL+17, MMB+18] for hardware

constructs. However, these hardware IRs are mostly describing the hardware netlists after high-

productivity modeling. In other words, the framework does not benefit from the existence of these

IRs, and the extensibility of the modeling framework is limited by what is processed before turn-

ing the description into the IR representation. The fact that every designer has their own evolving

wishlist of features imposes great challenges on the HGSF framework designer to create flexible

and extensible hardware modeling frameworks.

Unifying CL and RTL Modeling to Achieve High Model Fidelity With Little Effort – There

is a modeling/simulation mechanism gap between RTL and CL modeling in state-of-the-art RTL

and CL modeling methodologies. RTL modeling has well-established discrete-event simulation

semantic. For example, Verilog RTL simulators leverage sensitivities of logic blocks and direct

assignments to establish a graph containing intra-cycle operations on the signals. These simulators

either use an event queue to dynamically trigger intra-cycle logic based on sensitivity, or statically

schedule and then execute the logic in topological sort order. In contrast, a CL simulator’s mod-

eling mechanism can be arbitrary, because by definition CL models just need to “approximately”

capture the timing of the RTL model. As a result, there is not a single widely adopted CL modeling

mechanism. In state-of-the-art CL simulators, the model fidelity is usually improved by manually

7

scheduling CL processes, and then looking at traces to perform result-driven reverse engineering.

This mechanism gap is more prominent when an HGSF wants to incorporate CL modeling to take

advantage of the high-level language productivity. In order to fully utilize CL modeling in an

HGSF to reduce NRE costs, a unified abstraction of RTL and CL modeling is a preferred solution.

This requires standardizing CL modeling by representing and scheduling CL and RTL processes in

a compatible way. However, state-of-the-art HGSFs [LZB14, Pan01] only support coarse-grained

CL/RTL composition by combining the CL and RTL portions in an ad-hoc way. They still use

different modeling mechanisms for CL and RTL parts, and the composition of the CL/RTL bound-

ary is forced to have inter-cycle effects instead of allowing intra-cycle behavior, which impairs

the model fidelity. Unifying CL and RTL modeling remains a challenge for HGSF designers to

address.

Closing the Simulation Performance Gap in HGSFs – Different from HDLs/HPFs/HGFs

which perform simulation using HDL simulators, Python-based HGSFs include a simulation en-

gine in pure Python. However, most Python-based HGSFs have dismal performance with CPython

(the de-facto Python interpreter) compared to HDL simulators. This is because the dynamic typing

system in Python requires the Python program to be dynamically interpreted instead of statically

compiled. This simulation performance gap partially undermines the productivity benefits obtained

from using Python-based HGSFs. Previous work attempts to leverage PyPy, the only available

Python interpreter with tracing just-in-time (JIT) optimization. The speedup of simply using PyPy

over CPython failed to close the gap. Previous work also performs Python-C++ co-simulation

where the hardware design logic is translated into low-level code and statically compiled into a

C++ library. This accelerates the hardware simulation, but the simulation performance bottleneck

is still in the Python portion of the execution. Moreover, co-simulating Python and C++ brings

back the semantic gap, as the signals values in the C++ portion are not directly observable in

the Python portion without introducing significant overheads. It is also impossible to insert any

non-translatable code in the logic blocks written in Python, which undermines the productivity

promises. Closing the simulation performance gap in native Python execution remains challenge

for HGSFs to address.

Reducing Testing/Verification Time for Agile Hardware Design Flows – The standard hard-

ware testing/verification methodology is constraint-based random testing on input values using the

Universal Verification Methodology (UVM) and SystemVerilog, which unfortunately does not find

8

many use cases outside industrial chip-design teams. Academic research groups and open-source

hardware teams usually cannot afford to have dedicated verification teams, where the verification

engineers have many years of experience in these commercialized UVM methodologies. They

have to follow an agile test-driven design approach stemming from the open-source software com-

munity, where the designer is also responsible for creating and distributing the corresponding tests.

HGSFs built in productive languages provide a good starting point to productively develop, iterate,

distribute, and collaborate on hardware design blocks. However, besides the obvious benefits of

being able to quickly create sophiscated test benches and golden models, leveraging the unique

open-source communities of the HGSF host languages to reduce hardware testing and verification

time is still a challenge awaiting joint efforts from both the HGSF developers and the HGSF users

to address.

1.3 Thesis Overview

This thesis addresses the aforementioned hardware modeling challenges in Section 1.2 using

an engineering research approach. After formulating each challenge into a well-defined research

problem, I propose solutions to each research problem in Chapter 2–5. Figure 1.2 is an illustration

of the thesis work where each solution addresses a challenge within the HGSF workflow, along

with the corresponding first-author publications. Moreover, to demonstrate that these proposed

novel techniques are also realistic, practical, and useful for engineering practices, I built PyMTL3,

a novel hardware generation and simulation framework which implements all the novel techniques.

The framework has been used to facilitate other research projects, engineering projects, chip tape-

outs, and course lab assignments.

Chapter 2 introduces native in-memory intermediate representation (NIMIR) as a systematic

approach to address the challenge of building extremely flexible and extensible hardware modeling

frameworks, and discusses PyMTL3, a realistic HGSF I built using the NIMIR approach. NIMIR

is a novel approach to build hardware generation and simulation frameworks (HGSF) that can be

modularly maintained by different developers, easily enhanced by a growing designer community,

and flexibly serve as a research platform. NIMIR separates the framework into three parts: domain-

specific language implementation (front-end), in-memory data structure exposed through APIs

(IR), and passes that invoke the APIs to analyze, instrument, and transform the in-memory model

9

Test Bench

Host Language
(Python)

RTL DUT

FPGA
ASIC

HDLs
(Verilog or others)

generate
RTL DUT'

Simulation
synthesize

cosim

2

3

4

5

Chapter 2: NIMIR & PyMTL3
[WOSET '18, IEEE MICRO '20]2

Chapter 3: UMOC
[DAC '21]3

Chapter 4: Mamba++
[DAC '18]4

Chapter 5: PyH2
[IEEE D&T '21]5

CL DUT

Figure 1.2: Thesis Overview and Breakdown in the HGSF Workflow – Section 1.2 discusses four challenges in
hardware modeling methodologies. These challenge vividly corresponds to different parts of the HGSF workflow: the
framework itself, CL/RTL modeling abstraction, simulation, and testing. Each chapter of the thesis corresponds to my
work that solves each challenge. I also attach my first-author publications corresponding to each chapter.

(back-end). PyMTL3 is the first framework built under this NIMIR approach and demonstrated

extensibility in many use cases. I illustrate the details of the PyMTL3 framework in this chapter

along with the NIMIR concept. I also present a case study on adding new modeling primitives,

new data structure and APIs, and backend passes that enable simulating those primitives without

affecting existing framework functionalities in PyMTL3. This work was published in an IEEE

Micro Special Issue on Agile and Open-Source Hardware (2020) [JPOB20], and I was the lead

author of this work. An early version of this work was published in First Workshop on Open-

Source EDA Technology (WOSET 2018) [JTB18]. In practice, my colleagues and I have been

adding various passes to the PyMTL3 framework and built an ecosystem of various open-source

hardware IPs. PyMTL3 has been used in Cornell University’s ECE 5745 course to replace the

previous PyMTL2 framework. PyMTL3 has also been used in various GF 14nm chip tapeouts.

The rest of the thesis chapters propose generic mechanisms. As PyMTL3 is designed to be

extremely flexible and extensible, the PyMTL3 framework actually manages to implement all the

proposed mechanisms and enables the designer to leverage those techniques for hardware model-

ing. I will be using framework and design code implemented using PyMTL3 as a concrete running

example to provide readers with embodiment of the generic mechanisms.

Chapter 3 presents unified modular ordering constraints (UMOC), a novel technique to unify

signal-based RTL modeling and method-based CL modeling in HGSFs. UMOC provides a uni-

10

fied view for general-purpose CL and RTL modeling and enables automatically scheduling all

the CL/RTL hardware processes with designer-specified (CL) or inferred (RTL) local constraints

without manually specified global intra-cycle ordering of hardware processes. The designer can

reason about intra-cycle execution order in a systematic and modular way for CL processes and

RTL processes, encapsulate CL ordering constraints in components, and reuse them for other de-

sign blocks. UMOC is able to achieve high model fidelity for CL models and allows CL models

to be seamlessly composed with RTL models. This work will be published at the 58th Design

Automation Conference (DAC 2021) [JOPB21], and I am the lead author of this work. UMOC

primitives and scheduling passes have been implemented in PyMTL3 as a key component of the

PyMTL3 framework. CL/RTL mixed-level modeling using UMOC has also successfully deployed

in the ASIC design course at Cornell University.

Chapter 4 addresses the simulation performance gap in native Python using a combination

of JIT-aware HGSF design techniques, and HGSF-aware JIT optimization techniques. JIT-aware

HGSF design techniques include how we design the simulation mechanisms in the HGSF to have

code structures that the JIT engine can more effectively optimize. HGSF-aware JIT optimization

techniques involve customizations and optimizations of the underlying JIT engine based on prop-

erties of hardware simulations. As we believe that Python-based HGSFs are important, we mostly

focus on Python3 and PyPy (the only JIT compiler for Python). Moreover, this work sheds light

on the simulation performance optimization of any Python-based HGSF (not limited to PyMTL3).

The static scheduling part of the work was published at the 55th Design Automation Conference

(DAC 2018) [JIB18], and I was the lead author of this work. The hierarchical scheduling part

of the work is currently unpublished. Hierarchical scheduling takes the insights obtained from

the DAC work and uses a more comprehensive algorithm to support practical situations such as

graphs that cannot be statically scheduled and Verilog co-simulation which inevitably introduces

cyclic dependencies. The simulation mechanisms of the PyMTL3 framework deploys the JIT-

aware HGSFs techniques, and we also customize PyPy, the state-of-the-art tracing JIT compiler

for Python, to deploy the HGSF-aware JIT techniques. Aside from research projects, PyMTL3 and

the hierarchical scheduling passes have also been successfully deployed in the ASIC design course

at Cornell University to significantly boost the simulation performance.

Chapter 5 lays out our vision for verifying open-source hardware IPs in the context of hardware

generation and simulations frameworks. Leveraging Python, hypothesis, and PyMTL3, I present

11

three techniques to test hardware generators (PyH2G), processors (PyH2P) and object-oriented

hardware data structures (PyH2O). Testing the hardware generator involves randomizing both the

test case and the parameter, and co-shrinking them together to find the smallest failing design

instance in the parameter space and the shortest failing test case. Testing processors requires

randomizing the control flow patterns and arithmetic instructions. Testing object-oriented hardware

data structures combines a novel scheduling mechanism (implemented as another scheduling pass

in the PyMTL3 framework) based on UMOC to advance simulation “steps” upon method calls,

and hypothesis stateful testing to produce a minimal sequence of transactions. This work was

published in an IEEE Design & Test Special Issue on Open-Source EDA (2021) [JOP+20], and I

was the co-first author of this work as the visionary of future verification directions, and the PyH2O

contributor. PyH2 also showcases the synergy of open-source hardware and open-source software,

and sheds light on the future verification methdologies enabled by HGSFs built in a productive

language with a large open-source software community.

This thesis makes the following technical contributions:

• I propose native in-memory intermediate representation (NIMIR), a novel approach to build

flexible and extensible hardware modeling frameworks. To demonstrate the practicality of

NIMIR, I built PyMTL3, a new hardware modeling framework, from the ground up using

NIMIR.

• I propose unified modular ordering constraints (UMOC), a novel technique to unify signal-

based RTL modeling and method-based CL modeling. To demonstrate the practicality of

UMOC, I implemented UMOC primitives and scheduling passes in PyMTL3, and built vari-

ous hardware IPs in PyMTL3 using UMOC primitives.

• I propose Mamba++, a set of techniques to close the simulation performance gap in hard-

ware generation and simulation frameworks. To demonstrate the practicality of Mamba++,

I have implemented Mamba++ techniques in PyMTL3 as passes. Mamba++ passes and the

modified PyPy JIT compiler have been deployed in production.

• I present PyH2, our vision for a novel hardware testing methodology that leverages open-

source software. PyH2 includes three different testing approaches for highly parametrized

hardware design generators, processors, and hardware data structures.

12

This thesis is also a contribution to the ongoing open-source hardware and open-source elec-

tronic design automation (EDA) movements. Other open-source HGSFs can take inspiration from

the proposed techniques which are not specific to PyMTL3. However, from our experience in de-

veloping open-source hardware IPs, PyMTL3 is an ideal framework to jump-start the open-source

hardware ecosystem.

1.4 Collaboration and Funding

I am very fortunate to have led several research projects throughout my Ph.D. career. I am really

glad that I have the chance to collaborate with my brilliant colleagues from the Batten Research

Group at Cornell University. Most importantly, my Ph.D. advisor Christopher Batten has been a

major influencer throughout these years. I have had countless brainstorming sessions with him,

which really supercharged these research projects.

The work on native in-memory intermediate representation (NIMIR) as a novel way to build

hardware modeling frameworks is fueled by Peitian Pan. Peitian spent many hours building, refac-

toring, and even overhauling the RTLIR and translation passes in order to build a clean and elegant

translation framework, which really demonstrated the power of the NIMIR architecture. Peitian

also standardized the internal metadata data structure in the PyMTL3 NIMIR implementation.

The PyMTL3 framework has received contributions from many colleagues. Peitian Pan was the

first developer (other than myself) to write PyMTL3 passes, and he even went above and beyond

to create a translation pass framework and his own RTLIR. Yanghui Ou was the major contributor

and helper for enriching the PyMTL3 standard library, as well as the first developer (other than my-

self) to deal with ordering constraints at the boundary between cycle-level and RTL components.

Many of my colleagues from Batten Research Group took the initiative in building/distributing

various PyMTL3 hardware IP blocks using PyMTL3, and even attempted to use PyMTL3 to facil-

itate chip tapeouts. Those first-hand development experiences turned into bug reports and feature

requests to help improve the PyMTL3 framework. Dr. Cheng Tan and Yanghui Ou created the

first PyMTL3 hardware IP pymtl3-net (PyOCN) which provides a realistic hardware generator

use case for the PyMTL3 framework to improve upon. Moyang Wang, Eric Tang, and Xiaoyu

Yan created pymtl3-mem, the blocking cache generator with software-centric cache coherence.

Tuan Ta built pymtl3-proc, the modular RV32IMAF processor, extensively leveraging method-

13

base interfaces and modular directed testing. The RTL code of the BRG-portion of CIFER and

Hammerblade tapeouts are all developed and tested using PyMTL3, and we even addressed the

Verilog test harness problem by merely creating another 200-line pass. Christopher Torng, Khalid

Al-Hawaj, Lin Cheng, and Dr. Shady Agwa joined to help organize the first PyMTL3 tutorial at

the 46th International Symposium on Computer Architecture in Arizona, which turned out to be a

big success.

The work on unified modular ordering constraints (UMOC) to unify CL and RTL modeling

is fueled by Yanghui Ou. Yanghui implemented many CL/RTL boundary adapters for different

interfaces and experimented with complicated scenarios with invalid loops going across the CL

and RTL portions. Yanghui’s work deepened our understanding in the equivalence of some CL

and RTL semantics using method-based interfaces.

The original work on Mamba to close the simulation performance gap in Python-based hard-

ware modeling frameworks would not have been possible without Berkin Ilbeyi’s expertise in

PyPy/RPython at the initial stage. Berkin provided insights into how the tracing-JIT engine and

PyPy works, and solved the huge-page issues. Berkin also proposed trace breaking techniques

to create loop structures suitable for JIT optimization. During the process of getting fast simula-

tion performance in production, Mamba++ received useful guidance from Carl Friedrich Bolz and

Lin Cheng on further improving the RPython Bits implementation and resolving Python3 specific

issues.

The work on PyH2, our vision for open-source hardware verification, was co-led by Yanghui

Ou and me, with help from Zac Hatfield-Dodds on hypothesis, Peitian Pan and Kaishuo Cheng

on PyH2P, Dr. Cheng Tan on PyH2G, and Yixiao Zhang on PyH2O. Even though I wrote most of

the submission to IEEE Design & Test, it was Yanghui’s hard work on leveraging hypothesis to

test hardware generators that shed light on all kinds of possibility of leveraging a random testing

framework built for software to test hardware. Peitian and Kaishuo led the work on generating

random instruction patterns and sequences to automatically test a PyMTL3 processor. Yixiao

dedicated her MEng project to experimenting with hardware data structures and stateful hypothesis

testing.

In terms of funding, this thesis was supported in part by Cornell Graduate School Fellowship,

Richard E. Lunquist Graduate Award, NSF SHF Award #1527065, NSF CRI Award #1512937,

AFOSR YIP Award #FA9550-15-1-0194, DARPA SDH Award #FA8650-18-2-7863, DARPA POSH

14

Award #FA8650-18-2-7852, DARPA CRAFT Award #HR0011-16-C-0037, a research gift from

Xilinx, Inc., and the the Center for Applications Driving Architectures (ADA), one of six centers

of JUMP, a Semiconductor Research Corporation program co-sponsored by DARPA. This work

was also supported by equipment, tool, and/or physical IP donations from Intel, Xilinx, Synopsys,

Cadence, and ARM. The U.S. Government is authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright notation theron. Any opinions, findings, and

conclusions or recommendations expressed in this publication are those of the author(s) and do not

necessarily reflect the views of any funding agency.

15

CHAPTER 2
PYMTL3: A PRODUCTIVE AND EXTENSIBLE
FRAMEWORK FOR HARDWARE MODELING,

SIMULATION, AND VERIFICATION

The first key challenge in state-of-the-art hardware modeling frameworks, as mentioned in

Chapter 1, is the lack of flexibility and extensibility to accommodate the ever-growing feature

wishlist. In this chapter, I propose native in-memory intermediate representation (NIMIR), a novel

and systematic approach to build productive hardware modeling frameworks. NIMIR enables the

framework to accommodate new ideas from different angles of computer architecture, electronic

design automation, and even circuit design in a collaborative community. Then, I present the

PyMTL3 framework, the first framework built under NIMIR. PyMTL3 is a productive and exten-

sible framework for hardware modeling, simulation, generation, and verification.

2.1 Introduction

Due to the breakdown of transistor scaling [DGY+74] and the slowdown of Moore’s Law [Moo65],

there has been an increasing trend towards energy-efficient system-on-chip (SoC) design using

heterogeneous architectures with a mix of general-purpose and specialized computing engines.

Heterogeneous SoCs [WJM08] emphasize both flexible parameterization of a single design block

and versatile composition of numerous different design blocks, which have imposed significant

challenges to state-of-the-art hardware modeling and verification methodologies.

To respond to these challenges, computer engineers are augmenting or even replacing tradi-

tional domain-specific hardware description languages (HDLs) with productive hardware develop-

ment frameworks empowered by high-level general-purpose programming languages such as C++,

Scala, Perl, and Python. Hardware preprocessing frameworks intermingle a high-level language

for macro-processing and a low-level HDL for logic modeling (e.g., Scheme mixed with Verilog

in Verischemelog [JB99], Perl mixed with Verilog in Genesis2 [SAW+10]), which enables more

powerful parametrization, yet creates an abrupt semantic gap in the hardware description. Hard-

ware generation frameworks completely embed parametrization and logic description in a unified

high-level “host” language (e.g., Haskell in Lava [BCSS98], standard ML in HML [LL00], Scala

in Chisel [BVR+12], Python in Stratus [BDM+07], PHDL [Mas07]), but still generates and sim-

16

ulates low-level HDL code. This requires test benches to be written in the low-level HDL, which

creates a modeling/simulation language gap that may require the designer to frequently cross lan-

guage boundaries during iterative development. All these challenges have inspired completely

unified hardware generation and simulation frameworks where parametrization, static elaboration,

test benches, behavioral modeling, and a simulation engine are all embedded in a general-purpose

high-level language (e.g., Java in JHDL [BH98], Haskell in ClaSH [BKK+10], Python in My-

HDL [Dec04], PyRTL [CTD+17], Migen [mig], PyHDL [HMLT03]). High-level synthesis (HLS)

is an alternative approach that seeks to automatically synthesize software-oriented programs writ-

ten in C++ into low-level HDL implementations [CCA+11, CLN+11]. We see HLS as comple-

mentary to the emerging trend towards hardware generation and simulation frameworks, since any

realistic SoC will require a mix of blocks well-suited to HLS (e.g., well-structured data-processing

blocks, low-performance control blocks) and blocks that require designers to control more hard-

ware details (e.g., processors, memory hierarchies, networks-on-chip, complex accelerators).

At the same time, computer architects are using cycle-level (CL) modeling methodologies such

as SystemC and Cascade [GTBS13] to facilitate rapid design-space exploration of large SoCs

before creating RTL implementations. When moving from CL to RTL, the ability to support seam-

less multi-level modeling (i.e., mix and match RTL models with CL models) provides significant

productivity benefits. For each individual design block, the CL model can serve as the golden ref-

erence model, which means all the unit tests can be reused to test the RTL model. Moreover, in a

development flow with continuous integration, gradually replacing existing CL blocks with newly

developed RTL blocks in a large design while maintaining the integration tests, end-to-end tests,

and performance regressions significantly reduces the integration effort and steadily improves the

performance accuracy of the overall model.

To further improve the productivity of both hardware designers and computer architects, we

have built PyMTL3, an open-source Python-based hardware modeling, generation, simulation,

and verification framework. PyMTL3 is a brand new hardware modeling framework instead of a

regular update to its predecessor PyMTL2 [LZB14]. The design philosophy of PyMTL3 incor-

porates two important takeaways from PyMTL2: (1) modularity of the framework is the key to

creating a vibrant and evolving hardware development ecosystem; and (2) interoperability with

other open-source tools is the key to achieving widespread adoption. Motivated by these two key

takeaways, I propose native in-memory intermediate representation (NIMIR), a novel approach to

17

build extensible hardware modeling frameworks. NIMIR separates a hardware modeling frame-

work into three parts: front-end domain-specific language, the native in-memory intermediate rep-

resentation, and back-end passes. Section 2.2 describes the NIMIR architecture design in depth.

Implemented from the ground up, PyMTL3 is the first framework that adopts the NIMIR architec-

ture and demonstrates strong extensibility. In terms of modeling features, PyMTL3 maintains the

key features of PyMTL2, and also includes a series of novel features: unified modular ordering

constraints (UMOC) for seamless multi-level modeling across register-transfer level (RTL), cycle

level (CL) and functional level (FL); a new parameter configuration system; first-class method-

based interfaces; polymorphic interface connections; and faster simulation performance using the

Mamba++ techniques under PyPy just-in-time compiler. PyMTL3 leverages the latest Python

3 features where PyMTL2 only works on Python 2. Section 2.3 presents the PyMTL3 frame-

work in-depth, discussing PyMTL3 embedded DSL, PyMTL3 NIMIR, and PyMTL3 passes. Sec-

tion 2.4 includes a developer’s case study on supporting delay-annotated gate-level modeling in

PyMTL3. The framework developer adds eDSL modeling primitives, NIMIR data structures/APIs,

and scheduling passes to support the new modeling feature without affecting any existing features.

This demonstrates that PyMTL3 enables the researchers to quickly explore a variety of new ideas

in hardware modeling methodology research with no impact to the rest of the PyMTL3 framework.

PyMTL3 has been extensively used in graduate courses at Cornell University, and two large-

scale chip tape-outs in GF 14nm. Many PyMTL3 IPs have been built as part of the PyMTL3

ecosystem. Moreover, the recent open-source hardware movement implies that developing, open-

sourcing, and collaborating on hardware generators is a compelling solution to increase the reuse

of highly parametrized and thoroughly tested hardware blocks across academia and industry. com-

munity. However, the general lack of high-quality open-source hardware designs and hardware

verification methodologies have been a major concern that limits the widespread adoption of open-

source hardware. Section 2.5 discusses PyMTL3’s potential to jump start the open-source hardware

ecosystem.

18

2.2 Native In-Memory Intermediate Representation

In this section, I propose native in-memory intermediate representation (NIMIR), a novel ap-

proach to systematically build flexible and extensible hardware modeling frameworks. The NIMIR

framework architecture forms the foundation of the PyMTL3 framework.

2.2.1 Motivation

Most hardware designers have their evolving wishlist of new features that can improve their

productivity. The ideal hardware modeling framework should allow the designers to not only select

“flow steps" to form their own suitable workflow, but also accommodate the ever-growing feature

wishlist with lightweight changes to the existing codebase. However, existing hardware modeling

frameworks are not flexible and extensible enough to fulfill such purposes. The fundamental reason

is that almost all aforementioned hardware modeling frameworks (see Section 1.1) are built in a

monolithic way. Those frameworks leverage various meta-programming mechanisms to create a

convenient embedded domain-specific language, but fail to separate the implementation of these

mechanisms. For example, PyMTL uses the Python metaclass to implement the Verilog black-

box import feature. The Python metaclass mechanism is notoriously difficult to reason about and

will lead to unpleasant error messages if not used correctly. It becomes much more difficult to

perform continuous development for feature extensions when the framework requires developers

to fully understand the intricacies of these mechanisms (even if they are implementing unrelated

features). Also, PyMTL’s Verilog import can only happen at a specific time during elaboration

between specific steps. Otherwise the whole elaboration process will break down. These kinds

of assumptions significantly limit the flexiblity of the framework in terms of adding new features

without breaking existing workflows.

As suggested by modern software engineering practices, modularity is the key to improve the

flexibility and extensibility of a framework. There have been attempts to design hardware in-

termediate representations (IR) [IKL+17, MMB+18] to separate the hardware description from

processing the elaborated model. However, these hardware IRs are mostly describing the hardware

netlists after the high-productivity modeling phase. Although the netlist analysis and optimization

process significantly benefit from having such hardware IRs, the hardware modeling framework

19

itself does not benefit from the existence of these IRs. In fact, the extensibility of the modeling

framework is limited by what is processed before turning the description into the IR representation.

We conclude that the community is in need of a novel approach to modularize hardware mod-

eling frameworks.

2.2.2 NIMIR Architecture

The proposed NIMIR architecture is inspired by LLVM, a successful modular compiler infras-

tructure project in the open-source software community [LA04]. As shown in Figure 2.1(a), the

LLVM architecture’s front-ends compile code of different programming languages (e.g., Fortran,

C++, Rust) into the same LLVM intermediate representation (IR). The IR is stored as an in-memory

data structure during execution but also has a serialized text form. Then, optimization passes can

be applied on the IR representation to analyze/mutate the IR. Finally, LLVM supports multiple

backends (e.g., x86, ARM, RISC-V) for code generation. Such modular architecture enables de-

velopers/researchers with different focuses to work in different parts of the LLVM framework

without affecting the rest of the framework. As a result, LLVM has been continuously developed

for about twenty years, receiving contributions from both industry and academia.

Inspired by the frontend/IR/backend division in LLVM, I design the NIMIR architecture that

separates a hardware modeling framework into three parts: frontend embedded domain-specific

language (eDSL), intermediate representation (IR), and backend passes. Previous hardware IRs

such as FIRRTL has very similar architecture to LLVM as shown in Figure 2.1(b). Figure 2.1(c)

illustrates the architecture of NIMIR. Note that the NIMIR architecture is similar to LLVM in spirit

but different in details. NIMIR targets hardware modeling frameworks built in a specific language

such as Python or Scala. The designer will not leave the language environment for development

until the HDL code generation process is invoked. The words “native” and “in-memory“ in NIMIR

means NIMIR does not have serializable text forms and are only captured in the system memory

as the native language data structures. This is because cycle-level models and functional-level

models are essentially normal Python code; serializing the IR is simply serializing the Python

code. In summary, NIMIR provides a model-level view of the whole design hierarchy for not only

the RTL circuits, but also CL/FL hardware processes.

NIMIR Embedded Domain-Specific Language – The NIMIR embedded domain-specific

language involves a series of modeling primitives and data types. Since the eDSL primitives are

20

Analysis
Passes

Frontend
Embedded DSL

NIMIR

Instrumentation
Passes

Transform
Passes

API1

API2

APIN

...

Backend Passes

Read-only API Add-only API Mutation API

Modeling
Primitives Set #1

Data Types

Modeling
Primitives Set #2

...

RTL Frontends FIRRTL
Intermediate Representation

HDL Generation
Backends

Chisel (Scala)
RTL Primitives

...

Verilog

VHDL

...

when io.valid :
 ex_reg_inst <= io.inst
 skip
....

Optimizations/
Transformations

(b) FIRRTL Architecture

(c) NIMIR Architecture

...

High-Level Language
Frontends

LLVM
Intermediate Representation

Code Generation
Backends

Fortran

Rust

C++

...

x86

RISC-V rv64gc

ARM aarch64

...

%t3 = icmp eq i32 %x, %y
br i1 %t3, label %l1, label %l2
...

Optimizations/
Transformations

(a) LLVM Architecture

FIRRTL

Figure 2.1: LLVM Architecture vs. FIRRTL Architecture vs. NIMIR Architecture – The LLVM architecture and
FIRRTL architecture both have a text-based intermediaterepresentation

21

basically user interfaces to construct hardware, the framework developer will need to leverage the

language’s features to create designer-friendly primitives to maximize the productivity of hard-

ware designers. A good example is that MyHDL and PyMTL leverage Python @xxx decorators to

mark Python functions as hardware process instead of using verbose API calls. When the prim-

itives are invoked, the underlying implementation will analyze and store the content in NIMIR.

For example, the user invokes the hardware component definition primitives to create a hardware

component. The underlying primitive implementation may collect the class and store it into the

list of available hardware component classes.

Note that as multiple modeling primitives can be designed to store the same metadata, NIMIR

opens opportunities for supporting different sets of modeling primitives (i.e., different DSLs) just

like LLVM’s various language frontends, without modifying the NIMIR or passes.

NIMIR Intermediate Representation – As previously mentioned, the NIMIR intermediate

representation does not have a text form. Instead, it is a systematic organization/centralization of

in-memory data structures constructed and elaborated from the hardware model. When the user in-

vokes NIMIR DSL primitives, the implementation of these primitives should collect, organize, and

store the specified hardware constructs such as ports, wires, combinational blocks, and sequential

blocks in the hardware component. All these stored data structures are centralized in the NIMIR

namespace of the hardware model, and the models expose public methods (i.e., APIs) that sys-

tematically manage these data structures. There are three types of APIs: read-only, add-only, and

mutation. For example, the ports of a hardware component in the model hierarchy can be stored as

a list in NIMIR and queried by the get_ports read-only API. Passes that add functionality to the

model will call an add-only API to attach those newly created metadata to the model. Passes that

systematically replace some modules with other modules will call mutation APIs.

Note that NIMIR is not a substitute for hardware IRs. It is totally suitable for NIMIR and

hardware IRs to co-exist in the same development flow. The designer can implement passes that

translate RTL code described in the DSL to low-level HDL/IR code. Then, the workflow of hard-

ware IRs can take over and optimize the netlists. This resembles a two-level IR structure where

NIMIR is the IR for the modeling framework and then lowered to the low-level hardware IR for

netlist processing as shown in Figure 2.1(c).

NIMIR Passes – Because hardware modeling frameworks are far more (e.g., modeling, sim-

ulation, HDL generation, etc) than simply compiling/optimizing IR code, the concept of NIMIR

22

passes is more general than LLVM’s optimization passes which only analyze and transform code.

NIMIR passes are systematic programs that interact with the NIMIR intermediate representation.

Specifically, a pass should call the three types of APIs provided by NIMIR to obtain metadata of

the hardware design hierarchy, add useful functionality, or mutate the elaborated hardware model.

Passes should be modular by themselves in the sense that the user can skip unneeded passes and

only apply a subset of passes. Hence, the passes must be designed in a way such that adding new

passes or modifying existing passes does not break the functionality of unrelated passes. Enforcing

this guideline significantly facilitates collaboration in the community.

Inspired by LLVM’s pass categorization (analysis and transform), I categorize NIMIR passes

into three categories:

• Analysis passes call read-only NIMIR APIs to simply analyze the NIMIR hardware model

and generate useful outputs without any modification to NIMIR. Designers can implement

their own net list analysis tools as analysis passes.

• Instrumentation passes call read-only and add-only APIs to enhance the model with ad-

ditional functionalities without any modification to the hardware hierarchy. Simulation and

HDL generation tools are typical instrumentation passes that add simulating facilities or HDL

source to the hardware model.

• Transform passes call read-only and mutation APIs to mutate the hardware hierarchy by

adding/removing/replacing part of the model. Transform passes are very helpful if the de-

signer wants to add some debugging support without modifying the original HDL code.

The PyMTL3 framework follows this the pass categorization. Section 2.3.3 includes more

details on concrete PyMTL3 passes of each category.

2.3 The PyMTL3 Framework

Figure 2.2(a) illustrates an example PyMTL3 workflow. The designer starts from develop-

ing a functional-level (FL) design-under-test (DUT) and test bench (TB) completely in Python.

Then the DUT is manually refined to a cycle-level (CL) and/or register-transfer-level (RTL) model.

The designer simulates and evaluates the DUT/TB composition, and debugs the FL/CL/RTL DUT

23

leveraging various tracing output. The designer can also leverage the PyH2 property-based testing

framework to find minimal failing test cases. Meanwhile, the designer uses the existing analysis

tools or creates new ones to assist iterative refinement. The designer may temporarily transform

the hardware model to replace modules or add new logic without modifying the original design.

After iterating in the pure-Python environment, the designer invokes translation backends to gen-

erate SystemVerilog code and import it back to PyMTL3 for co-simulation with the same TB.

Finally, the designer can push the translated SystemVerilog code through an FPGA/ASIC toolflow,

and use a prototype proxy that PyMTL3 generates based on the original DUT to test the FPGA/A-

SIC prototype using the same TB. Designers who only write SystemVerilog code can still benefit

from most of the productive workflow steps through PyMTL3’s SystemVerilog import. Computer

architects may iterate more in CL modeling and only implement RTL for critical parts.

Figure 2.2(b) shows the software architecture of PyMTL3. The PyMTL3 embedded DSL ex-

poses the modeling primitives to the designer for describing hardware, creating test benches, and

configuring parameters. PyMTL3 is responsible for elaborating the hardware model and creat-

ing an native in-memory intermediate representation (NIMIR) that exposes APIs to query/modify

the stored metadata of the whole hierarchical model. Then various PyMTL3 passes can analyze,

instrument, and/or transform an elaborated PyMTL3 NIMIR model.

Lines 1–32 of Figure 2.3 show the PyMTL3 implementation of a registered incrementer unit

and a parametrized N-stage registered incrementer using PyMTL3 embedded DSL primitives.

2.3.1 PyMTL3 Embedded DSL

PyMTL3’s embedded DSL provides several distinctive modeling features that are not found in

existing frameworks (including PyMTL2).

Unified Multi-Level Modeling and Scheduling – PyMTL3 provides three sets of primitives

for FL, CL, and RTL modeling. FL/CL update blocks communicate through methods, and RTL

update blocks communicate through signals. PyMTL3 deploys a novel scheme, unified modu-

lar ordering constraints (UMOC), to schedule FL/CL/RTL update blocks together under the same

abstraction. UMOC is discussed in detail in Chapter 3. The intra-cycle ordering of RTL update

blocks is implicitly inferred from the signals that each block reads or writes. The intra-cycle order-

ing of CL/FL update blocks is deduced from local explicit ordering constraints between method

and/or update blocks, and the information of the methods each update block calls. The user can

24

Test Bench
PyH2

Python

Functional-Level
Cycle-Level

RTL

Simulation

SystemVerilog

RTL

import &
co-simulate

synthesize

translate

prototype
bring-up

FPGA
ASIC

Analysis
Transform

* italic: passes

Tracing

(a) PyMTL3 Workflow

PyMTL3 Model

Test Bench w/
Arbitrary Python

Parameter Specs
("top.dut", size=2)

Elaboration

PyMTL3 Native
In-Memory
Intermediate

Representation
(NIMIR)

Analysis Passes
Linting
Statistics
Synthesis

PyMTL3 DSL

PyMTL3 NIMIR

PyMTL3 Passes

• top.get_all_object_filter(lambda ...)
• top.get_all_update_blocks()
• top.cache.replace_component("x", Mux())
 ...

Instrumentation Passes
Simulation
Tracing
Translation

Transform Passes
Import
Prototype
Ad-hoc Modified Design

Wrapped Design

NIMIR + simulator
NIMIR + hooks

Placeholder
Component

NIMIR + RTLIR
+ HDL code

NIMIR provides APIs for passes
to query/modify NIMIR models

linting report
.gv / .pdf / .csv
checking report,
 rough estimate

(b) PyMTL3 Framework
Figure 2.2: PyMTL3 Overview

simply set explicit ordering constraints in each component. The simulation passes will handle all

the ordering constraints globally. UMOC eliminates the need to manually schedule CL update

blocks to model the desired behavior and is the key mechanism in PyMTL3 to support seamless

multi-level modeling. PyMTL3 simulation passes combine UMOC and Mamba++ (discussed in

detail in Chapter 4) to provide high simulation performance.

Highly Parametrized Static Elaboration – Python’s object-oriented programming and dy-

namic typing features enable PyMTL3 users to intuitively parametrize hardware components, as

opposed to using low-level HDL’s limited parametrization constructs and static typing. The users

can use parameters of arbitrary types and instantiate different models or update blocks based on

25

1 # Creating RTL register incrementer
2 # using PyMTL3 embedded DSL
3 class RegIncr(Component):
4

5 def construct(s, Type, inc=1):
6 s.in_ = InPort (Type)
7 s.out = OutPort(Type)
8

9 s.tmp = Wire(Type)
10 @update_ff
11 def seq_reg():
12 s.tmp <<= s.in_
13

14 @update
15 def comb_out():
16 s.out @= s.tmp + inc
17

18 class RegIncrNstage(Component):
19

20 def construct(s, Type=Bits32, N=1):
21 s.in_ = InPort (Type)
22 s.out = OutPort(Type)
23

24 s.rs = [RegIncr(Type) \
25 for _ in range(N)]
26

27 connect(s.rs[0].in_, s.in_)
28 connect(s.rs[-1].out, s.out)
29

30 for i in range(N-1):
31 # //= is syntactic sugar for connect
32 s.rs[i].out //= s.rs[i+1].in_
33

34 # Parametrization using PyMTL3 embedded DSL
35 dut = RegIncrNstage(Bits16, 3)
36 dut.set_param("top.rs[0].construct", inc=5)
37 dut.set_param("top.rs[2].construct", inc=13)
38

39 # Static elaboration to create PyMTL3 NIMIR
40 dut.elaborate()
41

42 # Calling NIMIR API
43 print(dut.get_input_ports())
44

45 # Apply PyMTL3 passes on the NIMIR model
46 dut.apply(RefactoringAnalysisPass())
47 dut.apply(CheckInferedLatchPass())
48

49 # Default pass group includes the UMOC graph
50 # generation pass, UMOC scheduling pass,
51 # and the simulation pass
52 # textwave=True enable textwave pass
53 dut.apply(DefaultPassGroup(textwave=True))
54

55 # Call simulation method added by the
56 # simulation pass
57 dut.sim_reset()
58

59 dut.in_ @= 0
60 dut.sim_tick()
61

62 # Print text-based waveform
63 dut.print_textwave()

1 # Creating FL checksum accelerator
2 # using PyMTL3 embedded DSL
3 class ChecksumXcelFL(Component):
4

5 def read(s, addr):
6 return s.reg_file[int(addr)]
7

8 def write(s, addr, data):
9 s.reg_file[int(addr)] = b32(data)

10

11 # If go bit is written
12 if s.reg_file[4]:
13 words = []
14 for i in range(4):
15 words.append(s.reg_file[i][0 :16])
16 words.append(s.reg_file[i][16:32])
17 s.reg_file[5] = checksum(words)
18

19 def construct(s):
20 # The FL accelerator minion interface is
21 # hooked up directly to local methods
22 s.xcel = XcelMinionIfcFL(read=s.read,
23 write=s.write)
24

25 # Components
26 s.reg_file = [b32(0) \
27 for _ in range(6)]
28

29 # Creating data-class like Pythonic
30 # high-level user-defined bitstruct types
31 def mk_xcel_req_msg(addr, data):
32 @bitstruct
33 class XcelReqMsg:
34 type_ : Bits1
35 addr : mk_bits(addr)
36 data : mk_bits(addr)
37 return XcelReqMsg
38

39 # similar to mk_xcel_req
40 def mk_xcel_resp_msg(data):
41 ...
42

43 # Creating RTL processor
44 # using PyMTL3 embedded DSL
45 class ProcRTL(Component):
46

47 def construct(s):
48 s.xcel = XcelMasterIfcRTL(\
49 mk_xcel_req_msg(5, 32)
50 mk_xcel_resp_msg(32))
51 ...
52

53 class TestHarness(Component):
54 def construct():
55 s.proc = ProcRTL()
56 s.xcel = ChecksumXcelFL()
57

58 # Polymorphic interface connections
59 connect(s.proc.xcel, s.xcel.xcel)
60 ...

(a) (b)

Figure 2.3: PyMTL3 Code Example

26

value or type. Moreover, PyMTL3 provides a powerful parameter configuration system to solve

the common pitfall of parametrizing a hierarchical design. Usually the designer must pass the

same parameter from the top-level design through the entire hierarchy. In PyMTL3, the designer

can instead specify the parameter at the top-level component using a string with wildcard selec-

tion. PyMTL3 will resolve simple regular expressions and distribute the parameters accordingly.

Lines 35–37 of Figure 2.3(a) show how the individual RegIncr components in the array are config-

ured. In practice, this system can significantly reduce the chance of misconfiguration in a complex

system-on-chip composed by many hardware generators.

Polymorphic Interface Connections – PyMTL3 interfaces are bundles of value ports or method

ports. By default, connecting two interfaces involves recursively connecting nested interfaces and

ports pairs with the same name. However, the designer may want to insert an adapter between two

incompatible interfaces. In highly parametrized PyMTL3 design generators, manually inserting

such adapters is tedious and error-prone due to the verbose type introspection code that checks

for matching interface pairs and duplicated code across different components that instantiate the

same interface pair. For example, composing any FL/CL/RTL components often involves inspect-

ing the interface type and inserting the corresponding cross-level adapters. To solve this problem,

PyMTL3 allows the interface designer to provide a customized connect method in the interface

class to centralize type introspection and adapter insertion code. When connecting two interfaces,

PyMTL3 automatically invokes the customized connect and falls back to by-name connection if

no match is found. Lines 59 of Figure 2.3(b) show the connection of an FL interface (created in

lines 5–23 of Figure 2.3(b)) and an RTL interface (instantiated in lines 48–50 of Figure 2.3(b)).

High-Level User-Defined Data Types – Inspired by Python’s dataclass, PyMTL3 supports

arbitrarily arrayed/nested user-defined data types for both native-Python simulation and HDL gen-

eration. PyMTL3 provides Pythonic dataclass-like APIs to declare new data types (lines 32–36

of Figure 2.3(b)). The simulation passes can determine the sensitivity of subfields to correctly

schedule the simulation. The translation passes can directly generate nested SystemVerilog struct

types, or recursively map subfields to slices of a flattened signal (for Verilog).

PyH2: Property-Based Random Testing – PyMTL3 includes PyH2, a property-based random

testing framework for hardware generators, processors, and hardware data structures. PyMTL3

provides carefully implemented hypothesis composite search strategies to generate random Bits

and user-defined type objects. One key advantage of PyH2 over traditional random testing and

27

iterative-deepened testing is that PyH2 first samples the test-case space and design-parameter

space to quickly find a failing test case and then automatically shrinks the failing case and the

design parameters. The result is a minimal failing case with minimal design parameters (e.g.,

shrinking a 50-transaction case for an eight-node network to a 10-transaction case for a four-node

network). PyH2 is discussed in detail in Chapter 5.

2.3.2 PyMTL3 NIMIR and Elaboration

PyMTL3 implements the NIMIR architecture and exposes APIs for passes to invoke. PyMTL3

NIMIR mostly has dictionaries and lists as data structures to store the ordering constraints, the

logic blocks, and their relationship. Then, PyMTL3 NIMIR provides an API called elaborate()

for the user to specify a top-level model. During the elaboration process, PyMTL3 recursively

collects all the metadata throughout the model hierarchy and stores the collected metadata at the

top level model object. Most PyMTL3 NIMIR APIs are called from the top-level to return/modify

the hierarchy such as retrieving all child modules that match a certain name filter, and retrieving

all the logic blocks throughout the hierarchy as shown in Figure 2.2(b).

2.3.3 PyMTL3 Passes

PyMTL3 passes are systematic programs that interact with the PyMTL3 NIMIR. The cate-

gorization of PyMTL3 passes follow the NIMIR specification: analysis passes, instrumentation

passes, and transform passes. Many PyMTL3 passes leverage open-source Python libraries and

reuse/target open-source hardware tools, which confirms the benefits of using a powerful host lan-

guage to build a hardware modeling framework.

Analysis Passes

Analysis passes should only query the metadata from the data structures stored in NIMIR.

Hence they are used to traverse the model hierarchy and extract useful information for the designer

to characterize the model.

Linting Passes – Linting passes check the coding style of PyMTL3 hardware descriptions.

The CheckSignalNamePass enforces a naming convention on all the signals in the model and

reports violations. It calls one of the API to query all of the signals in the hierarchy, and then

28

checks each signal’s name against a given checker function, i.e., a Python lambda function that

returns true/false. The CheckUnusedSignalPass report signals that are declared but never used.

It calls APIs to query all of the signals, all of the update block read/write information, and all of

the connections. It then uses the set data structure to figure out the unused signals.

Statistics Passes – Statistics passes are used to extract and/or visualize characteristics of the de-

sign. The RefactoringAnalysisPass gives insights into code refactoring by using matplotlib

to create a scatter plot of the total input/output bitwidth of each module and a histogram plot of all

the update block lengths. This is a good example of leveraging other Python packages to signif-

icantly simplify the plotting process. DumpUDGPass leverages graphviz to visualize the directed

graph of all update blocks as vertices and all dependencies between these blocks as edges, which

can be very useful for debugging unexpected cyclic dependencies.

Pre-Synthesis Passes – Pre-synthesis passes attempt to address RTL synthesis related issues.

The CheckInferredLatchPass reports potential inferred latches by querying the AST of update

blocks to check if each signal written in the block has valid assignments in all conditional branches.

The CheckClockGatingPass reports all signals that are inferred to flip-flops, but non-blocking

assignments are not included in an if statement block. Early-stage estimation passes give rough

estimates of the hardware based on annotated area/power/timing without invoking external tools.

The AreaEstimationPass reports the aggregated area from the annotated area estimates of all

leaf components in a structurally composed design.

Instrumentation Passes

Instrumentation passes only adds functionality to the model, and should not change the hard-

ware model itself. The added functionality can vary from an added simulator and corresponding

APIs to perform cycle-by-cycle simulation, hooks and APIs to print out the internal states of the

model, to attaching useful metadata to the model.

Simulation Passes – Building under the NIMIR concept, PyMTL3 natually becomes a plat-

form for simulation mechanism research. Simulation passes are instrumentation passes that add

simulating methods to the top-level component for the user to simulate the whole design. Each

simulation pass implements different modeling semantics and/or creates a different simulator for

different simulation performance. Researchers can add new simulation passes to explore new

29

scheduling mechanisms without modifying existing passes. The EventDrivenPass can schedule

pure-RTL models with cyclic dependencies between update blocks and throw exceptions for ac-

tual combinational loops. The pass queries the read/write information of all update blocks and

constructs sensitivity information to decide the dependent blocks of each update block. The added

tick function maintains an event queue to trigger update blocks. The StaticSchedulingPass can

only schedule models without cyclic dependencies even though they may not be actual combina-

tional loops. However, removing the event queue leads to higher simulation performance when

the toggle rate is high. The pass constructs a direct acyclic graph and applies a topological sort to

compute a linear execution schedule for every cycle. The added tick function simply iterates over

the static schedule. The DynamicSchedulingPass can schedule models with cyclic dependencies

using the strongly connected component (SCC) algorithm. Our previous paper on Mamba [JIB18]

proposed several novel scheduling techniques that boost the simulation performance under the

PyPy just-in-time compiler in a pure-Python environment. The techniques are implemented as ad-

ditional simulation passes. Note that the paper discusses the techniques for static scheduling, and I

have successfully built a hierarchical static scheduling pass to optimize the simulation performance

for any graph with cyclic dependencies. Details of the simulation techniques and the scheduling al-

gorithms are discussed in Chapter 4. This confirms the extensiblity of NIMIR to sustain a research

platform.

Tracing Passes – It is important for a productive hardware modeling framework to provide

different tracing options to debug or visualize the execution. In PyMTL3, we have built many trac-

ing passes to assist the designer. Tracing passes are instrumentation passes that add corresponding

tracing hook functions to specific point of the scheduled execution. The hook functions captures

the internal signal values. The classic VcdGenerationPass adds a callback function before the

simulated rising clock edge to record the value changes. Simulations with this pass will provide a

file in the VCD format compatible with GTKWave, an open-source waveform viewer. Inspired by

PyRTL, the TextWavePass horizontally visualizes per-cycle value changes of every signal using

ASCII text sequences after the execution. VerilogTBGenPass captures the cycle-by-cycle value

change of the interface signals of a marked component, and generates a Verilog test bench with

assertions for use in pure-Verilog four-state RTL or gate-level simulation. Note that the VerilogT-

BGenPass complements the PyMTL3 native testing with the ability to perform 4-state simulation

30

PyMTL3: 2-state RTL sim w/ zeros initialization
PyMTL3 + Verilator: 2-state RTL sim w/ zeros/ones/random initialization

TBGenPass + VCS:
TBGenPass + VCS:
TBGenPass + VCS:

4-state RTL sim
4-state GL sim w/o timing (GL-FF)

4-state GL sim w/ timing (GL-SDF)

Python

Verilog

Figure 2.4: VerilogTBGenPass Completes the PyMTL3 Testing Spectrum – PyMTL3 native simulation and Ver-
ilator co-simulation can only perform 2-state simulation with different initialization options. The VerilogTBGenPass
generates Verilog test harness based on the simulation in native Python, so that the generated Verilog can be simulated
in Synopsys VCS using 4-state simulation.

in Synopsys VCS as shown in Figure 2.4, which drastically improves PyMTL3’s interoperability

with ASIC flows.

Translation Passes – Another type of useful instrumentation passes are translation passes

which attach the translated IR and/or source file to the design. These passes are also a key part

of the two-level IR structure as mentioned in Section 2.2. In PyMTL3, we build HDL translation

passes so that the designer can translate PyMTL3 RTL code into HDL code that is compatible with

open-source/commercial FPGA/ASIC synthesis tools. The RTLIRGenPass first lowers the RTL

design from NIMIR into RTLIR, a low-level hardware IR provided by PyMTL3. Then the transla-

tion backend pass turns the RTLIR into corresponding HDL source code. Having the RTLIR as the

input to different translation backends and implementing backends as passes already streamlines

the process of adding a new backend. Moreover, PyMTL3 ships a carefully designed translation

framework that provides a code generator template to be specialized by the target HDL backend

with the mapping from RTLIR primitives to HDL source code. In other words, the user only needs

to fill in the blanks to add a new backend. A backend can also inherit from an existing backend

to maximize code reuse. For example, the Yosys-SystemVerilog backend inherits most code gen-

eration functions from the regular SystemVerilog backend and only adds several hundred lines of

code to override the interface/struct-specific functions.

Transform Passes

Transform passes systematically modify the hardware model itself using at runtime using

NIMIR APIs, which opens up various opportunities to avoid making massive temporary modi-

fications and reversions to the design codebase.

31

Import Passes – PyMTL3 provides import passes to integrate external IPs with PyMTL3 de-

signs/testbenches using black-box import (simulation only) or white-box import (creating a new

PyMTL3 component with internal constructs). Co-simulating existing IPs in Python significantly

facilitates verification. Import passes are transform passes that create PyMTL3 components on-

the-fly and replace the original placeholders so that the external IPs are integrated seamlessly with

rest of the design hierarchy. SystemVerilog and SystemC IPs are imported as black-box modules

backed by external C++ shared libraries. The user needs to specify interfaces and source files in

the placeholder. Specifically, the VerilogImportPass leverages Verilator to generate a C++ sim-

ulator for all specified SystemVerilog files, generates a C interface wrapper, and links the C++ sim-

ulator against the wrapper to produce a C++ shared library. Similarly, the SystemCImportPass

directly creates a C++ shared library by compiling a generated C++ interface wrapper with the

SystemC code and the SystemC kernel library. Then, the placeholder is replaced by a generated

PyMTL3 wrapper component that communicates with the shared library through Python’s C for-

eign function interface.

Prototype Proxy Passes – After pushing the RTL model through an FPGA/ASIC flow, PyMTL3

provides prototype proxy passes that integrate the real prototype with the same Python test bench,

which can significantly improve the prototype testing productivity compared to an ad-hoc flow.

The proxy passes extensively use Python reflection and NIMIR APIs to generate wrapper com-

ponents that wrap around the prototype. The PyMTL3 test bench can send data to the wrapped

prototype over the same interface as the original RTL model, as the wrapper components will

serialize/deserialize the data and communicate with the system device.

Ad-Hoc Transform Passes – Motivated by real-world situations, PyMTL3 provides many ad-

hoc transform passes to help avoid making significant modifications (that may be reverted even-

tually) to the codebase. These passes creatively exploit the add, delete, and replace APIs

to mutate the design hierarchy in-situ and open up many opportunities for productive verifica-

tion and rapid prototyping that would be challenging in other frameworks. Leveraging Python’s

dynamic typing feature, the AddDebugSignalPass pulls a signal from deep in the hierarchy to

expose it at the top level for debugging. For example, the pass takes a signal’s hierarchical name

top.chip.tiles[1].core.dpath.mult.en, iteratively inserts a debug_en port to the multi-

plier, the datapath, the core, the tile, the chip, and the top, and connects all of the added ports

together. The user can then apply translation passes to generate HDL code with the additional

32

ports. SwapHardenedIPPass searches for instances of marked PyMTL3 behavioral models and

swaps them with placeholders that import hardened Verilog models. Co-simulating the design with

real hardened models improves the fidelity of the tests.

2.4 Developer’s Case Study: Supporting Delay-Annotated
Gate-Level Modeling

In this section, I present a developer’s case study to demonstrate the extensibility of the NIMIR

architecture in the PyMTL3 framework. I illustrate how to support delay-based gate-level model-

ing on top of existing RTL and CL modeling but without affecting the existing code base. The

case study is based on official release version of PyMTL3. Figure 2.5 shows the envisioned

PyMTL3 design code of a positive-edge-triggered D-latch model and the D flip-flop model. Af-

ter the three steps illustrated below to enhance PyMTL3 eDSL, PyMTL3 NIMIR, and PyMTL3

passes, PyMTL3 should be able to support this code.

2.4.1 Adding Embedded DSL Primitives

1. To keep the added GL modeling primitives separate from existing code base, we implement

a new class GLComponent inherited from ComponentLevel7 as shown in Figure 2.6(a), so

that all the RTL modeling primitives such as update and update_ff can directly be reused.

PyMTL3 EDSL modeling primitives are implemented in the pymtl3.dsl package. Different

component levels are used internally incrementally add support for modeling primitives.

2. Then we override the __new__ method to add the function-to-delay mapping dictionary

upblk_delay to the private namespace s._dsl in lines 1–5 of upblk_delay. PyMTL3

NIMIR stores all the metadata in this s._dsl namespace. Note that line 2 of Figure 2.6(a)

invokves the the parent class __new__ method as a convention since we still want to leverage

previously implemented primitives.

3. We add the update_delay(func, delay) construction-time modeling API to the compo-

nent so that the user can mark a function as an update block with a specific delay as shown

in line 7–12 of Figure 2.6(b). Inside update_delay(func, delay), it stores the function

and the delay to the mapping dictionary at the host component where the update block is

33

1 class PosTrigDLatch(GLComponent):
2 # Parametrized by the delay in nano second
3 def construct(s, delay):
4

5 # input clock signal from clock generator
6 s.in_clk = InPort()
7

8 s.D = InPort()
9 s.Q = OutPort()

10

11 # We want to use @update_delay decorator to mark the delay
12 # of an update block.
13 # We want to use "|=" (bar-equal) operator for delayed assignments
14 @update_delay(delay)
15 def update_dlatch():
16 s.Q |= s.D if s.in_clk else s.Q
17

18 class DFF(GLComponent):
19 def construct(s):
20 s.in_clk = InPort()
21 s.D = InPort()
22 s.Q = OutPort()
23

24 s.DL1 = PosTrigDLatch(delay=50)
25 s.DL2 = PosTrigDLatch(delay=50)
26

27 s.DL1.in_clk //= lambda: ~s.in_clk
28 s.DL2.in_clk //= lambda: s.in_clk
29 s.D //= s.DL1.D
30 s.DL1.Q //= s.DL2.D
31 s.DL2.Q //= s.Q
32

33 x = DFF()
34 x.elaborate()
35 x.apply(GenDAGPass())
36 x.apply(EventSchedulePass())
37

38 x.in_clk @= 0
39 x.D @= 1
40 x.sim_delay(1000)
41 x.in_clk @= 1
42 ...

Figure 2.5: Example Design for Delay-Annotated Gate-Level Modeling – The design is a positive-edge-triggered
D-latch and a D flip-flop that composes two of the latches. We want to use delay annotation on update blocks to model
delayed logic while still supporting zero-delay combinational logic.

created. Then it invokes the _cache_func_meta API as the convention to cache the AST of

the function with the |= operator.

4. Outside the class, we add an @update_delay(delay) decorator as syntactic sugar for the

user to succinctly mark the delay-annotated blocks. The nested function implementation in

Figure 2.6(c) is the most Pythonic way to create a decorator with a decorator parameter. The

34

1 from pymtl3.dsl.ComponentLevel7 import ComponentLevel7
2

3 class GLComponent(ComponentLevel7):
4 ...

(a)
1 def __new__(cls, *args, **kwargs):
2 inst = super().__new__(cls, *args, **kwargs)
3

4 inst._dsl.upblk_delay = {}
5 return inst
6

7 def _update_delay(s, blk, delay):
8 ComponentLevel1._update(s, blk)
9

10 s._dsl.upblk_delay[blk] = delay
11

12 s._cache_func_meta(blk, 4, ast.BitOr)

(b)
1 # the @update_delay decorator implementation
2 def update_delay(delay):
3 def real_decorator(blk):
4 NamedObject._elaborate_stack[-1].update_delay(blk, delay)
5 return blk
6 return real_decorator

(c)
1 class Bits:
2 ...
3

4 def __ior__(self, v):
5 nbits = self._nbits
6

7 ... # type checks
8

9 try:
10 self._nexts.append(_next)
11 except AttributeError:
12 self._nexts = deque([_next])
13

14 return self
15

16 def _advance(self):
17 try:
18 self._uint = self._nexts.popleft()
19 except Exception:
20 pass

(d)
Figure 2.6: PyMTL3 EDSL Implementation to Support Delay-Annotated GL Modeling – (a) shows the new
GLComponent class; (b) overrides __new__ method to add data structures without the need for user to manually
override __init__ and the private method to add new data to the data structure; (c) is the decorator function imple-
mentation that leverages Python mechanisms; and (d) shows the Bits enhancement to support |= delayed assignment
including a new operator and a method.

35

decorator finds the latest component in the global elaboration stack and invokes the previous

update_delay(func, delay) method on the component.

5. Since we want to use a new operator |= on signals for delayed assignment, we add the

__ior__ operator to the datatype Bits class that contains a list of delayed assignment values.

This is necessary since it is possible to have multiple buffered values for the same signal at

different future timestamps. We also add the _advance() API to the Bits object to use the

next buffered value as the signal value.

As shown above, we follow the convention of existing APIs, and add merely tens of lines of

code to support the new DSL modeling primitive. It is worth noting that previous design code

is not affect by the added GLComponent class and the added primitives at all. This confirms the

modularity of the NIMIR architecture.

2.4.2 Adding NIMIR Data Structures and APIs

1. The PyMTL3 NIMIR elaboration process basically collects all the metadata from all the child

components and centralizes them in the top level component on which the elaborate()

method is called. The PyMTL3 NIMIR implementation provides flexible sub-methods of

the elaboration process for inherited classes to override. This avoids the need to modify

existing code to add new features. As shown in lines 1–4 of Figure 2.7(a), we simply over-

ride the private _elaborate_declare_vars method, use super() to call the method in the

parent class, and declare the all_upblk_delay dictionary to store the mapping of all the

delay-annotated update blocks and their corresponding delays. Because Python functions are

unique objects, we do not need to worry about duplicate keys in the dictionary.

2. Similarly, we override the _collect_vars method to add the desired behavior during the

data collection process as shown in lines 6–10 of Figure 2.7(a). This method is supposed to

be called on the top level and has a parameter m, which is the child component to collect.

Hence the desired behavior is simply merging the local upblk_delay dictionary of the child

component into the global all_upblk_delay dictionary.

3. Finally, we add NIMIR APIs to expose the newly added global delay dictionary. To expose

the whole dictionary, We simply add a get_all_update_delay() method to the compo-

nent. Lines 1–6 of Figure 2.7(b) shows the implementation. It starts with a check function

36

1 # Override
2 def _elaborate_declare_vars(s):
3 super()._elaborate_declare_vars()
4 s._dsl.all_upblk_delay = {}
5

6 # Override
7 def _collect_vars(s, m):
8 super()._collect_vars(m)
9 if isinstance(m, GLComponent):

10 s._dsl.all_upblk_delay.update(m._dsl.upblk_delay)

(a)
1 def get_all_update_delay(s):
2 try:
3 s._check_called_at_elaborate_top("get_all_update_delay")
4 return s._dsl.all_upblk_delay
5 except AttributeError:
6 raise NotElaboratedError()
7

8 def get_delay_of_update_block(s, blk):
9 try:

10 s._check_called_at_elaborate_top("get_delay_of_update_block")
11

12 assert blk in s._dsl.all_update_delay, \
13 f"{blk} is not annotated with delay!"
14

15 return s._dsl.all_update_delay[blk]
16

17 except AttributeError:
18 raise NotElaboratedError()

(b)
Figure 2.7: PyMTL3 NIMIR Implementation to Support Delay-Annotated GL Modeling – (a) shows the im-
plementation to override elaboration steps to collect delayed update blocks; and (b) shows the APIs that expose the
collected metadata.

that checks if the API call is performed on an elaborated component, and then directly returns

the all_update_delay dictionary created during elaboration. Also, as shown in Lines 8–18

of Figure 2.7(b), we can add another API called get_delay_of_update_block(blk) for

passes that already query all update blocks to get the delay of a specific update block.

In summary, we only need to add 10 lines of Python code in PyMTL3 NIMIR implementation

to enhance the elaboration process and 20 lines of code to add two APIs leveraging many existing

utility functions. This further confirms the flexibility and extensibility of the NIMIR architecture.

2.4.3 Adding Event-Driven Scheduling Passes

After adding EDSL primitives and NIMIR APIs, we need to develop the event-driven schedul-

ing passes to support delay-annotated GL simulation. Existing simulation passes are cycle-based

37

1 assert not top.get_all_update_ff()
2 assert not top.get_all_update_once()
3

4 all_upblk_delay_dict = top.get_all_update_delay()
5 all_upblk_reads_dict, all_upblk_writes_dict, _ = \
6 top.get_all_upblk_metadata()
7

8 V = top._dag.final_upblks
9

10 top._sched.preamble = preamble = []
11

12 # Preprocessing preambles
13 for b, reads in all_upblk_reads_dict.items() | \
14 top._dag.genblk_reads.items():
15 delay = all_upblk_delay_dict.get(b, 0)
16 for r in reads:
17 if r.is_input_value_port() and r.is_top_level_signal() and \
18 r.get_host_component() is top:
19 preamble.append((delay, b))
20

21 top._sched.triggers = triggers = { v: [] for v in V }
22

23 # Preprocessing triggered events for delayed assignments
24 for b, writes in top._dsl.all_upblk_writes.items():
25 if b in all_upblk_delay_dict:
26 delay = all_upblk_delay_dict[b]
27 for w in writes:
28 triggers[b].append((Event.ADVANCE, delay, signal_advance_dict[w]))
29

30 # Preprocessing triggered events for subsequente update blocks
31 for (u, v) in top._dag.all_constraints: # u -> v
32 if u in V and v in V:
33 delay = all_upblk_delay_dict.get(v, 0)
34 triggers[u].append((Event.TRIGGER, delay, v))

Figure 2.8: Preprocessing NIMIR Metadata For Event-Driven Scheduling – This part of the event-driven schedul-
ing pass first calls APIs to get all the update blocksand the delays. Then it executes a few nested loops to establish
the triggering relationships and corresponding signal advance events. The preambles are events triggered by top-level
input value changes.

and cannot be directly reused, but we are able to reuse some of the previous passes such as the

UDG generation pass to generate sensitivity information of update blocks.

1. First, we need to invoke a few NIMIR APIs to obtain the metadata. Lines 1–8 of Figure 2.9 in-

vokes sevaral APIs to perform checks and to obtain read/write metadata, and retrieves all the

update blocks from the results of UDG generation pass. Lines 10–19 prepares the preamble

events that propagate all the modification to input signals outside the simulator such as lines

42–43 of Figure 2.5. Line 16–18 enumerates all the signals that an update block reads and

performs more NIMIR API calls on the signals to see if any of the signals are top-level input

ports. Lines 23–28 prepares the triggered assignment events of all update_delay blocks.

This is because the value change of |= assignments inside an update_delay block must

38

1 top._sched.event_queue = []
2 top._sched.timestamp = 0
3

4 def create_sim_delay(top):
5 event_queue = top._sched.event_queue
6 preamble = top._sched.preamble
7 triggers = top._sched.triggers
8

9 def sim_delay(delay):
10 time = top._sched.timestamp
11 target_time = time + delay
12

13 # Check if top-level ports are written using @=
14 top._check_top_level_inports()
15

16 # execute preamble blocks that read input ports
17

18 for delay, event in preamble:
19 event()
20 triggered_time = time + delay
21 for p, t, e in triggers[event]:
22 heappush(event_queue, (triggered_time, p, t, e))
23

24 while event_queue:
25 time, event_type, event_delay, event = event_queue[0]
26 if time > target_time:
27 break
28 heappop(event_queue)
29

30 event()
31

32 if event_type == Event.TRIGGER:
33 triggered_time = time + event_delay
34 for p, t, e in triggers[event]:
35 heappush(event_queue, (triggered_time, p, t, e))
36

37 top._sched.timestamp = target_time
38

39 return sim_delay
40

41 top.sim_delay = create_sim_delay(top)

Figure 2.9: Event-Driven Scheduling Implementation for Delay-Annotated GL Models – The sim_delay func-
tion is created for each elaborated top. It creates a priority queue indexed by timestamps to capture the events. For
each invocation of the sim_delay function, it first pushes all the preamble events to the event queue. It then iteratively
execute them and trigger new events until the event queue is empty.

happen after the delay. In other words, we need to push the delayed assignment to the event

queue as a triggered event. Lines 30–36 prepares the triggered subsequent update blocks.

The preamble and triggers are they data structures used by the event-driven simulation.

2. Then we create the sim_delay function which simulates the design for a certain amount

of time (and also takes the value changes of the top-level input ports into account). Lines

4–9 in Figure 2.9 shows how we use a nested function closure to capture the top in the gen-

erated sim_delay function. The sim_delay function takes an integer delay and simulates

39

Figure 2.10: GTKWave Screenshot of the D Flip-Flop Simulation – This screenshot shows an example simulation
of a changing input stimulus The two D latches show the expected behavior.

to the target time which is timestamp + delay. Similar to the existing simulation passes,

we check if the top-level ports are written in a valid way in line 14. We execute all the

pre-processed preamble blocks that read input ports to propagate the stimulus, and trigger

subsequent events in line 24. Note that we use a priority queue (heap) whose key is a times-

tamp as the event queue. Then we pop events, execute them, and trigger more events until

either the event queue is empty, or the timestamp of head of the priority queue is already

larger than the target timestamp, as shown in lines 24–37.

3. Finally we enhance the scheduling tick to add hook for dumping the value changes into a

.vcd file. This involves creating a vcd dumping hook function and invoke it near line 23 for

preambles and line 35 of Figure 2.9. We also need to add an else branch to the if statement

at line 32 and invoke the hook function, because the other type of events for delayed value

updates will change the value of the signals and should be recorded instantly. We omit the

implementation of the vcd hook function in this thesis because it is mostly details to deal

with the VCD format and file input/output.

Figure 2.10 shows the gtkwave screenshot of one simulation run of the D flip-flop model in

Figure 2.5. The stimulus is programmed to switch rapidly to exercise the latch behavior and the

setup/hold time for the output. We can see the Q output of the first D-latch holds the value correctly

when the clock is high, and changes with the top-level D input after a small delay correctly when

clock is low. The Q output of the second D-latch holds the value correctly when the clock is low,

and changes when the clock is high. Overall, the D flip-flop behavior is correctly simulated by the

event-driven scheduling function generated by the PyMTL3 pass.

40

2.5 PyMTL3 for Open-Source Hardware

PyMTL3 is an ideal framework to jump-start the open-source hardware ecosystem for three

major reasons:

• PyMTL3 is embedded in Python. Python is currently the most popular programming lan-

guage for its high productivity. Python has been evolving for nearly three decades, supported

by a large open-source community with over 100,000 third-party libraries. PyMTL3 users

can use these third-party libraries to build test benches, golden reference models, and passes.

For example, PyMTL3 analysis passes can leverage matplotlib and graphviz to visual-

ize characteristics of hardware designs. Open-source hardware built in PyMTL3 can also

directly reuse Python’s package-management system pip for distribution. For example, in-

stalling PyOCN [TOJ+19] (an open-source on-chip network generator built with PyMTL3)

involves a single command (pip install pymtl3-net), during which pymtl3 and other

dependencies are automatically installed.

• PyMTL3 emphasizes interoperability with other open-source hardware tools. A significant

amount of open-source hardware is written in Verilog or SystemVerilog. Verilator is cur-

rently the fastest and most capable open-source simulator for synthesizable Verilog and Sys-

temVerilog. Unfortunately, Verilator requires driving these simulations with low-level C++.

PyMTL3 passes can automatically use Verilator to import Verilog and SystemVerilog models

into PyMTL3 for black-box co-simulation. This enables PyMTL3 to combine the familiarity

of Verilog/SystemVerilog with the productivity of Python. PyMTL3 passes can also sup-

port black-box co-simulation with SystemC, translate RTL models to Yosys-compatible or

Verilator-compatible SystemVerilog, and generate GTKWave-compatible waveforms. We

have also implemented a FIRRTL [IKL+17] backend that generates PyMTL3 model.

• PyMTL3 promotes agile and test-driven design methodologies. PyMTL3 adopts pytest, a

mature full-featured Python testing tool to collect, manage, parametrize, and refactor tests.

PyMTL3 also includes the PyH2 framework that repurposes hypothesis, a property-based

testing (PBT) framework for Python software, to test hardware generators (PyH2G), proces-

sors (PyH2P), and hardware data structures (PyH2O). Currently, there is no standard verifi-

cation methodology for open-source hardware. Open-source simulators (e.g., Verilator and

Icarus Verilog) have limited support for industry standard verification methodologies (e.g.,

41

UVM). cocotb embeds Python in a Verilog simulator, which can limit the use of Python fea-

tures. PyMTL3 takes the opposite approach by embedding Verilog in Python using Verilator,

which unleashes the full potential of the Python runtime. Additionally, cocotb only targets

building test benches, while PyMTL3 is a full-fledged modeling framework. Combining

the familiarity of Verilog/SystemVerilog with the productivity features of Python, PyMTL3

realizes the agile hardware manifesto [LWC+16].

2.6 Conclusion

In this chapter, I proposed native in-memory intermediate representation (NIMIR), a novel

and systematic approach to build extremely flexible and extensible hardware generation and sim-

ulation frameworks. I also presented PyMTL3, the first HGSF ever built using the NIMIR ap-

proach. PyMTL3 takes advantage of the existing Python ecosystem, emphasizes interoperability

with other open-source tools, and provides strong support for agile test-driven design. Moreover,

the flexible, modular, and extensible software architecture enables the PyMTL3 framework itself

to evolve alongside the open-source hardware ecosystem. PyMTL3 has been open-sourced at

https://github.com/pymtl.

42

CHAPTER 3
UMOC: UNIFIED MODULAR ORDERING CONSTRAINTS

TO UNIFY CL AND RTL MODELING

The second key challenge in modern hardware modeling frameworks as mentioned in Sec-

tion 1.2 is the absence of a unified cycle-level and RTL modeling abstraction. This essentially

leads to fragmentation in the computer architecture community in terms of CL/RTL modeling

methodology. A unified CL/RTL modeling mechanism can potentially build a bridge between

computer architects who extensively model hardware in CL simulators and computer engineers

who extensively implement hardware in RTL.

In this chapter, I propose unified modular ordering constraints (UMOC), a novel approach

that seamlessly unifies method-based cycle-level (CL) modeling and signal-based register-transfer-

level (RTL) modeling, to address the modeling abstraction challenge. Motivated by the challenges

in state-of-the-art CL modeling methodologies and existing CL/RTL composition attempts, UMOC

successfully breaks the trade-off between model fidelity and scheduling modularity for CL model-

ing and provides seamless composition of CL and RTL models. Instead of requiring the designer

to specify the global intra-cycle ordering of hardware processes, UMOC eliminates this burden

using implicit local ordering constraints of RTL signals and explicit local ordering constraints of

CL methods. UMOC has been implemented and evaluated in PyMTL3, and has become the key

modeling mechanism of PyMTL3.

3.1 Introduction

In response to the growing register-transfer-level (RTL) design effort for modern systems-

on-chips (SoC) and the increasing heterogeneity in these SoCs, computer architects have been

leveraging domain-specific cycle-level (CL) simulators (CPU [You07,BBB+11,PACG11], memo-

ries [RCBJ11], GPU [BYF+09,SBM+19], and on-chip networks [AKPJ09,LSC+10,boo11]), and

general-purpose CL modeling frameworks [GTBS13, Pan01, LZB14], to facilitate early design-

space exploration. Even though CL models include less hardware detail and usually cannot be

converted to hardware, the faster simulation speed and easier modification/enhancement is cru-

cial to the early design-space exploration phase. The approximate timing behaviors, combined

with analytical area/energy/timing models [LAS+09], provide valuable insights to help make first-

43

order design decisions and hence drastically reduce the time spent later in the RTL development

phase. After the CL design-space exploration phase, instead of moving directly from a complete

CL model to a complete RTL implementation, the ability to seamlessly mix and match RTL models

with CL models brings significant productivity benefits. Gradually swapping CL blocks for newly

developed RTL blocks makes it easier to: (1) maintain the integration tests, end-to-end tests, and

performance regressions, and (2) steadily improve the model fidelity of the whole design. Prior

research attempts to unify the cycle-level descriptions and RTL generation for specific hardware

domains (e.g., architectural description languages for processors [HGG+99, CML08]). This work

focuses on general-purpose CL/RTL modeling and composition mechanisms.

Unlike RTL modeling’s well-established discrete-event simulation semantics, the inter-cycle

and intra-cycle semantics are different across different CL simulators. Commonly used CL inter-

cycle mechanisms include: (1) discrete-event simulation that maintains an event queue to automat-

ically advance the timestamp and trigger designer-scheduled events of hardware processes [You07,

AKPJ09, BBB+11, Pan01], and (2) cycle-by-cycle simulation which essentially assumes all hard-

ware processes are recurringly triggered at every rising clock edge [BYF+09, RCBJ11, JBM+13,

GTBS13, LZB14]. When several hardware processes are triggered at the same timestamp in both

cases, the intra-cycle mechanism has to decide the order of execution. This work focuses on intra-

cycle mechanisms. The most commonly used CL intra-cycle mechanism is designer-specified

global ordering of hardware process invocations for modeling combinational/sequential behaviors.

However, global intra-cycle ordering makes it challenging to achieve model fidelity and scheduling

modularity at the same time. State-of-the-art mechanisms for composing CL and RTL models are

ad-hoc and only enable heterogenous compositions across different models of computation, due

to the intra-cycle semantic gap between CL and RTL modeling. As elaborated in Section 3.2, we

identify two major challenges in state-of-the-art CL simulators/frameworks and attempts to com-

pose CL and RTL models: (1) the trade-off between model fidelity and scheduling modularity in

CL modeling; (2) seamless composition of CL and RTL models.

In this chapter, I introduce a novel intra-cycle modeling mechanism that unifies method-based

CL modeling and signal-based RTL modeling to solve these challenges. Unified modular ordering

constraints (UMOC) provide a unified view for general-purpose CL and RTL modeling and enable

automatically scheduling all the CL/RTL processes with designer-specified (CL) or inferred (RTL)

local constraints without manually specified global intra-cycle ordering of hardware processes.

44

Section 3.3 discusses the key idea and foundation of UMOC. UMOC can be implemented in any

unified CL/RTL modeling framework (e.g., SystemC [Pan01]). This chapter will leverage the

UMOC implementation in PyMTL3 [JPOB20] as an example implementation to explain UMOC

in Section 3.4. See Chapter 2 for background on PyMTL3. Section 3.5 includes two case studies

on how UMOC with PyMTL3 enables accurately composing CL/RTL processors and CL/RTL

checksum accelerators, and a bigger CL/RTL manycore system.

This work makes the following contributions: (1) we identify two key challenges to CL mod-

eling and CL/RTL composition; (2) we propose unified modular ordering constraints (UMOC) to

address these challenges; and (3) we showcase the implementation of UMOC in PyMTL3 from

necessary primitives to scheduling algorithms.

3.2 Related Work and Motivation

In this section, we identify two key challenges to CL modeling and CL/RTL composition, along

with the corresponding related work.

Challenge #1: Trade-off between model fidelity and scheduling modularity in cycle-level

modeling – Cycle-level simulators [You07,BBB+11,RCBJ11,BYF+09,AKPJ09] usually improve

the model fidelity against the target architecture by specifying the intra-cycle total ordering of call-

ing hardware processes to model the desired pipeline/combinational behavior. Figure 3.1(b–c)

shows an example of a C++ simulator modeling the processor and the accelerator composition in

Figure 3.1(a) using reversed invocation order for pipeline behavior. Note that invoking processor

and accelerator schedules as blackboxes at the top level as shown in Figure 3.1(d) harms the model

fidelity regardless of the invocation order of proc.tick() and accel.tick(). Essentially, sim-

ply composing two modular "pipelines" and concatenating their execution schedule gives up the

possibility to interleave hardware processes in these pipelines and can create a behavior mismatch

against the target architecture. This is a module-level cyclic inter-dependency that the modular

tick approach cannot break. Admittedly, the designer should be able to break the modularity to im-

prove performance fidelity as illustrated in Figure 3.1(e) to resolve the module-level dependency.

However, to the best of our knowledge, we have rarely seen any simulator that abandons schedul-

ing modularity, simply because it is hard to maintain a flattened top-level schedule of a complex

hardware block (see Figure 3.1(f)), especially during incremental development. gem5 [BBB+11]

45

interface

fetch decode execute memory

work

Processor

Accelerator

enq deq enq deq enq deq enq deq

enq deq enq deq enq deq (a)

void Tile::tick()
{
 // modular
 accel.tick();
 proc.tick();
} (d)

void Tile::tick()
{
 // flattened
 proc.writeback();
 accel.work();
 proc.memory();
 accel.interface();
 proc.execute();
 proc.decode();
 proc.fetch();
} (e)

void Top::flat_tick()
{
 // hundreds of lines
 mem.array.advance();
 mem.ctrl.work();
 ...
 tile[0].l2.access()
 ...
 tile[5].accel.work()
 tile[5].proc.memory()
 ...
 tile[7].proc.decode()
 ...
 tile[1].proc.fetch()
 ...
} (f)

void Accel::tick()
{
 work();
 interface();
}

(c)

write
back

void Proc::decode()
{
 auto i = FD_q.dequeue();
 ...
 if (i.is_accel_inst)
 Accel_q.enqueue(...);
 ...
 DX_q.enqueue(...);
}
void Proc::execute()
{
 auto i = DX_q.dequeue();
 switch (i.type) {
 ...
 }
 ...
 XM_q.enqueue(...);
}

(g)

(b)

void Proc::tick()
{
 writeback();
 mem();
 execute();
 decode();
 fetch();
}

Figure 3.1: Modeling a Cycle-Level Processor/Accelerator Tile – An example abstracted from real-world simulator
code: (a) the pipeline structure and composition of a five-stage processor and a two-stage tightly coupled accelerator
where the accelerator request is sent out at decode and the response is accepted at writeback; (b–c) the tick methods
of Proc class and Accel class, both of which model pipeline behavior; (d) the modular tick method of Tile that
calls the tick of Proc and Accel; (e) the flat tick method that directly calls the hardware logic inside Proc and Accel
for more accurate performance modeling; (f) the hypothetical flat tick function of a complex design that models the
performance accurately; (g) Proc::decode and Proc::execute communicate through buffer DX_q.

relies on a designer-marked single-integer priority on each hardware process and decides the global

intra-cycle ordering by sorting the events based on priority. Specifying incorrect priority will lead

to unexpected and profound performance bugs such as erroneous combinational behavior between

two decoupled modules, and it is impossible to report any mistake during scheduling under this

scheme.

We conclude that the state-of-the-art CL modeling approaches rely on designer-specified global

intra-cycle ordering of hardware processes, which makes it challenging to attain scheduling mod-

ularity and performance fidelity at the same time.

Challenge #2: Seamless composition of CL and RTL models – Several general-purpose

modeling frameworks have provided first-class support for composing cycle-level models and

RTL models. Cascade [GTBS13] is a CL modeling framework which provides RTL-like reg-

ister elements and combinational updates as modeling primitives. Cascade supports composing

46

cycle-level models written in C++ with Verilog by exporting the CL model as a standalone C mod-

ule and importing it inside a Verilog module using Verilog Procedural Interface (VPI). However,

the top-level simulation driver is the Verilog simulator. SystemC [Pan01] provides a unified en-

vironment in C++ for CL and RTL modeling. However, SystemC primitives for transaction-level

modeling are often used for functional verification rather than detailed performance modeling.

The “transactors” [KTMH07] between TLM and RTL have to contain sequential elements which

makes fine-grained intra-cycle CL/RTL composition difficult. In other words, it is impossible to

model intra-cycle behavior going through RTL–CL–RTL if TLM channels are used as interfaces.

PyMTL [LZB14] also unifies CL/RTL modeling in Python by instantiating port-based RTL in-

terfaces inside CL models and wrapping RTL interfaces with CL buffers with enqueue/dequeue

methods for CL processes to call. PyMTL supports event-driven semantics for RTL models, but

the designer has to manually call the CL processes in a total order like Figure 3.1(b-f). Hence,

PyMTL fails to close the CL/RTL semantic gap.

There are also ad-hoc attempts to compose established CL/RTL simulators. PAAS [LFSZ17]

supports coarse-grained composition of Verilog RTL accelerators with gem5 CPU and memory

models using linux /dev/shm shared memory to exchange data between gem5 and a Verilator-

compiled [ver21] C++ simulator. Another attempt [GALP18] composes gem5’s system simulation

with the C++ library compiled from Chisel-generated Verilog code also using Verilator. Mosaic-

Sim [MMG+20] deploys an interleaver at the top level for scheduling events from CL and RTL

tiles, but the RTL tile model only provides performance estimates instead of simulating real RTL

code.

We conclude that previous attempts to compose CL and RTL models are ad-hoc and design-

specific at a coarse granularity. As far as we are aware, no prior work has provided a seamless

composition of CL and RTL models using a unified model of computation.

3.3 Unified Modular Ordering Constraints

In this section, I describe unified modular ordering constraints (UMOC), a novel intra-cycle

scheduling mechanism to unify CL/RTL modeling which tackles the two challenges in Section 3.2.

UMOC is an intra-cycle scheduling mechanism. and could be combined with either discrete-event

simulation or cycle-by-cycle simulation. In state-of-the-art RTL simulators, the RTL processes

47

are automatically collected and scheduled according to event-driven execution semantics, which

means that the designer is unaware of the actual scheduling process. However, state-of-the-art

CL simulators usually requires the designer to manually schedule CL processes for desired timing

behavior. Inspired by this difference, UMOC introduces explicit local ordering constraints between

CL methods to let the underlying scheduler automatically schedule the CL processes. A unified

directed graph is built from all CL/RTL processes and implicit/explicit ordering constraints to

enable seamless intra-cycle composition of CL and RTL models. I also discuss how to handle

cycles in the unified directed graph and how to schedule intra-cycle simulation.

3.3.1 RTL Scheduling with Implicit Constraints

If behavioral RTL process A writes signal x and B reads x, traditional HDL simulators will

infer this sensitivity and dynamically schedule B to execute whenever A modifies x. Inspired by

previous work on statically scheduling RTL processes [PMT04, GTBS13, JIB18], I propose to use

the notion of ordering constraints to implicitly deduce the relationship between block A and B as

follows.

x is a combinational wire

A writes signal x

B reads signal x

9
>>>=

>>>;
=)

A precedes B

(A < B)

The key observation here is that even though x is merely a local variable w.r.t. A and B, the

ordering between A and B is later used by the scheduler globally to determine the final execution

order of all RTL processes in the design. This is because in a hierarchical RTL model, an RTL

module exposes ports to the parent module which are connected to signals in other modules. All

the connected signals are essentially the same signal, and hence the preceding relationship of any

two faraway combinational RTL processes can be established without exposing any details inside

the module, which preserves the modularity.

3.3.2 CL Scheduling with Explicit Constraints

For CL modeling, we also want to reduce the burden on designers by propagating local ordering

constraints. However, there is no signal in CL models, as CL models manipulate high-level data

48

structures. We observe that CL processes still need to communicate via buffers that expose methods

for CL processes to call (similar to SystemC sc_fifo). For example, Figure 3.1(g) shows that

decode enqueues a message to DX_q and execute dequeues the message (using a queue handles

the back pressure from a later pipeline stage). The reversed order in Figure 3.1(b) guarantees

that execute is called before decode in every clock cycle, which means dequeue of the buffer

is always called before enqueue. Thus, whatever decode enqueues to the buffer will only be

dequeued by execute in the next cycle to model pipeline behavior. Conversely, calling decode

before execute results in combinational bypass behavior.

From the above observation, we further discover that specifying the global ordering (Fig-

ure 3.1(b)) essentially controls the order of calling enqueue and dequeue of the buffers in a cycle.

Can we specify the ordering inside the buffer directly so that the order between the functions

that call enqueue and dequeue can then be inferred globally? The answer is positive, and the

deductive process with explictly specified local constraints between enqueue and dequeue meth-

ods is shown below. Simply flipping the local ordering constraints allows the designer to model

combinational behavior with the same set of methods without any other modifications.

q.dequeue precedes q.enqueue

A calls q.dequeue

B calls q.enqueue

9
>>>=

>>>;
=)

A precedes B

(A < B)

3.3.3 Achieving Both Fidelity and Modularity

We use the processor/accelerator example in Figure 3.1 to explain how Challenge #1 in Sec-

tion 3.2 can be fully addressed by explicit ordering constraints. We first create a pipeline queue

which specifies { dequeue < enqueue }. Then we instantiate it between the stages in Proc and

Accel. The global scheduler can automatically deduce the reversed invocation order of Fig-

ure 3.1(b–c) without the designer-written tick methods. To accurately model the communica-

tion between the processor and the accelerator in Figure 3.1(a), we also need to put two queues

inside Accel as the communicating buffer for Accel::work and Proc::writeback, and for

Proc::decode and Accel::interface. For the former pair, since Accel::work and Proc::writeback

are not in the same module, we need to expose the "pointer" of the dequeue method from Accel to

the parent module Tile (similar to SystemC sc_export) and pass it into Proc so that Proc::writeback

49

: explicit constraint : implicit constraint

A: x = y + 1

x is signal
q.dequeue < q.enqueue

B: q.enqueue(x * 2)

C: z = q.dequeue()

A: x = a + 1
 z = y + 1

B: y = x + 1

C: b = y * 2

a,b,x,y,z are signals

A: y = a + 1
 q1.enqueue(a)

B: x = q1.dequeue()
 b = y + x

C: z = y * 2

a,b,x,y,z are signals
q1.dequeue < q1.enqueue

A
B

C

x
q A B C

x

y
y B A C

yq1

y

(a) (b) (c)

Figure 3.2: CL and RTL Process Examples using UMOC – Code of CL/RTL processes and corresponding unified
directed graphs: (a) CL/RTL constraints can co-exist; (b) cycle of RTL processes; (c) cycle of CL processes.

actually calls the dequeue method of the queue in Accel. The latter pair can be handled similarly

by exposing the enqueue method from Accel.

The global scheduler then automatically deduces { Proc::writeback < Accel::work,

Accel::interface < Proc::decode }. The designer does not need to write Tile::tick and

Top::tick like Figure 3.1(d–f) at all. A feasible global schedule is able to achieve the same model

fidelity as flattened tick functions like Figure 3.1(e–f). Moreover, the modularity is preserved at the

same time. Accel module now exposes a dequeue method and an enqueue method to the outside

world, which means we can use the accelerator as a standalone module to build other systems

without knowing any detail inside Accel. Any CL process P that calls the exposed dequeue

automatically results in an ordering constraint {P < Accel::work}.

3.3.4 Unified Directed Graph (UDG)

The key to solve Challenge #2 in Section 3.2 is to create a unified directed graph (UDG) G =

(V,E) where V includes all the hardware processes and E includes all the implicit/explicit ordering

constraints between them.

Creating the Unified Directed Graph – For any mixed CL/RTL design, applying the deduc-

tive process in Section 3.3.1 and 3.3.2 establishes the preceding relationships not only between all

pairs of RTL processes and all pairs of CL processes, but also CL and RTL processes. Figure 3.2(a)

shows three hardware processes A, B and C, and the corresponding graph. A writes signal x. B

50

reads signal x and enqueues a message to the buffer q with pipeline behavior. C dequeues a mes-

sage from q. We can deduce two ordering constraints in Figure 3.2(a): {A < B} from signal x and

{C < B} from { q.enqueue < q.dequeue }. Here, B serves as the "glue" between the CL and RTL

portions of the design by accessing signals and calling methods at the same time. Note that G may

contain cycles. UMOC allows the UDG to have cycles among only combinational RTL processes

and defers the combinational loop detection to the real simulation if the signal values fail to stabi-

lize. However, UMOC does not allow cycles that include any CL process, because CL processes

are usually modeled to execute once per clock cycle due to the side effects on high-level data struc-

tures. For example, executing process A of Figure 3.2(c) multiple times may unexpectedly enqueue

many elements into q1.

Scheduling the Unified Directed Graph for Simulation – The UMOC scheduler schedules

the execution of the unified directed graph in each clock cycle. We cannot directly reuse canonical

event-driven RTL scheduling algorithms for unified CL/RTL scheduling. This is again because CL

processes usually use high-level data structures instead of signal/ports which makes the scheduler

hard to trigger subsequent CL/RTL processes, and CL processes are usually modeled to execute

exactly once per cycle (see Figure 3.1(g)). Essentially, a correct execution of G must guarantee

that before executing any CL process, all preceding processes should have been executed, and the

cycles of preceding RTL processes have stabilized.

If G contains no cycle, i.e., G is a directed acyclic graph (DAG), a topological sort on G will

yield a valid serial schedule. In each clock cycle, we can simply enumerate the serial schedule to

execute each hardware process exactly once, satisfying the guarantee for CL processes. Note that

there can be multiple possible schedules generated by a topological sort that all result in correct

execution [JIB18]. If G contains cycles, according to classic graph theory, a “cycle” in a directed

graph is defined as a strongly connected component (SCC) in which every vertex is reachable from

every other vertex [Sha81,Tar71]. The scheduler can apply classic SCC algorithms to transform G

into a DAG G0 of SCCs. Each SCC represents a single vertex in G0 or a “cycle” in G. Applying

a topological sort on G0 yields a serial schedule of all the SCCs. During simulation, we execute

all the SCCs in the schedule in each clock cycle. For single-node SCCs, we execute the only

hardware process. For multi-node SCCs, we need to iteratively execute all the RTL processes until

the signals stabilize and report a combinational loop when it fails to converge.

51

3.4 UMOC Implementation in PyMTL3

In this section, I present the UMOC implementation in PyMTL3 [JPOB20]. and then discuss

how a PyMTL3 hardware description with these primitives can be elaborated to form a unified di-

rected graph and schedule for simulation. Note that the proposed UMOC approach is generic and

can be either implemented in any language as a new unified CL/RTL modeling framework, or in-

tegrated into existing frameworks to provide the unified CL/RTL modeling capability. Leveraging

Python’s productive language features, I implement a set of modeling primitives for the designer

to construct CL/RTL models, and to capture the signal-based implicit ordering constraints in Sec-

tion 3.3.1 and method-based explicit ordering constraints in Section 3.3.2 in a modular way. I

implement UMOC as the intra-cycle mechanism and cycle-by-cycle simulation as the inter-cycle

mechanism. Then I implement PyMTL3 passes to build and schedule the unified directed graph

for simulation. I first introduce the proposed primitives to capture RTL and CL constructs, and

then discuss the scheduling for the unified directed graph for meaningful simulation. Figure 3.3

shows six code examples.

3.4.1 Modeling Primitives

Here I explain a minimum set of necessary UMOC primitives to simplify the context. Note that

the code snippets are showing the PyMTL3 design code that uses these primitives, instead of the

framework implementation of these primitives. The framework can also include syntactic sugar on

top of these primitives to further improve the productivity of designers.

Components – A PyMTL3 component is a hardware module that includes RTL processes

and/or CL processes (Figure 3.3(a–d)). It can also instantiate child components to create a hierar-

chical hardware model (line 6–7 in Figure 3.3(e)).

Signals and Value Ports – Signals and value ports are instantiated as fields of a component

(line 3–4, 6, of Figure 3.3(a–b)). PyMTL3 relies on them to infer implicit ordering constraints.

Implicit ordering constraints are inferred from accesses to signals and value (input/output) ports.

Value ports are exposed to the parent component. Normal signals are internal. Connecting signals

and value ports associates all connected signals/ports with the same value and hence propagates

the implicit constraint outside the component, which is the key to modularity.

52

1 class RegIncrRTL(Component):
2 def construct(s):
3 s.in_ = InPort (32)
4 s.out = OutPort(32)
5

6 s.reg = Wire(32)
7

8 @update_ff
9 def seq_reg():

10 s.reg <<= s.in_
11

12 @update
13 def comb_out():
14 s.out @= s.reg + 1

1 class WireIncrRTL(Component):
2 def construct(s):
3 s.in_ = InPort (32)
4 s.out = OutPort(32)
5

6 s.wire = Wire(32)
7

8 @update
9 def comb_wire():

10 s.wire @= s.in_
11

12 @update
13 def comb_out():
14 s.out @= s.wire + 1

(a) RTL RegIncr Unit (b) RTL WireIncr Unit

1 class RegIncrCL(Component):
2 def construct(s):
3 # Model sequential behavior!
4 s.add_constraints(
5 M(s.read) < M(s.write),
6)
7

8 @method_port
9 def read(s):

10 return s.v + 1
11

12 @method_port
13 def write(s, v):
14 s.v = v

1 class WireIncrCL(Component):
2 def construct(s):
3 # Model combinational behavior!
4 s.add_constraints(
5 M(s.write) < M(s.read),
6)
7

8 @method_port
9 def read(s):

10 return s.v + 1
11

12 @method_port
13 def write(s, v):
14 s.v = v

(c) CL RegIncr Unit (d) CL WireIncr Unit

1 class RegIncrCLRTL(Component):
2 def construct(s):
3 s.write = CalleePort()
4 s.out = OutPort(32)
5

6 s.r1 = RegIncrCL()
7 s.r2 = RegIncrRTL()
8

9 connect(s.write, s.r1.write)
10 connect(s.out, s.r2.out)
11

12 @update_once
13 def send_to_r2():
14 s.r2.in_ @= s.r1.read()

1 class RegIncrRTLCL(Component):
2 def construct(s):
3 s.in_ = InPort(32)
4 s.read = CalleePort()
5

6 s.r1 = RegIncrRTL()
7 s.r2 = RegIncrCL()
8

9 connect(s.in_, s.r1.in_)
10 connect(s.read, s.r2.read)
11

12 @update_once
13 def send_to_r2():
14 s.r2.write(s.r1.out)

(e) CL+RTL Two-Stage RegIncr (f) RTL+CL Two-Stage RegIncr

Figure 3.3: PyMTL3 Buffered Incrementer Units Using UMOC Primitives – (a–b) shows the RTL implemen-
tations of a registered incrementer and a wire incrementer using in/out value ports and update/update_ff blocks.
(c–d) shows the CL implementations of a registered incrementer and a wire incrementer using methods and method
ports with explicit ordering constraints to specify conbinational/sequential behavior; (e–f) shows the two possible RTL
and CL compositions with update_once blocks that call method and read/write signals.

53

Methods and Method Ports – Methods are member functions of a component (line 9–10, 13–

14 of Figure 3.3(c–d)). Method ports (including caller and callee ports) are exposed to the parent

component. The designer explicitly specifies the ordering constraints that involves methods, which

will be collected by PyMTL3 during elaboration. Connecting methods and method ports make all

connected method/method ports point to the same method (line 9 of Figure 3.3(e)), allowing the

specified constraints to be automatically propagated outside the module.

Update Blocks: update, update_ff, update_once – PyMTL3 models hardware processes

using three types of blocks: update for combinational RTL logic (similar to SystemVerilog always_comb,

update_ff for sequential RTL logic (similar to SystemVerilog always_ff), and update_once for

CL modeling. All update blocks can read/write signals and ports, from which the implicit order-

ing constraints are inferred by PyMTL3. Any signal/port written by a non-blocking assignment

in an update_ff block is inferred as a sequential element and not counted in ordering constraint

deduction. Hence update_ff blocks will not precede any other block. In addition to update

blocks’ functionality, update_once blocks can also call methods and method ports, and hence are

restricted to be executed exactly once in each cycle to avoid unwanted duplicate side effects.

Setting Ordering Constraints – Implicit ordering constraints are automatically inferred by

PyMTL3. Thus, we do not need to implement any API for setting implicit ordering constraints.

I add an API to PyMTL3 for the designer to specify two types of explicit ordering constraints

between (1) methods and (2) methods and update blocks. For example, Figure 3.3(c–d) shows the

constraints set between two methods: read < write for sequential behavior, and write < read

for combinational behavior.

3.4.2 Building the Unified Directed Graph

I implement a PyMTL3 UDG generation pass that takes an elaborated PyMTL3 model and gen-

erates the corresponding UDG G=(V,E). V includes all the update, update_ff and update_once

blocks, and E includes all the implicit and explicit ordering constraints between those blocks. Fig-

ure 3.4(a) shows an 11-node UDG example.

Implicit Ordering Constraints – I implement a two-step algorithm to infer implicit ordering

constraints. First, I leverage Python’s introspection features to obtain the abstract syntax tree of

each update block, look for read/write variables, and turn each variable name into an actual object

54

update

update_once

update

update
update_ff

update

update_once update_ffstrongly connected component

A B

C

D

E

F

G

H

K

J

update

update

update_once J

L

flip_registers()
while not stable:
 A()
 C()
 D()
 B()
 check_threshold()
E() # After SCC
F() # After SCC
G() # After E,F
H() # After E,G
J() # After G
L() # After H
K() # After J

(a) A unified directed graph example (c) 1-cycle execution

1: procedure TICK (top)
2: flip_registers(top)
3: for each SCC c in top.schedule do
4: if size(c) == 1 then
5: Execute the only block b in c
6: else
7: count = 0
8: while outputs from c does not stabilize do
9: for each block b in c do

10: Execute b
11: count = count +1
12: if count > threshold then
13: error("Found combinational loop!")

(b) Generated tick function

Figure 3.4: Example of UMOC’s Scheduling and Simulation Scheme – (a) the corresponding graph of a design
with 11 update blocks, four of which form a strongly connected component; (b) one-cycle execution trace of the tick
function; (c) the generated tick function.

using Python’s reflection features. If an object is of signal/port type, we associate the object with

the update block. The second step enumerates all the signals collected throughout the hierarchy

to perform the deductive process in Section 3.3.1. For each signal x, we add a unidirectional edge

A ! B to the edge set E if block A writes x and block B reads x and A is not an update_ff block.

Explicit Ordering Constraints – As Python methods are objects, I apply the same AST-based

approach to obtain what methods each update_once block invokes. Then, we assemble the invo-

cations with the explicit ordering constraints specified by the designer and perform the deductive

process in Section 3.3.2. Specifically, if block A calls method P and block B calls method Q, and

the explicit method/method constraint P < Q exists, we add a unidirectional edge A ! B to the

55

edge set. Likewise, if block A calls method P and there is an explicit method/update constraint

P < B between method P and block B, we add A ! B to the edge set.

3.4.3 Scheduling the UDG for Simulation

According to Section 3.3.4, update blocks may be executed multiple times in a clock cycle

until the signals stabilize, as long as no real combinational loop is detected. If an update_once

block appears in a loop, part of the design is invalid and the interdependency must be removed by

the designer. update_ff blocks will only be executed exactly once at the end of each clock cycle.

I implement the strongly connected component (SCC) scheduing algorithm in Section 3.3.4 as

a PyMTL3 scheduling pass to condense G into a DAG G0 of SCCs (e.g., the “cycle” in Figure 3.4(a)

will become a single vertex in G0), followed by a topological sort on G0 to produce a linear schedule.

The pass also checks that any non-trivial SCC doesn’t contain update_once blocks. Otherwise,

the designer must remove the interdependencies.

Then, the tick generation pass takes the schedule and creates a tick function that simulates for

one clock cycle as shown in Figure 3.4(b). The pass creates a function f lip_registers for tick to

call at the rising clock edge to double-buffer all sequential elements that appear in the non-blocking

assignments of update_ff blocks. All the SCCs in the schedule are then executed. The execution

of each SCC is either executing one block or repeatedly executing the update blocks until the

signals stabilize. If the execution does not converge until it reaches the threshold, a combinational

loop is detected. Figure 3.4(c) shows tick’s execution for one clock cycle.

Note that this scheduling algorithm is compatible with the simulation techniques proposed in

the previous work [JIB18] to achieve high simulation performance in pure Python.

3.5 Case Studies

We present two realistic case studies to showcase the effectiveness of UMOC. The designs used

are all implemented in PyMTL3. The first case study includes a processor/accelerator composi-

tion similar to the motivating example in Figure 3.1, which demonstrates that UMOC can solve

the two challenges in Section 3.2. The second case study includes a larger many-core design as

56

Mechanism Composition #Cycles Deviation Remarks

Event-driven RTL Proc + RTL Accel 565 - baseline

UMOC RTL Proc + RTL Accel 565 0% same as baseline
UMOC CL Proc + CL Accel 541 4% due to 3-stage

Manual Proc<Accel CL Proc + CL Accel 416 26% modular sub-tick
Manual Accel<Proc CL Proc + CL Accel 416 26% modular sub-tick

UMOC CL Proc + RTL Accel 541 4% same as CL+CL
UMOC RTL Proc + CL Accel 565 0% same as RTL+RTL

Table 3.1: Simulation Cycle Count Results Under Different Scheduling Schemes for CL/RTL Proc/Accel Case Study

evidence for UMOC’s ability to handle larger designs with fine-grained CL/RTL compositions for

fast design-space exploration during the iterative development process.

3.5.1 Processor/Accelerator Composition

We implement a classic 5-stage pipelined RTL RISC-V processor, and a 3-stage pipelined

cycle-level RISC-V processor which contains only three update_once blocks to approximately

model the RTL processor (fetch, decode+execute+memory, and writeback). We expect a lit-

tle timing difference across CL and RTL processors, as different number of stages lead to dif-

ferent stalling behaviors due to read-after-write (RAW) hazards. We also implement RTL and

CL Fletcher’s algorithm checksum accelerators in PyMTL3. The CL accelerator contains two

update_once blocks to model the request handling and the actual computation using normal

Python functions, where the RTL accelerator implements a fairly complex hierarchical design

with eight StepUnit instances and a finite state machine. For pure-CL composition, we in-

stantiate cycle-level pipeline queues which already include explicit ordering constraints for the

update_once blocks in the CL processor and CL accelerator to communicate. Thus we do not

need to set any constraints in the processor and the accelerator. We are also able to expose and

connect the queue methods at the top-level.

Table 3.1 shows the simulated cycle count of various compositions running the same mi-

crobenchmark. The rolling checksum microbenchmark contains a 25-iteration loop, with each

iteration sending 3 loads to memory and 6 requests to the accelerator, resulting in a total of 314

dynamic instructions. For the pure RTL composition, event-driven simulation finishes in 565 cy-

cles, and UMOC has exactly the same simulated cycle count. For the pure CL composition, the

global schedule automatically generated by UMOC is able to achieve 4% cycle count difference,

57

which is expected due to the simplified 3-stage processor pipeline. To model the "manual modular

sub-tick" in Figure 3.1(b–d), we manually create two tick functions for CL processes inside the

processor and accelerator. For P<A, we invoke processor’s tick before accelerators’s tick, and A<P

does the opposite. We verify that the tracing output shows unexpected combinational behavior in

both cases in contrast to UMOC. As a result, the simulated cycle count has 26% deviation from

the pure RTL composition.

For mixed CL/RTL cases, we insert adapters of "glue" blocks at the CL/RTL boundary. PyMTL3

allows us to create adapters for automatically connecting CL/RTL interfaces, which makes the

CL/RTL integration effortless. Simulation results show that the CL processor with RTL accelera-

tor has the same cycle count as CL processor with CL accelerator. Also, the RTL processor with

CL accelerator has the same cycle count as the pure RTL composition. This confirms that UMOC

can provide seamless CL/RTL composition under the same abstraction without losing any model

fidelity.

3.5.2 Many-Core/Cache/Network Composition

We implement a many-core system that consists of a parametrizable number of tiles. Each tile

contains a parametrizable number of RV32IMAF cores and data caches, sharing one instruction

cache, one integer multiply/divide unit (MDU), and one floating point unit (FPU) via on-chip inter-

connect networks. Throughout the development process, we extensively use fine-grained CL/RTL

mixed compositions enabled by UMOC to facilitate design-space exploration, performance eval-

uation, and the decision on RTL implementation. The CL models are able to capture the desired

cycle-level behavior using UMOC explicit constraints and the scheduling pass. UMOC also en-

ables us to seamlessly integrate existing RTL IP blocks that have been fully tested and prototyped

in the past, instead of developing additional CL models. Figure 3.5 shows the many-core system

with a CL magic memory. Each block is annotated with the availability of CL, RTL, or both CL

and RTL models. We use an elf file loader written in Python as part of the test harness to load var-

ious RISC-V binaries for parallel programs with a work-stealing runtime to run on the many-core

system.

The purpose of implementing the CL multiplier/divider is for quickly studying the performance

to decide the type of RTL unit (pipelined or iterative) and the latency/throughput (number of

pipeline stages or processed bits per cycle) needed, when shared by multiple processors. After

58

RTL

L1 Data $ L1 Data $L1 Inst $

Modular
Late-Commit
RV32IMAF

Core
... ...

Interconnect

Interconnect

CL RTL & CL

Multiported Main Memory
...

Manycore Tile Manycore

Modular
Late-Commit
RV32IMAF

Core

Interconnect Interconnect

Multiply
Divide Unit

Floating
Point Unit

L1 Data $ L1 Data $L1 Inst $

Modular
Late-Commit
RV32IMAF

Core
...

Interconnect

Modular
Late-Commit
RV32IMAF

Core

Interconnect Interconnect

Multiply
Divide Unit

Floating
Point Unit

Figure 3.5: Tiled many-core with mixed CL/RTL components – Different colors/patterns show the CL/RTL com-
ponent availability during the development process. We directly reused the RTL processor, because it was already
available prior to the many-core project. We only developed CL model for the main memory, because the main
memory is only for testing and verification.

simulating multiple workloads, we decided to implement the iterative divider in RTL because the

ratio of div/mod instructions is low. However, we decided to implement a radix-four iterative

divider so that each div/mod operation takes 16 instead of 32 cycles, since most division opera-

tions are found to stall many subsequent instructions. For the multiplier, we decided to implement

a four-stage pipelined multiplier for higher throughput, as some benchmarks contain streams of

multiply instructions. The CL models only contain one update_once block which processes the

request, does the computation, and sends the response to delayed buffers. The user does not need

to set any explicit ordering constraints in the multiplier/divider, as appropriate explicit ordering

constraints are automatically set when the delay buffers are instantiated with different delays.

As we already developed the RTL processor, developing a CL cache enables quickly exploring

the system-level impact of a one-cycle vs. two-cycle hit-latency under different cache sizes and

associativities. This influences the parameter selection of different data structures inside the pro-

59

cessor. The CL cache model only contains several update_once blocks which are responsible for

composing requests and responses, which is much simplier than the final RTL cache that consists

of tens of different components. As Figure 3.5 shows, we have a few different on-chip intercon-

nects in this many-core composition. We are able to develop a single CL network with less than

two hundred lines of code to guide the decision of each RTL network implementation. The CL

model is essentially a crossbar network, but provides the ability to configure the latency between

each pair of input/output terminals, and the size of each terminal buffers, which allows CL model

to capture the behavior of more complex network topologies.

3.6 Conclusion

In this chapter, I proposed a novel approach, unified modular ordering constraints (UMOC),

to unify cycle-level and register-transfer-level modeling. UMOC addresses the challenges in the

state-of-the-art CL modeling approaches and CL/RTL composition approaches. UMOC has been

implemented in PyMTL3 as the default modeling mechanism and one of the key features. There

have been various hardware IPs and tutorials built using UMOC.

60

CHAPTER 4
MAMBA++: FRAMEWORK/JIT CO-OPTIMIZATION FOR

FAST HARDWARE SIMULATION

The third key challenge in modern hardware modeling frameworks as mentioned in Section 1.2

is the simulation performance gap in hardware generation and simulation frameworks (HGSF).

The slow simulation performance in HGSFs’ host language undermines the potential benefits of

using a productive language for its shorter iterative development cycle in the first place, which

makes designers hesitate to adopt these HGSFs and still use HGFs with low-level HDL simulators.

In this chapter, I propose Mamba++, a set of techniques to close the simulation performance

gap in Python-based HGSFs. Mamba++ includes JIT-aware HGSF design techniques and HGSF-

aware JIT optimization techniques. Using the framework/JIT co-optimization approach, we are

able to significantly improve the simulation performance in pure Python and mitigate the Python

side of the bottleneck in Python-HDL co-simulation.

4.1 Introduction

The increasing complexity of modern hardware has motivated design teams to augment or

even replace traditional domain-specific hardware description languages (HDLs) with high-level

general-purpose programming languages. The hope is that high-level languages can reduce time-

to-solution by improving the productivity of design and verification. These approaches include:

high-level synthesis (HLS), where a software-oriented program written in a high-level language

is automatically synthesized into a low-level HDL implementation [CLN+11, CCA+11, CM08];

and hardware generation, where a hardware-oriented declarative or procedural description writ-

ten in a high-level language is used to explicitly generate a low-level HDL implementation. Both

approaches use powerful general-purpose language features to improve productivity including:

strong static type systems and/or flexible dynamic type systems; object-oriented, generic, and func-

tional programming paradigms; reflection and introspection; lightweight syntax; and rich standard

libraries. While both approaches show promise, the focus of Mamba++ is on improving method-

ologies for highly productive hardware generators. Specifically, Mamba++ improves the simula-

tion performance of hardware models with hardware-based timing semantics.

61

Early work in hardware generation focused on developing hardware preprocessing frame-

works (HPFs) which use an ad-hoc intermingling of a high-level language and a low-level HDL

(e.g., Scheme mixed with Verilog in Verischemelog [JB99], Perl mixed with Verilog in Gene-

sis2 [SAW+10]). Unfortunately, mixed-language HPFs create a semantic gap, since they require

simultaneously designing, verifying, and analyzing designs written in a high-level language (for

parameterization, static elaboration, test bench generation) and a low-level HDL (for behavioral

modeling). In an HPF, the high-level language usually uses basic string processing and is unaware

of hardware semantics. True hardware generation frameworks (HGFs) address this semantic gap

by completely embedding parameterization, static elaboration, test bench generation, and behav-

ioral modeling in a unified high-level “host” language (e.g., Haskell in Lava [BCSS98], standard

ML in HML [LL00], Scala in Chisel [BVR+12], Python in Stratus [BDM+07], PHDL [Mas07]).

However, HGFs must still generate a low-level HDL implementation for simulation, which pro-

longs the development cycle and creates a new kind of semantic gap between the high-level

host language and the low-level HDL simulation. HDL simulation means designers are lim-

ited in the host-language features they can use for online debugging, instrumentation, and pro-

filing. Designers must either manually write test benches in the low-level HDL or use a limited

“generator-friendly” subset of the host language to implement test benches. These challenges have

inspired completely unified hardware generation and simulation frameworks (HGSFs) where pa-

rameterization, static elaboration, test bench generation, behavioral modeling, and a simulation

engine are all embedded in a general-purpose high-level language (e.g., Java in JHDL [BH98],

Haskell in ClaSH [BKK+10], Python in MyHDL [Dec04], PyRTL [CTD+17], Migen [mig], Py-

HDL [HMLT03]). Our previous work on PyMTL demonstrated the potential for a Python-based

HGSF to improve the productivity of hardware design and verification [LZB14].

However, while HGSFs can close the semantic gap present in other approaches, HGSFs also

suffer from significantly slower simulation performance. Section 4.2 compares the simulation per-

formance of traditional HDLs, state-of-the-art HGFs, and emerging HGSFs. Our results suggest

that for both small and large designs, highly optimized HGSFs are still typically 10⇥ slower than

HDL simulation. The highest performing HGSFs use: (1) general-purpose just-in-time (JIT) com-

pilers that are not optimized for HGSFs [BCFR09]; or (2) highly specialized JIT-compiled simu-

lators driven from the host language [LZB14, CTD+17]. Unfortunately, these techniques cannot

completely close the performance gap, and/or they reintroduce the semantic gap at an early stage

62

of the iterative development process (i.e., having the host language for design and another high-

level language like C/C++ as the target language for JIT-compilation). This in turn undermines the

productivity benefits of using an HGSF.

In this chapter, I propose Mamba++, a set of techniques to close the performance gap in hard-

ware generation and simulation frameworks. The key insight is the need to deeply co-optimize

the HGSF and the underlying general-purpose JIT compiler. Section 4.3 provides background on

tracing just-in-time compilation and state-of-the-art meta-tracing JIT compilers. Then I discuss the

Mamba++ techniques in two phases:

1. Mamba Techniques – I present several JIT-aware static scheduling and HGSF-aware JIT

optimization techniques as the foundation for this work. Section 4.4 describes JIT-aware

static scheduling techniques. Section 4.5 describes HGSF-aware JIT optimization tech-

niques. These two sections also quantitatively compares their impact on multiple designs.

Section 4.6 compares RISC-V single- and multi-core designs implemented using Verilog,

PyMTL [LZB14], and Mamba. Our results suggest static scheduling is able to match the per-

formance of commercial HDL simulators and is 10⇥ faster than existing HGSFs even when

simulating more complex designs.

2. Mamba++ Techniques – I present the improved Mamba++ JIT-aware scheduling techniques.

Mamba++ techniques make the solution to the research question complete and realistic.

Section 4.7 reveals the pitfalls of the previous static scheduling techniques in real-world

deployment scenarios. Section 4.8 proposes hierarchical static scheduling (HSS). HSS di-

rectly reuses the insights from Mamba techniques, and evolves it to address the pitfalls of

static scheduling. Section 4.9 evaluates pure PyMTL3 simulation and PyMTL3-Verilator

co-simulation using HSS, which demonstrates the practicality of Mamba++ techniques.

Note that the final Mamba++ scheduling algorithm based on strongly connected components [Sha81,

Tar71] is actually identical to the UMOC scheduling algorithms. This means Mamba++ scheduling

techniques can be directly used on HGSFs that implements UMOC to accelerate mixed CL/RTL

simulation. While this work explores these techniques in the context of PyMTL3, our work also

sheds light on performance optimization opportunities in other HGSFs.

63

4.2 Motivation: Simulation Performance Comparison

In this section, I quantitatively evaluate the RTL simulation performance of the four different

kinds of hardware development workflows discussed in Section 1.1. The design used in this quanti-

tative evaluation is a 64-bit radix-4 iterative divider implemented at the register-transfer level (RTL)

in six different hardware development frameworks (Verilog, Chisel [BVR+12], MyHDL [Dec04],

PyMTL [LZB14], PyRTL [CTD+17], Migen [mig]) with different kinds of available simulators

(e.g., ahead-of-time compiled, interpreted, JIT compiled). To ensure an apples-to-apples compari-

son, I implemented the iterative divider in each framework in a very similar way using a structural

datapath and finite-state-machine control unit. Figure 4.1 shows the performance of simulating

the divider using identical random inputs for 1,000,000,000 cycles assuming the divider is busy:

(1) 100% of the time; and (2) only 10% of the time. Source code and evaluation scripts for all

designs have been open-sourced at https://github.com/cornell-brg/mamba-dac2018/.

Hardware Description Languages – Figure 4.1(a) shows the simulator performance of the

hand-written Verilog for the iterative divider. CVS1, one of the fastest commercial Verilog simu-

lators, achieves 1.2–2.9M simulated cycles/second (CPS). Although CVS does not disclose their

internal simulator implementation details, the high raw performance and the big difference between

low load and high load implies that CVS uses a highly optimized event-driven simulator. Icarus is

an open-source Verilog simulator [ica]. Icarus is well-known to be relatively slow because it first

translates Verilog to its internal intermediate language VVP, and then uses an interpreter to simu-

late the design using an event-driven scheme. The resulting CPS is 61K–226K. Note that Icarus

is 4⇥ faster under low load than high load, which is also because the interpretation-based scheme

is naturally slower than compilation-based scheme. This indirectly confirms that CVS has more

optimizations or even a hybrid scheduling scheme for the high-load case. Verilator is an open-

source tool for translating synthesizable Verilog into a compiled C++ simulator [ver21]. achieves

an impressive 15–18M CPS. This is because Verilator deploys a cycle-based scheduling algorithm

which statically schedules all the logic into a single gigantic function and deeply optimize the

logic computation within the cycle. Not surprisingly, Verilator does not support simulating designs

that leverage pound-delay semantics. Verilator requires C++ testbenches and significantly longer
1Tool vendor anonymized due to license agreement.

64

compile times on larger designs (e.g., several minutes), and hence is more often used for virtual

prototyping as opposed to iterative development.

Hardware Preprocessing Frameworks – HPF workflows have similar simulator performance

to HDL workflows since they use the exact same HDL simulators. Also note that the HPFs are

only responsible for adding parametrization power, and hence the HDL coding style is very similar

to the original HDL coding style.

Hardware Generation Frameworks – Figure 4.1(b) shows the simulator performance of the

Chisel-generated Verilog for the iterative divider. We can see from the results that HGF-generated

Verilog code has similar performance to HDL code. In other words, we can roughly assume HGFs

inherit the advantage of using HDL simulators. If we dive deeper into the results, we notice

that the performance numbers of HDLs and HGFs are not exactly the same under the same HDL

simulator. For example, Chisel-generated Verilog is 20% slower than the handwritten Verilog

under Verilator. Under CVS, Chisel-generated Verilog is 20% faster for the low-load case, but

10% faster for the high-load case. This is due to the Scala-Verilog translation process in Chisel

forcing a specific coding style in the translation results, which may or may not be favored by the

Verilog simulator. Improving the simulation performance of HGF-generated Verilog remains an

open research question which requires massive benchmarking or even deeper understanding in

simulation mechanism from HGF designers.

Hardware Generation and Simulation Frameworks – The key distinction between HGFs

and HGSFs is the ability to use a simulation engine written in the host language to drastically

reduce the iterative development cycle and eliminate any semantic gap. The designer avoids cross-

ing any language boundaries for development, testing, and evaluation, and can use the complete

expressive power of the host language for verification, debugging, instrumentation, and profil-

ing. Figure 4.1(c) shows the simulator performance of PyMTL for the iterative divider. Simu-

lation using CPython, the reference Python interpreter, is 150⇥ slower than CVS at 100% load.

PyMTL uses an event-based simulator that dynamically schedules combinational blocks using an

event queue so the average work per cycle is reduced under light load. PyMTL can improve

performance by 14–20⇥ using PyPy, a state-of-the-art JIT compiler for general-purpose Python

programs [BCFR09]. PyMTL can further improve performance by translating RTL designs into

Verilog, translating this Verilog into C++ with Verilator, compiling this C++ into a shared library,

and then dynamically linking this library into the original PyMTL program. Overall, PyMTL is

65

S
im

u
la

te
d

 C
y

cl
e

p
er

 S
ec

o
n

d 1.2m

2.9m

61k

226k

15m18m

1.0m

3.3m

72k

223k

13m15m

8k

40k

118k

801k

16k

30k

540k

886k

9k

34k

90k

345k

2k2k

7k7k

37k
46k

264k285k

163k166k

304k321k

400

1k

3k

11k

18k20k

2.4m
3.4m

CVS Icarus Verilator

(a) Handwritten

CVS Icarus Verilator

(b) Chisel

CPy PyPy CPy PyPy

Python CSim

(c) PyMTL

CPy PyPy

(d) MyHDL

CPy PyPy CPy PyPy CPy PyPy

Python Py-Fast CSim

(e) PyRTL

CPy PyPy

(f) Migen

CPy PyPy

(g) Mamba

For every pair of bars, the left/right is at 100%/10% load.

Figure 4.1: Simulation Performance Comparison of Different Hardware Development Workflows – Simulator
performance for a 64-bit radix-4 iterative divider implemented at the register-transfer level. Results for identical
random inputs for 1B cycles assuming the divider is active: (1) 100% of the time; and (2) only 10% of the time.
Chisel = Chisel-generated Verilog; Handwritten = hand-written Verilog; CVS = commercial Verilog simulator; CSim =
hybrid C/C++ compiled simulation; CPy = CPython. See Section 4.6 for details on the simulation platform.

able to close the performance gap to less than 10⇥ on this small design, although Section 4.6

suggests slowdowns of ⇡10⇥ are more reasonable for larger designs. Figure 4.1(d–f) shows the

simulator performance of MyHDL [LZB14], PyRTL [CTD+17], and Migen [mig]. These Python-

based HGSFs have their own unique approach to hardware modeling, but all three have dismal

performance with CPython and relatively low performance even with PyPy. PyMTL and PyRTL’s

support for specialized JIT-compiled simulators produces modest performance improvements but

also begins to reintroduce the semantic gap by requiring designers to at least on some level interact

with multiple languages

Other Approaches – SystemC [Pan01], a set of C++ classes and macros for system-level

design, is also an HGSF, but uses a less productive high-level language compared to Python-based

HGSFs. As a result, SystemC is usually used for behavioral simulation and HLS, as opposed to

RTL modeling and hardware generation, which is the focus of this work. Bluespec [Nik04] uses

a very different approach that combines a new HDL based on guarded atomic actions, limited

HLS, and powerful static elaboration mechanisms. This work focuses on less radical approaches

to improving the productivity of more traditional RTL design flows.

66

In summary, Python-based HGSFs suffer from slow simulation performance, which is a major

reason why people hesitate to adopt them. In the rest of the chapter, I will discuss how we can

close the simulation performance gap between HDL simulators and Python-based HGSFs.

4.3 Background on Meta-Tracing JITs

Many of the high-level programming languages used in HGSFs are dynamic languages. Dy-

namic languages typically include: dynamic typing of variables; lightweight syntax; managed

memory and garbage collection; rich standard libraries; interactive execution environments; and

advanced introspection and reflection capabilities. These features are critical to the implementa-

tion of productive HGSFs, but these features are also the root cause of low HGSF performance.

These languages traditionally use interpreters to implement a virtual machine that closely aligns

with the language semantics, but as seen in Figure 4.1(c-f), interpreted code can be many orders-

of-magnitude slower than statically compiled code. Dynamic languages use JIT-optimizing vir-

tual machines to apply ahead-of-time (AOT) compiler techniques at run-time. Co-optimizing

the HGSF and the JIT is the key to achieving peak performance while maintaining HGSF pro-

ductivity benefits. In this work, we co-optimize the HGSF and the PyPy meta-tracing JIT for

Python [BCFR09, AACM07].

Tracing JITs – Tracing JITs start by interpreting the program and profiling the executed code

to find frequently executed loops. Upon identifying a hot loop, the interpreter records the trace of

the executed operations of one loop iteration. For better performance through type specialization,

the trace also includes the concrete types of variables that were observed as the trace was recorded.

This trace is then fed to the optimization engine to generate efficient machine code. Note that

the trace is sequential and represents only one of the many possible paths. To ensure correctness,

guards are placed at every possible point where another code path is possible, e.g., at conditional

branches in the executed program or type checks to ensure the actual types match the recorded

types. When a guard fails the execution immediately falls back to the interpreter and a new path

may be traced and compiled starting from the failing guard if the guard has failed many times.

A bridge is used to connect the original and new traces. Figure 4.2 shows an example of how

tracing JIT works. The code snippet in Figure 4.2(a) executes the calc_harmonica function

which contains a 1000000-iteration loop. This while loop will be marked as a hot loop after several

67

1 def ceildiv(a, b):
2 if a % b == 0:
3 return a / b
4 else:
5 return a / b + 1
6

7 def calc_harmonica(n):
8 res = 0
9 i = 1

10 while i <= n:
11 res += ceildiv(n, i)
12 i += 1
13 return res
14

15 calc_harmonica(1000000)

1 # trace for one iteration
2 # where n % i != 0
3 loop_header(r0, n0, i0)
4

5 # inlined by JIT compiler
6 t0 = int_mod(n0, i0) # a % b
7 t1 = int_eq(t0, 0)
8 g1: guard_false(t1)
9

10 # generated for else path
11 t2 = int_div(n0, i0) # a/b
12 t3 = int_add(t2, 1) # +1
13 r1 = int_add(r0, t3) # res
14 i1 = int_add(i0, 1)
15 i2 = int_le(i1, n0) # i<=n
16 g2: guard_true(i2)
17 jump(result1, n0, i1) # loop

1 # bridge out of g1
2

3 # generated for then path
4 t2 = int_div(n0, i0) # a/b
5 r1 = int_add(r0, t3) # res
6 i1 = int_add(i0, 1)
7 i2 = int_le(i1, n0) # i<=n
8 g3: guard_true(i2)
9 jump(result1, n0, i1) # loop

(a) Python Code (b) Initial JIT Trace (c) Trace of A Bridge
Figure 4.2: Examples of PyPy JIT Trace – (a) Python code of executing one function with a 1000000-iteration loop;
(b) JIT trace that PyPy generates for the “else” path as the else path is triggered more frequently during the profiling
phase (usually less than a few hundreds of iterations); (c) shows the JIT trace that PyPy generate for the “then” path
which follows the guard failure of g1.

iterations, and the JIT will try to optimize the trace for later iterations. Since n is not divisible by

most i, the else path will be triggered more frequently. Figure 4.2(b) shows the trace generated

for the else path. The ceildiv function call is directly inlined into the loop body, and the loop

is optimized to low-level JIT IR code. The divisible check is turned into the guard g1. The loop

exit check corresponds to the guard g2. Figure 4.2(c) shows the trace generated for the case where

n is divisible by i; note that the loop body does not contain the +1 statement. This bridge trace

essentially branches out of g1. Upon any failure of g1 in later iterations after the bridge trace has

been compiled, the JIT compiler will directly jump to the bridge trace without recompilation.

Meta-Tracing JIT – Normal tracing JITs need to be specifically designed for each language in

addition to writing the interpreter. This means that even if the programmer wants to add some small

feature to the interpreter, he/she needs to learn about the JIT compiler and then modify it to support

the added features. PyPy uses a “meta-tracing” JIT approach to build its tracing JIT compiler.

Unlike a traditional tracing JIT compiler that records the executed operations in the application, the

meta-tracing JIT compiler records the operations performed by the interpreter as it interprets the

application. This approach separates the complicated JIT compiler machinery from the interpreter

implementation and allows easily re-targeting the JIT compiler for other application languages or

extensions. In PyPy’s case, the interpreter is described in a statically typed subset of the Python

language called RPython, and the RPython toolchain will automatically attach the meta-tracing JIT

68

compiler to the interpreter. See [BCFR09, AACM07] for more details on the PyPy meta-tracing

JIT. In this work, using a meta-tracing approach drastically simplies the implementation of HGSF-

aware JIT optimization techniques. We only need to write RPython code and add hints to the

constructs without messing around with the JIT engine.

JIT Warm-Up – Traditional ahead-of-time (AOT) compilation spends time generating opti-

mized machine code in a binary executable file before the real execution. Although a JIT compiler

can generate code without AOT compilation, it can spend significant time interpreting, analyzing,

and tracing various code paths before actually generating JIT-compiled machine instructions for

a frequently executed loop. The actual execution performance during the trace generation phase

can be much lower than the steady state, which is often refered to as “JIT warm-up” overheads.

JIT warm-up overheads are a key source of overheads at the beginning of execution, especially

when there are too many possible hot paths in the code. In this case, the JIT warm-up time can be

extremely long due to the exponential explosion of bridges.

Steady-State JIT Execution – The beauty of using a JIT compiler is to hopefully amortize

the JIT warm-up overheads by spending most of the steady-state execution time in JIT-compiled

code for long-running programs. After the JIT warm-up phase, most traces have been compiled,

optimized, and stored in the main memory. The JIT compiler can just invoke the corresponding

trace upon any guard failure. Although there may occasionally be some loop iterations that unveil

new paths, most iterations can reuse the already compiled traces to maximize the performance. It

is worth noting that the difference between the warm-up phase and the steady-state phase requires

extra efforts from researchers to appropriately analyze and understand the execution performance.

4.4 Mamba JIT-Aware HGSF Design Techniques

In this section, I present the Mamba JIT-aware HGSF design techniques based on static schedul-

ing. The techniques have been implemented in PyMTL3 as passes. We reuse the PyMTL3 passes to

construct sensitivity information based on readers/writers of the same variable in different blocks.

Figure 4.1(g) shows the simulator performance of Mamba for the iterative divider. At 100%

load, Mamba is 2⇥ faster than CVS, 20⇥ faster than PyMTL, and 8⇥ faster than PyRTL. The key

to Mamba’s performance is its co-optimization of the HGSF and JIT which results in a speedup

69

(a)

(b) (c)

(d)

C

D
B'B''

A A'

B

2X3X

C DA A' B B'' B'

4X

C C C C C C

D D D D D D

A A'

B
B''B'' B' B'B

C

D

B''B'' B' B'B B

A A'

Figure 4.3: Meta-Traces of One Simulated Cycle – (a) event driven and static scheduling; (b) schedule unrolling;
(c) heuristic topological sort; (d) trace breaking. A,B,C,D = traces of update blocks; red dots = guards that have
bridges compiled from (connected by dashed arrows); A’,B’,B” = conditional paths in update blocks that result in
bridges; 4X,3X,2X = how many times the jump occurs in a simulated cycle; solid arrows = entry from and exit to the
cycle loop.

of 124⇥ speedup over CPython. Table 4.1 lists the five JIT-aware HGSF techniques and the two

HGSF-aware JIT techniques and reports the incremental performance improvement of each tech-

nique. Table 4.1 includes results for the iterative divider from Section 4.2 and a simple single- and

multi-core RISC-V design described in more detail in Section 4.6.

As a starting point, we implemented event-driven simulation in Mamba using a very similar

technique to PyMTL. Table 4.1 shows the performance of event-driven Mamba simulation for the

iterative divider. Like PyMTL, we use two nested loops: an outer loop for simulated cycles, and an

inner loop over an event queue of combinational update blocks. Because each iteration of the inner

loop is a different update block, the tracing JIT compiles a different trace for each of these update

blocks. The tracing JIT will then insert a guard at the beginning of each trace to check if that

trace is compiled for the called update block. Figure 4.3(a) illustrates this scenario using a cartoon

representation of traces, guards, and bridges. Unfortunately, these guards create a pathological

chain of bridges for the inner loop. Executing the n-th compiled update block will result in failing

the first n� 1 guards. In other words, the number of guard failures in an entire simulated cycle

scales quadratically with the total number of update blocks, which becomes the scaling bottleneck.

Small traces for each individual update block also prevents the compiler from performing escape

analysis to remove unnecessary memory operations. Finally, enqueuing dependent blocks only

when a signal’s value changes requires an extra data-dependent check after every assignment. So

while event-driven simulation can be efficient when most signals are stable, it can also create a

70

perfect storm of challenges for tracing JITs. The JIT-aware HGSF techniques described in this

section help mitigate many of these challenges.

Static Scheduling – Instead of event-driven simulation, Mamba statically schedules update

blocks. While static scheduling has been shown to improve the performance of C++-based simu-

lation frameworks [PMT04, GTBS13], we argue that static scheduling is particularly important in

Python-based HGSFs for two reasons: (1) static scheduling avoids bridges due to data-dependent

checks on every signal assignment; and (2) static scheduling paves the way for using additional

techniques to increase the length of each trace. The Mamba execution semantics require each

update block to be executed exactly once in each cycle. This enables a static fixed-order linear

schedule to be generated at elaboration time. We leverage the sensitivity information to schedule

the update blocks correctly: an update block that writes x should be scheduled before all blocks

that read x. We use a topological sort to serialize the dependency graph into a total order of blocks.

The topological sorting can succeed only if the directed graph is acyclic (DAG). Thus designers

must not create inter-dependencies between combinational blocks. The inner loop simply iterates

over the static schedule. Note that this does not change the meta-trace patterns in Figure 4.3(a);

this simply changes the way in which execute the corresponding update blocks. Table 4.1 shows

that this approach improves the performance by 1.1–13⇥ over event-driven simulation. The con-

cern for static scheduling is that all update blocks are executed regardless of activity. However, a

tracing JIT can still optimize a hot path used under light load to improve performance. As shown

in Figure 4.1, Mamba is 1.5⇥ faster under 10% load vs. 100% load.

Schedule Unrolling – Static scheduling makes it possible to eliminate the pathological chain-

of-bridge pattern in the inner loop by unrolling this loop into a sequence of update block calls.

Table 4.1 shows that this improves performance by 1.2–9⇥ compared to static scheduling without

inner-loop unrolling for the divider and the 1-core design. Figure 4.3(b) illustrates how static

scheduling and schedule unrolling get rid of the chain-of-bridge pattern but increase the overall

trace length.

Heuristic Topological Sort – Unfortunately, schedule unrolling can create an exponential num-

ber of bridges due to data-dependent control flow within each update block. Every code path per-

mutation due to control flow in update blocks (A/A’ and B/B’/B” in Figure 4.3(b)) can create a

new bridge. In other words, schedule unrolling introduces a new pathological pattern that can lead

to serious performance degradation in larger designs (see 32-core in Table 4.1). To address this

71

Technique Divider 1-Core 32-core

Event-Driven 24K CPS 6.6K CPS 65 CPS

JIT-Aware HGSF
+ Static Scheduling 13⇥ 2.6⇥ 1.1⇥
+ Schedule Unrolling 16⇥ 24⇥ 0.2⇥
+ Heuristic Toposort 18⇥ 26⇥ 0.3⇥
+ Trace Breaking 19⇥ 34⇥ 1.5⇥
+ Consolidation 27⇥ 34⇥ 42⇥

HGSF-Aware JIT
+ RPython Constructs 96⇥ 48⇥ 61⇥
+ Support Huge Loops 96⇥ 49⇥ 67⇥

Table 4.1: Mamba Performance – The baseline is event-driven simulation in Mamba. Each row adds a new technique
upon all previous ones. All results are with PyPy. CPS = simulated cycles per second.

problem, we observe that there are multiple valid topological sorts for any given DAG, and each

ordering can produce different guard/bridge behavior in our scenario. For example, Figure 4.3(c)

illustrates an ordering with fewer guards and bridges (and a smaller instruction-cache footprint)

compared to Figure 4.3(b). We use a heuristic to schedule update blocks with potentially more

guards as late as possible. The stack used in the topological sort is replaced with a priority queue

where each update block’s priority is the number of if/elif statements in that block counted using

AST self-parsing. Table 4.1 shows that this can improve the performance by 10–30% over basic

schedule unrolling.

Trace Breaking – A large number of guards and bridges is still possible in more complex

designs. To further control the number of guards and bridges, we use Python-level JIT hints to

break long traces into multiple smaller traces. These application-level hints are provided by PyPy

to control the JIT compilation process, and they can be used to prevent tracing in certain parts of

the application. During the topological sort, we pack update blocks into a meta-update block. A

meta-update block is a sequence of one or more update blocks that do not include any if/elif

statements followed by a final update block which does include an if/elif statement. A meta-

update block ends with a trace-breaking hint. This technique essentially limits the number of

if/elif statements within any given trace (see Figure 4.3(d)). Table 4.1 shows this technique has

a more significant impact on larger designs, e.g., improving performance by 5⇥ for the 32-core

design over heuristic topological sort.

Block Consolidation – Despite the techniques described above, the size of JIT-compiled code

scales with the design size due to the nature of JIT compilation: the same update block from

72

different instances is JIT-compiled individually. This problem is less prominent in static languages

because different instances of the same module will likely reuse the same compiled assembly code.

Block consolidation is a new technique that deduplicates different instances of an update block in

a JIT trace. We modify the topological sort to identify different instances of the same update block

and to then schedule these instances together. We group them into a new nested loop that iterates

over these different instances by calling the same update block with different parameters in each

iteration. Table 4.1 shows that large designs can significantly benefit from block consolidation,

e.g., improving performance by 28⇥ for the 32-core design over trace breaking.

4.5 Mamba HGSF-Aware JIT Optimization Techniques

The previous section described techniques to improve the performance of an HGSF when us-

ing a general-purpose meta-tracing JIT. In this section, we describe two techniques to improve

performance by making the JIT specialized for the HGSF.

Meta-Tracing the Performance-Critical Constructs – Although the PyPy JIT compiler can

run arbitrary Python code, native Python constructs may not be the best fit for HGSFs. For ex-

ample, fixed-bit-width data types are used extensively in HGSFs, but they are not natively sup-

ported by Python. HGSF designers must emulate slicing and two’s complement arithmetic using

integer arithmetic. This increases warm-up time, requires redundant arithmetic operations, and

creates excessive bridges due to dynamic type casting. We implement a fixed-bit-width data type

in RPython as a proof of concept. Other performance-critical constructs (e.g., byte-addressable

memory) can also be implemented in RPython. The key is the meta-tracing approach that enables

writing Python-like code exactly once. We exploit the invariant that the bit-width of a signal does

not change during simulation; RPython enables annotating the bitwidth as immutable. We are also

able to directly manipulate the underlying integer arrays at the RPython level. These specializa-

tions significantly eliminate potential bridges. Table 4.1 shows that this technique improves the

performance by an additional 1.5–3.5⇥ on top of the JIT-aware HGSF techniques.

Support for Huge Loops – The techniques described in Section 4.4 improve performance but

also often increase the total size of all traces. PyPy’s VMProf tool is only useful for identifying

Python-level bottlenecks, so we use the Linux perf tool to identify the microarchitectural impli-

73

cations of these larger instruction cache footprints. Experiments show that for the 8-core (1-core)

simulation in Section 4.6, 3% (0.2%) of all instruction fetches incur an instruction TLB load,

among which 22% (2.6%) are iTLB misses. The need for larger TLB reach motivates us to modify

PyPy to allocate 2 MB huge pages for traces and to fall back to 4 KB pages if Linux’s huge-page

support is unavailable. As a proof of concept, the removal of excessive iTLB accesses (confirmed

by perf) improved the performance of the 32-core design by 10% as shown in Table 4.1.

4.6 Case Study for Mamba Techniques

In this section, I present an apples-to-apples simulation performance comparison of 1–32 RTL

RV32IM [AP14] five-stage cores implemented in-house in Verilog, PyMTL, and PyMTL3 with

Mamba techniques.

4.6.1 Experiment Settings

Design Specification – The RTL RV32IM five-stage cores are implemented using a structural

datapath and pipelined control unit in all languages. For static scheduling to be able to schedule

the processor, we implement the PyMTL3 processor to be free of cyclic dependencies by dividing

some combinational blocks into smaller ones. The cores run a parallel matrix multiplication appli-

cation kernel using a lightweight parallel runtime. The multi-core does not include caches nor an

interconnection network and is simulated with a behavioral test memory implemented in Verilog

for CVS and Icarus, C++ for Verilator, and Python for PyMTL and PyMTL3. ASIC synthesis

results show that each core can be implemented in around 10 K gates. This design is sufficient for

exploring the scalability of various hardware development frameworks, and more complex system-

on-chip designs are left as future work.

Simulation Environment – We simulate Verilog with CVS, Icarus, and Verilator, and we use

PyPy for PyMTL, PyMTL-CSim, and PyMTL3. The simulation platform includes an Intel E3-

1240 v5 processor and 32 GB DDR4-2400 memory running Ubuntu 14.04 Server, gcc-4.8.5, PyPy-

5.8, Verilator-3.876, and Icarus-11.0.

74

Total Simulated Cycle

A
v

er
ag

e
C

P
S

Total Simulated Cycle

A
v

er
ag

e
C

P
S

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Verilator

CVS

Icarus

PyPy+PyMTL

PyPy+PyMTL-CSim

PyPy+Mamba

(a) Simulating 1-Core (b) Simulating 32-Core

Figure 4.4: Simulation Performance of RISC-V 1-Core and 32-Core Including Compilation/Warmup Over-
heads – Each point in (a) and (b) is the average simulated cycle per second (CPS) taking compilation/JIT overhead
into account. Basically, the more cycles it simulates, the more the compilation overheads are amortized, and the closer
the performance is to the steady state performance.

4.6.2 Results and Analysis

Compilation/Warmup – Figure 4.4(a) and (b) reflect the iterative development cycle for sim-

ulating a specific number of instructions. This includes all overheads: CVS, Icarus, Verilator, and

PyMTL-CSim compile times; PyMTL and Mamba elaboration times; and PyMTL and Mamba

JIT warmup times. Intuitively, the leftmost points (i.e., short simulations) are affected the most

by these overheads. Overall, CVS and Icarus have relatively low compilation overhead (1–2 s for

1-core, 3 s for 32-core), whereas Verilator has larger compilation overhead (4–5 s for 1-core, 130 s

for 32-core). PyMTL and Mamba have short elaboration times for one core (<1s) but longer elab-

oration times for 32 cores (6-8s). The JIT warmup overhead is difficult to quantify; both PyMTL

and Mamba warm up within at most 105 simulated cycles, and the absolute warm-up time is shorter

in Mamba compared to PyMTL.

75

1 2 4 8 16 32
Number of Cores Modeled in RTL

S
te

ad
y

 S
ta

te
 C

P
S

 *
 N

u
m

 C
o

re
s

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Verilator

CVS

Icarus

PyPy+PyMTL

PyPy+PyMTL-CSim

PyPy+Mamba

Figure 4.5: Scalable Steady State Simulation Performance of 1–32 RV32IM Cores – Each point in the figure
represents the steady state CPS multiplied by number of simulated cores. Since two cores naturally have 2⇥ the
complexity of one core, such multiplication will enable us to compare the scalable “system-level” performance across
different frameworks.

Performance – When simulating a 1-core system, Mamba executes 332K CPS which is slightly

faster than CVS and significantly faster than the other frameworks. Mamba’s 1-core performance is

equivalent to 148K committed instructions per second. When simulating a 32-core system Mamba

is 2.1⇥ slower than CVS but again significantly faster than the other frameworks. Overall these

results demonstrate that Mamba nearly matches the performance of CVS for both small and large

designs for both short and long simulations. While Verilator can achieve impressive performance

for long simulations, it can be difficult to amortize Verilator’s long compile times for short simula-

tions potentially precluding using Verilator in agile test-driven development.

Scalability – Figure 4.5(c) summarizes the steady-state performance of all frameworks with a

gradually increasing number of simulated cores. We multiply the simulated cycles per second by

the number of cores to reflect the simulation performance scaling with the size of design. A flat

line indicates perfect scalability (i.e., a 2⇥ larger design results in a 2⇥ reduction in CPS). CVS

and Icarus have good scalability, whereas Verilator appears to be less scalable. The source code

76

size generated by Verilator scales up linearly with the number of cores, potentially harming the

quality of C++ compilation. Mamba is faster than CVS at 1-core, and only 2⇥ slower at 32-core.

PyMTL scales better than PyMTL-CSim and Mamba, but its absolute performance is relatively

low.

4.7 Pitfalls of Static Scheduling

Previous sections discuss JIT-aware HGSF techniques using static scheduling. This section

discusses the pitfalls of static scheduling in realistic scenarios when considered for deployment.

4.7.1 Reduced Modeling Productivity

The previous static scheduling techniques require the graph of all logic blocks to be a directed

acyclic graph (DAG). While it is true that real digital circuits will never have any cycles, behavioral

logic modeling in HDLs actually allows cycles between two logic blocks as long as there is no

actual combinational loop (logic synthesis tools are responsible for transforming directed graphs

with cycles to DAG netlists). Figure 4.6(a) shows an example of a 2-bit multiplier where the

three combinational blocks follow the dataflow in the circuit to form a simple path. However,

Figure 4.6(b) shows the same hardware where two (instead of three) combinational blocks do not

follow the natural dataflow and form a cycle. This cycle is valid in terms of HDL semantics,

but cannot be handled by static scheduling. This means static scheduling requires the designer

to manually rewrite code in order to avoid the cycles, which unfortunately reduces the behavioral

modeling productivity.

Figure 4.6(c) shows another example design and implementation of a component that contains

a state machine. The whole design implements an enable/ready protocol where any enable signal

must factor in the valid signal and AND it with the ready signal. The comb_state_output block

in Figure 4.6(c) is the most common way for designers to describe a state machine’s output signals.

All the affected signals are set to specific values for each state in a centralized way, which makes it

easier to manage the state machine implementation. Unfortunately, to make the design feasible for

static scheduling, the HGSF must require the user to split the state machine output logic block into

77

val

comb_en_rdy:
 en = val & rdy

rdy

en

a0

a1
b1
a1
b0
a0
b1

nand1

nand2

nand3

nand4

not0

xor2

xor1

xor3

comb1:
 nand2 = ~(a1 & b1)

comb2:
 not0 = ~nand2

comb3:
 xor3 = not0 ^ xor1

b0
a0

a1
b1
a1
b0
a0
b1

nand1

nand2

nand3

nand4

not0

xor2

xor1

xor3

comb1:
 nand2 = ~(a1 & b1)
 xor3 = not0 ^ xor1

comb2:
 not0 = ~nand2

b0

comb1 comb2

comb2comb1 comb2 comb2comb3

(a)

(b)

comb_state_output:
 if state == SNOOP
 out_en = in_en & ~s.drop
 in_rdy = out_rdy
 else
 out_en = 0
 in_rdy = 1

val

in_rdy

in_en

comb_en_rdy:
 en = val & rdy

rdy

en

out_rdy

out_en
comb_
en_rdy

comb_
state_
output

comb_output1:
 if state == SNOOP
 in_rdy = out_rdy
 else
 in_rdy = 1

comb_output2:
 if state == SNOOP
 out_en = in_en & ~s.drop
 else
 out_en = 0

in_rdy

in_en

out_rdy

out_en

comb2comb_
output1

comb_
en_rdy comb2comb_

output2

(c)

(d)

Figure 4.6: Static Scheduling Reduces Modeling Productivity – (a) shows the gate-level netlist of a 2-bit multiplier.
Each dotted circle corresponds to one combinational block. The three blocks do not form a cycle. However, (b) shows
the same logic modeled by two combinational blocks which form a cycle. Static scheduling cannot handle (b). Static
scheduling cannot handle (c) because in_rdy is written by comb_state_output, and then propagates to be factored
into in_en, which is read by the same block comb_state_output. The designer must rewrite the code like (d) does.

78

in2

v_out1

v_in1

comb_cosim:
 v_in1 = in1
 v_in2 = in2
 ...
 v_comb()
 out1 = v_out1
 ...

+1

Verilator Blackbox

in1

out1

PyMTL3

...

...

v_in2

PyMTL3 Generated

Figure 4.7: An Example of Verilator Blackbox Co-Simulation Which Cannot Be Statically Scheduled – The
Verilator-compiled blackbox is part of the simulated composition. comb_cosim is the glue block that exchanges the
signal values between the PyMTL3 land and the blackbox, and invokes the value evaluation API provided by Verilator.
The key issue here is that there is a value dependency going from Verilator land’s v_in1 to v_out1, then to PyMTL3
land’s out1 and in2, and finally back to Verilator land’s v_in2. Without knowing any information of the blackbox,
the static scheduling algorithm cannot correctly generate and invoke the glue block to correctly exchange values.
Specifically, the missing information is: (1) whether there is a cross-boundary value dependency chain; (2) which
input/output signals are involved in these chains; and (3) how many times each chain cross the boundary between
PyMTL3 and the blackbox.

multiple smaller blocks as shown in Figure 4.6(d). Splitting related logic into two blocks makes the

code redundant and confusing, which significantly reduces the behavioral modeling productivity.

I conclude that DAG-based static scheduling restricts the modeling semantics provided by the

behavioral modeling language itself, which hurts the designer’s productivity in writing RTL code.

4.7.2 Difficulty in Supporting Blackbox HDL Co-Simulation

Because the Python language has very good support for integrating external C/C++ libraries,

it is quite common for state-of-the-art Python-based HGSFs [LZB14, myh21, CTD+17] to pro-

vide support for Python-C++ co-simulation. For example, PyMTL [LZB14] leverages C foreign

function interfaces (CFFI) to import a Verilator-compiled C++ simulator. The main goals of such

co-simulation are: (1) to allow the designers who do not want to write RTL in an HGSF or already

have developed HDL code to still enjoy the testing/verification productivity brought by an HGSF;

and (2) to improve the RTL modeling fidelity of the HGSF by automatically translating and co-

simulating valid HDL code. In practice, Python-Verilog co-simulation has played a very important

role in research and engineering.

However, DAG-based static scheduling fails to support such blackbox co-simulation even with

designers’ manual efforts to split all blocks in the Python portion of the model. The fundamental

reason is that there can be combinational paths going from Python, to the HDL blackbox, and back

79

1 # e.g., scc_schedule = [[blk0,blk3,blk4], [blk2], [blk7], [blk1,blk5,blk6]]
2 for i in range(100000):
3 # generated tick function
4 # inlined for illustration
5

6 for scc in scc_schedule:
7 if len(scc) == 1: # trivial
8 scc[0]()
9 else:

10 values = record_scc_output_values(scc)
11

12 while True:
13 for k in scc:
14 k()
15

16 new_values = record_scc_output_values(scc)
17 if new_values == values:
18 break
19 values = new_values

Figure 4.8: HSS Baseline Tick Execution – This is a pseudo-code snippet of the baseline HSS tick implementation
in Python. Scheduling of the SCCs happen before runtime. The loop body in the code snippet is the scheduled tick
function inlined for illustration purposes.

to Python. The combinational path inside the blackbox creates a loop in the full logic graph of

both the Python portion of the model and HDL portion of the model, while the Python scheduler

cannot assume any property of the blackbox. For example, simply executing the Verilog part of

the simulator once each cycle, which is equivalent to assuming all the output signals are combina-

tionally decoupled from the input signals, does not guarantee correct execution. Figure 4.6 shows

an example of a Verilog module that cannot be statically scheduled if no information inside the

Verilog blackbox is revealed.

I conclude that DAG-based static scheduling algorithms cannot support blackbox HDL co-

simulation, which undermines a key benefit of Python-based HGSFs.

4.8 Mamba++: Hierarchical Static Scheduling

To address the pitfalls of static scheduling, I propose hierarchical static scheduling (HSS), a

JIT-aware scheduling technique to handle arbitrary directed graphs and sustain high simulation

performance.

80

4.8.1 HSS Baseline Algorithm

The foundation of HSS scheduling is the strongly connected components (SCC) algorithm [Sha81,

Tar71] to transform an arbitrary directed graph into directed acyclic graphs of SCCs. Each SCC can

be either a single logic block or multiple logic blocks that have interdependencies. A topological

sort of the SCCs can generate a serial execution schedule. For each cycle of the actual simulation

at runtime, we execute the list of SCCs. If the SCC is a single logic block, HSS simply executes it.

Otherwise, we need to iteratively execute the blocks in the SCC until all the output variables of the

update blocks in the SCC stabilize. Figure 4.8 illustrates the execution. For each cycle, we have a

three-level nested loop to: (1) enumerate the SCCs from the topological sort schedule; (2) iterate

indefinitely until the output values stabilize; and (3) enumerate the blocks inside the SCC.

Note that the scheduling algorithm coincides with the UMOC scheduling algorithm. As PyMTL3

has implemented UMOC as the preferred modeling mechanism, this means the HSS scheduling

algorithm is fully capable of scheduling a hardware model with both CL parts and RTL parts to

provide fast simulation performance.

4.8.2 HSS JIT-Aware Optimizations

Compared to simple static scheduling, HSS has two nested loops to execute in one cycle. Note

that the nested loops in HSS are inherently different from event-driven simulation. This is because

event-driven simulation’s while loop pops a different function and executes it in every iteration,

but the HSS-generated loop body executes the same set of functions for each iteration. The exit

condition of the while loop is based on value change detection.

HSS applies the insights obtained from Mamba JIT-aware HGSF techniques (loop unrolling

and trace breaking) to optimize the two nested loops under PyPy. In order to create a simulation

tick function that corresponds to a DAC with SCCs, the scheduling algorithm will need to involve

similar heuristics to Mamba trace breaking techniques in both levels of loop unrolling to control

the number of bridges in each subtrace. For the outer loop, each non-trivial SCC (contains a while

loop) can be treated as a non-branchy block, as PyPy will start a new loop trace for the while loop

and capture all the branches inside the loop trace. For the inner loop, we use a Hamiltonian path

heuristic algorithm to sort the blocks inside the SCC based on the graph topology inside the SCC.

81

1 # e.g., scc_schedule = [[blk0,blk3,blk4], [blk2], [blk7], [blk1,blk5,blk6]]
2 for i in range(100000):
3 # generated optimized tick function
4 # inlined for illustration
5

6 values = record_scc_output_values(scc1)
7 while True: # non-trivial SCC
8 scc0[0]() # blk0
9 scc0[1]() # blk3

10

11 <trace_breaking>
12

13 scc0[2]() # blk4
14

15 new_values = record_scc_output_values(scc)
16 if new_values == values:
17 break
18 values = new_values
19

20 scc1[0]() # trivial SCC, blk2
21

22 scc2[0]() # trivial SCC, blk7
23

24 <trace_breaking>
25

26 while True: # non-trivial SCC
27 scc3[0]() # blk 1
28 scc3[1]() # blk 5
29

30 <trace_breaking>
31

32 scc3[2]() # blk 6
33 ...
34 ...

Figure 4.9: HSS Optimized Tick Execution – This is a pseudo-code snippet of the tick function with JIT-aware
optimization. Compared to baseline, the outermost SCC enumeration loop and the innermost block enumeration loops
are unrolled. In each unrolled segments, we insert trace-breaking hints to control the number of bridges in each
generated trace.

Then we also apply the Mamba trace breaking techniques to break the inner loop into smaller

traces. Figure 4.9 shows the optimized execution.

4.9 Case Study for Hierarchical Static Scheduling

In this section, I present and compare the simulation results for three processor compositions

using hierarchical static scheduling. Since the comparison in Section 4.6 among PyMTL3 and

other frameworks/HDL simulators has come to the conclusion that PyMTL3 is able to outperform

other frameworks and close the gap, I focus on comparing different simulation settings in PyMTL3.

82

Branch
Table

Reorder
Buffer

Control Flow Manager

Fetch
Unit

Decode
Unit

Issue
Unit

Arithmetic
Logic Unit

Multiply
Divide Unit

Memory
Unit

Write-
back
Unit

Commit
Unit

Register
File

Rename
Table

Score-
board

Free
List

Memory
Manager

CSR
ManagerData Flow Manager

imemreq

imemresp

checkpoint

rollback

cl
ea

r_
br

_f
e

cl
ea

r_
br

_f
e

cl
ea

r_
br

_f
e

lo
ok

up

re
na

m
e

rd
_r

eg
se

t_
re

g

proc2mngr

mngr2proc

get_head

commit_head

cl
ea

r_
br

_b
e

co
m

pl
et

e_
in

st

dmemreq

dmemresp

clear_br_be

re
gi

st
er

_i
ns

t
re

so
lv

e_
br

commit_csr

free_reg

execute_mem
complete_mem

wr_csr

rd
_c

sr

cl
ea

r_
br

_b
e

re
so

lv
e_

br

by
pa

ss

w
r_

re
g

by
pa

ss

by
pa

ss

by
pa

ss
Figure 4.10: PyMTL3 RV32IMAF Modular Processor Diagram – This is the third design I used to evaluate
hierarchical static scheduling. Unlike the study in Section 4.6 which duplicates the same core for 1–32 times, this
modular processor has many more different components, each of which contains different logic blocks.

4.9.1 Experiment Settings

Design Specification – The three processor compositions are (in increasing order of design

complexity): (1) one standalone RTL five-stage pipeline RV32IM [AP14] processor; (2) one RTL

five-stage pipeline RV32IM processor with two 2-way associative 8KB RTL blocking caches for

the L1 instruction cache and data cache; and (3) one RTL RV32IMAF processor with in-order issue

and late commit implemented in a modular fashion and RTL method-based interfaces (block dia-

gram as shown in Figure 4.10). The five-stage processor and the blocking cache are implemented

in PyMTL3 using structural datapath and pipelined/FSM control units. The modular processor

divides the pipeline into many different sub-units which are composed at the top level. The cores

run the same parallel matrix multiplication application kernel as in Section 4.6 using the same

lightweight parallel runtime and the same simulator. Note that (1) and (2) are important composi-

tions in ECE 5745 course at Cornell where students simulate these composition throughout all the

lab assignments and the final project, and (3) is included in a 14nm chip tapeout. Hence we believe

the complexity of the three designs are enough for practical evaluation. The processors/caches are

connected to a PyMTL3 cycle-level test memory. which confirms that HSS is fully compatible

with the UMOC modeling mechanism.

83

Design 5-Stage Proc 5-Stage Proc w/ Caches Modular I2OL Proc

#Vertices 206 556 1440
#Edges 239 704 2275
#Non-Trivial SCCs 2 2 14
Sizes of SCCs 16,5 69,13 51,42,23,21,19,19,19,18,18,17,10,9,8,7

Table 4.2: Unified Directed Graph Characteristics – The number of vertices and edges describes the original UDG.
The number of non-trivial SCCs and sizes of SCCs are outcome of the SCC algorithm.

Graph Characteristics – After elaboration, each processor composition turns into an abstract

graph of update blocks. According to the UMOC terminology, these graphs are unified directed

graphs (UDG). A few important indicators of simulation performance for each design are the num-

ber of update blocks in the UDG, the number of non-trivial SCCs in the UDG, and the size of each

non-trivial SCC. Note that the impact of the length of each update block can also affect simulation

performance, but is hard to quantify. The number and size of non-trivial SCCs are also indicators

of how difficult it is to rewrite the design so that it can be scheduled by pure static scheduling.

Table 4.2 shows the characteristics of the UDG of each composition. The two 5-stage processor

compositions have fewer non-trivial SCCs but each SCC is relatively large. The modular I2OL

processor composition has more SCCs, and many of them are relatively large. The analysis of

these graph characteristics justifies the need for HSS to handle non-DAG graphs.

Simulation Environment – The simulations are conducted on both CPython and PyPy. I also

leverage the Verilog translation/import pass to translate PyMTL3 RTL code into Verilog and use

Verilator to compile a C++ simulator similar to PyMTL’s CSim mechanism. The hope is that

Verilator-compiled C++ simulator can simulate faster in C++. This means each design will be

simulated under four settings: CPython, CPython+CSim, PyPy, and PyPy+CSim. The PyPy used

here is the same PyPy as Section 4.6 with HGSF-aware JIT techniques.

Moreover, as Verilator’s C++ compilation takes quite some time for large designs, I also pick

three different GCC optimization flags for the Verilator generated C++ library to explore the trade

off between compilation time and simulation performance. The simulation platform includes an

Intel Xeon E-2176G processor and 64 GB DDR4-2666 memory running CentOS 7, gcc-4.8.5,

PyPy3-7.2, CPython 3.7, and Verilator-4.024.

84

4.9.2 Results and Analysis

Table 4.3 shows the steady-state simulation performance results of various settings, along with

the compilation times of applying different gcc options.

CPython vs. PyPy – Not surprisingly, CPython-based simulations are again the slowest among

all settings, achieving 205–2330 cycle per second (CPS). PyPy is much faster, achieving 16,500–

303,000 CPS for the three designs, which is around 100⇥ faster than CPython. These results are

also consistent with the studies we performed in previous sections on static scheduling. Although

when going from 5-stage processor to the modular I2OL, CPython has better scalability (11⇥

slowdown compared to PyPy’s 18⇥ slowdown), the absolute performance of CPython (205 CPS)

is still 80⇥ slower than PyPy’s 16,500 CPS. This confirms that pure Python simulation using HSS

and HGSF-aware PyPy can bring two orders of magnitudes of speedup for realistic designs in

production without any loss of productivity.

Pure Python vs. CSim – Verilator-based CSim is mainly used for verifying that the PyMTL3

RTL code can be correctly translated to Verilog. However, at the cost of slightly losing productiv-

ity in debugging, it is an appealing option to accelerate simulation performance as suggested by

Table 4.3. CPython+CSim achieves similar performance for all three designs with different sizes,

which implies that the C++ part can run much faster than the Python part, and Python part is the

bottleneck of execution. This is confirmed by PyPy+CSim which achieves 1.3–6⇥ speedup for the

three designs. Note that I2OL results are much slower than 5-stage processor w/ and w/o caches.

After profiling the I2OL simulation, I found that the Verilator compiled C++ library for I2OL can

achieve around 250,000 CPS, which is only 2.5⇥ of PyPy+CSim (60⇥ of CPython+CSim). This

means the HGSF-aware PyPy drastically accelerates the Python part of simulation, making the

simulation performance more closed to pure C++ performance. Overall, HSS is able to address

the pitfall of blackbox co-simulation and even bring reasonable speedup with Verilator over pure

Python simulation.

Under CSim, Why Is Proc With Caches Faster Than Proc Alone? – By horizontally com-

paring the simulation performance between the 5-stage processor and the obviously more compli-

cated 5-stage processor with two caches, we observe that there is an inversed performance rela-

tionship under CSim. Specifically, for pure Python simulation, adding two caches to the processor

results in a ⇡6⇥ slowdown in CPython (2,330 to 420) and ⇡9⇥ slowdown (303K to 33K) in PyPy.

85

Design 5-Stage Proc 5-Stage Proc w/ Caches Modular I2OL Proc

CPS = Cycle Per Second Simulated CPS gcc Time Simulated CPS gcc Time Simulated CPS gcc Time

CPython 2,330 - 420 - 205 -
CPython+CSim -O3 3,300 2.85s 6,750 3.9s 4,200 11.72s

PyPy 303,000 - 33,100 - 16,500 -
PyPy+CSim -O0 368,000 1.08s 311,200 1.26s 52,300 2.55s
PyPy+CSim Fine-tuned -O1 418,900 1.33s 502,300 1.55s 101,800 3.36s
PyPy+CSim -O3 425,700 2.88s 531,700 3.92s 102,400 11.80s

Table 4.3: Mamba++ Simulation Results – Each design is evaluated under six different settings. The settings with
gcc time are Verilator co-simulations. Higher simulated cycle per second is better. Lower gcc time is better.

However, it becomes a ⇡2⇥ speedup (3,300 to 6,750) under CPython+CSim and ⇡1.3⇥ speedup

under PyPy+CSim (419K to 502K and 426K to 532K).

After carefully profiling the execution, we confirmed that this speedup is valid. The funda-

mental reason is that the two caches are part of the RTL code and get translated into C++, which

significantly reduces the number of memory requests handled in the PyMTL3 cycle-level mem-

ory. If only the 5-stage processor is connected to the CL memory, the processor will send one

instruction fetch request per cycle and one data fetch request every few cycles to the CL memory.

However, when combined with two caches, these fetch requests are handled by the cache first,

which results in significantly fewer requests sent out to the CL memory (only cache misses are

sent out). As we already understand from previous discussions, the Python side of execution is

actually the bottleneck compared to the Verilator generated C++ which is overwhelmingly faster

than the Python part. In summary, the performance improvement due to the reduction of activity

in PyMTL3 CL memory significantly overweighs the slowdown in the C++ simulation due to the

increase in RTL design size.

This intricate performance issue can possibly open up more research opportunities in extracting

more simulation speedup by offloading appropriate computations to the C++ part.

Impact of gcc Optimization Options – Verilator-based CSim brings a trade-off between com-

pilation time and compiled execution performance. A higher optimization level of gcc can bring

better performance, but requires longer time to compile. In order to determine the optimal set of

options, I manually disable specific optimizations on top of the generic -O0, -O1, -O2, -O3,

-Os optimization flags (also note that some optimizations cannot be turned off if -O1/-O2/-O3

are applied). To compare the effect of different optimization levels, I careful pick three set of

options to compare the performance: -O0, i.e. turning off all additional optimizations; fine-tuned

86

-O1 -fno-guess-branch-probability -fno-reorder-blocks -fno-if-conversion
-fno-if-conversion2 -fno-dce -fno-delayed-branch -fno-dse -fno-auto-inc-dec
-fno-branch-count-reg -fno-combine-stack-adjustments -fno-cprop-registers
-fno-forward-propagate -fno-inline-functions-called-once -fno-ipa-profile
-fno-ipa-pure-const -fno-ipa-reference -fno-move-loop-invariants
-fno-omit-frame-pointer -fno-split-wide-types -fno-tree-bit-ccp
-fno-tree-ccp -fno-tree-ch -fno-tree-coalesce-vars -fno-tree-copy-prop
-fno-tree-dce -fno-tree-dominator-opts -fno-tree-dse -fno-tree-fre
-fno-tree-phiprop -fno-tree-pta -fno-tree-scev-cprop -fno-tree-sink
-fno-tree-slsr -fno-tree-sra -fno-tree-ter -fno-tree-reassoc
Figure 4.11: Fine-Tuned gcc Optimization Options Based on -O1 – The listed gcc compiler options are mostly
removing specific optimizations from the default -O1 set. The goal is to reduce compilation time without slowing
down the simulation performance.

-O1, i.e. -O1 with some options turned off as listed in Figure 4.11; and (3) -O3. Table 4.3 shows

the simulation performance and compilation time. We can conclude that: (1) -O3 provides the

fastest simulation performance and longest compilation time, but the compilation time drastically

increases when the design becomes bigger; (2) -O0 results in very low compilation time and rea-

sonable performance; and (3) our customized -O1 option takes ⇡20% longer than -O1 to compile

for all three designs, but is able to achieve the -O3 level of simulation performance. These insights

lead to our decision to deploy the custom -O1 option in production for longer simulations, and -O0

option for short simulations.

4.10 Conclusion

This chapter presents Mamba++, a set of techniques to close the simulation performance gap

in Python-based hardware generation and simulation frameworks. The key insight of this chap-

ter is the need to deeply co-optimize the HGSF and the underlying general-purpose JIT compiler.

Static-scheduling-based Mamba techniques including several novel JIT-aware HGSF as well as

HGSF-aware JIT techniques match the performance of a commercial HDL simulator and improve

performance compared to prior HGSFs by 10⇥. Then, Mamba++ addresses realistic deployment

concerns with minimum performance loss to accommodate more flexible HDL semantics. I proto-

typed Mamba/Mamba++ in PyMTL3 by implementing all the scheduling algorithms as PyMTL3

passes and customizing a PyPy JIT compiler. The modified PyPy has been open-sourced at

https://github.com/pymtl/pypy-pymtl3, and the Mamba/Mamba++ simulation passes have

87

been open-sourced at https://github.com/pymtl/pymtl3/tree/master/pymtl3/passes/

mamba. While this paper explores these techniques within the context of PyMTL3, our work also

sheds light on performance optimization opportunities in other HGSFs. We hope to break the

long-lasting obstacle in HGSF simulation performance that prevents researchers/engineers from

adopting HGSFs.

88

CHAPTER 5
PYH2: PRODUCTIVE TESTING METHODOLOGIES FOR

AGILE HARDWARE DESIGN

This fourth challenge in modern hardware modeling frameworks as mentioned in Section 1.2

is reducing testing/verification time for agile hardware design flows. Most academic groups and

open-source hardware teams use an agile approach to develop and verify hardware design blocks

due to the high cost of hiring dedicated verification engineers. It is crucial to have rapid and

comprehensive verification methodologies that reduce testing/verification overheads. Moreover,

we believe the success of the emerging open-source hardware/EDA ecosystem critically depends

on thoroughly tested open-source hardware blocks.

In this chapter, I present PyH2, our vision for novel productive testing methodologies using

open-source hardware generation and simulation frameworks and key open-source software pack-

ages in the ecosystem. PyH2 combines the advantages of Python, PyMTL3, and hypothesis to cre-

ate productive and customized testing methodologies for different categories of hardware designs.

Specifically, PyH2 attempts to reduce the designers’ effort in creating high-quality property-based

random tests. I co-led the work with Yanghui Ou, where Yanghui is responsible for initial efforts

on combining PyMTL3 with hypothesis, and exploration of the PyH2 methodology with a focus

on PyH2G.

5.1 Introduction

As Dennard scaling is over and Moore’s law continues to slow down, modern system-on-chip

(SoC) architectures have been moving towards heterogeneous compositions of general-purpose

and specialized computing fabrics. This heterogeneity complicates the already challenging task of

SoC design and verification. Building an open-source hardware community to amortize the non-

recurring engineering effort of developing highly parametrized and thoroughly verified hardware

blocks is a promising solution to the heterogeneity challenge. However, the widespread adoption

of open-source hardware has been obstructed by the scarcity of such high quality blocks. We argue

that a key missing piece in the open-source hardware ecosystem is comprehensive, productive, and

open-source verification methodologies that reduce the effort required to create thoroughly tested

89

hardware blocks. Compared to closed-source hardware, verification of open-source hardware faces

several significant challenges:

1. Closed-source hardware is usually owned and maintained by companies with dedicated ver-

ification teams. These verification engineers usually have many years of experience in

constraint-based random testing using a universal verification methodology (UVM) with

commercial SystemVerilog simulators. However, open-source hardware teams usually fol-

low an agile test-driven design approach stemming from the open-source software commu-

nity, where the designer is also responsible for creating the corresponding tests. Moreover,

the steep learning curve, in conjunction with very limited support in existing open-source

tools, makes the UVM-based approach rarely used by open-source hardware teams. We ar-

gue that the open-source hardware community is in critical need of an alternative route for

testing open-source hardware, instead of simply duplicating closed-source hardware testing

frameworks.

2. Unlike closed-source hardware’s development cycle where most engineers focus on a specific

design instance for the next generation product, open-source hardware blocks usually exist

in the form of design generators to maximize reuse across the community [SWD+12]. How-

ever, design generators are significantly more difficult to verify than design instances due

to the combinatorial complexity in the multi-dimensional generator parameter space. There

is a critical need to create an open-source framework that systematically and productively

tests design generators and automatically simplifies both failing test cases and failing design

instances to facilitate debugging.

3. Performing random testing can be difficult in important hardware domains. There has been

a major surge in open-source RISC-V processor implementations. However, due to limited

human resources, most of these implementations only include a few directed tests, randomly

generated short assembly sequences, and/or very large scale system-level tests (e.g., booting

Linux). There is a critical need to create an automated random testing framework to improve

the fidelity of open-source processor implementations.

4. Many open-source hardware blocks are designed to improve reusability by exposing well-

encapsulated timing-insensitive handshake interfaces that can provide an object-oriented

view of the hardware block (e.g., a hardware reorder buffer exposes three object-oriented

90

“method” interfaces: allocate, update, and remove). However, it is very hard to perform

random testing to test the behavior of concurrent hardware data structures that have mul-

tiple interfaces accepting “transactions” in the same cycle. Converting a random transac-

tion sequence into cycle-by-cycle test vectors using traditional testing approaches requires

a cycle-accurate golden model. Manually creating multi-transaction test-vectors only works

for directed testing. One possible solution is to execute only one random transaction in each

cycle, yet the inability to stress intra-cycle concurrent behavior harms the quality of the tests.

There is critical need to create a novel testing approach for object-oriented hardware using

concurrent intra-cycle transactions.

To address these challenges, we introduce PyH21, our vision for a productive and open-source

testing methodology for open-source hardware, which is significantly different from state-of-the-

art closed-source hardware testing. Leveraging open-source software, PyH2 attempts to solve the

open-source hardware testing challenge by holistically using property-based random testing (PBT)

in Python to significantly reduce designer effort in creating high-quality tests. The advantage of

PBT over constraint-based random testing is: (1) PBT does not draw all of the random data before-

hand, making it possible to leverage runtime information to guide the random data generation; and

(2) PBT can automatically shrink the failing test case to a minimal failing case once a bug is discov-

ered. Compared to BlueCheck [NM15], a prior PBT framework for hardware, the key distinctions

are: (1) PyH2 enables using a high-level behavioral specification written in Python as the reference

model instead of requiring the reference model to be synthesizable; (2) the random byte-stream in-

ternal representation of hypothesis provides more sophisticated auto-shrinking, while BlueCheck

simply removes transactions along with ad-hoc iterative deepening; and (3) PyH2 can auto-shrink

not only the transactions but also the design itself by unifying the design parameter space and the

test-case space. We see coverage-guided mutational fuzzing (e.g., RFUZZ [LKK+18]) as comple-

mentary to PBT. PBT can be used to quickly find bugs with moderate complexity, while RFUZZ

can be used to very slowly find potentially more complex bugs. Overall, PyH2 is able to combine

the advantages of complete-random testing and iterative-deepened testing to identify a failing test

case quickly and then provide a minimal failing case to facilitate debugging.

PyH2 is supported by the whole Python ecosystem, among which three main packages form the

foundation of PyH2 (PyMTL3, pytest, and hypothesis). PyH2 users can use over 100,000 open-
1Python’s Hypothesis for Hardware

91

source Python libraries to build test benches and golden models. PyH2 leverages PyMTL3 [JIB18,

JPOB20] to build Python test benches to drive RTL simulations with PyMTL3 models and/or ex-

ternal SystemVerilog models leveraging PyMTL3’s Verilator co-simulation support. PyH2 adopts

pytest, a mature full-featured Python testing tool, to collect, organize, parametrize, instantiate,

and refactor test cases for testing open-source hardware. PyH2 also exploits pytest plugins to

evaluate hardware-specific testing metrics. For example, PyH2 tracks the line coverage of behav-

ioral logic blocks of PyMTL3 models during simulation using coverage.py, a line coverage tool

for normal Python code. The key component of PyH2 is hypothesis, a PBT framework to test

Python programs by intelligently generating random test cases and rapidly auto-shrinking failing

test cases.

PyH2 is realized by a collection of PyH2 frameworks which are discussed in depth in the rest of

the chapter: PyH2G (PyH2 for RTL design generators), PyH2P (PyH2 for processors), and PyH2O

(PyH2 for object-oriented hardware).

5.2 Background

This section briefly introduces PyMTL3, pytest, and hypothesis, the three key Python li-

braries that form the foundation of PyH2.

5.2.1 PyMTL3

PyMTL3 is an open-source Python-based hardware modeling, generation, simulation, and ver-

ification framework. PyMTL3 supports multi-level modeling for register-transfer-level (RTL),

cycle-level, and functional-level models. To provide productive, flexible, and extensible work-

flows, PyMTL3 is designed to be strictly modular. Specifically, PyMTL3 separates the PyMTL3

embedded domain-specific language that constructs PyMTL3 models, the PyMTL3 native in-

memory intermediate representation (NIMIR) that systematically stores hardware models and ex-

poses APIs to query/mutate the elaborated model, and PyMTL3 passes that are well-organized

programs to analyze, instrument, and transform the PyMTL3 NIMIR.

PyMTL3 aims at creating an evolving ecosystem with its modern software architecture and high

interoperability with other open-source tools. PyMTL3 emphasizes performing simulation in the

92

1 def gcd(a, b):
2 while b > 0: # bug: while b > 10
3 a, b = b, a % b
4 return a
5

6 # Create two tricky directed test cases
7 @pytest.mark.parametrize(
8 "a, b, ref", [
9 [12, 18, 6],

10 [65, 33, 1]
11)
12 def test_directed(a, b, ref):
13 assert gcd(a, b) == ref

(a) Parametrizing directed tests using a pytest decorator

Desired Property CRT IDT PBT

Small number of test cases to find bug X X X
Small number of transactions in bug trace X X X
Simple transactions in bug trace X X X

(b) Comparison of different testing techniques

14 import math, random, hypothesis
15

16 def test_complete_random():
17 for _ in range(100):
18 a = random.randint(1, 128)
19 b = random.randint(1, 128)
20 assert gcd(a, b) == math.gcd(a, b)
21

22 def test_iterative_deepened():
23 for a in range(1, 128):
24 for b in range(1, 128):
25 assert gcd(a, b) == math.gcd(a, b)
26

27 @hypothesis.given(
28 a = hypothesis.strategies.integers(1,128),
29 b = hypothesis.strategies.integers(1,128),
30)
31 def test_property_based(a, b):
32 assert gcd(a, b) == math.gcd(a, b)

(c) Code for testing a greatest common divisor function
using complete-random testing (CRT), iterative-deepened
testing (IDT), and property-based testing (PBT)

Figure 5.1: Background on Testing Methodologies

Python runtime and automatic Verilator black-box import for co-simulation. Driving the simu-

lation from Python test benches to test both PyMTL3 designs and external SystemVerilog modules

enables PyMTL3 to combine the familiarity of Verilog/SystemVerilog with the productivity fea-

tures of Python. Tools that take the opposite approach (e.g., cocotb) embed Python in a Verilog

simulator and drive the simulation from the Verilog runtime, but this complicates the ability to

leverage the full power of Python. RTL designs built in PyMTL3 can be translated to SystemVer-

ilog accepted by commercial EDA tools, or Yosys-compatible Verilog accepted by OpenROAD, a

state-of-the-art open-source RTL-to-GDS flow [ACF+19].

5.2.2 PyTest

pytest is a mature full-featured tool for testing Python programs. Using pytest, the pro-

grammer can create small tests with little effort and also parametrize numerous complex tests with

compositions of pytest decorators succinctly as shown in Figure 5.1(a). pytest also provides

lightweight command line options to print out different kinds of error messages varying from a list

of characters indicating whether each test fails, to per-test full stack traces. pytest has hundreds

of plugins, such as pytest-cov that leverages coverage.py to track line coverage.

93

5.2.3 CRT, IDT, and Hypothesis PBT

Traditional testing methodologies usually use a mix of complete-random testing (CRT) and

iterative-deepened testing (IDT). As shown in Figure 5.1(b), CRT can detect errors quickly be-

cause it randomly samples the input space, but can produce very complicated failing test cases

which are difficult to debug. IDT finds bugs more slowly because it gradually samples the input

space, but can produce simple counterexamples. Property-based testing (PBT), first popularized by

QuickCheck [CH00], is a high-level, black-box testing technique where one only defines proper-

ties of the program under test and uses search strategies to create randomized inputs. The original

QuickCheck paper also discussed the integration with Lava [BCSS98] to test circuits. Properties

are essentially partial specifications of the program under test and are more compact and easier

to write and understand than full system specifications. Users can make full use of the host lan-

guage when writing properties and thus can accurately describe the intended behavior. Most PBT

tools support shrinking, a mechanism to simplify failing test cases into a minimal reproducible

counterexample. With these features, PBT can achieve the benefits of both CRT and IDT.

hypothesis [MHDmoc19] is a state-of-the-art Python PBT library that includes built-in search

strategies for different data types and supports integrated auto-shrinking of failing test cases. All

hypothesis strategies are built on top of a unified random byte-stream representation, and each

strategy internally repurposes random bytes to produce the target random value. Search strategies

in hypothesis are integrated with methods that describe how to simplify certain types of data,

which makes shrinking effective. Users can compose built-in search strategies for any user-defined

data type and shrinking will work out-of-the-box.

Complicated stateful systems can also be tested with RuleBasedStateMachine in hypothesis.

The user inherits from the RuleBasedStateMachine class to add variables, a prologue, and an epi-

logue to create a new test class. The user needs to define rules and their preconditions and

invariants, which describes conditional state transitions. For stateful testing, usually the user

creates Python assertions inside the rule to compare against a golden reference model. hypothesis

repeatedly instantatiates the test class and executes a sequence of rules on the state machine.

Figure 5.1(c) shows examples of testing the greatest common divisor function using CRT, IDT,

and hypothesis PBT against math.gcd. The CRT test (lines 16–20) includes 100 random sam-

ples. The IDT test (lines 22–25) iteratively tries all possible values for a and b from 1–128. We use

the @hypothesis.given decorator to transform a normal function test_property_based that

94

accepts arguments, into a randomized PBT test. Consider a bug where line 3 in Figure 5.1(a) is

changed to while b>10. CRT can find the bug quickly, but the failing test case involves relatively

large numbers. IDT finds the bug in exactly 11 test cases (i.e., gcd(1,11)). PBT can find the

bug quickly with large numbers, but then auto-shrink the inputs to a minimal counterexample (i.e.,

gcd(2,1)).

Fundamentally, the auto-shrinking feature of PBT converts the problem of “finding a minimal

failing case” into an optimization problem where the input space is a list of bytes that are inter-

preted as different test inputs and the optimization goal is to find the minimum amount of bytes that

still triggers the bug [MD20]. Internally, PBT’s shrinking process leverages algorithms/heuristics

like hill climbing, simulated annealing, and gradient descent to remove part of the bytes and then

re-run the test.

5.3 PyH2G: PyH2 for RTL Design Generators

PyH2G is a PyH2 framework to productively and effectively test RTL design generators. We

envision that future open-source system-on-chip designs are heavily based on chip generators

which are composed of numerous highly parametrized RTL design generators.

5.3.1 Challenge in Testing RTL Design Generators

Unfortunately, verifying design generators is significantly more challenging than verifying de-

sign instances due to the combinatorial explosion in the multi-dimensional generator parameter

space. For example, to support generating cache instances of different sizes, an RTL cache gen-

erator can be parameterized over the word size (e.g., 4–16 bytes), the size of each cacheline (e.g.,

2–32 words) and the number of cachelines (e.g., 16–1024 cachelines). Assuming parameter val-

ues must be a power of two (which is not always true), the above example results in a whopping

number of 105 different design instances. Then, the cache generator may also parameterize over

the request queue size (1–8), set associativity (1–16), and miss-status-handling-register (MSHR)

size (4–16). Behavior-wise, it may also parametrize over replacement policy, and blocking/non-

blocking behavior. The number of possible instances can quickly grow to over a million.

95

Since the goal of creating RTL design generators is to reduce the NRE cost by reusing the gen-

erator to generate different instances, the whole generator parameter space must be verified with

enough coverage to provide compelling evidence for correctness. Traditional testing techniques

such as CRT and IDT face new challenges in covering such large generator parameter space. CRT

can find a bug quickly with a few test cases but has no guarantee on the size of the failing case and

the failing instance. As a result, CRT often leads to a complicated failing test case with numerous

transactions and a complex design instance, which makes it more difficult to debug. IDT can pro-

duce a simple failing case with a small design instance, but may take a very long time to detect the

error due to the iterative deepening required for the generator parameters.

5.3.2 PyH2G Implementation

In response to these challenges, PyH2G smartly leverage property-based testing (PBT) to obtain

the benefits of both CRT and IDT. The key idea of PyH2G is to unify the generator parameter space

and the test case space during hypothesis random data generation. Using the composite strategy

interface provided by hypothesis, we specify a composite search strategy that includes both the

design parameter strategies and the test case generation strategies. Lines 7–10 of Figure 5.2 shows

an example of how we apply @given decorator on the test function to create composite strategies

for one design parameter (num_terminals) and one list of test case, and use them as parameters

to the test function. Inside the test function, we directly use these parameters to elaborate the test

harness as if there is no hypothesis strategy involved.

During runtime, hypothesis internally interpret part of the generated random byte stream as

the design parameters and the rest as the test case. Such composite strategy and unified random data

generation also allows hypothesis to simultaneously shrink the design parameters (i.e., reducing

the complexity of the generated design instance), the length of the input transaction sequence, and

the complexity of each transaction to a minimal failing test case.

5.3.3 Case Study: On-Chip Network Generator

We quantitatively evaluated CRT, IDT, and PyH2G using the PyOCN [TOJ+19] ring network

generator against four real-world bugs as described in the table of Figure 5.3. PyOCN is a multi-

topology, modular, and highly parametrized on-chip network generator built in PyMTL3. The

96

1 from hypothesis import given
2 from hypothesis import strategies as st
3

4 # packet_strategy is the search strategy for packets
5 # use @given to create composite strategies
6

7 @given(num_terminals = st.integers(2, 16),
8 test_packets = st.lists(packet_strategy())
9)

10 def test_ring_pyh2g(num_terminals, test_packets):
11 dut = RingNetwork(num_terminals)
12 th = TestHarness(dut, test_packets)
13 run_sim(th)

Figure 5.2: PyH2G Strategy Example – The @given decorator captures hypothesis search strategies, and the test
function can directly use the variables as normal parameters to elaborate the test harness and run tests.

example of Figure 5.3(a) shows the PyH2G test for the ring network generator. When a test case

fails, hypothesis can simultaneously shrink the design instance and the packet sequence. We

ran 50 trials for each bug to record how many tests hypothesis runs to find the bug and the

size/complexity of the final bug reported by hypothesis. The results are shown as box-and-whisker

plots in Figure 5.3(a–c).

From the results we observe that:

• PyH2G detects a failing test case quickly with a small number of test cases (similar to CRT),

while IDT takes much longer to detect a failing test case. PyH2G sometimes runs slightly

more test cases than CRT because hypothesis will first generate explicit examples to stress-

test the boundary conditions before exploring values randomly. However, this also help

PyH2G discover the credit bug more quickly than CRT.

• PyH2G produces the smaller final failing test case in terms of the number of transactions

compared to CRT and IDT. This is because hypothesis iteratively attempts to shrink a the

failing test case to produce the shortest sequence of transactions.

• PyH2G produces failing test cases with ring network instances that are significantly smaller

than CRT but slightly bigger than IDT. This is because hypothesis may reach a local min-

imal failing case that cannot be simplified further to make smaller ring networks fail. In

contrast, IDT always steadily increases the network size and explore many test cases for

each network, which increases the chance to find failing test cases with smaller network size.

97

(a) CRT (b) IDT (c) PyH2G

#tests: number of test cases needed to find the bug
#transactions: num. of transactions in final failing case
#nterminals: size of ring network in final failing case
avg. complexity: average complexity of all packets in a
test case calculated based on value of each packet field

Bug name Description

and2or mistakenly put an AND instead of an OR
counter wrong enable logic in a counter
route_logic partially wrong routing logic in the router
small_queue size of the router’s input buffer < max credit
credit incorrect credit update logic in the router

Figure 5.3: PyOCN RingNet Generator Case Study – The box-and-whisker plots summarizes the experimental
results of 50 trials for each injected bug.

• PyH2G significantly reduces the transaction complexity because the shrinking shrinks the

fields of the generated messages as well. The low transaction complexity avoids unnecessary

complications during the debugging phase.

98

5.4 PyH2P: PyH2 for Processors

PyH2P is a PyH2 framework to automatically generate random assembly instruction sequences

to test processors, which makes the case for effective domain-specific random testing methodolo-

gies. Different from existing work, PyH2P is able to automatically shrink a failed long program

to a minimal instruction sequence with a minimal set of architectural registers and memory ad-

dresses. It is possible to combine auto-shrinking with other sophisticated random program genera-

tors [CCSRS03] by carefully using PyH2P random strategies. PyH2P can also leverage Symbolic-

QED [FUN+18] by applying QED transformations to generated random programs and performing

bounded model checking to accelerate bug discovery.

5.4.1 Challenge in Testing Processors

As processors have complicated execution semantics, testing processors involve more data or-

chestrations than testing simple streaming hardware components or even accelerators. However,

due to limited human resources, most of the open-source processor implementations only include a

few directed tests, randomly generated short assembly sequences, and/or very large scale system-

level tests (e.g., booting Linux). There is a critical need to create an automated random testing

framework to improve the fidelity of open-source processor implementations. Recently, Google

built an open-source framework RISCV-DV to test RISC-V processors [RIS]. RISCV-DV sup-

ports generating random instructions using constrained random testing. However, RISCV-DV still

requires a commercial Verilog simulator that supports UVM and is specific to RISC-V. There is

also work to complement RISCV-DV for RISC-V compliance negative testing [HGD20].

5.4.2 PyH2P Implementation

Different from previous random instruction generators for processors, PyH2P creates com-

posite hypothesis strategies to generate random assembly programs for effective auto-shrinking.

Specifically, PyH2P creates a hierarchy of strategies for arithmetic, memory, and branch instruction

strategies using sub-strategies for architectural registers, memory addresses, and immediate values.

PyH2P currently implements a block-based instruction generation mechanism, which first instan-

tiates a control-flow template of branches, and then fills random instructions between branches.

99

1 from hypothesis import strategies as st
2

3 # This function returns a random two-register instruction
4 # with two random registers
5

6 @st.composite
7 def inst_tworegst(draw, reg_list, inst_list):
8 reg = st.sampled_from(reg_list)
9 inst = st.sampled_from(inst_list)

10 t = draw(st.tuples(inst, reg, reg, reg))
11 return [Instruction(f"{l[0]} {l[1]}, {l[2]}, {l[3]}", "tworeg")]

Figure 5.4: PyH2P Strategy Example – The @st.composite decorator marks the two-register instruction strategy
as a composite strategy. st.sampled_from creates a random strategy of the given list. st.tuples composes multiple
strategy to be drawn as a single random tuple.

Although block-based mechanism limits the possible program space PyH2P can explore, it signif-

icantly increases the understandability of the generated test cases, which is crucial for debugging.

PyH2P also ensures that each generated assembly program has well-defined behavior across

the test and reference models:

• For arithmetic instructions, PyH2P constrains the range of the immediate value strategy to

avoid undefined overflow for specific instructions.

• For memory instructions, PyH2P constrains the range of the memory address strategy to the

size of the provided main memory to avoid unaligned and out-of-bound memory accesses.

• For branch instructions, PyH2P first generates a sequence of branch instructions and their

corresponding labels, and then randomly shuffles them to form the control-flow template.

This eliminates the possibility of branch out-of-range errors. Additionally, a set of registers

are dedicated to loop bounds and loop variables to avoid infinite loops.

5.4.3 Case Study: PicoRV32 Processor

We demonstrate the effectiveness of PyH2P using PicoRV32, an open-source, area-optimized

RV32IMC processor implemented in Verilog. We leverage PyMTL3’s Verilator support to drive

the co-simulation using a PyMTL3 testbench. The imported processor is connected to a PyMTL3

cycle-level test memory which stores the assembly program generated by PyH2P. After executing

the program, we extract and compare the value of PicoRV32 architectural registers and the test

memory against an ISA simulator written in PyMTL3.

100

(a) CRT (b) IDT (c) PyH2P

#tests: number of assembly programs to
discover the bug
#transactions: number of instructions in
the failing program
avg. complexity: average complexity of
all instructions calculated based on the
registers and immediate values used

Bug name Description

mul_carry carry bits of carry-save adders shifted by 1
auipc_decode a typo in the decode logic of auipc
lt_signed a signed comparison performed w/o casting
br_fsm incorrect state transition for branches
mem_state the status of current load is ignored

1 bge x5, x14, 0x60
2 auipc x8, 0x100
3 beq x14, x27, 0x2C
4 xori x23, x14, 0x6C0A
5 sltu x23, x14, x5
6 lui x27, 0xBD6E
7 srli x27, x21, 0xB1C2
8 sltiu x14, x21, 0x3307
9 bltu x14, x27, 0x64

10 sltiu x21, x5, 0x2FCF
11 // 30 insts omitted
12 mul x14, x27, x27

(d) CRT Example

1 lui x5, 0xC349
2 mul x5, x5, x5

(e) IDT Example
1 lui x1, 0x6
2 mul x1, x1, x1

(f) PyH2P Example 1
1 lui x1, 0x0
2 // PC=0x204 here
3 auipc x1, 0x0
4 // 0x204 * 0x204
5 mul x1, x1, x1

(g) PyH2P Example 2

Figure 5.5: PicoRV32 Processor Case Study – (a)–(c) are box-and-whisker plots that show the results of each
methodology. (d)–(g) show the failing cases for the mul_carry bug discovered by each methodology.

101

We inject five directed bugs into the Verilog code, and ran 50 trials for each methodology and

bug combination. The results are shown as box-and-whisker plots in Figure 5.5(a–c). CRT gener-

ally requires a small number of tests (less than 50) to discover a bug, but the failing cases usually

include more than 50 complex instructions. IDT significantly reduces the number of instructions

in the failing test case, but needs significantly more cases to find the failing case. Note that IDT

generates instructions of similar complexity to CRT because we have to generate random imme-

diate values to avoid prohibitively long runtimes to find these bugs. PyH2P is able to discover the

failing test case using a similar number of trials to CRT and can shrink it to a minimal case with

similar length to the cases found by IDT. Moreover, PyH2P is able to shrink the immediate value

so that the average instruction complexity is significantly reduced.

Figure 5.5(d–g) shows the failing cases for the mul_carry bug discovered by each methodol-

ogy. The bug is about a misshifted bit in the multiplier, which can only be triggered by specific

operands. Figure 5.5(d) is the example found by CRT with 41 instructions, 7 unique architectural

registers, and large immediate values. Figure 5.5(e) shows the example found by IDT which uses

only one register but a large random immediate value. This is because we only iteratively deepen

the list of instructions, and have to randomize the operands to prevent prohibitly long evaluation

time. Figure 5.5(f–g) include two minimal failing cases from different PyH2P runs, which are

significantly simpler. The two cases are basically two local minimas of multiple runs of PyH2P

testing. The first one is a two instruction sequence with a smaller operand in the first instruc-

tion than the case found by IDT. This shows the advantage of auto-shrinking in reducing value

complexity. The second one has three instructions, and PyH2P basically failed to shrink it to two

instructions. Specifically, the program counter starts at 0x200, but a PC of 0x204 will trigger the

bug. The effect of having the first NOP instruction is to increase the program counter from 0x200

to 0x204. Because of this intricate dependency in the instruction sequence, the shrinking process

ends at the three-instruction sequence.

5.5 PyH2O: PyH2 for Object-Oriented
Hardware Data Structures

PyH2O is a PyH2 framework that enables using method calls to test RTL hardware components

with object-oriented latency-insensitive interfaces. The key contribution of PyH2O is a novel test-

102

ing methodology for concurrent hardware data structures that are difficult to thoroughly test using

traditional approaches. PyH2O proposes a novel simulation mechanism called auto-ticking, which

has been implemented as a new PyMTL3 simulation pass. With merely “transaction-accurate”

Python data structures as reference models, PyH2O uses the rule-based stateful testing features in

hypothesis to perform a sequence of random method calls on both the reference model and the

auto-ticking simulator of the RTL model, and then checks if the outcomes match for each method

call.

5.5.1 Challenge in Testing Hardware Data Structures

Many open-source hardware blocks are designed to improve reusability by exposing well-

encapsulated timing-insensitive handshake interfaces that can provide an object-oriented view of

the hardware block (e.g., a hardware reorder buffer exposes three object-oriented “method” in-

terfaces: allocate, update, and remove). However, it is very hard to perform random testing to

test the behavior of concurrent hardware data structures that have multiple interfaces accepting

“transactions” in the same cycle. Converting a random transaction sequence into cycle-by-cycle

test vectors using traditional testing approaches requires a cycle-accurate golden model. Manually

creating multi-transaction test-vectors only works for directed testing. One possible solution is to

execute only one random transaction in each cycle, yet the inability to stress intra-cycle concurrent

behavior hurts the quality of the tests.

We conclude that there is critical need to create a novel testing approach for object-oriented

hardware using concurrent intra-cycle transactions.

5.5.2 PyH2O Implementation

PyH2O is based on method-based interfaces which are decoupled handshake interfaces with

four ports: enable, ready, arguments, and return value. Essentially, setting the enable signal high

after making sure the ready signal is high is equivalent to calling the corresponding ready method,

checking if it returns true, and then calling the actual method. Converting an RTL method inter-

face to a Python method involves an adapter that provides a method and a ready method to the user

and sets/modifies the signals inside the adapter. PyH2O leverages Python reflection to automati-

103

cally wrap the RTL method interfaces with a generated top-level PyMTL3 wrapper with Python

methods.

PyH2O applies the AutoTickSimPass to create an auto-ticking simulator for the wrapped

model. Conceptually, auto-ticking is more fine-grained than the classical delta cycle approach.

Auto-ticking divides the combinational logic into multiple parts based on logic related to the

method interfaces. When the user calls the enhanced top-level method, not only the method but

also all the logic between this method and the next method is executed. If the executed method is

the last method of the cycle, the simulator advances to the first method of the next cycle. If the

user skips a method in this cycle and calls another method later in the cycle or a previous method

that is already skipped/called in the current cycle, the simulator ignores the in-between methods

and executes all the logic until it reaches the called method. Unlike trivial one-method-per-cycle

testing, this auto-ticking scheme is able to execute multiple methods in the same cycle if they are

called in a specific order.

5.5.3 Case Study: Reorder Buffer Data Structure

Figure 5.6(a) shows an RTL reorder buffer implementation which exposes three method callee

interfaces. allocate is ready if the buffer is not full. It returns the entry index and advances the tail

pointer. update_ is ready if the buffer has valid elements. It takes an index/value pair to update the

buffer. remove is ready if the buffer head is valid and already updated, and returns the index/value

pair. Note that remove and allocate can occur in the same cycle even if the reorder buffer is full,

because the implementation combinationally factors whether remove is called into allocate’s

ready signal. Figure 5.6(b) shows the execution schedule generated by the AutoTickSimPass. The

auto-ticking simulator guarantees that a sequence of three method calls in the order of update_ <

remove < allocate will occur in the same cycle.

To show the effectiveness of PyH2O, we replace head+1 with head+0 in line 19 of Fig-

ure 5.6(a). This subtle bug needs at least six transactions in a specific order to trigger because

it requires six transactions to allocate, update and remove two entries, but must not remove the

first one and allocate the second one in the same cycle. After trying several sequences with vary-

ing length from 5 to 19, PyH2O discovers a 11-transaction failing case as shown in Figure 5.6(c).

After auto-shrinking, PyH2O successfully finds one of the minimum failing case as shown in Fig-

ure 5.6(d).

104

1 class ReorderBuffer(Component):
2 def construct(s, TData, num_entries):
3 TIndex = mk_bits(clog2(num_entries))
4 TROBMsg = mk_bitstruct('ROBMsg', {
5 'index': TIndex, 'value': TData,
6 })
7 # Method-Based Callee Interfaces
8 s.allocate = CalleeIfcRTL(RetType=TIndex)
9 s.update_ = CalleeIfcRTL(MsgType=TROBMsg)

10 s.remove = CalleeIfcRTL(RetType=TROBMsg)
11 s.head = Wire(TIndex)
12 ...
13 @update_ff
14 def upff_head_pointer():
15 if s.reset:
16 s.head <<= 0
17 elif s.alloc.en & s.remove.en:
18 s.head <<= s.head + 1
19 elif not s.alloc.en & s.remove.en:
20 s.head <<= s.head + 1 # "head + 0" bug

(a) PyMTL3 reorder buffer code snippet

 sequential logic
 < advance cycle >
 comb_update_rdy
M update_
 comb_update_en
 ...
 comb_remove_rdy
M remove
 comb_remove_en
 ...
 comb_allocate_rdy
M allocate
 comb_allocate_en
 ...

call update_: advance cursor
 to here

call remove: advance cursor
 to here

initial cursor position

call allocate: advance cursor
 to next cycle's
 update_

one
clock
cycle

(b) Auto-tick execution schedule for reorder buffer
state = ReorderBuffer_PyH2O()
state.allocate()
state.update(msg=ROBMsg(Bits2(2),Bits16(63527)))
state.allocate()
state.update(msg=ROBMsg(Bits2(3),Bits16(2091)))
state.allocate()
state.allocate()
state.update(msg=ROBMsg(Bits2(1),Bits16(62455)))
state.update(msg=ROBMsg(Bits2(0),Bits16(38580)))
state.remove()
state.alloc()
state.remove() # error: ref ready, dut not ready

state.allocate()
state.update(msg=ROBMsg(Bits2(0),Bits16(0)))
state.allocate()
state.remove()
state.update(msg=ROBMsg(Bits2(1),Bits16(0)))
state.remove() # error: ref ready, dut not ready

(c) The first falsifying example found by PyH2O (d) Minimized failing case after auto-shrinking

Figure 5.6: PyH2O Case Study: Reorder Buffer – (a) shows a code snippet of the reorder buffer implementation
in PyMTL3 with method-based interfaces and the injected bug annotation; (b) illustrates the auto-ticking schedule
that mixes of top-level methods and the update blocks; (c–d) include the method transaction list before and after
auto-shrinking.

105

5.6 Conclusion

This chapter has introduced PyH2, which leverages PyMTL3, pytest, and hypothesis to

create a novel open-source hardware testing methodology. We believe PyH2 is an important first

step towards addressing these key challenges in open-source hardware testing: (1) PyH2 is more

accessible to open-source hardware designers compared to complex closed-source hardware test-

ing methodologies; (2) PyH2G is well-suited for testing not just design instances but also design

generators which are critical to the success of the open-source hardware ecosystem; (3) PyH2P

can improve the random testing of open-source processor implementations compared to the more

limited directed and random testing currently used in many open-source projects; and (4) PyH2O

can more effectively test object-oriented hardware data structures.

106

CHAPTER 6
CONCLUSION

This thesis presented my work on productive and extensible hardware modeling, simulation,

and verification methodologies. This thesis addressed key challenges to hardware modeling method-

ologies in the era of heterogeneous system-on-chips. For each of the four identified challenges, I

proposed a solution to address the challenge. I also built the PyMTL3 framework that incorporates

all of these solutions. Note that the proposed techniques (NIMIR, UMOC, Mamba++, PyH2) are

not restricted to the specific setting in this thesis or the PyMTL3 framework; they can also inspire

improvements and optimizations in other state-of-the-art hardware modeling frameworks.

6.1 Thesis Summary and Contributions

This thesis began by discussing hardware design trends in the last twenty years where the

prevailing hardware platform evolved from single-core architectures to multi-core architectures

and to heterogeneous system-on-chips. Creating productive hardware modeling methodologies is

one of the prominent ways to reduce the non-recurring costs of building heterogeneous system-on-

chips, and there have been multiple generations of hardware modeling methodologies as introduced

in this thesis.

There are four key parts in state-of-the-art hardware development workflows: (1) the hardware

modeling framework itself; (2) the hardware modeling abstraction; (3) simulation of the hardware

models; and (4) testing/verification of the hardware models. I identify one key challenge in each

part: (1) improving the flexiblity and extensibility of HGSFs; (2) unifying CL and RTL modeling to

achieve high model fidelity with little effort; (3) closing the simulation performance gap in HGSFs;

and (4) reducing testing/verification time for agile hardware design flows. This thesis addressed

the four challenges as summarized below.

I first focused on the hardware modeling framework itself. A framework can serve as a sus-

tainable research/engineering platform only if it is flexible and extensible. I proposed native in-

memory intermediate representation (NIMIR) to address the first challege. I also presented the

PyMTL3 framework, the first framework implemented under the NIMIR scheme. I discussed

PyMTL3 modeling features, NIMIR implementation, and various PyMTL3 passes. To demonstrate

107

the flexiblity and extensibility of PyMTL3, I presented a case study on supporting delay-annotated

gate-level modeling.

I then focused on the hardware modeling abstraction and proposed unified modular ordering

constraints (UMOC) to unify CL and RTL modeling and achieve high model fidelity with little

efforts. I implemented UMOC modeling primitives and scheduling algorithms in PyMTL3 for

prototyping and evaluation. As case studies confirmed, UMOC enables high fidelity CL modeling

and seamless composition of RTL and CL components.

Moving on to the simulation of the hardware models, I proposed Mamba++ techniques to close

the simulation performance gap in state-of-the-art HGSFs. I used PyMTL3 as the research plat-

form with a framework-JIT co-optimization approach. Evaluation results showed that Mamba++

techniques can improve the simulation performance by 20–100⇥ in both pure Python and Python-

Verilator co-simulation.

For testing/verification, I presented PyH2, our vision and techniques to reduce the testing/ver-

ification time for agile hardware design flows. Leveraging Python, other parts of the PyMTL3

framework, and hypothesis, we built the PyH2G, PyH2P, and PyH2O testing frameworks to

test hardware generators, processors, and object-oriented hardware data structures, respectively.

PyH2’s property-based testing is able to find smaller failing cases and design instances than com-

plete random testing and find failing cases much faster than iterative deepened testing. PyH2O is

a perfect example of novel simulation mechanisms enabling more effective testing.

To reiterate the major contributions of this thesis:

• I proposed native in-memory intermediate representation (NIMIR), a novel and elegant frame-

work architecture to improve the flexibility and extensibility of productive hardware model-

ing frameworks.

• I proposed unified modular ordering constraints (UMOC), a novel technique to unify CL and

RTL modeling and achieve high model fidelity with little efforts.

• I proposed Mamba++, a set of novel JIT-aware HGSF design techniques and HGSF-aware

JIT optimization techniques, to close the simulation performance gap in HGSFs.

• I presented PyH2, our vision and techniques to reduce the testing/verification time for agile

hardware design flows. PyH2 currently includes testing methodologies for hardware genera-

tors, processors, and object-oriented hardware data structures.

108

• I presented PyMTL3, a novel open-source hardware generation and simulation framework.

PyMTL3 incorporates all of the techniques in this thesis. In practice, PyMTL3 has been used

in courses at Cornell University, research projects, and chip tapeouts in advanced technology

nodes.

6.2 Future Work

Here, I list a few possible ideas to pursue in the future based on this thesis. For each research

idea, I discuss the motivation, the possible research work involved, and the potential impact.

6.2.1 Making PyMTL3 and Chisel/FIRRTL Interoperate

Motivation – As Chisel/FIRRTL currently becomes the most popular circuit intermediate rep-

resentation in academia and industry, there have been many open-source hardware IPs built us-

ing Chisel. The PyMTL3 framework is considered complementary to Chisel/FIRRTL: PyMTL3

focuses more on model-level view of the hardware block instead of circuit-level; and PyMTL3

focuses on smooth simulation/testing experiences. Combining the benefits of Chisel and PyMTL3

looks very appealing. Even though the designer can use black-box Verilog import of PyMTL3

which directly co-simulates the Chisel/FIRRTL generated Verilog with the PyMTL3 test harness,

a white-box import of the FIRRTL model is preferred, as PyMTL3 has access to the model hierar-

chy and hence can transform the model using PyMTL3 passes.

Research – This research topic has two directions. One direction is to build a PyMTL3 back-

end in FIRRTL so that we can generate PyMTL3 code from FIRRTL. The PyMTL3 backend in

FIRRTL involves duplicating the FIRRTL emitter for Verilog and changing each code generation

segments to generate PyMTL3 design code. Fortunately, since FIRRTL only supports single-line

assignments, PyMTL3 lambda statements can fulfill the need. There is a preliminary version of

the PyMTL3 backend in FIRTL. However, there is one subtle issue to be resolved. One prominent

modeling primitive in Chisel is the arithmetic type system where unsigned integer and signed in-

teger are subtypes of Bits, and signed/unsigned integers have corresponding execution semantics.

PyMTL3 only supports unsigned integers, so it might require some work in PyMTL3 or smart

conversions in the backend. The other direction is to build a FIRRTL backend in PyMTL3 that

109

translates a subset of RTL models to FIRRTL. This involves limiting the translation of single-line

lambda blocks in the FIRRTL backend.

Potential Impact – Developing a PyMTL3 backend in FIRRTL and/or developing a FIRRTL

backend in PyMTL3 brings the interoperability between PyMTL3 and Chisel, which is a huge

step forward for the open-source hardware community. On one hand, PyMTL3 developers obtain

various IPs built in Chisel in a white-box fashion “for free”, which can be used for experiments

and case studies. On the other hand, FIRRTL users can generate PyMTL3 code to leverage all the

PyMTL3 features such as PyMTL3 passes and PyH2 testing. With both directions done, PyMTL3

can provide a FIRRTL-in-FIRRTL-out experience.

6.2.2 Unified Scheduling for FL, CL, RTL, and Delay-Annotated GL Models

Motivation – State-of-the-art hardware development frameworks essentially focus on raising

the level of abstraction to improve the productivity of users. As a result, most frameworks deploy

cycle-based simulation and at most simple timing-accurate simulation such as scheduling multiple

clock domains using least-common-multiple of the frequencies. In contrast, the HDLs (Verilog or

VHDL) support RTL, simple GL, and timing-annotated GL models, with timing-accurate simula-

tors. The state-of-the-art design flow is broken down to two phases: the first phase includes FL,

CL, and RTL modeling in the productive hardware modeling framework, and the second phase in-

clude low-level RTL, GL, and delay-annotated GL models in HDL simulators. To further improve

the productivity in the first phase, there is a need for a novel unified scheduling scheme to simulate

FL, CL, RTL, and delay-annotated GL models altogether in the hardware modeling framework.

Research – This research topic involves two steps. First, the current existing delay-annotated

GL modeling scheme as studied in Section 2.4 is not compatible with the general UMOC schedul-

ing scheme. A unified scheme that combines UMOC and delay-annotated GL simulation is a

potential starting point. This step can further be broken down into several steps of investigation:

GL and UMOC parts are separated; GL is at the top and UMOC is one clock domain; or UMOC is

at the top and GL is intra-cycle. Second, the new scheduling scheme should be more complicated

than the current UMOC scheme and probably cannot directly reuse Mamba++’s hierarchical static

scheduling to achieve high simulation performance. Optimizing the simulation performance of the

unified UMOC/GL scheme may involve some existing Mamba++ techniques or new techniques.

110

Potential Impact – A high-simulation-performance unified scheduling scheme for FL/CL/RTL/GL

models can bring significant benefits in chip prototyping. If done right, this work has the potential

to be a new open-source EDA tool.

6.2.3 Exploring Fully Offloaded Simulation to Verilator Inside PyMTL3

Motivation – Section 4.9 discussed the case where the 5-stage pipeline processor without

caches has lower simulation performance than the larger 5-stage pipeline processor with caches

due to the difference in the test memory activity in Python. Analysis confirms that the C++ part of

the simulation is significantly faster than the Python part. Specifically, performing simulation in

pure C++ has the potential to bring another 2–20⇥ of speedup to the game as suggested by the Ver-

ilator simulation performance in Chapter 4. It becomes very appealing to offload more simulation

to Verilator during PyMTL3/Verilator co-simulation for even higher simulation performance.

Research – This research topic involves two steps. First, in order to explore such offloaded

simulation, the test memory, test sources, test sinks need to be made translatable to Verilog (but

no need to be synthesizable). This requires some efforts in carefully constructing PyMTL3 testing

components in the mindset of ROMs and registers instead of Pythonic integers and lists. As a side

note, it is also interesting to see how those translatable test memory/source/sink can be synthesized

into hardware. The second step is to design a novel co-simulation interface between PyMTL3 and

Verilator. This is because PyMTL3 still needs to correctly drive the co-simulation and know when

the Verilator simulation ends or when some error is thrown. This interface/callback scheme needs

to be lightweight and asynchronous between PyMTL3 and Verilator to avoid bringing in other

unnecessary overheads.

Potential Impact – Successful translation and synthesis of these testing components may open

up opportunities in productive FPGA methodologies which can help FPGA prototyping and chip

bring-up. Then, if the offloaded PyMTL3/Verilator co-simulation scheme takes little effort to set

up, it can potentially increase designers’ interest in using PyMTL3 to build huge RTL blocks.

Writing RTL design in PyMTL3 and setting up ultra-fast virtual prototyping using Verilator with

little efforts in other parts of the test harness seem to be superior to any existing approach.

111

6.2.4 Exploring PyMTL3/Synopsys VCS Co-simulation

Motivation – Although the VerilogTBGenPass provides a handy way to create cycle-by-cycle

Verilog test benches, the generated test benches are not feasible to drive billion-cycle Verilog sim-

ulations due to two reasons: (1) the test case files are too huge since they record all the value

changes for every cycle; and (2) it is not realistic to even simulate a billion cycle in PyMTL3

with the VerilogTBGenPass activated. PyMTL3 already supports PyMTL3/Verilator black-box

co-simulation. However, when it comes to serious silicon prototyping, Verilator as a community-

maintained open-source Verilog simulator falls short of the industry standard. The most used

commercial Verilog simulator is Synopsys VCS. Additionally, VCS is a four-state simulator, while

Verilator is only two-state. In conclusion, black-box cosimulation with VCS becomes a very ap-

pealing option over Verilator.

Research – There are simple example of leveraging VCS slave mode [vb0] to compile VCS

into a C++ library. The VcsInit() and VcsSimUntil() seems like a tick function to advance the

time stamp. It may require some efforts to figure out how to instrument the values in the actual

Verilog design. Then, it might involve building fake Verilog wrappers to enable the C++ wrapper

generated by the PyMTL3 VCS import pass to exchange value with the Verilog world. Essentially,

the key idea is to mimic how we did for Verilator import to build Python/C++ (and potentially

Verilog) wrappers to enable value exchange between PyMTL3 and VCS in each cycle.

Potential Impact – PyMTL3/VCS black-box co-simulation will make post place-and-route or

signoff gate-level simulation much easier. The same PyMTL3 test bench can be used to drive the

GL simulation. The envisioned automated flow (Verilog translation, ASIC flow and black-box

4-state VCS simulation) is essentially an enhanced version of the current Verilator co-simulation

flow.

6.2.5 Exploring the Spectrum Between Constructive and Transformative Hardware Design

Motivation – The PyMTL3 transform passes open up vast opportunities to avoid temporarily

rewriting code in many different files and reverting them later. This is especially useful in the

iterative debugging process. Moreover, consider a physical/logical mismatch that PyMTL3 can

fix. Two designers are following good engineering practice. One implements the processor which

encapsulates the processor and the caches in a single module. The other one implements the

112

on-chip network model which encapsulates all the routers in a single module. Composing them

together does not lead to any issue in simulation, but when it comes to the physical design step,

it becomes impossible to point the ASIC tool to a tile that consists of one processor and one

router. To perform 2D floorplanning, the designers are required to create a new module and put

one processor and one router inside it, which breaks the modularity. A PyMTL3 transform pass can

“grab” those routers out from the network component and put it into the processor/cache tile. Then

the modified PyMTL3 model can be translated to Verilog, and then the tiles can be floorplanned

by ASIC tools. Such usage of transform passes is fundamentally different from the traditional

constructive hardware design where hardware components are fully declared before elaboration.

Taking one step forward, what if the whole model is constructed using a transform pass?

Research – The research topic involves three steps. First, hand-crafting a few fully trans-

formative hardware designs such as a CGRA accelerator is a good starting point. This involves

carefully constructing a mini program that starts with an empty PyMTL3 component and only uses

PyMTL3 API calls to add and connect components/signals. Then, slowly add various components

to the empty component and remove part of the mini program until it reaches a sweet spot of suc-

cinct component description and succinct mini program using regular loops. Finally and hopefully,

there is some interesting insights in the transformative hardware design approach and some useful

ideas from studying the sweet spots.

Potential Impact – This spectrum between constructive and transformative hardware designs

is very profound and worth investigation. The discussion above is only tip of the iceberg. Note

that this topic can also use FIRRTL/Chisel as the infrastructure, but the model-level view provided

by PyMTL3 may be the key enabler of such research.

113

BIBLIOGRAPHY

[AACM07] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython: A Step Towards
Reconciling Dynamically and Statically Typed OO Languages. Symp. on Dynamic
Languages, Oct 2007.

[ABC+16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A System for Large-Scale Machine Learning.
Symp. on Operating System Design and Implementation (OSDI), Nov 2016.

[ACF+19] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng, M. Kim,
J. Lee, U. Mallappa, M. Neseem, and et al. Toward an Open-Source Digital Flow:
First Learnings from the OpenROAD Project. Design Automation Conf. (DAC),
Jun 2019.

[AKPJ09] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. GARNET: A Detailed On-
Chip Network Model inside a Full-System Simulator. Int’l Symp. on Performance
Analysis of Systems and Software (ISPASS), Apr 2009.

[AP14] K. Asanovic and D. A. Patterson. Instruction Sets Should Be Free: The Case for
RISC-V. Technical report, UCB/EECS-2014-146, Aug 2014.

[ARKK13] A. Annamalai, R. Rodrigues, I. Koren, and S. Kundu. An Opportunistic Prediction-
Based Thread Scheduling to Maximize Throughput/Watt in AMPs. Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Sep 2013.

[BBB+11] N. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-
ness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood. The gem5 Simulator. SIGARCH Computer Architec-
ture News (CAN), 39(2):1–7, Aug 2011.

[BCC+17] D. Bradford, S. Chinthamani, J. Corbal, A. Hassan, K. Janik, and N. Ali. Knights
Mill: New Intel Processor for Machine Learning. Symp. on High Performance
Chips (Hot Chips), Aug 2017.

[BCFR09] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the Meta-Level: PyPy’s
Tracing JIT Compiler. Workshop on the Implementation, Compilation, Optimiza-
tion of Object-Oriented Languages and Programming Systems (ICOOOLPS), Jul
2009.

[BCSS98] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware Design in
Haskell. Int’l Conf. on Functional Programming (ICFP), Sep 1998.

[BDM+07] S. Belloeil, D. Dupuis, C. Masson, J. Chaput, and H. Mehrez. Stratus: A Procedural
Circuit Description Language Based Upon Python. Int’l Conf. on Microelectronics
(ICM), Dec 2007.

114

[BH98] P. Bellows and B. Hutchings. JHDL-An HDL for Reconfigurable Systems. Symp.
on FPGAs for Custom Computing Machines (FCCM), Apr 1998.

[BKK+10] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards. Clash: Structural
Descriptions of Synchronous Hardware Using Haskell. Euromicro Conf. on Digital
System Design (DSD), Sep 2010.

[Bol12] J. Bolaria. Xeon Phi Targets Supercomputers. Microprocessor Report (MPR), Sep
2012.

[boo11] BookSim Interconnection Network Simulator. Online Webpage, 2011 (ac-
cessed Dec 19, 2011). https://nocs.stanford.edu/cgi-bin/trac.cgi/
wiki/Resources/BookSim.

[BVR+12] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek,
and K. Asanović. Chisel: Constructing Hardware in a Scala Embedded Language.
Design Automation Conf. (DAC), Jun 2012.

[BYF+09] A. Bakhoda, G. L. Yuan, W. W. L. Func, H. Wond, and T. M. Aamodt. Analyzing
CUDA Workloads Using a Detailed GPU Simulator. Int’l Symp. on Performance
Analysis of Systems and Software (ISPASS), Apr 2009.

[CCA+11] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,
and T. Czajkowski. LegUp: High-Level Synthesis for FPGA-Based Processor/Ac-
celerator Systems. Int’l Symp. on Field Programmable Gate Arrays (FPGA), Feb
2011.

[CCSRS03] F. Corno, G. Cumani, M. Sonza Reorda, and G. Squillero. Fully Automatic Test
Program Generation for Microprocessor Cores. Design, Automation, and Test in
Europe (DATE), Mar 2003.

[CH00] K. Claessen and J. Hughes. QuickCheck: a Lightweight Tool for Random Testing
of Haskell Programs. Int’l Conf. on Functional Programming (ICFP), Sep 2000.

[CKES17] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss - An Energy-Efficient Re-
configurable Accelerator for Deep Convolutional Neural Networks. IEEE Journal
of Solid-State Circuits (JSSC), 52(1):127–138, Jan 2017.

[CLN+11] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-
Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 30(4):473–
491, Mar 2011.

[CM08] P. Coussy and A. Morawiec, editors. High-Level Synthesis: From Algorithm to
Digital Circuit. Springer, 2008.

115

[CMJ+18] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, et al. TVM: An Automated End-to-End Optimizing Compiler for
Deep Learning. OSDI, Oct 2018.

[CML08] A. Chattopadhyay, H. Meyr, and R. Leupers. LISA: A Uniform ADL for Embed-
ded Processor Modeling, Implementation, and Software Toolsuite Generation. In
Processor description languages, pages 95–132. Elsevier, 2008.

[CTD+17] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and T. Sherwood. A
Pythonic Approach for Rapid Hardware Prototyping and Instrumentation. Int’l
Conf. on Field Programmable Logic (FPL), Sep 2017.

[Dec04] J. Decaluwe. MyHDL: A Python-based Hardware Description Language. Linux
Journal, Nov 2004.

[DGY+74] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of Ion-Implanted MOSFET’s with Very Small Physical Dimen-
sions. IEEE Journal of Solid-State Circuits (JSSC), 9(5):256–268, Oct 1974.

[DPR96] C. Dawson, S. Pattanam, and D. Roberts. The Verilog Procedural Interface for the
Verilog Hardware Description Language. IEEE International Verilog HDL Confer-
ence, 1996.

[EBA+11] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark
Silicon and the End of Multicore Scaling. Int’l Symp. on Computer Architecture
(ISCA), Jun 2011.

[FUN+18] M. R. Fadiheh, J. Urdahl, S. S. Nuthakki, S. Mitra, C. Barrett, D. Stoffel, and
W. Kunz. Symbolic Quick Error Detection Using Symbolic Initial State for Pre-
Silicon Verification. Design, Automation, and Test in Europe (DATE), 2018.

[GALP18] N. Ganjehloo, V. Akella, and J. Lowe-Power. Integrating Cycle Accurate Chisel
Models with gem5’s System Simulation, 2018.

[GHN+12] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam,
and C. Kim. DySER: Unifying Functionality and Parallelism Specialization for
Energy Efficient Computing. IEEE Micro, 33(5), Sep/Oct 2012.

[Gre11] P. Greenhalgh. Big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7. EE
Times, Oct 2011.

[GTBS13] J. P. Grossman, B. Towles, J. A. Bank, and D. E. Shaw. The Role of Cascade,
a Cycle-Based Simulation Infrastructure, in Designing the Anton Special-Purpose
Supercomputers. Design Automation Conf. (DAC), Jun 2013.

[HGD20] V. Herdt, D. Große, and R. Drechsler. Closing the RISC-V Compliance Gap: Look-
ing from the Negative Testing Side. Design Automation Conf. (DAC), Jun 2020.

116

[HGG+99] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. EXPRES-
SION: A Language for Architecture Exploration Through Compiler/Simulator Re-
targetability. Design, Automation, and Test in Europe (DATE), Mar 1999.

[HMLT03] P. Haglund, O. Mencer, W. Luk, and B. Tai. Hardware Design with a Scripting
Language. Int’l Conf. on Field Programmable Logic (FPL), Sep 2003.

[ica] Icarus Verilog. http://iverilog.icarus.com.

[iee21] P1800 - Standard for SystemVerilog–Unified Hardware Design, Specification, and
Verification Language. Online Webpage, 2021 (accessed May 10, 2021). https:
//standards.ieee.org/project/1800.html.

[IKL+17] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt,
C. Markley, J. Lawson, and J. Bachrach. Reusability is FIRRTL Ground: Hardware
Construction Languages, Compiler Frameworks, and Transformations. Int’l Conf.
on Computer-Aided Design (ICCAD), Nov 2017.

[JB99] J. Jennings and E. Beuscher. Verischemelog: Verilog Embedded in Scheme.
Conf. on Domain-Specific Languages (DSL), Oct 1999.

[JBM+13] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E. Shaw,
J. Kim, and W. J. Dally. A Detailed and Flexible Cycle-Accurate Network-on-Chip
Simulator. Int’l Symp. on Performance Analysis of Systems and Software (ISPASS),
Apr 2013.

[JIB18] S. Jiang, B. Ilbeyi, and C. Batten. Mamba: Closing the Performance Gap in Pro-
ductive Hardware Development Frameworks. Design Automation Conf. (DAC), Jun
2018.

[JOP+20] S. Jiang, Y. Ou, P. Pan, K. Cheng, Y. Zhang, and C. Batten. PyH2: Using PyMTL3
to Create Productive and Open-Source Hardware Testing Methodologies. IEEE
Design & Test, 40(4):58–66, Jul/Aug 2020.

[JOPB21] S. Jiang, Y. Ou, P. Pan, and C. Batten. UMOC: Unified Modular Ordering Con-
straints to Unify Cycle- and Register-Transfer-Level Modeling. Design Automation
Conf. (DAC), Dec 2021.

[JPOB20] S. Jiang, P. Pan, Y. Ou, and C. Batten. PyMTL3: A Python Framework for Open-
Source Hardware Modeling, Generation, Simulation, and Verification. IEEE Micro,
40(4):58–66, Jul/Aug 2020.

[JTB18] S. Jiang, C. Torng, and C. Batten. An Open-Source Python-Based Hardware Gen-
eration, Simulation, and Verification Framework. Workshop on Open-Source EDA
Technology, Nov 2018.

117

[KDK+11] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and the
Future of Parallel Computing. IEEE Micro, 31(5):7–17, Sep/Oct 2011.

[KFJ+03] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Single-ISA Het-
erogeneous Multi-Core Architectures: The Potential for Processor Power Reduc-
tion. Int’l Symp. on Microarchitecture (MICRO), Dec 2003.

[KJJ+20] Y. D. Kim, W. Jeong, L. Jung, D. Shin, J. G. Song, J. Song, H. Kwon, J. Lee,
J. Jung, M. Kang, et al. A 7nm High-Performance and Energy-Efficient Mobile
Application Processor with Tri-Cluster CPUs and a Sparsity-Aware NPU. Int’l
Solid-State Circuits Conf. (ISSCC), Feb 2020.

[KJT+17] J. Kim, S. Jiang, C. Torng, M. Wang, S. Srinath, B. Ilbeyi, K. Al-Hawaj, and C. Bat-
ten. Using Intra-Core Loop-Task Accelerators to Improve the Productivity and
Performance of Task-Based Parallel Programs. Int’l Symp. on Microarchitecture
(MICRO), Oct 2017.

[KTMH07] T. H. Khan, S. Tahar, O. A. Mohamed, and A. Habibi. Automatic Generation of
Systemc Transactors from Graphical FSM. Int’l Conf. on Microelectronics (ICM),
Dec 2007.

[KTR+04] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas. Single-
ISA Heterogeneous Multi-Core Architectures for Multithreaded Workload Perfor-
mance. Int’l Symp. on Computer Architecture (ISCA), Jun 2004.

[LA04] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. Int’l Symp. on Code Generation and Optimization
(CGO), Mar 2004.

[LAS+09] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multi-
core and Manycore Architectures. Int’l Symp. on Microarchitecture (MICRO), Dec
2009.

[LFSZ17] T. Liang, L. Feng, S. Sinha, and W. Zhang. PAAS: A System Level Simulator
for Heterogeneous Computing Architectures. Int’l Conf. on Field Programmable
Logic (FPL), Sep 2017.

[Lie84] K. J. Lieberherr. Towards a Standard Hardware Description Language. Design
Automation Conf. (DAC), Jun 1984.

[LK09] J. Lee and N. S. Kim. Optimizing Throughput of Power- and Thermal-Constrained
Multicore Processors using DVFS and Per-Core Power-Gating. Design Automation
Conf. (DAC), Jul 2009.

118

[LKK+18] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen. RFUZZ: Coverage-
Directed Fuzz Testing of RTL on FPGAs. Int’l Conf. on Computer-Aided Design
(ICCAD), Nov 2018.

[LL00] Y. Li and M. Leeser. HML, A Novel Hardware Description Language and Its Trans-
lation to VHDL. IEEE Trans. on Very Large-Scale Integration Systems (TVLSI),
8(1):1–8, Dec 2000.

[LSC+10] M. Lis, K. S. Shim, M. H. Cho, P. Ren, O. Khan, and S. Devadas. DARSIM: A
Parallel Cycle-Level NoC Simulator. Workshop on Modeling, Benchmarking and
Simulation (MOBS), Jun 2010.

[LWC+16] Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller, A. Puggelli, J. Kwak,
R. Jevtic, S. Bailey, M. Blagojevic, et al. An agile approach to building RISC-
V microprocessors. IEEE Micro, 36(2):8–20, 2016.

[LZB14] D. Lockhart, G. Zibrat, and C. Batten. PyMTL: A Unified Framework for Verti-
cally Integrated Computer Architecture Research. Int’l Symp. on Microarchitecture
(MICRO), Dec 2014.

[Mas07] A. Mashtizadeh. PHDL: A Python Hardware Design Framework. M.S. Thesis,
EECS Department, MIT, May 2007.

[MD20] D. R. MacIver and A. F. Donaldson. Test-Case Reduction via Test-Case Gen-
eration: Insights from the Hypothesis Reducer (Tool Insights Paper). European
Conference on Object-Oriented Programming, Nov 2020.

[MFN+17] M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, J. Balkind, A. Lavrov, M. Shahrad,
S. Payne, and D. Wentzlaff. Piton: A Manycore Processor for Multitenant Clouds.
IEEE Micro, Mar 2017.

[MHDmoc19] D. R. MacIver, Z. Hatfield-Dodds, and many other contributors. Hypothesis:
A New Approach to Property-Based Testing. Journal of Open-Source Software
(JOSS), 4(43), Nov 2019.

[mig] Migen: A Python Toolbox For Building Complex Digital Hardware. https://
m-labs.hk/gateware.html.

[MMB+18] C. Mattarei, M. Mann, C. Barrett, R. G. Daly, D. Huff, and P. Hanrahan. CoSA:
Integrated Verification for Agile Hardware Design. Int’l Conf. on Formal Methods
in Computer Aided Design (FMCAD), Oct 2018.

[MMG+20] O. Matthews, A. Manocha, D. Giri, M. Orenes-Vera, E. Tureci, T. Sorensen, T. J.
Ham, J. L. Aragón, L. P. Carloni, and M. Martonosi. MosaicSim: A Lightweight,
Modular Simulator for Heterogeneous Systems. Int’l Symp. on Performance Anal-
ysis of Systems and Software (ISPASS), Aug 2020.

119

[Moo65] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics
Magazine, 1965.

[MRR12] M. McCool, A. D. Robinson, and J. Reinders. Structured Parallel Programming:
Patterns for Efficient Computation. Morgan Kaufmann, 2012.

[myh21] MyHDL: From Python to Silicon. Online Webpage, 2021 (accessed May 15, 2021).
http://www.myhdl.org.

[Nik04] N. Nikhil. Bluespec System Verilog: Efficient, Correct RTL from High-Level
Specifications. Int’l Conf. on Formal Methods and Models for Co-Design (MEM-
OCODE), Jun 2004.

[NM15] M. Naylor and S. Moore. A Generic Synthesisable Test Bench. Int’l Conf. on
Formal Methods and Models for Co-Design (MEMOCODE), Sep 2015.

[ope08] OpenMP Application Program Interface. OpenMP Architecture Review Board,
2008. http://www.openmp.org/mp-documents/spec30.pdf.

[PACG11] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSS-x86: A QEMU-Based Micro-
Architectural and Systems Simulator for x86 Multicore Processors. Design Au-
tomation Conf. (DAC), Jun 2011.

[Pan01] P. R. Panda. SystemC: A Modeling Platform Supporting Multiple Design Abstrac-
tions. Int’l Symp. on Systems Synthesis (ISSS), Oct 2001.

[Ped20] V. A. Pedroni. Circuit Design with VHDL. The MIT Press, 2020.

[PFKM06] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo Graph Embedding: Mapping
Applications onto Coarse-Grained Reconfigurable Architectures. Int’l Conf. on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES), Oct 2006.

[PGM+19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. CoRR arXiv:1912.01703, 2019.

[PMH+21] P. Paternoster, A. Maki, A. Hernandez, M. Grossman, M. Lau, D. Sutherland, and
A. Mathad. XBOX Series X: A Next-Generation Gaming Console SoC. Int’l Solid-
State Circuits Conf. (ISSCC), Feb 2021.

[PMT04] D. G. Pérez, G. Mouchard, and O. Temam. A New Optimized Implemention of
the SystemC Engine Using Acyclic Scheduling. Design, Automation, and Test in
Europe (DATE), Feb 2004.

[pyp21] PyPI: The Python Package Index. Online Webpage, 2021 (accessed May 10, 2021).
https://pypi.org/.

120

[PZK+17] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram,
C. Kozyrakis, and K. Olukotun. Plasticine: A Reconfigurable Architecture For
Parallel Paterns. Int’l Symp. on Computer Architecture (ISCA), Jun 2017.

[RCBJ11] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle Accurate
Memory System Simulator. Computer Architecture Letters (CAL), 10(1):16–19,
2011.

[Rei07] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O’Reilly, 2007.

[RIS] RISCV-DV. https://github.com/google/riscv-dv.

[RZAH+19] A. Rovinski, C. Zhao, K. Al-Hawaj, P. Gao, S. Xie, C. Torng, S. Davidson,
A. Amarnath, L. Vega, B. Veluri, A. Rao, T. Ajayi, J. Puscar, S. Dai, R. Zhao,
D. Richmond, Z. Zhang, I. Galton, C. Batten, M. B. Taylor, and R. G. Dreslinski.
A 1.4 GHz 695 Giga RISC-V Inst/s 496-core Manycore Processor with Mesh On-
Chip Network and an All-Digital Synthesized PLL in 16nm CMOS. Symp. on Very
Large-Scale Integration Circuits (VLSIC), Jun 2019.

[SAW+10] O. Shacham, O. Azizi, M. Wachs, W. Qadeer, Z. Asgar, K. Kelley, J. Stevenson,
A. Solomatnikov, A. Firoozshahian, B. Lee, S. Richardson, and M. Horowitz. Re-
thinking Digital Design: Why Design Must Change. IEEE Micro, 30(6):9–24,
Nov/Dec 2010.

[SBM+19] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway, Y. B. S.
Hance, C. McCardwell, V. Zhao, H. Barclay, A. K. Ziabari, Z. Chen, R. Ubal,
J. L. Abellán, J. Kim, A. Joshi, and D. Kaeli. MGPUSim: Enabling Multi-GPU
Performance Modeling and Optimization. Int’l Symp. on Computer Architecture
(ISCA), Jun 2019.

[SDF06] S. Sutherland, S. Davidmann, and P. Flake. SystemVerilog for Design Second
Edition: A Guide to Using SystemVerilog for Hardware Design and Modeling.
Springer Science & Business Media, 2006.

[SGC+16] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, and Y.-C. Liu. Knights Landing: Second-Generation Intel Xeon Phi
Product. IEEE Micro, 36(2):34–46, Mar/Apr 2016.

[Sha81] M. Sharir. A Strong-Connectivity Algorithm and Its Applications in Data Flow
Analysis. Computers & Mathematics with Applications, 7(1):67–72, 1981.

[SWD+12] O. Shacham, M. Wachs, A. Danowitz, S. Galal, J. Brunhaver, W. Qadeer,
S. Sankaranarayanan, A. Vassilev, S. Richardson, and M. Horowitz. Avoiding
Game Over: Bringing Design to the Next Level. Design Automation Conf. (DAC),
Jun 2012.

121

[Tar71] R. Tarjan. Depth-First Search and Linear Graph Algorithms. Annual Symp. on
Switching and Automata Theory (SWAT), Oct 1971.

[Tay13] M. B. Taylor. A Landscape of the New Dark Silicon Design Regime. IEEE Micro,
33(5):8–19, Sep/Oct 2013.

[TM08] D. Thomas and P. Moorby. The Verilog® Hardware Description Language.
Springer Science & Business Media, 2008.

[TOJ+19] C. Tan, Y. Ou, S. Jiang, P. Pan, C. Torng, S. Agwa, and C. Batten. PyOCN: A
Unified Framework for Modeling, Testing, and Evaluating On-Chip Networks. Int’l
Conf. on Computer Design (ICCD), Nov 2019.

[vb0] vb000. VCS Slave Mode. https://github.com/vb000/vcs-slave-mode/
tree/master.

[ver21] Verilator. Online Webpage, 2021 (accessed May 15, 2021). http://www.
veripool.org/wiki/verilator.

[VSS+20] R. Venkatasubramanian, D. Steiss, G. Shurtz, T. Anderson, K. Chirca, R. San-
thanagopal, N. Nandan, A. Reghunath, H. Sanghvi, D. Wu, et al. A 16nm 3.5 B+
Transistor> 14TOPS 2-to-10W Multicore SoC Platform for Automotive and Em-
bedded Applications with Integrated Safety MCU, 512b Vector VLIW DSP, Em-
bedded Vision and Imaging Acceleration. Int’l Solid-State Circuits Conf. (ISSCC),
Feb 2020.

[WJM08] W. Wolf, A. A. Jerraya, and G. Martin. Multiprocessor system-on-chip (MPSoC)
technology. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 27(10):1701–1713, 2008.

[You07] M. T. Yourst. PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural
Simulator. Int’l Symp. on Performance Analysis of Systems and Software (ISPASS),
Apr 2007.

122

