
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024 1

Supporting a Virtual Vector Instruction Set on a Commercial
Compute-in-SRAM Accelerator

Courtney Golden, Dan Ilan, Caroline Huang, Niansong Zhang, Zhiru Zhang, and Christopher Batten

Abstract—Recent work has explored compute-in-SRAM as

a promising approach to overcome the traditional processor-

memory performance gap. The recently released Associative

Processing Unit (APU) from GSI Technology is, to our knowledge,

the first commercial compute-in-SRAM accelerator. Prior work

on this platform has focused on domain-specific acceleration

using direct microcode programming and/or specialized libraries.

In this letter, we demonstrate the potential for supporting a more

general-purpose vector abstraction on the APU. We implement

a virtual vector instruction set based on the recently proposed

RISC-V Vector (RVV) extensions, analyze tradeoffs in instruction

implementations, and perform detailed instruction microbench-

marking to identify performance benefits and overheads. This

work is a first step towards general-purpose computing on

domain-specific compute-in-SRAM accelerators.

Index Terms—In-memory computing, hardware/software in-

terfaces

I. INTRODUCTION

P
ROCESSOR logic scaling has outpaced that of memory
technologies, creating a processor-memory performance

gap in von Neumann architectures. Compute-in-memory sys-
tems address this gap by computing on memory bitlines and in
peripheral circuitry. Unlike compute-in-DRAM, compute-in-
SRAM is able to leverage logic technology scaling and enables
monolithic solutions with low area- and energy-overheads.
Much of prior work on compute-in-SRAM is based on small-
scale simulations and/or academic prototypes [1], [2], [3], [4],
[6], [8], [9], [12], [13], [14]. The recently released Associative
Processing Unit (APU) from GSI Technology is, to our knowl-
edge, the first commercial compute-in-SRAM chip [7]. The
APU includes large SRAM arrays with support for computing
on the bitlines and in the peripheral logic.

There are currently two ways to program the APU. The first
is using direct microcode sequences, which involves writing
custom bitwise operations for each application. The company
also provides a higher-level abstraction, which facilitates easier
programming but still includes many specialized operations
targeting specific domains. As a result, prior work has used
the APU for a small number of specific workload types,
like similarity search, hash functions, and synthetic-aperture
radar [7], [11].

Manuscript received 29 September 2023; revised 6 November 2023; ac-
cepted 1 December 2023. Date of publication 11 December 2023; date of
current version 26 February 2024. This work was supported in part by NSF
PPoSS Award #2118709; NSF SHF Award #2008471; and ACE, one of seven
centers in JUMP 2.0, an SRC program sponsored by DARPA. (Corresponding
author: Courtney Golden.)

Courtney Golden, Caroline Huang, Niansong Zhang, Zhiru Zhang,
and Christopher Batten are with Cornell Univeristy, Ithaca NY 14850
USA (e-mail: ckg35@cornell.edu; lh494@cornell.edu; nz264@cornell.edu;
zhiruz@cornell.edu; cbatten@cornell.edu).

Dan Ilan is with GSI Technology Inc., Tel Aviv Israel 39986, Israel (e-mail:
dilan@gsitechnology.com).

Digital Object Identifier 10.1109/LCA.2023.3341389

In this letter, we explore generalizing beyond these do-
mains by implementing a virtual vector instruction set on
the APU. We implement a subset of the RISC-V Vector
(RVV) extensions and analyze instruction-level performance
using detailed microbenchmarking. We also use a K-nearest
neighbor case study to gain further insight into the tradeoffs
involved in adopting a virtual vector instruction set. The
primary contributions of this paper are: (1) a description of the
APU’s architecture and microcode programming model; (2) a
demonstration of implementing a virtual vector instruction set
on the APU; and (3) detailed quantitative microbenchmarking
of this virtual vector instruction set.

II. APU ARCHITECTURE

In this section, we present a simplified view of the architec-
ture and microarchitecture of the APU, as there is currently no
detailed public description with a microcode-level view. We
detail the main features that affect microcode programming
while abstracting away additional functionalities. See [7] for
details. 1

As shown in Fig. 1(a), the APU platform consists of a
standard x86-64 host CPU and a four-core APU chip, which
communicate over PCIe and share a DDR4 DRAM. Logi-
cally, each APU core can be viewed as a traditional vector
engine that operates on 32k-element vectors of 16-bit data
values (Fig. 1(b)). Instruction distribution starts in the control
processor (CP), which executes scalar code and issues vector
commands to the vector command unit (VCU). The VCU
decodes instructions into microcode operations that directly
control the hardware at a cycle-level granularity. To operate
on data from the shared device DRAM, the CP first uses DMA
to move data to local 64KB scratchpad memories (SPM) in
each core. Microcode operations then transfer these vectors to
a 3MB vector memory register file (VMRF), which serves as a
set of 48 “background” registers. Ultimately, the main unit of
local storage is a compute-enabled 1.5MB vector register file
(VRF) containing 24 vector registers, with elements striped
across 16 banks.

Within one bank of the VRF (Fig. 1(c)), each of the 2048
columns stores the 16 bits of an element. Data is stored in a bit-
sliced fashion, where corresponding bits of each VR are stored
together as one bit-slice. For example, in column zero, bit-
slice 8 contains bit 8 of element zero of all 24 vector registers,
bit-slice 8 + 1 contains bit 8 + 1 of element zero from all 24
vector registers, etc. Each column of each bit-slice contains
a single-bit read latch and associated logic. Data can also
be stored in many other formats, such as storing multiple
narrower elements in a single column and increasing the
effective vector length. The architecture also contains global

1We have adopted slightly different terminology than GSI to provide a more
intuitive description of the APU microarchitecture.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024 2

Write
Logic

Read
Logic

Source
Mux

Read
Latch

RLS

RLW RLE

RLN

Bit 23

WE23
RE23

Bit 0

WE0
RE0

RBL WBL WBLB

G
lo

ba
l V

er
tic

al
 L

in
e

(G
V

L)

Global Horizontal Line (GHL)

D
ec

od
er

R/W R/W R/W R/W R/W
D

ec
od

er

R/W R/W R/W R/W R/W

Bit
Slice 0

0 1 2 3 2047

24x

Global
Horizontal
Line

Read/Write
Logic

Bit Cell

Bit
Slice 15

(c) SRAM Bank Physical View(d) Bit Processor Circuitry

Read/Write
Enables

(b) APU Core Logical View

Scratchpad Memory (SPM)

Vector Memory Register File (VMRF)

Global
Vertical
Lines

32K

24x

Vector Aritmetic Unit (VXU)

R/W

R/W

2046

VR0
VR1
VR2
VR3
VR4

VR22
VR23

16-bit
Vector
Element

Control
Processor

(CP)

Vector
Command

Unit
(VCU)

(a) System Overview

CP L1$

DMA

to Device DRAM

24
Vector
Registers
each w/
32K
Elements

APU
Core

0

APU
Core

1

APU
Core

3

APU
Core

2 O
n-

C
hi

p
N

et
w

or
k

DRAM Memory Controller

Device DRAM

24x

24x

APU Architecture – (a) System Overview, (b) APU Core Logical View, (c) Bank Physical View, (d) Bit Processor
Circuitry. CP = control processor, VCU = vector command unit, VXU = vector execution unit, VRF = vector
register file, VMRF = vector memory register file, SPM = scratchpad memory, GVL = global vertical latch, R/W =
read/write logic, RBL = read bitline, WBL = write bitline, WBLB = write bitline bar, REx = read-enable for bit x,
WEx = write-enable for bit x, RLN = north read latch. Note: exact bit-slice organization is not published by GSI.

Microarchitectural State

RL read latch
GVL global vertical latch
GHL global horizontal latch
VRF[i] vector register source i

Bit Masking

bm: stmt 16-bit mask (bm) activates
bit-slices

(bm<<imm):stmt bm can be bitwise shifted
by immediate (imm)

Operations on State

RL = VRF[vrs0] read VR from VRF
RL = VRF[vrs0,vrs1] read and bitwise AND of two VRs
RL = L read value from a source latch
RL = VRF[vrs0] op L operate on a VR and a latch
RL op= VRF[vrs0] operate on current RL and a VR
RL op= L operate on current RL and a latch
RL op= VRF[vrs0] op L operate on RL, a VR, and a latch
VRF[vrs0] = L write to VRF from source latch

RL = read latch; VR = vector register; VRF = vector regfile;
L = latch (i.e., RL, GVL, GHL, RLN, RLS, RLE, RLW) or complement
of latch (i.e., ~RL, ~GVL, ~GHL, ~RLN, ~RLS, ~RLE, ~RLW)

(e) Microcode Semantics

(f) APL_FRAG vor_vv(vrd, vrs0, vrs1):
0xFFFF: RL = VRF[vrs0];
0xFFFF: RL |= VRF[vrs1];
0xFFFF: VRF[vrd] = RL;

(g) APL_FRAG vmseq_vx(vrd_m, vrs, rs):
0xFFFF: RL = VRF[vrs];
~rs: RL = ~RL;
0xFFFF: GVL = RL;
vrd_m: VRF[MASK_REG] = GVL;

(h) APL_FRAG vmv_vx(vrd, in_value):
0xFFFF: RL = 0;
in_value: RL = 1;
0xFFFF: VRF[dst] = RL;

(i) APL_FRAG vsll(vrs):
0xFFFF: RL = VRF[src];
0xFFFF: VRF[src] = NRL;

(j) APL_FRAG vadd_vv(vrd, vrs0, vrs1):
// ---- bit 0 ----
// vrd = vrs0 XOR vrs1
0x0001: RL = VRF[vrs0];
0x0001: RL ^= VRF[vrs1];
0x0001: VRF[vrd] = RL;
// cout = vrs0 AND vrs1
0x0001: RL = VRF[vrs0];
0x0001: RL &= VRF[vrs1];

// ---- bit 1 ----
// vrd = a ^ b ^ cin
(0x0001<<1): RL = VRF[vrs0];
(0x0001<<1): RL ^= VRF[vrs1];
(0x0001<<1): RL ^= RL_N;
(0x0001<<1): VRF[vrd] = RL;
// cout = a*b + b*cin + a*cin
(0x0001<<1): RL = VRF[vrs0];
(0x0001<<1): RL &= VRF[vrs1];
(0x0001<<1): VRF[temp_0] = RL;
(0x0001<<1): RL = VRF[vrs1];
(0x0001<<1): RL &= RL_N;
(0x0001<<1): VRF[temp_1] = RL;
(0x0001<<1): RL = VRF[vrs0];
(0x0001<<1): RL &= RL_N;
(0x0001<<1): RL |= VRF[temp_0];
(0x0001<<1): RL |= VRF[temp_1];
...

Microcode Fragments for RVV Instructions:
(f) vector or; (g) vector set-equals; (h) vec-
tor set-scalar; (i) left bit-shift; (j) vector
addition. MASK_REG = VR storing masks;
vrd_m = one-hot encoding indicating de-
sired mask.

Fig. 1: APU Architecture, Microcode Semantics, and Microcode Fragments

vertical latches (GVL) and global horizontal latches (GHL).
The GVL connects all cells in a column and can compute a
logical AND. While the implementation of the GHL is quite
complex, functionally, it ORs together the read latches of the
elements in each bit-slice.

Each column of each bit-slice stores 24 bits in custom 12T
SRAM cells and contains a small collection of logic gates
(“R/W Logic” in Fig. 1(d); functionally equivalent to the VXU
in Fig. 1(b)). To operate on any given bit, data values are read
from memory cells using a single common read bit-line (RBL)
and stored in a 1-bit read latch (RL). If multiple values are read
simultaneously, the logical AND appears on RBL. The cell’s
read logic can perform AND, OR, and XOR on two or more
operands, including data from the VRF, RL, GVL, or the RLs
of bit processors to its north, south, east, or west (i.e. '!# ,

'!(, '!⇢ , '!,). Write operands modify the VRF using the
write bit-line (WBL) and its negation (WBLB). By default,
identical operations are performed simultaneously on all 16
bit-slices and 2048 columns. However, a 16-bit bit-mask can
be used to perform different operations on different bit-slices
at once.

The APU’s microinstructions control read and write logic,
global structures (GVL and GHL), and data transfer between
memory layers (VRF, VMRF, and SPM). Fig. 1(e) gives
an overview of the syntax and semantics of the subset of
microcode operations we use in this letter. Each operation
on microarchitectural state can be expressed as a line of
microcode with the inclusion of a bit-mask. Additionally,
although not used in this letter, up to four micro-operations
can be combined into a single VLIW instruction. It is the

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024 3

TABLE I: Implemented RISC-V Vector InstructionsTABLE I. IMPLEMENTED RISC-V VECTOR INSTRUCTIONS

Execution Time (cycles)
Instruction Description Theoretical Meas.

vor_vv bit-wise or 6+ e 15
vadd_vv element-wise addition 14b�9 215
vsub_vx vector-scalar subtraction 15b+5 245
vmul_vv element-wise multiplication 27b+222 438
vmseq_vx set-if-equal 7+ e 13
vmseq_vx_m set-if-equal (masked) 9+ e 15
vredmin_vs find min element (11+C1)b+38+C2 6849
vredmin_vs_m find min element (masked) (11+C1)b+39+C2 6970
vfirst index of first set mask bit 222+C1 6396
vmsof set only first set mask bit 191+C1 6229
vmset set all elements of mask 3 10
vmnot invert mask 7 12
vmand bitwise-and of two masks 9 13
vmv_vx broadcast scalar to vector 5+ e 12
vmv_xs extract element 0 of vector 12+C1 895
vmv_vv copy vector 4+ e 11
vmv_m copy mask 4 11
vsll bitwise left-shift logical 3 13
vsrl bitwise right-shift logical 3 13
vsetvl set application vector length 248+C1 225
vload loads vector from DRAM n/a 21943
vstore stores vector to DRAM n/a 21363

b = element bit-width. e is zero if b = 16 and one otherwise. C1 and C2 in-
dicate cycles due to control processor instructions contained within our vector
implementations; C1 = cycles that would vary with bit-width; C2 = cycles that
are independent of bit-width. Rightmost column indicates average measured
number of cycles for 16-bit elements.

We implemented the 22 instructions shown in Table I, which
model very closely the RVV ISA. Examples of microcode im-
plementations are in Fig. ??a-e. We implement a representative
selection of instructions: (1) element-wise operations, like bit-
wise Boolean functions and element-wise addition; (2) cross-
element operations, like set-equals and reductions; (3) vector
mask operations, like inverting a mask; (4) vector memory oper-
ations, including loads and stores; and (5) a vector configuration
operation to set the desired vector length. Element-wise oper-
ations often involve either simple bit-parallel operations using
the read logic (Fig. ??a) or bit-serial algorithms (Fig. ??e, more
detail in Sec. IV-A); left bitwise shift (Fig. ??d) leverages con-
nections between neighboring bit processors to read from RLN .
Cross-element operations often use data values as bit-masks to
operate on certain bits of all elements in parallel (Fig. ??b,c).
We support all instructions on unsigned 16-bit integers for vec-
tor lengths up to 32K, with some limitations as described below.

IV. MICROBENCHMARKING RESULTS

To microbenchmark the vector operations in our RVV ab-
straction, we profiled each instruction by measuring control-
processor cycles for 10,000 calls to the same operation and av-
eraging over ten trials. In the following section, we describe mi-
crobenchmarking results, various operation implementations,
and the tradeoffs of adopting a virtual vector instruction set in
terms of both arithmetic computation and memory operations.

A. Microbenchmarking Narrow-Bitwidth Vector Operations
Due to its massive parallelism and bit-level control, the APU

offers especially high throughput when performing vector op-
erations on low-precision data. When operating on narrow-
bitwidth values, many operations (e.g. bit-serial operations) can

TABLE II. BIT-PACKING AND DATA TRANSFER

packed operation avg # cycles ops/cycle

one 16-bit ADD 215 152
one 8-bit ADD 93 352
one 4-bit ADD 37 886
one 2-bit ADD 13 2497

two 8-bit ADDs 93 705
four 4-bit ADDs 37 3542
eight 2-bit ADDs 13 20010

one 8-bit MUL 1835 18
one 4-bit MUL 450 73
one 2-bit MUL 126 260

two 4-bit MULs 456 144
four 2-bit MULs 143 917
Data Transfer avg # cycles elements/cycle

DRAM ! SPM 21,575 1.5
SPM ! VMRF 470 69.7
VMRF ! VRF 21 1568.9

exit early. Furthermore, multiple data values can then be packed
into a single element without needing additional cycles.

To demonstrate this, we implemented element-wise vector
addition for 32k-element vectors with value bitwidths swept
over b = {2,4,8,16} (code in Fig. ??e). We take a bit-serial ap-
proach to addition: for each bit, we compute and store a result
bit by using bitlines and peripheral logic to implement the truth
table for a full adder. A carry-out is then computed and prop-
agated to the next bit-slice. The code for bit one is replicated,
shifting its bit-mask by an additional bit each time, for all re-
maining bits. Our proof-of-concept implementation makes the
simplifying assumption that source operands are distinct, but
identical ones could be easily supported. Because this approach
is bit-serial, smaller-bitwidth vectors can exit early from the
computation and have lower latencies that scale linearly with
b (see Table II). The second set of results in Table II then shows
how multiple data values can be packed into a single element
width, further increasing the number of operations per cycle.

To explore the usefulness of narrow bitwidths in quadratic-
time operations, we also benchmarked vector multiplication. As
seen in Table II, multiplying two four-bit values in each element
(to produce an eight-bit result) takes fewer cycles due to early
exit than multiplying two eight-bit values. Then, packing can
be leveraged to double the number of operations done in each
vector-multiply instruction, although a small amount of extra
overhead is added due to structural hazards between packed
operands. The combination of these two optimizations yields
significantly higher throughput. Results for both four-bit and
two-bit vector multiplications can be seen in Table II.

B. Microbenchmarking Vector Multiply Instructions

Programmer control over bit-level operations provides a rich
opportunity to exploit more efficient algorithms for basic opera-
tions without any additional hardware. We explore this through
vector multiplication. The above quadratic-time algorithm it-
erates over standard carry-propagate additions. Implementing
a more efficient algorithm like carry-save multiplication (lin-
ear time complexity in the operand bitwidth) usually requires
more complex hardware (both full adders and carry-propagate
adders). On the APU, however, carry-save multiplication re-

3

responsibility of the programmer to avoid structural hazards
when writing microcode sequences.

III. RVV VECTOR ABSTRACTION IMPLEMENTATION

The well-known, open-source RISC-V ISA has been aug-
mented in recent years with an ISA extension for vector in-
structions, the RISC-V Vector Extension (RVV) [5]. Here, we
demonstrate implementing a subset of RVV-like instructions
on this architecture, as a first step towards enabling more
widespread use of the APU for general-purpose applications.

We implemented the 22 instructions shown in Table I,
which model very closely the RVV ISA. Examples of mi-
crocode implementations are in Fig. 1(f)-(j). We implement
a representative selection of instructions: (1) element-wise
operations, like bitwise Boolean functions and element-wise
addition; (2) cross-element operations, like set-equals and
reductions; (3) vector mask operations, like inverting a mask;
(4) vector memory operations, including loads and stores;
and (5) a vector configuration operation to set the desired
vector length. Element-wise operations often involve either
simple bit-parallel operations using the read logic (Fig. 1(f))
or bit-serial algorithms (Fig. 1(j), more detail in Sec. IV-A);
left bitwise shift (Fig. 1(i)) leverages connections between
neighboring bit processors to read from '!# . Cross-element
operations often use data values as bit-masks to operate on
certain bits of all elements in parallel (Fig. 1(g,h)). We support
all instructions on unsigned 16-bit integers for vector lengths
up to 32K, with some limitations as described below.

IV. MICROBENCHMARKING RESULTS

To microbenchmark the vector operations in our RVV
abstraction, we profiled each instruction by measuring control-
processor cycles for 10,000 calls to the same operation and

TABLE II: Bit-Packing and Data Transfer

packed operation avg # cycles ops/cycle

one 16-bit ADD 215 152
one 8-bit ADD 93 352
one 4-bit ADD 37 886
one 2-bit ADD 13 2497

two 8-bit ADDs 93 705
four 4-bit ADDs 37 3542
eight 2-bit ADDs 13 20010

one 8-bit MUL 1835 18
one 4-bit MUL 450 73
one 2-bit MUL 126 260

two 4-bit MULs 456 144
four 2-bit MULs 143 917

Data Transfer avg # cycles elements/cycle

DRAM ! SPM 21,575 1.5
SPM ! VMRF 470 69.7
VMRF ! VRF 21 1568.9

averaging over ten trials. In the following section, we describe
microbenchmarking results, various operation implementa-
tions, and the tradeoffs of adopting a virtual vector instruction
set in terms of both arithmetic computation and memory
operations.

A. Microbenchmarking Narrow-Bitwidth Vector Operations

Due to its massive parallelism and bit-level control, the APU
offers especially high throughput when performing vector
operations on low-precision data. When operating on narrow-
bitwidth values, many operations (e.g. bit-serial operations)
can exit early. Furthermore, multiple data values can then be
packed into a single element without needing additional cycles.

To demonstrate this, we implemented element-wise vector
addition for 32k-element vectors with value bitwidths swept
over 1 = {2, 4, 8, 16} (code in Fig. 1(j)). We take a bit-serial
approach to addition: for each bit, we compute and store a
result bit by using bitlines and peripheral logic to implement
the truth table for a full adder. A carry-out is then computed
and propagated to the next bit-slice. The code for bit one is
replicated, shifting its bit-mask by an additional bit each time,
for all remaining bits. Our proof-of-concept implementation
makes the simplifying assumption that source operands are
distinct, but identical ones could be easily supported. Because
this approach is bit-serial, smaller-bitwidth vectors can exit
early from the computation and have lower latencies that scale
linearly with 1 (see Table II). The second set of results in
Table II then shows how multiple data values can be packed
into a single element width, further increasing the number of
operations per cycle.

To explore the usefulness of narrow bitwidths in quadratic-
time operations, we also benchmarked vector multiplication.
As seen in Table II, multiplying two four-bit values in each
element (to produce an eight-bit result) takes fewer cycles
due to early exit than multiplying two eight-bit values. Then,
packing can be leveraged to double the number of operations
done in each vector-multiply instruction, although a small
amount of extra overhead is added due to structural hazards
between packed operands. The combination of these two
optimizations yields significantly higher throughput. Results

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024 4

for both four-bit and two-bit vector multiplications can be seen
in Table II.

B. Microbenchmarking Vector Multiply Instructions
Programmer control over bit-level operations provides a

rich opportunity to exploit more efficient algorithms for ba-
sic operations without any additional hardware. We explore
this through vector multiplication. The above quadratic-time
algorithm iterates over standard carry-propagate additions.
Implementing a more efficient algorithm like carry-save mul-
tiplication (linear time complexity in the operand bitwidth)
usually requires more complex hardware (both full adders
and carry-propagate adders). On the APU, however, carry-save
multiplication requires just simple changes to the microcode,
using an integer carry-save adder with a bit-parallel binary
adder and our bitwise left-shift. To demonstrate this, we
implemented 8-bit carry-save multiplication and found that it
takes an average of 438 cycles per 32k-element multiplication
with linear scaling. This is 8.3⇥ faster than our initial ripple-
carry-based implementation.

C. Microbenchmarking Overheads
Adopting a vector abstraction incurs a large performance

overhead from data movement, as the abstraction limits the
benefits that can be leveraged from the APU’s layers of
memory hierarchy. Specifically, the general-purpose vector
load instruction in RVV loads data from main memory directly
into a VR. Modeling this as closely as possible, our vload
moves data directly from DRAM through the SPM and VMRF
to the VRF. This is expensive, with a single load (of 32K 16-bit
elements) requiring roughly 22,000 cycles. Profiling individual
steps of this transfer (shown in Table II) reveals that interacting
with DRAM is the most expensive step, consuming 21,575
cycles to transfer 32K 16-bit elements, or a transfer rate of
1.52 elements per cycle. If an application has large datasets
and low arithmetic intensity, this data movement can become
a bottleneck.

Our experiments also reveal an important overhead inherent
in the APU architecture that arises when adhering to a vir-
tual vector instruction set. Specifically, the control processor
requires a minimum number of cycles for each group of mi-
crocode instructions it issues (called a ‘microcode fragment’).
For simple operations, written as microcode fragments with
few instructions, this causes the measured cycle count to
exceed the theoretical value. For example, for some short and
simple operations in Table I, the last column shows an aver-
age measured cycle count that exceeds the theoretical value
by between four and ten cycles. For optimal performance,
microcode operations should be fused into larger fragments
whose cycle counts exceed this threshold.

D. KNN Case Study
To gain further insight into the tradeoffs of adopting a virtual

vector instruction set, we implement and evaluate K-nearest
neighbors (KNN) using RVV. KNN takes a list of data points
and a query point, and finds the : points with the smallest
distances to the query. The computation involves (1) calculat-
ing the squared Euclidean distance between each data point

and the query, and (2) searching the computed distances to
find the minimum : times. We use the ANN SIFT10 dataset
with 32K data points but could expand this using strip-mining.
Our RVV-like KNN implementation achieves a throughput of
approximately 89 searches per second. Comparing to other
platforms (i.e. CPU, GPU, and custom accelerators [10]) is
left to future work.

Supporting such a general-purpose vector abstraction comes
at the cost of unrealized performance. To quantify this trade-
off, we implemented three iterative optimizations that break
the vector abstraction. First, we fused together some vector
instructions into microcode segments that skip computing
unnecessary intermediate values, which increased throughput
to 97 searches/sec. In other cases, fusing vector operations
allowed for reuse of temporary values without redundantly
computing them in separate RVV instructions, which yielded
112 searches/sec. Finally, we broke the vector abstraction in
memory instructions by implementing an asynchronous partial
load from the DRAM to the VMRF to pipeline computation
and data movement. This gave a total improved throughput of
129 searches per second.

V. CONCLUSION

In this letter, we explored the potential for supporting a
virtual vector instruction set on a commercial compute-in-
SRAM accelerator. This general-purpose vector abstraction
can potentially serve as a target for standard auto-vectorizing
compilers. Our analysis also motivates future work on per-
formance and energy comparisons to CPUs and GPUs and
explorations of new workload domains that are well-suited for
this architecture.

REFERENCES

[1] S. Aga et al. Compute Caches. Int’l Symp. on High-Performance
Computer Architecture, Feb 2017.

[2] K. Al-Hawaj et al. EVE: Ephemeral Vector Engines. Int’l Symp. on
High-Performance Computer Architecture, Feb 2023.

[3] H. Caminal et al. CAPE: A Content-Addressable Processing Engine.
Int’l Symp. on High-Performance Computer Architecture, Feb 2021.

[4] C. Eckert et al. Neural Cache: Bit-Serial In-Cache Acceleration of Deep
Neural Networks. Int’l Symp. on Computer Architecture, Jul 2018.

[5] RISC-V. Foundation. RISC-V ”V” Vector Extension. https://github.
com/riscv/riscv-v-spec/releases/download/0.7.1/riscv-v-spec-0.7.1.pdf,
Jun 2019.

[6] D. Fujiki et al. Duality Cache for Data Parallel Acceleration. Int’l Symp.
on Computer Architecture, Jun 2019.

[7] L. Gwennap. GSI Offers In-Memory Computing. Microprocessor
Report, Jul 2020. The Linley Group.

[8] S. Jeloka et al. A 28 nm Configurable Memory (TCAM/BCAM/SRAM)
Using Push-Rule 6T BitCell Enabling Logic-in-Memory. IEEE Journal
of Solid-State Circuits (JSSC), Apr 2016.

[9] M. Kooli et al. Towards a Truly Integrated Vector Processing Unit for
Memory-Bound Applications Based on a Cost-Competitive Computa-
tional SRAM Design Solution. J. Emerg. Technol. Comput. Syst., Apr
2022.

[10] J. Saikia et al. K-Nearest Neighbor Hardware Accelerator Using In-
Memory Computing SRAM. Int’l Symp. on Low Power Electronics and
Design (ISLPED), Jul 2019.

[11] GSI. Technology. APU SAR Capabilities. https://ir.gsitechnology.com/
node/11431/pdf, Sep 2022.

[12] J. Wang et al. A Compute SRAM with Bit-Serial Integer/Floating-Point
Operations for Programmable In-Memory Vector Acceleration. Int’l
Solid-State Circuits Conf. (ISSCC), Feb 2019.

[13] J. Wang et al. A 28-nm Compute SRAM With Bit-Serial Logic/Arith-
metic Operations for Programmable In-Memory Vector Computing.
IEEE Journal of Solid-State Circuits (JSSC), Jan 2020.

[14] J. Zhang et al. BP-NTT: Fast and Compact in-SRAM Number Theoretic
Transform with Bit-Parallel Modular Multiplication. Design Automation
Conf. (DAC), Jul 2023.

