
GMX: Instruction Set Extensions for Fast, Scalable, and E�icient
Genome Sequence Alignment

Max Doblas
Barcelona Supercomputing Center

Barcelona, Spain
max.doblas@bsc.es

Oscar Lostes-Cazorla
Barcelona Supercomputing Center

Barcelona, Spain
oscar.lostes@bsc.es

Quim Aguado-Puig
Universitat Autònoma de Barcelona

Bellaterra, Spain
quim.aguado@uab.cat

Nicholas Cebry
Cornell University

Ithaca, New York, USA
nfc35@cornell.edu

Pau Fontova-Musté
Barcelona Supercomputing Center

Barcelona, Spain
pau.fontova@bsc.es

Christopher Batten
Cornell University

Ithaca, New York, USA
cbatten@cornell.edu

Santiago Marco-Sola
Universitat Politècnica de Catalunya
Barcelona Supercomputing Center

Barcelona, Spain
santiago.marco@bsc.es

Miquel Moretó
Universitat Politècnica de Catalunya
Barcelona Supercomputing Center

Barcelona, Spain
miquel.moreto@bsc.es

ABSTRACT
Sequence alignment remains a fundamental problem in computer
science with practical applications ranging from pattern matching
to computational biology. The ever-increasing volumes of genomic
data produced by modern DNA sequencers motivate improved soft-
ware and hardware sequence alignment accelerators that scale with
longer sequence lengths and high error rates without losing accu-
racy. Furthermore, the wide variety of use cases requiring sequence
alignment demands �exible and e�cient solutions that can match
or even outperform expensive application-speci�c accelerators.

To address these challenges, we propose GMX, a set of ISA ex-
tensions that enable e�cient sequence alignment computations
based on dynamic programming (DP). GMX extensions provide
the basic building-block operations to perform fast tile-wise com-
putations of the DP matrix, reducing the memory footprint and
allowing easy integration into widely-used algorithms and tools.
Furthermore, we provide an e�cient hardware implementation
that integrates GMX extensions in a RISC-V-based edge system-on-
chip (SoC). Compared to widely-used software implementations,
our hardware-software co-design leveraging GMX extensions ob-
tains speed-ups from 25–265⇥, scaling to megabyte-long sequences.
Compared to domain-speci�c accelerators (DSA), we demonstrate
that GMX-accelerated implementations demand signi�cantly less
memory bandwidth, requiring less area per processing element (PE).
As a result, a single GMX-enabled core achieves a throughput per
area between 0.35-0.52⇥ that of state-of-the-art DSAs while being

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3614306

more �exible and reusing the core’s resources. Post-place-and-route
results for a GMX-enhanced SoC in 22nm technology shows that
GMX extensions only account for 1.7% of the overall area while con-
suming just 8.47mW. We conclude that GMX extensions represent
versatile and scalable ISA additions to improve the performance
of genome analysis tools and other use cases that require fast and
e�cient sequence alignment.

CCS CONCEPTS
•Computer systems organization! Special purpose systems;
•Hardware!Application speci�c instruction set processors;
• Applied computing! Genomics.

KEYWORDS
ISA extensions, hardware acceleration, genomics, sequence align-
ment, edit-distance, bioinformatics, microarchitecture

ACM Reference Format:
Max Doblas, Oscar Lostes-Cazorla, Quim Aguado-Puig, Nicholas Cebry,
Pau Fontova-Musté, Christopher Batten, Santiago Marco-Sola, and Miquel
Moretó. 2023. GMX: Instruction Set Extensions for Fast, Scalable, and Ef-
�cient Genome Sequence Alignment. In 56th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO ’23), October 28–November
01, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3613424.3614306

1 INTRODUCTION
Sequence alignment is a fundamental problem in many application
domains, including information retrieval [11, 80], pattern match-
ing [28, 81], natural language processing [40, 99], and others [30, 61,
91]. With the advent of genome sequencing technologies, sequence
alignment has acquired special relevance in computational biology
and genome sequence analysis [5, 62, 94, 95]. Modern sequencing
machines can rapidly produce millions of relatively small DNA
reads from a few hundred to a million base pairs (bps) at a low
cost [4, 88, 93]. For the past decade, genomic data production has

1466

https://doi.org/10.1145/3613424.3614306
https://doi.org/10.1145/3613424.3614306
https://doi.org/10.1145/3613424.3614306
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613424.3614306&domain=pdf&date_stamp=2023-12-08


MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Doblas et al.

been doubling every 7 months [13], notably outpacing Moore’s Law,
and even surpassing other big data sources (e.g., YouTube and Twit-
ter [100]). If this trend continues, we will soon be able to sequence
billions of whole human genomes yearly, generating exabytes of
raw genomic data. This increase in genomic data has been crucial for
the development of population-wide genetic studies [111], diagno-
sis of diseases (e.g., cancer, autism, diabetes) [27] and personalized
healthcare [10, 35, 42, 43], e�ective outbreak tracing (e.g., COVID-
19, Ebola) [19, 45, 85, 110], biodiversity preservation [60, 114], and
even DNA-based computing and storage systems [15, 101, 102].

Increasing production yields and sequence lengths pose a com-
putational challenge for current genome sequence analysis tools
and hardware accelerators. As a result, the performance bottleneck
in genome sequence analysis is moving from the physical process of
DNA sequencing to the computational post-processing and analysis.
In particular, accelerating ubiquitous building blocks, like sequence
alignment, has become paramount to bridging the gap between
sequence data production and current computing power. However,
sequence alignment algorithms rely on DP-based algorithms that
scale quadratically in both execution time and memory. As a result,
tools requiring sequence alignment quickly become the bottleneck
of many genome sequence analyses and fail to scale with longer
sequence lengths [6]. To alleviate this problem, edit-distance align-
ment algorithms have gained popularity as an e�cient alternative
for comparing low-divergence DNA sequences in tasks such as clus-
tering [86, 112] and pre-�ltering [6, 7]. Notwithstanding, genome
sequencing analysis is currently limited by the computational power
and memory bandwidth of existing systems.

The need for better sequence alignment algorithms has fos-
tered extensive research on algorithms and hardware accelerators
for sequence alignment, including solutions based on GPUs [1, 2,
75, 84], FPGAs [16, 24, 46, 49, 115], PIM [23, 31, 48, 57, 79], and
ASICs [17, 18, 37, 67, 83, 104]. Notable solutions, like GenAx [37]
and GenASM [17], have demonstrated that DSAs can deliver signif-
icant performance improvements in computing edit-distance-based
sequence alignment. However, optimized software-hardware co-
designs are often tailored to speci�c use cases (e.g., read mapping)
and fail to scale to di�erent workloads (e.g., longer sequences). In a
rapidly evolving area such as genomics, it is important to design
fast and �exible accelerators that can be adapted and easily inte-
grated into various production-ready tools. Our goal is to design a
fast, scalable, and e�cient set of ISA extensions that can accelerate
sequence alignment computations in genome sequence analysis
and other application domains that require edit-distance alignment.

In this work, we propose GMX, a set of ISA extensions that
enable fast, scalable, and e�cient computation of the edit-distance
sequence alignment. GMX extensions enable the calculation of
entire tiles from the DP-matrix in a single operation, leading to a
quadratic reduction in executed instructions with respect to tile size.
As opposed to in�exible DSAs, GMX’s modular and scalable design
allows extending DP-based alignment algorithms to exploit GMX
extensions without compromising the accuracy of the results. To
compute GMX tiles e�ciently, we present GMX-Tile, an extension
of the bit-parallel Myers (BPM) algorithm tailored for hardware
acceleration. Unlike other proposals based on the BPM [22, 53],
GMX-Tile removes all the input preprocessing steps and internal
lookup tables, and simpli�es the bit computations per DP-element.

Additionally, we present a fast and e�cient hardware imple-
mentation for the GMX extensions (GMX-AC and GMX-TB). We
provide an area- and power-e�cient hardware design that can be
easily integrated into any conventional CPU. Unlike co-processors
and stand-alone accelerators, GMX reuses the core resources (e.g.,
caches and memory), eliminating the need for additional memory
controllers and expensive host/device data transfers. We demon-
strate that GMX-enhanced implementations of widely-used algo-
rithms for sequence alignment outperform state-of-the-art soft-
ware. Challenging conventional wisdom, we present a case study
demonstrating that carefully designed ISA extensions can be highly
competitive with existing DSAs.

Key Results.We evaluate GMX-accelerated implementations of
widely-used sequence alignment algorithms against state-of-the-art
software, including classic DP algorithms (Smith-Waterman [96]
andNeedleman-Wunsch [82], like in KSW2/Minimap2 [65]), banded
bit-parallel algorithms (BPM [77] and Edlib [108]) and hardware ac-
celerators (like GenASM and Darwin [104]). We �nd that: (1) GMX
extensions allow accelerating software tools by 25–183⇥ aligning
short sequences and 48–112⇥ when aligning long and noisy se-
quences; (2) GMX-accelerated single core achieves a throughput per
area between 0.35-0.52⇥ that of state-of-the-art DSAs while being
more �exible and requiring a minimal area overhead of 0.0216mm2.
(3) GMX extensions allow 16x memory footprint reduction while
reducing the bandwidth to memory and cache pressure, enabling
GMX to scale inmulticore processors. In summary, this papermakes
the following contributions:

• We propose GMX-ISA extensions, an e�cient and �exible set
of instructions to accelerate the computation of the DP-matrix
for di�erent sequence alignment algorithms. To our knowledge,
GMX is the �rst work to propose instructions for the tile-wise
computation of the DP-matrix and traceback, reducing the com-
putational requirements and the memory footprint.

• We propose GMX-tile, an algorithmic extension of the BPM tech-
nique tailored for hardware acceleration. We present a software-
hardware co-design that integrates GMX ISA extensions into
three di�erent state-of-the-art alignment algorithms to demon-
strate the versatility of GMX extensions. Additionally, we open-
source our software implementations and datasets to promote
transparent and reproducible research.

• We present an energy- and area-e�cient hardware design for
the GMX extensions (GMX-AC and GMX-TB). After performing
ASIC synthesis and PnR in Global Foundries 22nm technology
of a RISC-V based edge SoC integrating the GMX extensions, we
demonstrate that our GMX implementation requires 0.0216mm2

(1.7% of the overall area) and 8.47mW to operate.
• We evaluate the performance of GMX-enhanced algorithms and
demonstrate that our proposal outperforms state-of-the-art soft-
ware implementations and matches the performance of state-
of-the-art hardware accelerators. Moreover, we show that our
solution scales up to 1Mbp-long sequences.

2 BACKGROUND
In this section, we provide the necessary background on genome
sequence data analysis, sequence alignment, and bit-parallel tech-
niques required for the rest of this paper.

1467



GMX: Instruction Set Extensions for Fast, Scalable, and E�icient Genome Sequence Alignment MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

(b)(a) (c)

Text

Pa
tte

rn G C A T -
| | |

G - A T T
M D M M I

Alignment
G C A T

G
A
T
T

Text

Pa
tte

rn

G C A T
G
A
T
T

0 1 2 3
1 1 1 2
2 2 2 1
3 3 3 2

Figure 1: Example of DP-based sequence alignment. (a) Score
matrix. (b) Traceback matrix. (c) Optimal alignment.

2.1 Genome Sequence Analyses
Since the completion of the �rst human genome [62], sequencing
technologies have rapidly evolved to produce longer sequences
(reads), increasing the data-production throughput of their ma-
chines while reducing operational costs. Modern sequencing tech-
nologies can be broadly classi�ed into second- and third-generation
sequencing technologies. Second-generation sequencing technolo-
gies, like Illumina and Ion Torrent, have dominated the market
for the last decade. These technologies generate short sequences
(i.e., 100 - 300bps) of high quality (i.e., <1% error rate) [71]. Third-
generation sequencing technologies, like Paci�c Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT), improve upon previous
generations to produce megabase-size sequences. Unfortunately,
these technologies are more error-prone, producing a typical error
rate of 5%-15% [63].

Genome sequencing data requires complex and computationally
intensive analyses before they can be meaningful to researchers and
clinicians. Probably, the most widely-known sequencing protocol
is genome resequencing [54]. A typical resequencing analysis lo-
cates the sequenced reads into a pre-existing reference genome (i.e.,
read mapping [4, 36]) to determine genomic variations (i.e., variant
calling [55]). This analysis involves steps like indexing, seeding,
pre-�ltering, and sequence alignment [64, 65, 74]. Among these
steps, sequence alignment is often the most time-consuming.

Beyond genome resequencing, sequence alignment is paramount
for performing de-novo assembly [21], whole-genome compar-
isons [52], sequence clustering [103], metagenomics classi�cation
[50], andmany other analyses [87]. Not surprisingly, sequence align-
ment has become the cornerstone of many analyses in sequence
biology and genomics.

2.2 Sequence Alignment
Sequence alignment aims to determine the di�erences (e.g., evo-
lutive variations, mutations, sequencing errors) between two se-
quences. Given a distance function (or scoring function), the optimal
alignment is the sequence of operations (i.e., match, mismatch, in-
sertion, and deletion) that transforms one sequence into the other,
minimizing the distance function (or maximizing the score).

Usually, sequence alignment is computed using some variation
of DP and consists of two phases: (1) DP-matrix computation and
(2) alignment traceback. During the �rst phase, sequence alignment
algorithms compute a DP-matrix of = ⇥< elements (Figure 1.a).
Then, for the traceback phase (Figure 1.b), sequence alignment
algorithms trace the list of operations that led to the optimum
distance (bottom-right element) back to the beginning (upper-left

0

Δh
1 0
2 1
3 2
4 3

G
A
T
T

-1

-1 1 1 1
1 0 0 1
1 1 -1
1 1 0

G
A
T
T

G C A T
Δv

1 0
2 1
3 2
4 3

G
A
T
T 1

-1 -1 -1 -1
1 0 -1 -1
1 1 -1
1 1 1

G
A
T
T

G C A T
DP
Elem

Δhi,j

Δhi-1,j

Δvi,jΔvi,j-1

eqi,j

1

G C A T
G
A
T
T

0 1 2 3
1 1 1 2
2 2 2 1
3 3 3 2

Figure 2: DP-matrix encoding using BPM’s di�erences.

element); that is, the alignment between the sequences (Figure 1.c).
In particular, given the pattern ? = ?0?1 . . . ?=�1 and the text C =
C0C1 . . . C<�1 sequences, the optimum edit distance (�=,<) is given
by�8, 9 = min{�8�1, 9 +1,�8, 9�1+1,�8�1, 9�1+4@8, 9 }, where 4@8, 9 = 1
if ?8�1 == C 9�1 and 0 otherwise.

Sequence alignment algorithms and accelerators have been inten-
sively studied for more than 60 years [44, 82, 90, 92, 107, 109, 113]
on software [29, 70, 72, 73, 89] and hardware [17, 37, 66, 105] with
applications in many areas (e.g., pattern matching [28], natural
language processing [40, 97, 99], security [39, 76, 91]). Nevertheless,
classical DP-based solutions require quadratic time and memory on
the sequence length, posing a challenge to the scalability of these
algorithms.

2.3 Bit-Parallel Techniques
Bit-parallel techniques emerged in the 80s as an e�ective strategy
to accelerate sequence alignment algorithms. These techniques
exploit bitwise operations to compute multiple elements of the DP-
matrix in parallel. Most importantly, they map extremely well to
conventional hardware instructions, outperforming other sequence
alignment approaches in practice. As a result, these techniques
have been widely adopted by many software tools and hardware
accelerators.

In 1989, the �rst bit-parallel algorithm, called Bitap, was pro-
posed. Bitap reformulates the problem using a DP-matrix of = ⇥ :
bits, where : is the maximum edit distance supported, requiring :
bits per element of the original DP-matrix. Then, it progressively
computes the edit distance, recomputing the whole bit-matrix per
each character of text C aligned. Thus, the alignment computations
are proportional to$ (=:<). However, this ingenious reformulation
allows computing the elements of each column independently us-
ing bitwise operations. Assuming a su�ciently large machine word
of F bits (F � =), Bitap’s computation reduces from $ ( =F:<) to
$ (:<) and requires 7 · : bitwise instructions per character aligned.

Bitap was designed to compute the edit distance between short
sequences (i.e., that �t in a machine word) with a low alignment
error, as its complexity depends on the maximum error supported : .
Originally, it was not designed to compute the complete alignment,
as it requires storing the< DP-matrices of = ⇥ : bits to perform
the traceback phase. Bitap was recently resurrected as the bedrock
algorithm for hardware accelerators, like GenASM and SeGraM [18].
These DSAs extended Bitap, using large bit-vectors and tailored
bitwise logic to accelerate the computation of Bitap’s=⇥: bit-matrix
per character aligned.

Ten years later after the introduction of Bitap, Myers proposed
a novel bit-parallel error-agnostic algorithm that outperforms the
Bitap algorithm, scaling to longer sequences and higher error rates.

1468



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Doblas et al.

Broadly known as bit-parallel Myer’s (BPM), this algorithm bene�ts
from the observation that di�erences between adjacent row and col-
umn elements are limited to {�1, 0, +1}. BPM exploits this property
encoding vertical di�erences (�E8, 9 = �8, 9 � �8�1, 9 ) and horizontal
di�erences (�⌘8, 9 = �8, 9 � �8, 9�1), requiring only (2 ⇥ 2) bits per
element of the original DP-matrix, irrespective of the alignment
error (Figure 2). Then, it reformulates the classical DP equations
in terms of di�erences (Eq. 1), where each variable can be encoded
using 2 bits.

�E8, 9 =<8={�4@8, 9 ,�E8, 9�1,�⌘8�1, 9 } + 1 � �⌘8�1, 9
�⌘8, 9 =<8={�4@8, 9 ,�E8, 9�1,�⌘8�1, 9 } + 1 � �E8, 9�1 (1)

The BPM proposes to compute the DP-matrix column-wise, pack-
ing the elements of each column in a bit-vector. Using bitwise op-
erations, the BPM computes each bit-encoded column using only
17 CPU instructions per character aligned. As a result, the BPM
requires to perform $ ( =F<) computations ($ (<) if = < 2F ). In
practice, the BPM outperforms other bit-parallel algorithms [80],
scaling to longer sequences and higher error rates [116]. Varia-
tions of the BPM technique have been adopted by multiple tools in
genome sequence analysis like Edlib, Daligner [78], and GEM [74].

2.4 Applications and Limitations of Edit
Distance to Genome Sequence Analysis

Di�erent distance functions (or scoring functions) are used in com-
putational biology depending on the application and sequence
data properties. When comparing protein sequences, weighted dis-
tance functions, like those implemented in Smith-Waterman (SW)
or Needleman-Wunsch (NW), are preferred as they can capture
meaningful biological insights. Similarly, gap-a�ne distances are
preferred to study complex genome re-arrangements or compare
highly-divergent DNA/RNA sequences. Notwithstanding, comput-
ing these complex distance functions demands a signi�cant amount
of computing and memory. Consequently, multiple tools often in-
corporate heuristic strategies (e.g., Z-drop, banded) to improve
performance at the cost of sacri�cing accuracy.

Simpler distance functions, such as edit distance, have gained
attention for genome analysis that require comparing similar se-
quences, like high-quality DNA alignment, alignment pre-�ltering,
and sequence clustering. For these use cases, the edit distance func-
tion produces accurate and meaningful results while being signi�-
cantly faster to compute. Recent studies (GenAX, GenASM, SeGraM,
Edlib, and DAligner) support the applicability of edit distance for
genome sequence analysis.

Next, we present the trade-o� between throughput and accu-
racy obtained by the widely-used Edlib (edit distance), and KSW2
and Minimap2 (gap-a�ne) libraries, aligning real short (Illumina
WGS) and high-quality long (PacBio HiFi) sequences from NIST’s
Genome in a Bottle (GIAB) consortium and PrecisionFDA Truth
Challenge. Figure 3 shows results of accuracy (measuring average
alignment-score deviation from the optimal gap-a�ne alignment)
and throughput (alignments/s) executed on an Intel Xeon W-2155.
Aligning high-quality datasets, we observe that edit distance align-
ment generally reports the same alignment as gap-a�ne (i.e., on-par
accuracy). Moreover, computing the edit distance is signi�cantly

Figure 3: Speed vs. accuracy between edit and gap-a�ne.

faster than gap-a�ne. For long sequences, it is even faster than
gap-a�ne using heuristics (e.g., Banded KSW2 in Minimap2).

3 MOTIVATION AND GOAL
Although many software and hardware sequence alignment ac-
celerators have been proposed over the years, we �nd that they
present di�erent limitations. Alas, no single solution can meet the
performance demands of sequence analysis tools; being fast, scal-
able, and e�cient while producing accurate results. In this section,
we discuss the limitations of current software-hardware solutions
for sequence alignment.

3.1 Limitations of Existing Accelerators
Performance limitations. Classic DP-based sequence alignment
algorithms are heavily restricted by quadratic time and memory
requirements. Due to the intrinsic dependencies between computa-
tions of the DP-matrix, computational parallelism is signi�cantly
constrained. To alleviate this problem, many hardware accelerators
rely on bit-parallel techniques due to their convenient mapping to
bitwise operations. However, bit-parallel accelerators still su�er
from computational bottlenecks and limited memory bandwidth.
Accelerators based on Bitap obtain computational parallelism at the
expense of increasing computations to$ ( =F:<) and require imple-
menting large bit-vectors (F � =) to compensate. Moreover, larger
memory requirements (i.e.,< DP-matrices of = · : bits) put higher
pressure on memory bandwidth. These performance limitations es-
calate with increasing error rates, as Bitap’s complexity is sensitive
to alignment error (:). In contrast, BPM’s complexity$ ( =F<) is not
sensitive to the alignment error. Nevertheless, accelerators based
on BPM still require performing a quadratic number of operations
and storing 4 ⇥ = ⇥< bits. On top of that, bit-parallel techniques
require additional preprocessing steps that put a non-negligible toll
on performance. Further, the parallelism of these solutions remains
limited to processing one column at a time, presenting a reduced
computational intensity and large bandwidth requirements.

Scalability limitations. The quadratic complexity of DP-based
algorithms poses a challenge to scale with longer sequence lengths
and higher error rates. For instance, computing the complete align-
ment of 10kbp-long sequences, assuming just an error of 0.1%,
would require 381.4MB of memory for the classical DP algorithm,
119.2MB for Bitap, and 47.6MB for BPM. As the sequence length
increases, bit-parallel based accelerators require larger hardware
bit-vectors, increasing chip area and energy consumption. In the

1469



GMX: Instruction Set Extensions for Fast, Scalable, and E�icient Genome Sequence Alignment MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

(a.1) Element-wise (a.2) Tile-wise

Stored DP Element Not stored DP Element

(b.2) Banded(GMX)

Computed tiles Traceback tiles Not computed tiles

(b.1) Full(GMX) (b.3) Windowed(GMX)

GMX-Tile

Figure 4: (a.1) Element-by-element computation of the classical DP algorithm. (a.2) Tile-by-tile computation using GMX with a
tile size (T) of 3. (b) Tiles computed by di�erent GMX-accelerated alignment algorithms.

case of Bitap, being sensitive to the alignment error poses an ad-
ditional limitation to scale to high-error rates. To overcome these
di�culties, many solutions are limited to computing the alignment
distance (not the complete alignment) or fall back to heuristic al-
gorithms. Some heuristic solutions limit the maximum alignment
error tolerated : or restrict the computation to small portions of the
DP-matrix, potentially compromising the accuracy of the results.
As a result, the accuracy of these heuristics is unpredictable and
often leads to sub-optimal results.

E�ciency limitations. DSAs show signi�cant performance
improvements at the expense of complex and expensive hardware
designs, both in area and energy. The e�ciency limitations of these
accelerators raise questions about whether their bene�ts outper-
form their costs. In particular, bit-parallel accelerators implement-
ing large bit-vectors tend to consume signi�cant chip area and
energy. Moreover, monolithic hardware accelerators overspecial-
ized in genome resequencing invest many resources to support
other functionalities (e.g., indexing and seeding) not required be-
yond genome mapping. Furthermore, loosely-coupled accelerators
often require additional memory controllers and costly hardware
designs to implement data coherence and transfers. Concerning
the latter, these accelerators often incur expensive data transfers
host/device that diminish the performance gains when integrated
into production-ready tools.

Applicability limitations. Seeking performance improvements,
DSAs tend to focus on speci�c use cases and input characteristics.
Overspecialization often tampers the applicability of these acceler-
ators to related use cases. In practice, integrating these accelerators
into production-ready tools can be daunting, requiring extensive
modi�cation of the software stack. Monolithic accelerators are often
in�exible and cannot easily be repurposed for other applications.

3.2 Our Goal
Our goal is to overcome these limitations by providing a set of �ex-
ible ISA extensions that enable fast, scalable, and e�cient sequence
alignment for multiple applications in genome sequence analysis
and other use cases in computer science. To that end, the GMX
instruction set enables fast and e�cient computation of complete
tiles from the DP-matrix, (1) reducing the computational require-
ments quadratically in the tile size, and (2) decreasing the memory
footprint (as GMX only needs to store the elements at the edges
of the tile). GMX extensions can be easily exploited to accelerate

DP-based sequence alignment algorithms enabling control over the
accuracy of the results. The GMX extensions allow for seamless
integration into state-of-the-art algorithms and tools, scaling to
longer sequences without sacri�cing the accuracy of the results. As
a result, the GMX extensions facilitate the acceleration of any tool
that demands fast, scalable, and e�cient sequence alignment.

4 GENOME ALIGNMENT EXTENSIONS
Classical DP-based alignment algorithms, like Smith-Water-man
(SW) and Needleman-Wunsch (NW), compute the DP-matrix ele-
ment by element as shown in Figure 4.a.1. This work presents the
Genome alignMent eXtensions (GMX), an instruction set extension
that enables the acceleration of sequence alignment by comput-
ing tile by tile the DP-matrix (Figure 4.a.2). Implementations using
GMX extensions increase the computational intensity and only
require storing the elements at the edge of each tile (i.e., internal
tile elements are computed on-the-�y and never stored). As a result,
the number of instructions is reduced quadratically with the tile
size and the memory requirements are signi�cantly reduced. In the
following, we motivate the use of GMX’s tile-based co-design to
di�erent sequence alignment algorithms (Section 4.1) and present
GMX-Tile (Section 4.2), an e�cient and hardware-friendly algo-
rithm to compute each tile.

4.1 GMX Co-Designed Alignment Algorithms
Building upon the classical algorithms that compute the whole
DP-matrix, numerous algorithmic variations have been proposed
to accelerate sequence alignment. These variations mainly di�er
in the regions of the DP-matrix they compute (e.g., Full, Banded,
and Windowed) and the underlying algorithmic strategy used to
compute those regions (e.g., DP, Bitap, and BPM).

Full algorithms compute the entire DP-matrix and are often
preferred when the accuracy of the results is paramount. However,
Full(DP) algorithms (i.e., Full DP-matrix computation using classic
DP), like SW, NW, and KSW2/Minimap2, are computationally de-
manding. In contrast, GMX can compute the whole DP-matrix using
=<
) 2 tiles of () ⇥) ) elements. Figure 4.b.1 shows the tiles computed
by Full(GMX). As opposed to Full(DP), which requires storing all
the DP-elements (=⇥<) to traceback the alignment, Full(GMX) only
stores the DP-elements at the tile edges, requiring )⇥ less memory.
For the traceback, Full(GMX) recomputes the DP-elements between

1470



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Doblas et al.

tile edges on-the-�y and retrieves the tile’s traceback using a single
instruction.

Banded algorithms compute a band of DP-elements along the
main diagonal of the DP-matrix (Figure 4.b.2). In practice, these
heuristic algorithms signi�cantly reduce the computational cost at
the risk of potentially missing the optimal alignment. Compared
to Full algorithms, Banded algorithms only compute < ⇥ ⌫ DP-
elements, where ⌫ is the band size. A notable example is the Edlib
library, which implements the Banded algorithm, and it is often
used for fast �ltering and alignment in multiple genome analysis
tools [25]. In the same spirit, Banded(GMX) implements the same
band heuristic using GMX extensions to reduce computations to
<⇥⌫
) 2 tiles, storing <⇥⌫

) DP-elements.
Windowed algorithms, proposed in Darwin, implement a dy-

namic heuristic based on computing small overlapping windows
of size, ⇥, . Starting from a window placed at the bottom-right
of the DP-matrix, the algorithm computes partial tracebacks, al-
lowing an overlap of size $ between windows, until it reaches
the top-left of the DP-matrix. This heuristic is implemented by
GenASM, using the Bitap algorithm to compute the windows (i.e.,
Windowed(GenASM)). Notably, for small window sizes, like those
used byGenASM, intermediate data can be stored in general-purpose
registers, reducingmemory accesses to those that store the resulting
alignment. The Windowed algorithm can be implemented using
GMX to compute overlapping windows (i.e., Windowed(GMX)).
Figure 4.b.3 shows the tiles computed by Windowed(GMX), using
, = 3) and $ = ) .

4.2 GMX-Tile: Bit-Parallel Tile Computation
A key goal of this work is to provide a fast and resource-e�cient
solution to compute DP-matrix tiles in hardware. To that end, we
introduce GMX-Tile, an extension of the BPM algorithm to compute
the () ⇥ ) ) DP-elements of a tile tailored for fast and e�cient
hardware acceleration.

Prior to this work, other hardware accelerators have selected the
BPM algorithm to accelerate sequence alignment due to its advan-
tageous algorithmic properties [22, 53]. However, the original BPM
was designed to use general-purpose CPU instructions and, in its
current formulation, is unsuitable for direct hardware implementa-
tion. BPM-based hardware accelerators mimic the original BPM’s
equations (Eq. 1) and internally implement 17 arithmetic operations
(including an integer addition). Moreover, they require an expensive
input preprocessing step to generate 4@-vectors and large internal
lookup tables to store them. Hence, these solutions are often lim-
ited to 2-bits encoded sequences to simplify computations and save
resources.

In contrast, GMX-Tile has been designed with a hardware imple-
mentation in mind. Let (�E8= ,�⌘8= ,4@) = (�E8, 9�1,�⌘8�1, 9 , 4@8, 9 ) the
inputs and (�E>DC ,�⌘>DC ) = (�E8, 9 ,�⌘8, 9 ) the outputs of computing
a single DP-element using BPM (Eq. 1). We identify a symmetry
between the �E and �⌘ computation. Thus, we can condense both
computations into a single equation (Eq. 2). This way, �⌘>DC =
⌧"-� (�⌘8=,�E8=, 4@) and �E>DC = ⌧"-� (�E8=,�⌘8=, 4@).

⌧"-� (�0,�1, 4@) =<8={�4@,�0,�1} + 1 � �1 (2)

Then, we encode each � value using 2-bits where �[0] = (�==+1)
and �[1] = (�==-1). With a brute force enumeration of the 18

possible inputs (i.e., �0,�1 2 {�1, 0, +1} and 4@ 2 {0, 1}), one can
verify the correctness of Eq. 3.

⌧"-� (�0,�1, 4@) [0] = !(�1 [0] | (�0 [1] & 4@ & !�1 [1]))
⌧"-� (�0,�1, 4@) [1] = (�0 [1] | 4@) & �1 [0] (3)

GMX-Tile algorithm allows fast and e�cient computation of () ⇥
) ) tiles, using 12 bit-operations per each � value (i.e., di�erential-
encoded DP-element) computed. Moreover, GMX-Tile design allows
the computation of antidiagonal elements in parallel. Also, GMX-
Tile does not require preprocessing the input sequences, allowing
character comparison of any alphabet size and removing the need
for lookup tables.

In comparison, to compute a () ⇥) ) tile, classical DP algorithms
require (5 ⇥) 2) full-integer instructions. SIMD-enabled implemen-
tations can accelerate these algorithms, reducing the number of
required instructions. However, practical SIMD implementations
typically demand high memory bandwidths and costly SIMD hard-
ware units. As opposed, bit-parallel algorithms allow computing
multiple DP-elements in parallel by packing them in bit-vectors.
To compute a () ⇥) ) tile, Bitap requires (7) ⇥) 2) bit-operations,
classical BPM (17⇥) 2) bit-operations, and GMX-Tile only (12⇥) 2)
bit-operations. Regarding memory footprint, DP and SIMD algo-
rithms encode ()⇥) ) DP-elements as regular integers, Bitap utilizes
) 3 bits per tile, and BPM uses 4) 2 bits per tile. In contrast, GMX-Tile
only requires 4) bits per tile as it only requires storing DP-elements
at the edge of the tile.

5 GMX ISA EXTENSIONS
The GMX ISA extension provides specialized instructions to ac-
celerate the two alignment phases: gmx.v and gmx.h to compute
the () ⇥ ) ) elements of a tile (Fig. 5.a) and gmx.tb to compute
the traceback (Fig. 5.b). Let �+8 = [�E8 . . . �E8+)�1] and ��8 =
[�⌘8 . . . �⌘8+)�1] be vectors of horizontal/vertical � values (i.e.,
di�erential-encoded DP-elements). GMX instructions can use stan-
dard R-type RISC-V encoding, using the reserved custom op-codes.
• gmx.v rd, rs1, rs2. Given �+8 and ��8 , stored in the general
purpose registers rs1 and rs2, this instruction computes the tile
alignment between the gmx_text and gmx_pattern, outputting
�+> in the register rd.

• gmx.h rd, rs1, rs2. Similar to gmx.v, this instruction computes
��> and stores it in rd.

Δ
V ou

t

ΔHout Alignmentout

Po
s in

Posout
Text \ ΔHin

Pa
tte

rn
 \ 

Δ
V in

gmx.h

gmx.v gmx.tb

(a) (b)

Text \ ΔHin

Pa
tte

rn
 \ 

Δ
V in

Figure 5: (a) gmx.v and gmx.h instructions to compute the
�+>DC and ��>DC of a tile. (b) gmx.tb instruction to compute a
tile’s traceback.

1471



GMX: Instruction Set Extensions for Fast, Scalable, and E�icient Genome Sequence Alignment MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

G C A T

G 1 -1 -1 -1 -1

A 1 1 0 -1 -1

T 1 1 1 1 -1

T 1 1 1 1 1

G C A T

G 1 -1 -1 -1 -1

A 1 1 0 -1 -1

T 1 1 1 1 -1

T 1 1 1 1 1

G C A T

G 1 -1 -1 -1 -1

A 1 1 0 -1 -1

T 1 1 1 1 -1

T 1 1 1 1 1

G C A T

G 1 -1 -1

A 1 1 0

T 1

T 1

ΔV ΔH

G C A T

1 1 1 1

G -1 1

A -1 0

T

T

G C A T

G 1 -1 -1 -1 -1

A 1 1 0 -1 -1

T 1 1 1 1 -1

T 1 1 1 1 1

ΔV ΔH

G C A T

1 1 1 1

G -1 1 1 1

A -1 0 0 1

T -1 0 0 -1

T -1 0 0 -1

ΔV ΔH

G C A T

1 1 1 1

G -1 1 1 1

A -1 0 0 1

T -1 0 0 -1

T -1 0 0 -1

G C A T

G 1 -1 -1 -1 -1

A 1 1 0 -1 -1

T 1 1 1

T 1 1 1

ΔV ΔH

G C A T

1 1 1 1

G -1 1 1 1

A -1 0 0 1

T -1 0

T -1 0

X X X Xgmx input gmx.{v,h} output Stored cells Not stored cells

1

4

2

5
ΔV ΔH

G C A T

1 1 1 1

G -1 1 1 1

A -1 0 0 1

T -1 0 0 -1

T -1 0 0 -1

ΔV ΔH

G C A T

1 1 1 1

G -1 1 1 1

A -1 0 0 1

T -1 0 0 -1

T -1 0 0 -1

3

6

X Active tile TB start cellX TB path

Posi = (1,1) Poso  = (1,0)Alig = MD Posi = (1,0) Poso  = (0,1)Alig = M Posi = (0,1) Poso  = (1,1)Alig = MI

Figure 6: Alignment between two sequences ("GCAT" and "GATT") using GMX’s (2 ⇥ 2) tiles. Steps 1�- 3� show the �+ and
�� computation performed using Algorithm 1. Steps 4�- 6� compute the traceback using �+ and �� to generate the optimal
alignment ("MIMMD"), as described in Algorithm 2.

• gmx.tb rs1, rs2. Given rs1=�+8 , rs2=��8 , and gmx_pos (trace-
back starting position), this instruction computes the alignment
traceback of a tile between the gmx_text and gmx_pattern. It
produces gmx_lo and gmx_hi, containing (2) � 1) 2-bit encoded
alignment operations, and gmx_pos (traceback end position).

GMX requires �ve architectural state registers of 2) bits each
(gmx_text, gmx_pattern, gmx_pos, gmx_lo, and gmx_hi). Archi-
tectural registers can be accessed using standard read-and-write
instructions implemented in conventional ISAs, like the csrr/csrw
instructions on RISC-V. GMX’s Architectural State Registers are the
following.

• gmx_pattern: Stores the pattern used by the GMX unit.
• gmx_text: Stores the text used by the GMX unit.
• gmx_pos: Stores the traceback’s start/end position.
• gmx_lo: Stores the ) lower bits of the 2-bit encoded traceback’s
alignment.

• gmx_hi: Stores the () � 1) higher bits of the 2-bit encoded trace-
back’s alignment. The two most signi�cant bits of gmx_hi store
the next tile to be computed in the traceback.

Note that the size of the gmx_pattern and gmx_text architectural
registers can be increased to allocate arbitrarily large alphabets (e.g.,
1-byte ASCII or even 3-bytes CCCII). In addition, all the architec-
tural registers of GMX can be renamed to allow the implementation
of the ISA extension in an out-of-order processor.

It is important to emphasize that the GMX ISA extensions were
designed with a simple RISC-like CPU design in mind, equipped
with only one destination register port. Due to this limitation, it
was necessary to design two separated instructions (gmx.v and
gmx.h) to compute a tile (which introduces redundant work like
the mul and mulh instructions in RISC-V). Notwithstanding, if the
target CPU allowed for two destination register ports, it would be
possible to merge gmx.v and gmx.h instructions, improving the
e�ciency and throughput of the implementation. Furthermore, if

the target CPU could write two destination ports per instruction,
the gmx.tb instruction could write the gmx_lo and gmx_hi into
general-purpose registers instead of using the dedicated CSR.

5.1 Use-Case: Computing Full(GMX)
In this section, we present the Full(GMX) implementation (i.e., the
classical DP-based algorithm enhanced with the GMX instructions)
to motivate the simplicity and applicability of our proposal. Algo-
rithm 1 presents the tile-wise DP-matrix computation using GMX
instructions. Moreover, Figure 6 illustrates the algorithm’s steps
(for a tile size ) = 2) to align the sequences "GCAT" and "GATT",
computing the DP-matrix (steps 1�- 3�) and traceback (steps 4�- 6�).

Given the text, pattern, tile size ) , Algorithm 1 computes of all
the tiles from the DP-matrix (Figure 6, steps 1�- 3�). Let " be a
(=/) ⇥</) ) matrix containing each tile’s �+ and �� vectors. The
algorithm proceeds column-wise, computing each ) ⇥) tile. For
that, it sets gmx_pattern and gmx_text with the proper pattern
and text’s chunks (using the csrw instruction) and loads the input
di�erences from the upper tile (��8= = " [8 � 1, 9] .⌘) and left
tile (�+8= = " [8, 9 � 1] .E). Using gmx.v and gmx.h instructions, the
algorithm generates �+>DC and ��>DC . Note that the algorithm does
not need to store all the DP-elements in the tile, just the di�erences
vectors corresponding to the DP-elements at the tiles’ edge.

Afterwards, Figure 6, steps 4�- 6�, shows the computation of the
alignment traceback to retrieve the optimal sequence alignment
using Algorithm 2. Starting from the bottom-right corner tile, the
traceback proceeds tile-wise until it reaches the top-left corner tile
of the DP-matrix. For that, the algorithm uses the gmx.tb instruc-
tion to compute the tile’s traceback from the position set in gmx_pos.
As a result, instruction gmx.tb outputs the alignment encoded in
gmx_hi and gmx_lo, and updates gmx_poswith the traceback’s end-
ing position. This process is iterated until all the global traceback
is computed.

1472



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Doblas et al.

Algorithm 1: DP-matrix computation using GMX.
Input: pattern, text, ) ; # ) = GMX Tile size
Output:"

1 n = length of the pattern;
2 m = length of the text;
3 for j=1 to m/) do # Loop pattern in )-chunks
4 csrw gmx_text, text[ 9 ⇥):)];
5 for i=1 to n/) do # Loop text in )-chunks
6 csrw gmx_pattern, pattern[8 ⇥):)];
7 (�+in, ��in) = ("[i][j-1].E ,"[i-1][j].⌘);
8 gmx.v �+out, �+in, ��in;
9 gmx.h ��out, �+in, ��in;

10 "[i][j].E = �+out;
11 "[i][j].⌘ = ��out;
12 end
13 end

Algorithm 2: Traceback computation using GMX.
Input: pattern, text, ", )
Output: aligvec, aligptr

1 h = m/) - 1;
2 v = n/) - 1;
3 csrw gmx_pos, bottom-right_cell ;
4 csrw gmx_text, text[h];
5 csrw gmx_pattern, pattern[v];
6 while v � 0 && h � 0 do
7 (�+in, ��in) = ("[i][j-1].E ,"[i-1][j].⌘);
8 gmx.tb �+in, ��in;
9 csrr aligvec[aligptr++], gmx_hi;

10 csrr aligvec[aligptr++], gmx_lo;
11 csrr nextTile, gmx_hi;
12 if nextTile is - then
13 csrw gmx_text, text[--h];
14 csrw gmx_pattern, pattern[--v];
15 else if nextTile is " then
16 csrw gmx_pattern, pattern[--v];
17 else nextTile is  
18 csrw gmx_text, text[--h];
19 end

6 GMX MICROARCHITECTURE
GMX is designed to be an instruction set extension for fast and
accurate genome sequence alignment. These hardware extensions
must be located inside the processor pipeline and, therefore, the
GMX implementation has to meet speci�c hardware constraints: i) a
small area footprint, ii) a short execution latency (few clock cycles),
iii) the need to use the processor’s general-purpose registers e�-
ciently, and iv) reach the same high-frequency as the processor. To
that end, we propose a fast and e�cient hardware implementation
separated into two modules (GMX-AC and GMX-TB for the Tile
and traceback computation, respectively) that can be seamlessly
integrated into any conventional CPU.

Δhin

Δvout

Δvin
Δvin

Δhin

eq

eq

Δ1

Δ0

Δ0

eq

Δvout

Δhout

Compute Cell-AC ( CCAC )

Δv
0

Δv
1

Δh1Δh0

t1 t0

Input

Vec
tors

Output
Vectors

Δ1

Δh0 Δh1

Δv
0

Δv
1

p0
p1

 

Δhout

CCAC

eq

GMXΔ

CCACCCAC

CCAC

GMXΔ

Figure 7: GMX-AC hardware design () = 2). On the left, the
matrix structure of the design. On the right, a single compute
cell’s structure which contains two ⌧"-� modules.

6.1 GMX-AC: Alignment Microarchitecture
TheGMX-ACmodule takes�+8= ,��8= , gmx_pattern, and gmx_text
as inputs. It generates �+>DC and ��>DC vectors when executing
gmx.v and gmx.h instructions, respectively. We have implemented
GMX-AC as a matrix of () ⇥) ) basic Compute Cores (⇠⇠�⇠ ) (Fig-
ure 7 left). Each ⇠⇠�⇠ of GMX-AC computes a single DP element
(�E>DC and �⌘>DC ), using left �E8= , upper �⌘8= , and 4@ (Figure 7
right). The equality bit 4@ is generated comparing the correspond-
ing characters from gmx_pattern and gmx_text. Internally, each
⇠⇠�⇠ implements two identical⌧"-� modules (Eq. 3). Due to the
simplicity of the ⌧"-� function, our design can be implemented
using a reduced number of gates, minimizing the propagation delay
and the area footprint.

6.2 GMX-TB: Traceback Microarchitecture
The GMX-TB module computes the traceback operations of the
alignment tile. The GMX-TB module takes �� , �+ , gmx_pattern,
gmx_text, and gmx_pos as inputs. It computes the tile’s traceback
when executing gmx.tb, storing the 2-bit encoded alignment oper-
ations in gmx_lo and gmx_hi and the traceback’s end position in
gmx_pos. As in previous software implementations [32], because
GMX only stores the DP-elements at the edges of the tiles, GMX-TB
has to recompute the internal DP-elements to compute the tile’s
traceback. For that, the GMX-TBmodule uses amatrix-like structure
of GMX-TB Compute Cores (⇠⇠)⌫ ) (Figure 8) similar to GMX-AC
with the ⇠⇠�⇠ .

Unlike GMX-AC, the data�ow goes from a ⇠⇠)⌫ in the bottom
or right edges towards a ⇠⇠)⌫ in the top or left edges. Moreover,
because the traceback can start at any element of the bottom and
right of the tile, the register gmx_pos one-hot encodes the starting
position of the traceback. Each ⇠⇠)⌫ (Figure 8) uses a selector
to discriminate which adjacent element belongs to the alignment
path (i.e., match/mismatch=-, insertion= , and deletion="). Each
⇠⇠)⌫ is connected to the three adjacent⇠⇠)⌫ (left, left-up, and up)
and enables one depending on�E ,�⌘, and 4@. This alignment path is
propagated until it reaches the left or top edges. The output position
of the last ⇠⇠)⌫ is stored in gmx_pos for the next tile traceback
computation. Moreover, the sequence of the⇠⇠)⌫ enabled (i.e., the
alignment path) is injected into the gmx_hi and gmx_lo registers.

Note that the alignment path only traverses one ⇠⇠)⌫ on each
antidiagonal at most. We exploit this property to simplify the GMX-
TB design, storing in gmx_hi and gmx_lo the enabled ⇠⇠)⌫ on

1473



GMX: Instruction Set Extensions for Fast, Scalable, and E�icient Genome Sequence Alignment MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Tile Alignment

1) Eq == 1
Δh == 1
Δv == 1
Else

CCTB priority tableCCTB legend
M
I
D
X

3)
2)

4)

CCTBCCTB

0 1 0 D

MD-

eq Δv Δh TB

CCTB

Output Alignment
Next Tile

gmx_hi gmx_lo

0 0 0 X

- …--

CCTB
CCTB

1 0 0M0 0 1 I

gmx_posin

gmx_posout 1  0  0

0  1  0 …0

…0

…

Figure 8: GMX-TB hardware design () = 2). On the left, the
matrix structure of the design. On the right, the⇠⇠)⌫ legend
and properties, along with the output alignment.

each antidiagonal using 2-bits. Like the GMX-AC core modules, the
GMX-TB core module can be implemented using a few gates to
reduce the area and propagation delay.

6.3 Segmentation and Frequency Analysis
GMX’s extensions employ the available general-purpose registers.
Thus, we select a suitable tile size) that fully exploits the register’s
length (e.g., ) = 32 using 64-bit scalar registers). However, large
values of) require a carefully segmented design to work at modern
processors’ high clock frequencies.

GMX-AC Segmentation: Analyzing the critical path inside
GMX-AC’s design, we observe that the maximum delay paths start
on the top-left cell and �nish at the bottom-right cell, traversing
2) �1 compute cells. Let⇠3 be the delay of a⇠⇠�⇠ , the critical path
of the whole module is (2) � 1) · ⇠3 (e.g., for ) = 32, the critical
path is 63⇠3 ). Even for small ⇠3 , a single-cycle implementation of
GMX-AC cannot reach high frequencies.

The segmentation strategy used in this GMX-AC’s design in-
troduces segmentation registers between the matrix antidiagonals,
storing up to ) elements in the worst case. This design can scale to
arbitrarily large values of ) by adding more stages and balancing
the delay across them. For instance, a two-cycle segmented design
for ) = 32 renders two stages of delay 32 ·⇠3 (Figure 9.a).

GMX-TB Segmentation: Analyzing the critical path inside
GMX-TB’s design, the maximum delay goes from the bottom-right
to the top-left corner, going through 2) � 1⇠⇠)⌫ (each introducing
%3 delay). However, the overall delay of the GMX-TB module has to
account for the delay in recomputing the tile’s inner DP-elements;
i.e., a ((2) � 1) (⇠3 + %3 )) total traceback delay.

Similarly, GMX-TB needs to be segmented to reach high-frequency
operation. The GMX-TB segmentation strategy also involves using
antidiagonals segmentation registers. Figure 9.b shows an example
of a 4-stage segmentation of the GMX-TB module. First, the di�er-
ences are computed and stored in all the segmentation registers
( 1�- 2�). Then, GMX-TB computes the traceback by �rst calculating
the di�erences (from top to bottom) and then computing the back-
trace path (from bottom to top) for each segmented stage. ( 3�- 6�).
In practice, GMX-TB must be segmented more times to achieve
the same frequency as GMX-AC (i.e., ⇠3 ⇠ %3 ). Also, note that
the traceback algorithm is inherently sequential. Therefore, the
GMX-TB design can be e�ciently implemented using a multicycle
model, reducing the design complexity.

1

2
3

4

5
Stage Delays

1

2

6

Cd·T

Cd(T/2)

(Cd+Pd)(T/2)3

A

B

Cd·TBA

(b) GMX-TB(a) GMX-AC

6

Figure 9: Segmentation strategy for GMX-AC (left) and GMX-
TB (right).

GMXTile Size Implications: Unsurprisingly, the tile size) has
profound implications for the performance and e�ciency of GMX’s
design. As the tile size ) increases, the number of compute cores
(i.e., area for ⇠⇠�⇠ and ⇠⇠)⌫ ) and the computational throughput
(DP-elements/cycle) increase quadratically. In contrast, the latency
only increases linearly with ) .

7 RESULTS
For experimental evaluation, we integrated the GMX extensions
into the gem5 simulator [14]. Additionally, we extended a 64-bit
Linux-capable RTL processor fabricated in GlobalFoundries 22nm
technology node with the GMX extensions. We selected a (T=32)-
design to maximize 64-bit registers’ usage (i.e., GMX instructions
compute 1024 DP-elements per instruction). To achieve the 1 GHz
working frequency of the RTL design, we segmented GMX-AC and
GMX-TB modules (as shown in Figure 9) to obtain 2 and 6 cycles
operation latency, respectively.

7.1 Evaluation Methodology
Cycle-Level Simulations: We evaluated GMX using gem5 to sim-
ulate two core models using the syscall emulation execution. The
�rst core (gem5-InOrder) features a simple single-issue in-order
pipeline, while the second core (gem5-OoO) is an 8-way superscalar
out-of-order similar to the Arm Neoverse V1. Both cores have pri-
vate L1 (64 kB) and L2 (1 MB) caches and a shared last-level cache
(LLC) of 1 MB per core. To test GMX’s performance in a multicore
system, we used a 16-core network-on-chip (NoC) with two DDR4
memory controllers with a peak bandwidth of 47.8 GB/s.

RTL Simulations: For the RTL-model evaluation, we selected
the Sargantana [98] RISC-V edge processor (RTL-InOrder) featuring
an in-order single-core, single-issue, with a non-blocking L1 (32
KB) and L2 (512 KB) caches (Table 1 shows the SoC con�guration).
GMX’s performance results were obtained by emulating the SoC in
a Xilinx Alveo U280 FPGA.

Synthesis andPhysical DesignEnvironment:The RTL-InOrder
SoC design with the GMX extensions was synthesized in Global-
Foundries 22nm FD-SOI technology node. Our physical design
targets post-routing clock timing 1GHz. We used the Cadence
Genus tool v19.11 for the logical synthesis and the Cadence In-
novus tool v19.11 for the place-and-route. To extract the design’s
power consumption, we used the utilization information reported
from gate-level simulations of the entire SoC running the alignment
benchmarks.

1474



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Doblas et al.

Figure 10: Gem5-InOrder core throughput comparison between software implementations.

Table 1: RTL-InOrder SoC con�guration for the evaluation.

RTL-InOrder SoC Con�guration & System Parameters
Pipeline 64-bit RISC-V (RV64G), 7-stages, 128-entry bi-

modal predictor, 32-entry graduation list
Memory Unit 8-entry LSQ, 8-entry Store Bu�er, 16 misses in

�ight
iTLB & dTLB Fully associative, 16 entries per TLB
Data cache 32 KB 4-way, 3-cycle, VIPT, 2-entry MSHR
Inst. cache 16 KB 4-way, 2-cycle, VIPT
LLC 512 KBytes, 8-way set associative

Experimental Workloads: For the evaluation, we generated 5
short-sequence datasets and 11 long-sequence datasets, following
the same methodology from [73]. The long-sequence datasets have
di�erent sequence lengths (1K-10K bases in increments of 1K base)
and show error rates of 15%. The short-sequences datasets contain
sequences of length 100bps, 150bps, 200bps, 250bps, and 300bps,
with an error of 5%.

Software Implementations and Hardware Accelerators:
We selected widely used sequence alignment algorithms to evalu-
ate GMX’s performance. We evaluated the Full, Banded, and Win-
dowed algorithms leveraging the GMX instructions. For the base-
line, we selected state-of-the-art sequence alignment implemen-
tations, including Full(DP) (Needleman-Wunsch [82]), Full(BPM)
(BPM [77]), Banded( Edlib) (Edlib [108]), and Windowed(GenASM-
CPU) (GenASM [17] open-source implementation for CPU). Ad-
ditionally, we compared GMX with two state-of-the-art hardware
accelerators, GenASM [17] and Darwin [104], based on the material
reported by these works implemented on 28nm.

7.2 Cycle-Level Simulations
GMX on an In-Order Core: This section presents the perfor-
mance results of the GMX extensions implemented on the gem5-
InOrder core. Figure 10 shows the throughput (alignments per
second) obtained by the baseline software implementations (Full,
Banded, and Windowed algorithms) and the GMX-accelerated ver-
sions, aligning short and long sequences.

Regarding short-sequence alignment, the left side of Figure 10
shows that Full(GMX) improves the throughput 18⇥ compared

to Full(BPM) and 597⇥ when compared to classic Full(DP). Com-
pared to Banded algorithms, Banded(GMX) improves the through-
put by 267⇥, while for Windowed algorithms, Windowed(GMX)
improves the throughput by 3809⇥. Regarding long-sequence align-
ment (Figure 10, right side), Full(GMX) provides 42⇥more through-
put than Full(BPM) and 2436⇥ more throughput than Full(DP).
Moreover, Banded(GMX) achieves a 372⇥ throughput improvement
compared to Banded algorithms and 13253⇥ throughput improve-
ment compared to Windowed algorithms. Note that GenASM-CPU
is a hardware-oriented algorithm not designed to be executed on a
CPU.

Overall, these performance improvements result from (1) GMX
computing 1024 DP-elements per instruction and (2) only storing
63 DP-elements per tile, whereas other implementations require
multiple instructions and more memory to perform the same com-
putation. Interestingly, GMX achieves larger performance improve-
ments when aligning longer sequences due to its more e�cient
memory usage.

GMX on an Out-of-Order Core: Since GMX is designed as
a core extension, the performance improvement depends on the
core design. As shown in Figure 11, the throughput obtained using
a wide out-of-order (gem5-OoO) is signi�cantly larger than that
obtained with the in-order core (gem5-InOrder). Also, we observe
a consistent performance speed-up between the baseline software
and the GMX-enhanced implementations. In particular, using gem5-
OoO core with GMX can lead to a 2.4–6.4⇥ increase in performance
compared to the in-order design.

Multicore Scalability and Bandwidth Analysis: We inte-
grated GMX into a multicore by extending each core with one GMX
module to increase the throughput of a single gem5-OoO core.

Figure 11: Throughput improvement between a gem5-
InOrder and gem5-OoO core.

1475



GMX: Instruction Set Extensions for Fast, Scalable, and E�icient Genome Sequence Alignment MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Figure 12: Multithread scalability (top) and memory band-
width (bottom) on a 16-core processor (gem5-OoO).

We implemented a data-parallelism strategy (a.k.a. inter-sequence)
since each sequence pair can be aligned independently. Multicore
results are shown in Figure 12 where the top panel shows the
speed-up achieved using di�erent numbers of threads (compared
to single-thread execution), and the bottom panel shows the mem-
ory bandwidth required for 16-thread executions aligning di�er-
ent sequence lengths. All the implementations demonstrate linear
speedup increasing the number of threads, except for Full(BPM)
and Windowed(GMX).

In the case of Full(BPM), a high-memory bandwidth is required
to read and write the DP-matrices. For small sequence lengths (
1Kbp), DP-matrices can be stored inside the caches. However, for
longer sequences (> 10Kbp), the DP-matrices do not �t in caches,
and thus the memory bandwidth limits the performance scaling.
This memory bandwidth limitation is re�ected in the lower panel of
Figure 12, where the bandwidth needed from the DDR4 controllers
exceeds 65% of the peak capacity.

In the case of Windowed(GMX), the performance scaling increas-
ing the number of threads is nearly optimal. Due to the Windowed
strategy and GMX’s e�cient design, Windowed(GMX) requires
minimal computation per character aligned, increasing the pres-
sure on the memory bandwidth (Figure 12, lower panel). In turn,
this results in contention in the cache hierarchy, increasing memory
request’s latency. Since Windowed(GMX) su�ers from load-to-load
dependencies, the performance on multiple cores slightly decreases.

7.3 RTL Implementation
Area, Frequency, and Power Analysis: The right panel of Fig-
ure 13 shows the area and power breakdown of each GMX’s module
after the place and route sign-o� at 1 GHz when implemented in the
RTL-InOrder. The area overhead from GMX is 0.0216mm2 where
0.008 mm2 corresponds to the GMX-AC module and 0.0108mm2

to the GMX-TB module. The silicon area occupied by the GMX
extensions only represents 1.7% of the entire SoC. Interestingly,
each GMX-AC and GMX-TB module consumes an area similar to
that of a 2-cycle 64-bit integer multiplier. Regarding power con-
sumption, GMX’s modules increase by 8.47 mW the SoC power
consumption (2.1% of the total power consumption). The left panel

L2 CACHE

L1d L1i 

Figure 13: Place and Route (left) and area/power breakdown
(right) of the SoC.

Figure 13 depicts the �oorplan of the chip where GMX’s modules
are highlighted in green. It is important to note that the �llers cells
inside GMX’s modules are also highlighted.

GMXRTL-InOrder Performance: Figure 10 shows the through-
put achieved by the baseline software implementations (Full, Banded,
and Windowed algorithms) and the GMX-accelerated versions exe-
cuted on the RTL design (RTL-InOrder). The performance results
are consistent with those obtained by the gem5 simulations (gem5-
InOrder core). On edge devices, like the RTL-InOrder core, equipped
with a limited memory hierarchy, GMX’s reduction in memory us-
age increases the performance bene�ts. For instance, we observe
that Full(BPM) executions are strongly limited by the memory band-
width on the RTL SoC, whereas GMX-enhanced implementation
Full(GMX) alleviates memory contention, providing an average
improvement on the throughput of 45.2 (1.5⇥ more than on the
gem5-InOrder).

Figure 14: RTL-InOrder throughput comparison between
software implementations.

7.4 GMX and other Specialized Accelerators
For the comparison with DSAs, we selected the state-of-the-art
DSAs Darwin and GenASM. For a fair comparison, we compared a
single RTL-InOrder core (equippedwith oneGMXPE), oneGenASM
vault (i.e., PE), and one Darwin’s GACT PE with a 64-element ar-
ray. We used the same Windowed algorithm used by Darwin and
GenASM (, = 96 and $ = 32). Due to the Windowed strategy,
none of these executions is limited memory bandwidth. In partic-
ular, GMX bene�ts from the cache hierarchy inside the RTL SoC,
while GenASM and GACT exploit internal SRAMs.

Figure 15 shows the alignment throughput per PE obtained by
the three hardware accelerators, aligning short and long sequences.
On average, GMX performs 1.3–1.9⇥ better than GenASM and 7.2–
16.2⇥ better than Darwin. Yet, GMX introduces a minimal silicon

1476



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Doblas et al.

Figure 15: Hardware accelerators’ throughput comparison
with GMX on the RTL-InOrder.

area overhead to the existing SoC design (15.46⇥ less extra area
than GenASM and 26.29⇥ less than Darwin).

To demonstrate GMX’s scalability, we aligned 1Mbps-long se-
quenceswith 15% of error using Banded(GMX) andWindowed(GMX)
implementations using the RTL-InOrder core.We excluded Full(GMX)
from this evaluation as it would require more than 10GB of memory
and the RTL SoC is limited to 1GB. In this scenario, Banded(GMX)
achieves 20 alignments/s, whileWindowed(GMX) reaches 374 align-
ments/s. Compared to the GenASM accelerator, we achieve 1.58⇥
more throughput without the need to modify any design parameter
or increase internal SRAM memories. Unlike traditional loosely-
coupled co-processors and accelerators, leveraging GMX ISA ex-
tensions eliminates data transfers host/device (and its energy cost)
and allows exploiting data locality in sequence analysis pipelines.

8 RELATEDWORK
Due to its importance, many works have explored the acceleration
of sequence alignment on general-purpose hardware. Many propos-
als are focused on algorithmic improvements [8, 65, 108], exploita-
tion of SIMD instructions [29, 33], multicore parallel-processing [41,
106], and GPUs acceleration [47, 68, 69]. In the same spirit as GMX,
Nvidia proposed the DPX instruction set extension to accelerate
DP-matrix computations on GPU. Unlike GMX, DPX extensions are
limited to computing a single DP-element per instruction, exploit-
ing the multiple computing units of the GPU to perform DP-matrix
computations in parallel.

Motivated by the critical need for faster solutions, many domain-
speci�c hardware accelerators have been proposed [24, 26, 51, 56,
59] to accelerate sequence alignment. Relevant studies include
SeedEx [38], GenAx, Darwin, GenASM, and SeGraM. GenAx and
SeedEx (Banded) propose using an FPGA-based accelerator based
on a hardware automaton to calculate the edit distance. On the
other hand, GenASM and SeGraM (Windowed) propose ASIC ac-
celerators based on the Bitap algorithm (edit distance). Darwin
(Windowed) suggests a specialized ASIC design for accelerating
gap-a�ne alignment through heuristics. Unlike GMX, these accel-
erators are designed as co-processors outside the CPU pipeline.

Otherworks have explored using processing inmemory (PIM) for
sequence alignment [9, 57, 58]. Notably, RAPID [48] accelerates the
DP-matrix computation by processing complete antidiagonals in
parallel. Similarly, BioHD [117] uses hyper-dimensional exploiting
PIM architectures parallelism. While these architectures often share
part of the memory hierarchy with the CPU (as GMX does), they
are not integrated into the CPU pipeline.

Table 2: Peak GCUPS (PGCUPS) per processing engine (PE)
reported by each study. †Gap-a�ne implementations.

Study Device PE Area/PE PGCUPS
PE

GMX Unit ASIC 1 PE 0.02mm2 1024.0
Core+GMX ASIC 1 PE 1.24mm2 1024.0
GenASM [17] ASIC 32 PE 0.33mm2 64.0
ABSW [66] ASIC 1 PE 5.51mm2 61.4
GenAX [37] ASIC 4 PE 1.34mm2 112.0
Darwin [104] ASIC 64 PE 1.34mm2 †54.2
ASAP [12] FPGA 1 PE 277K LUTs 51.2

FPGASW [34] FPGA 1 PE 58K LUTs †105.9

DPX GPU 132 SM – †42.4
GASAL2 [3] GPU 28 SM – †2.3

BPM-GPU [20] GPU 8 SM – 287.5
NVBio GPU 15 SM – 66.6

Comparing di�erent alignment accelerators is a di�cult task due
to the di�erences in the algorithms, heuristics, architectures, and
physical technologies. Notwithstanding, GCUPS (Giga Cells Up-
dated Per Second) is a commonly used metric to provide a measure
of peak performance, reporting the maximum DP-elements that
a solution is capable of computing per second. Table 2 shows the
most notable accelerators evaluated under this metric, considering
the number of Processing Engines (PE). Overall, GXM o�ers the
highest GCUPS per PE compared to other state-of-the-art proposals.
This is largely due to the highly e�cient implementation of the
⌧"-� modules, which enables GMX to compute 1024 DP-elements
per cycle.

9 CONCLUSIONS
In this paper, we present the Genome alignMent eXtensions (GMX),
an instruction set extension that enables the acceleration of se-
quence alignment by tile-wise computing the DP-matrix. Moreover,
we propose an area- and energy-e�cient hardware implementation
of GMX that can be integrated into any CPU. After integrating
GMX in an in-order RISC-V edge processor, we demonstrate that
GMX-accelerated algorithms outperform state-of-the-art software
tools and domain-speci�c accelerators both in performance and
e�ciency without degrading accuracy and scalability.

Undoubtedly, sequence alignment will remain as a central compo-
nent of many genome sequence alignment applications. We expect
that GMXwill pave the way for fast, scalable, accurate, and e�cient
genome sequence analysis tools. Furthermore, we hope that this
work will contribute to the discussion on the potential bene�ts of
domain-speci�c ISA extensions in future computer architectures.

ACKNOWLEDGMENTS
This work has been partially supported by the European HiPEAC
Network of Excellence, by the Spanish Ministry of Science and
Innovation [PID2019-107255GB-C21, TED2021-132634A-I00, and
PID2020-113614RB-C21], by the Generalitat de Catalunya [2021-
SGR-00763], by the European Union within the framework of the
ERDF of Catalonia 2014-2020 under theDRACproject [001-P-001723]

1477



GMX: Instruction Set Extensions for Fast, Scalable, and E�icient Genome Sequence Alignment MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

and by the European NextGenerationEU/PRTR, by Lenovo-BSC
Contract-Framework Contract (2022), by National Science Foun-
dation (NSF) within the PPoSS Award #2118709, and by the ePro-
cessor project which received funding from the European High-
Performance Computing Joint Undertaking (JU) under grant agree-
ment No 956702. The JU receives support from the EuropeanUnion’s
Horizon 2020 research and innovation programme and the respec-
tive national research organisations from Spain (PCI2021-121991/
MCIN/AEI/10.13039/501100011033), Sweden, Greece, Italy, France,
and Germany. The eProcessor project is also co-funded by the UE
NextGenerationEU/PRTR. M. Doblas has been supported through
an FPU fellowship [FPU20/04076]; Q. Aguado-Puig has been sup-
ported by PRE2021-101059 (founded by MCIN/AEI/10.13039/50110
0011033 and FSE+).

REFERENCES
[1] Quim Aguado-Puig, Santiago Marco-Sola, Juan Carlos Moure, David Castells-

Rufas, Lluc Alvarez, Antonio Espinosa, and Miquel Moreto. 2022. Accelerating
edit-distance sequence alignment on GPU using the wavefront algorithm. IEEE
Access 10 (2022), 63782–63796.

[2] QuimAguado-Puig, SantiagoMarco-Sola, Juan CarlosMoure, ChristosMatzoros,
David Castells-Rufas, Antonio Espinosa, and Miquel Moreto. 2022. WFA-GPU:
Gap-a�ne pairwise alignment using GPUs. bioRxiv (2022).

[3] Nauman Ahmed, Jonathan Lévy, Shanshan Ren, Hamid Mushtaq, Koen Bertels,
and Zaid Al-Ars. 2019. GASAL2: a GPU accelerated sequence alignment library
for high-throughput NGS data. BMC bioinformatics 20, 1 (2019), 1–20.

[4] Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose,
Can Alkan, and Onur Mutlu. 2020. Accelerating genome analysis: A primer on
an ongoing journey. IEEE Micro 40, 5 (2020), 65–75.

[5] Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao,
Gagandeep Singh, Juan Gomez-Luna, and Onur Mutlu. 2022. From molecules
to genomic variations: Accelerating genome analysis via intelligent algorithms
and architectures. Computational and Structural Biotechnology Journal (2022).

[6] Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao,
Gagandeep Singh, Juan Gomez-Luna, and Onur Mutlu. 2022. Going from
molecules to genomic variations to scienti�c discovery: intelligent algorithms
and architectures for intelligent genome analysis. arXiv preprint arXiv:2205.07957
(2022).

[7] Mohammed Alser, Taha Shahroodi, Juan Gómez-Luna, Can Alkan, and Onur
Mutlu. 2020. SneakySnake: a fast and accurate universal genome pre-alignment
�lter for CPUs, GPUs and FPGAs. Bioinformatics 36, 22-23 (2020), 5282–5290.

[8] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic
local alignment search tool. Journal of Molecular Biology (1990).

[9] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. 2020. PIM-Aligner:
A processing-in-MRAM platform for biological sequence alignment. In 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE). 1265–1270.

[10] Euan A Ashley. 2016. Towards precision medicine. Nature Reviews Genetics 17,
9 (2016), 507–522.

[11] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999. Modern information
retrieval. Vol. 463. ACM press New York.

[12] Subho Sankar Banerjee, Mohamed El-Hadedy, Jong Bin Lim, Zbigniew T. Kalbar-
czyk, Deming Chen, Steven S. Lumetta, and Ravishankar K. Iyer. 2019. ASAP:
Accelerated short-read alignment on programmable hardware. IEEE Trans.
Comput. 68, 3 (mar 2019), 331–346.

[13] Bonnie Berger, Noah M Daniels, and YWilliam Yu. 2016. Computational biology
in the 21st century: Scaling with compressive algorithms. Commun. ACM 59, 8
(2016), 72–80.

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1–7.

[15] James Bornholt, Randolph Lopez, Douglas M Carmean, Luis Ceze, Georg Seelig,
and Karin Strauss. 2016. A DNA-based archival storage system. In Proceed-
ings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems. 637–649.

[16] Liangwei Cai, Qi Wu, Tongsheng Tang, Zhi Zhou, and Yuan Xu. 2019. A de-
sign of FPGA acceleration system for Myers bit-vector based on OpenCL. In
2019 International Conference on Intelligent Informatics and Biomedical Sciences
(ICIIBMS). IEEE, 305–312.

[17] Damla Senol Cali, Gurpreet S Kalsi, Zülal Bingöl, Can Firtina, Lavanya Sub-
ramanian, Jeremie S Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan
Gomez-Luna, Amirali Boroumand, et al. 2020. Genasm: A high-performance,

low-power approximate string matching acceleration framework for genome
sequence analysis. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 951–966.

[18] Damla Senol Cali, Konstantinos Kanellopoulos, Joël Lindegger, Zülal Bingöl,
Gurpreet S Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim,
Nika Mansouri Ghiasi, et al. 2022. SeGraM: a universal hardware accelerator for
genomic sequence-to-graph and sequence-to-sequence mapping. arXiv preprint
arXiv:2205.05883 (2022).

[19] Darlan S Candido, Ingra M Claro, Jaqueline G De Jesus, William M Souza, Fil-
ipe RR Moreira, Simon Dellicour, Thomas AMellan, Louis Du Plessis, Rafael HM
Pereira, Flavia CS Sales, et al. 2020. Evolution and epidemic spread of SARS-
CoV-2 in Brazil. Science 369, 6508 (2020), 1255–1260.

[20] Alejandro Chacón, Santiago Marco-Sola, Antonio Espinosa, Paolo Ribeca, and
Juan Carlos Moure. 2014. Thread-cooperative, bit-parallel computation of leven-
shtein distance on GPU. In Proceedings of the 28th ACM international conference
on Supercomputing. 103–112.

[21] Mark JP Chaisson, Richard KWilson, and Evan E Eichler. 2015. Genetic variation
and the de novo assembly of human genomes. Nature Reviews Genetics 16, 11
(2015), 627–640.

[22] Chuan-Yu Chen, Shih-Hao Huang, and Yi-Chang Lu. 2022. A Hardware Accel-
erator for Long Sequence Alignment with the Bit-Vector Scoring Scheme and
Divide-and-Conquer Traceback. In 2022 IEEE Biomedical Circuits and Systems
Conference (BioCAS). IEEE, 467–471.

[23] Fan Chen, Linghao Song, Yiran Chen, et al. 2020. PARC: A processing-in-CAM
architecture for genomic long read pairwise alignment using ReRAM. In 2020
25th Asia and South Paci�c Design Automation Conference (ASP-DAC). IEEE,
175–180.

[24] Peng Chen, ChaoWang, Xi Li, and Xuehai Zhou. 2014. Accelerating the next gen-
eration long read mapping with the FPGA-based system. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 11, 5 (2014), 840–852.

[25] Ying Chen, Fan Nie, Shang-Qian Xie, Ying-Feng Zheng, Qi Dai, Thomas Bray,
Yao-Xin Wang, Jian-Feng Xing, Zhi-Jian Huang, De-Peng Wang, et al. 2021. E�-
cient assembly of nanopore reads via highly accurate and intact error correction.
Nature Communications 12, 1 (2021), 60.

[26] Yu-Ting Chen, Jason Cong, Jie Lei, and PengWei. 2015. A novel high-throughput
acceleration engine for read alignment. In 2015 IEEE 23rd Annual International
Symposium on Field-Programmable Custom Computing Machines. 199–202.

[27] Lynda Chin, Jannik N Andersen, and P Andrew Futreal. 2011. Cancer genomics:
from discovery science to personalized medicine. Nature Medicine 17, 3 (2011),
297–303.

[28] Peter Christen. 2006. A comparison of personal name matching: Techniques and
practical issues. In Sixth IEEE International Conference on DataMining-Workshops
(ICDMW’06). IEEE, 290–294.

[29] Je� Daily. 2016. Parasail: SIMD C library for global, semi-global, and local
pairwise sequence alignments. BMC Bioinformatics 17, 1 (2016), 1–11.

[30] Hercules Dalianis. 2018. Clinical text mining: Secondary use of electronic patient
records. Springer Nature.

[31] Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez Luna, Onur
Mutlu, and Izzat El Hajj. 2022. High-throughput pairwise alignment
with the wavefront algorithm using processing-in-memory. arXiv preprint
arXiv:2204.02085 (2022).

[32] Jordan M Eizenga and Benedict Paten. 2022. Improving the time and space
complexity of the WFA algorithm and generalizing its scoring. bioRxiv (2022),
2022–01.

[33] Michael Farrar. 2006. Stripe Smith-Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics (2006).

[34] Xia Fei, Zou Dan, Lu Lina, Man Xin, and Zhang Chunlei. 2018. FPGASW: ac-
celerating large-scale Smith–Waterman sequence alignment application with
backtracking on FPGA linear systolic array. Interdisciplinary Sciences: Computa-
tional Life Sciences 10, 1 (2018), 176–188.

[35] Mauricio Flores, Gustavo Glusman, Kristin Brogaard, Nathan D Price, and Leroy
Hood. 2013. P4 medicine: how systems medicine will transform the healthcare
sector and society. Personalized Medicine 10, 6 (2013), 565–576.

[36] Nuno A Fonseca, Johan Rung, Alvis Brazma, and John C Marioni. 2012. Tools
for mapping high-throughput sequencing data. Bioinformatics 28, 24 (2012),
3169–3177.

[37] Daichi Fujiki, Arun Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna Das,
David Blaauw, and Satish Narayanasamy. 2018. GenAx: A genome sequencing
accelerator. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 69–82.

[38] Daichi Fujiki, Shunhao Wu, Nathan Ozog, Kush Goliya, David Blaauw, Satish
Narayanasamy, and Reetuparna Das. 2020. SeedEx: A genome sequencing
accelerator for optimal alignments in subminimal space. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 937–950.

[39] Ji Gao, Jack Lanchantin, Mary Lou So�a, and Yanjun Qi. 2018. Black-box
generation of adversarial text sequences to evade deep learning classi�ers. In
2018 IEEE Security and Privacy Workshops (SPW). IEEE, 50–56.

1478



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Doblas et al.

[40] Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural
language generation: Core tasks, applications and evaluation. Journal of Arti�cial
Intelligence Research 61 (2018), 65–170.

[41] Evangelos Georganas, Aydin Buluç, Jarrod Chapman, Leonid Oliker, Daniel
Rokhsar, and Katherine Yelick. 2015. merAligner: A fully parallel sequence
aligner. In 2015 IEEE International Parallel and Distributed Processing Symposium.
561–570.

[42] Geo�rey S Ginsburg and Kathryn A Phillips. 2018. Precision medicine: from
science to value. Health A�airs 37, 5 (2018), 694–701.

[43] Geo�rey S Ginsburg and Huntington FWillard. 2009. Genomic and personalized
medicine: foundations and applications. Translational Research 154, 6 (2009),
277–287.

[44] Osamu Gotoh. 1982. An improved algorithm for matching biological sequences.
Journal of Molecular Biology 162, 3 (1982), 705–708.

[45] Alexander L Greninger, Samia N Naccache, Scot Federman, Guixia Yu, Placide
Mbala, Vanessa Bres, Doug Stryke, Jerome Bouquet, Sneha Somasekar, Je�rey M
Linnen, et al. 2015. Rapid metagenomic identi�cation of viral pathogens in
clinical samples by real-time nanopore sequencing analysis. Genome Medicine
7, 1 (2015), 1–13.

[46] Venkateshwarlu Yellaswamy Gudur, Sidharth Maheshwari, Swati Bhardwaj,
Amit Acharyya, and Rishad Sha�k. 2022. Hardware-algorithm codesign for fast
and energy e�cient approximate string matching on FPGA for computational
biology. In 2022 44th Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC). IEEE, 87–90.

[47] Sree Charan Gundabolu, TN Vijaykumar, and Mithuna Thottethodi. 2021. FastZ:
accelerating gapped whole genome alignment on GPUs. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–13.

[48] Saransh Gupta, Mohsen Imani, Behnam Khaleghi, Venkatesh Kumar, and Tajana
Rosing. 2019. RAPID: A ReRAM processing in-memory architecture for DNA
sequence alignment. In 2019 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED). IEEE, 1–6.

[49] Abbas Haghi, Santiago Marco-Sola, Lluc Alvarez, Dionysios Diamantopoulos,
Christoph Hagleitner, and Miquel Moreto. 2021. An FPGA accelerator of the
wavefront algorithm for genomics pairwise alignment. In 2021 31st International
Conference on Field-Programmable Logic and Applications (FPL). IEEE, 151–159.

[50] Jo Handelsman. 2004. Metagenomics: application of genomics to uncultured
microorganisms. Microbiology and molecular biology reviews 68, 4 (2004), 669–
685.

[51] Brandon Harris, Arpith C. Jacob, Joseph M. Lancaster, Jeremy Buhler, and
Roger D. Chamberlain. 2007. A banded Smith-Waterman FPGA accelerator for
Mercury BLASTP. In 2007 International Conference on Field Programmable Logic
and Applications. 765–769.

[52] Robert S Harris. 2007. Improved pairwise alignment of genomic DNA. The
Pennsylvania State University.

[53] Jörn Ho�mann, Dirk Zeckzer, and Martin Bogdan. 2016. Using FPGAs to acceler-
ate Myers bit-vector algorithm. In XIV Mediterranean Conference on Medical and
Biological Engineering and Computing 2016: MEDICON 2016, March 31st-April
2nd 2016, Paphos, Cyprus. Springer, 535–541.

[54] Xuehui Huang, Qi Feng, Qian Qian, Qiang Zhao, Lu Wang, Ahong Wang, Jian-
ping Guan, Danlin Fan, Qijun Weng, Tao Huang, et al. 2009. High-throughput
genotyping by whole-genome resequencing. Genome Research 19, 6 (2009),
1068–1076.

[55] Sohyun Hwang, Eiru Kim, Insuk Lee, and Edward M Marcotte. 2015. Systematic
comparison of variant calling pipelines using gold standard personal exome
variants. Scienti�c Reports 5, 1 (2015), 1–8.

[56] Xianyang Jiang, Xinchun Liu, Lin Xu, Peiheng Zhang, and Ninghui Sun. 2007.
A recon�gurable accelerator for Smith–Waterman algorithm. IEEE Transactions
on Circuits and Systems II: Express Briefs 54, 12 (2007), 1077–1081.

[57] Roman Kaplan, Leonid Yavits, and Ran Ginosasr. 2020. Bioseal: In-memory
biological sequence alignment accelerator for large-scale genomic data. In Pro-
ceedings of the 13th ACM International Systems and Storage Conference. 36–48.

[58] S. Karen Khatamifard, Zamshed Chowdhury, Nakul Pande, Meisam Razaviyayn,
Chris H. Kim, and Ulya R. Karpuzcu. 2021. GeNVoM: read mapping near non-
volatile memory. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics (2021), 1–1.

[59] Yeseong Kim, Mohsen Imani, NiemaMoshiri, and Tajana Rosing. 2020. GenieHD:
E�cient DNA pattern matching accelerator using hyperdimensional computing.
In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).
115–120.

[60] Henrik Krehenwinkel, Aaron Pomerantz, and Stefan Prost. 2019. Genetic
biomonitoring and biodiversity assessment using portable sequencing tech-
nologies: current uses and future directions. Genes 10, 11 (2019), 858.

[61] Karen Kukich. 1992. Techniques for automatically correcting words in text.
Acm Computing Surveys (CSUR) 24, 4 (1992), 377–439.

[62] Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C Zody,
Jennifer Baldwin, Keri Devon, Ken Dewar, Michael Doyle, William Fitzhugh,
et al. 2001. Initial sequencing and analysis of the human genome. Nature 409,

6822 (2001), 860–921.
[63] Dandan Lang, Shilai Zhang, Pingping Ren, Fan Liang, Zongyi Sun, Guanliang

Meng, Yuntao Tan, Xiaokang Li, Qihua Lai, LinglingHan, et al. 2020. Comparison
of the two up-to-date sequencing technologies for genome assembly: HiFi reads
of Paci�c Biosciences Sequel II system and ultralong reads of Oxford Nanopore.
Gigascience 9, 12 (2020), giaa123.

[64] Ben Langmead and Steven L Salzberg. 2012. Fast gapped-read alignment with
Bowtie 2. Nature Methods 9, 4 (2012), 357–359.

[65] Heng Li. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioin-
formatics 34, 18 (2018), 3094–3100.

[66] Yi-Lun Liao, Yu-Cheng Li, Nae-Chyun Chen, and Yi-Chang Lu. 2018. Adaptively
banded Smith-Waterman algorithm for long reads and its hardware accelera-
tor. In 2018 IEEE 29th International Conference on Application-speci�c Systems,
Architectures and Processors (ASAP). IEEE, 1–9.

[67] Joël Lindegger, Damla Senol Cali, Mohammed Alser, Juan Gómez-Luna,
Nika Mansouri Ghiasi, and Onur Mutlu. 2022. Scrooge: a fast and memory-
frugal genomic sequence aligner for CPUs, GPUs, and ASICs. arXiv preprint
arXiv:2208.09985 (2022).

[68] Yongchao Liu and Bertil Schmidt. 2015. GSWABE: faster GPU-accelerated
sequence alignment with optimal alignment Retrieval for Short DNA Sequences.
Concurrency and Computation: Practice and Experience 27, 4 (mar 2015), 958–972.

[69] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. 2013. CUDASW++ 3.0:
accelerating Smith-Waterman protein database search by coupling CPU and
GPU SIMD instructions. BMC Bioinformatics (2013).

[70] Joshua Loving, Yozen Hernandez, and Gary Benson. 2014. BitPAl: a bit-parallel,
general integer-scoring sequence alignment algorithm. Bioinformatics 30, 22
(2014), 3166–3173.

[71] Leigh J Manley, Duanduan Ma, and Stuart S Levine. 2016. Monitoring error rates
in Illumina sequencing. Journal of biomolecular Techniques: JBT 27, 4 (2016),
125.

[72] Santiago Marco-Sola, Jordan M Eizenga, Andrea Guarracino, Benedict Paten,
Erik Garrison, and Miquel Moreto. 2022. Optimal gap-a�ne alignment in O (s)
space. bioRxiv (2022).

[73] Santiago Marco-Sola, Juan Carlos Moure, Miquel Moreto, and Antonio Espinosa.
2021. Fast gap-a�ne pairwise alignment using the wavefront algorithm. Bioin-
formatics 37, 4 (2021), 456–463.

[74] Santiago Marco-Sola, Michael Sammeth, Roderic Guigó, and Paolo Ribeca. 2012.
The GEM mapper: fast, accurate and versatile alignment by �ltration. Nature
Methods 9, 12 (2012), 1185–1188.

[75] Yasuaki Mitani, Fumihiko Ino, and Kenichi Hagihara. 2016. Parallelizing exact
and approximate string matching via inclusive scan on a GPU. IEEE Transactions
on Parallel and Distributed Systems 28, 7 (2016), 1989–2002.

[76] Mahmood Moghimi and Ali Yazdian Varjani. 2016. New rule-based phishing
detection method. Expert Systems With Applications 53 (2016), 231–242.

[77] Gene Myers. 1999. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. Journal of the ACM (JACM) 46, 3 (1999),
395–415.

[78] Gene Myers. 2014. E�cient local alignment discovery amongst noisy long reads.
In International Workshop on Algorithms in Bioinformatics. Springer, 52–67.

[79] Anirban Nag, CN Ramachandra, Rajeev Balasubramonian, Ryan Stutsman,
Edouard Giacomin, Hari Kambalasubramanyam, and Pierre-Emmanuel Gail-
lardon. 2019. Gencache: Leveraging in-cache operators for e�cient sequence
alignment. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. 334–346.

[80] Gonzalo Navarro. 2001. A guided tour to approximate string matching. ACM
Computing Surveys (CSUR) 33, 1 (2001), 31–88.

[81] Gonzalo Navarro andMathieu Ra�not. 2002. Flexible pattern matching in strings:
practical on-line search algorithms for texts and biological sequences. Cambridge
University Press.

[82] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology 48, 3 (1970), 443–453.

[83] Nuno Neves, Nuno Sebastião, David Matos, Pedro Tomás, Paulo Flores, and
Nuno Roma. 2014. Multicore SIMD ASIP for next-generation sequencing and
alignment biochip platforms. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 23, 7 (2014), 1287–1300.

[84] Lucas SN Nunes, Jacir L Bordim, Koji Nakano, and Yasuaki Ito. 2015. A fast
approximate string matching algorithm on GPU. In 2015 Third international
symposium on computing and networking (CANDAR). IEEE, 188–192.

[85] Joshua Quick, Nicholas J Loman, Sophie Dura�our, Jared T Simpson, Ettore
Severi, Lauren Cowley, Joseph Akoi Bore, Raymond Koundouno, Gytis Dudas,
Amy Mikhail, et al. 2016. Real-time, portable genome sequencing for Ebola
surveillance. Nature 530, 7589 (2016), 228–232.

[86] Cyrus Rashtchian, Konstantin Makarychev, Miklos Racz, Siena Ang, Djordje
Jevdjic, Sergey Yekhanin, Luis Ceze, and Karin Strauss. 2017. Clustering billions
of reads for DNA data storage. Advances in Neural Information Processing
Systems 30 (2017).

1479



GMX: Instruction Set Extensions for Fast, Scalable, and E�icient Genome Sequence Alignment MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

[87] Mikko Rautiainen and Tobias Marschall. 2020. GraphAligner: rapid and versatile
sequence-to-graph alignment. Genome Biology 21, 1 (2020), 1–28.

[88] Jason A Reuter, Damek V Spacek, and Michael P Snyder. 2015. High-throughput
sequencing technologies. Molecular Cell 58, 4 (2015), 586–597.

[89] Torbjørn Rognes and Erling Seeberg. 2000. Six-fold speed-up of Smith–
Waterman sequence database searches using parallel processing on common
microprocessors. Bioinformatics 16, 8 (2000), 699–706.

[90] David Sanko�. 1972. Matching sequences under deletion/insertion constraints.
Proceedings of the National Academy of Sciences 69, 1 (1972), 4–6.

[91] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware guard extension: Using SGX to conceal cache attacks. In
International Conference on Detection of Intrusions andMalware, and Vulnerability
Assessment. Springer, 3–24.

[92] Peter H Sellers. 1974. On the theory and computation of evolutionary distances.
SIAM J. Appl. Math. 26, 4 (1974), 787–793.

[93] Damla Senol Cali, Jeremie S Kim, Saugata Ghose, Can Alkan, and Onur Mutlu.
2019. Nanopore sequencing technology and tools for genome assembly: compu-
tational analysis of the current state, bottlenecks and future directions. Brie�ngs
in Bioinformatics 20, 4 (2019), 1542–1559.

[94] Jay Shendure, Shankar Balasubramanian, George M Church, Walter Gilbert,
Jane Rogers, Je�ery A Schloss, and Robert H Waterston. 2017. DNA sequencing
at 40: past, present and future. Nature 550, 7676 (2017), 345–353.

[95] Barton E Slatko, Andrew F Gardner, and Frederick M Ausubel. 2018. Overview
of next-generation sequencing technologies. Current Protocols in Molecular
Biology 122, 1 (2018), e59.

[96] Temple F Smith and Michael S Waterman. 1981. Identi�cation of common
molecular subsequences. Journal of Molecular Biology 147, 1 (1981), 195–197.

[97] Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John
Makhoul. 2006. A study of translation edit rate with targeted human annotation.
In Proceedings of the 7th Conference of the Association for Machine Translation in
the Americas: Technical Papers. 223–231.

[98] Víctor Soria-Pardos, Max Doblas, Guillem López-Paradís, Gerard Candón, Narcís
Rodas, Xavier Carril, Pau Fontova-Musté, Neiel Leyva, Santiago Marco-Sola,
and Miquel Moretó. 2022. Sargantana: A 1 GHz+ in-order RISC-V processor
with SIMD vector extensions in 22nm FD-SOI. In 2022 25th Euromicro Conference
on Digital System Design (DSD). IEEE, 254–261.

[99] Peter Stanchev, Weiyue Wang, and Hermann Ney. 2019. EED: Extended edit
distance measure for machine translation. In Proceedings of the Fourth Conference
on Machine Translation (Volume 2: Shared Task Papers, Day 1). 514–520.

[100] Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxiang
Zhai, Miles J Efron, Ravishankar Iyer, Michael C Schatz, Saurabh Sinha, and
Gene E Robinson. 2015. Big data: astronomical or genomical? PLoS Biology 13,
7 (2015), e1002195.

[101] Kendall Stewart, Yuan-Jyue Chen, David Ward, Xiaomeng Liu, Georg Seelig,
Karin Strauss, and Luis Ceze. 2018. A content-addressable DNA database with
learned sequence encodings. In International Conference on DNA Computing
and Molecular Programming. Springer, 55–70.

[102] Christopher N Takahashi, Bichlien H Nguyen, Karin Strauss, and Luis Ceze.
2019. Demonstration of end-to-end automation of DNA data storage. Scienti�c
reports 9, 1 (2019), 1–5.

[103] Julie D Thompson, Desmond G Higgins, and Toby J Gibson. 1994. CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-speci�c gap penalties and weight matrix choice.
Nucleic Acids Research 22, 22 (1994), 4673–4680.

[104] Yatish Turakhia, Gill Bejerano, and William J Dally. 2018. Darwin: A genomics
co-processor provides up to 15,000 x acceleration on long read assembly. ACM
SIGPLAN Notices 53, 2 (2018), 199–213.

[105] Yatish Turakhia, Sneha D. Goenka, Gill Bejerano, and WIlliam J. Dally. 2019.
Darwin-WGA: A co-processor provides increased sensitivity in whole genome
alignments with High Speedup. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 359–372.

[106] Md. Vasimuddin, Sanchit Misra, Heng Li, and Srinivas Aluru. 2019. E�cient
architecture-aware acceleration of BWA-MEM for multicore systems. In 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 314–
324.

[107] Taras K Vintsyuk. 1968. Speech discrimination by dynamic programming.
Cybernetics 4, 1 (1968), 52–57.

[108] Martin Šošić and Mile Šć. 2017. Edlib: a C/C++ library for fast, ex-
act sequence alignment using edit distance. Bioinformatics 33, 9 (01
2017), 1394–1395. arXiv:https://academic.oup.com/bioinformatics/article-
pdf/33/9/1394/25151249/btw753.pdf

[109] Robert A Wagner and Michael J Fischer. 1974. The string-to-string correction
problem. Journal of the ACM (JACM) 21, 1 (1974), 168–173.

[110] Jing Wang, Nicole E Moore, Yi-Mo Deng, David A Eccles, and Richard J Hall.
2015. MinION nanopore sequencing of an in�uenza genome. Frontiers in
Microbiology 6 (2015), 766.

[111] Ting Wang, Lucinda Antonacci-Fulton, Kerstin Howe, Heather A Lawson, Ju-
lian K Lucas, Adam M Phillippy, Alice B Popejoy, Mobin Asri, Caryn Carson,
Mark JP Chaisson, et al. 2022. The Human Pangenome Project: a global resource
to map genomic diversity. Nature 604, 7906 (2022), 437–446.

[112] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang,
and Diyue Bu. 2015. E�cient genome-wide, privacy-preserving similar patient
query based on private edit distance. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 492–503.

[113] Michael S Waterman, Temple F Smith, and William A Beyer. 1976. Some biolog-
ical sequence metrics. Advances in Mathematics 20, 3 (1976), 367–387.

[114] Mrinalini Watsa, Gideon A Erkenswick, Aaron Pomerantz, and Stefan Prost.
2020. Portable sequencing as a teaching tool in conservation and biodiversity
research. PLoS biology 18, 4 (2020), e3000667.

[115] Chi Wai Yu, KH Kwong, Kin-Hong Lee, and Philip Heng Wai Leong. 2003. A
Smith-Waterman systolic cell. In International Conference on Field Programmable
Logic and Applications. Springer, 375–384.

[116] Jikai Zhang, Haidong Lan, Yuandong Chan, Yuan Shang, Bertil Schmidt, and
Weiguo Liu. 2019. BGSA: a bit-parallel global sequence alignment toolkit for
multi-core andmany-core architectures. Bioinformatics 35, 13 (2019), 2306–2308.

[117] Zhuowen Zou, Hanning Chen, Prathyush Poduval, Yeseong Kim, Mahdi Imani,
Elaheh Sadredini, Rosario Cammarota, and Mohsen Imani. 2022. BioHD: An e�-
cient genome sequence search platform using hyperDimensional Memorization.
In Proceedings of the 49th Annual International Symposium on Computer Archi-
tecture (New York, New York) (ISCA ’22). Association for Computing Machinery,
New York, NY, USA, 656–669.

1480

https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/33/9/1394/25151249/btw753.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/33/9/1394/25151249/btw753.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Genome Sequence Analyses
	2.2 Sequence Alignment
	2.3 Bit-Parallel Techniques
	2.4 Applications and Limitations of Edit Distance to Genome Sequence Analysis

	3 Motivation and Goal
	3.1 Limitations of Existing Accelerators
	3.2 Our Goal

	4 Genome Alignment Extensions
	4.1 GMX Co-Designed Alignment Algorithms
	4.2 GMX-Tile: Bit-Parallel Tile Computation

	5 GMX ISA Extensions
	5.1 Use-Case: Computing Full(GMX)

	6 GMX Microarchitecture
	6.1 GMX-AC: Alignment Microarchitecture
	6.2 GMX-TB: Traceback Microarchitecture
	6.3 Segmentation and Frequency Analysis

	7 Results
	7.1 Evaluation Methodology
	7.2 Cycle-Level Simulations
	7.3 RTL Implementation
	7.4 GMX and other Specialized Accelerators

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

