
Beyond Static Parallel Loops: Supporting Dynamic Task
Parallelism on Manycore Architectures with
So�ware-Managed Scratchpad Memories

Lin Cheng∗
lc873@cornell.edu
Cornell University

USA

Max Ruttenberg∗
mrutt@washington.cs.edu
University of Washington

USA

Dai Cheol Jung
dcjung@uw.edu

University of Washington
USA

Dustin Richmond
drichmond@ucsc.edu

University of California, Santa Cruz
USA

Michael Taylor
profmbt@cs.washington.edu
University of Washington

USA

Mark Oskin
oskin@cs.washington.edu
University of Washington

USA

Christopher Batten
cbatten@cornell.edu
Cornell University

USA

ABSTRACT
Manycore architectures integrate hundreds of cores on a single chip
by using simple cores and simple memory systems usually based
on software-managed scratchpad memories (SPMs). However, such
architectures are notoriously challenging to program, since the pro-
grammers need to manually manage all aspects of data movement
and synchronization for both correctness and performance. We
argue that this manycore programmability challenge is one of the
key barriers to achieving the promise of manycore architectures.
At the same time, the dynamic task parallel programming model is
enjoying considerable success in addressing the programmability
challenge of multi-core processors with tens of complex cores and
hardware cache coherence.

Conventional wisdom suggests a work-stealing runtime, which
forms the core of most dynamic task parallel programming models,
is ill-suited for manycore architectures. In this work, we demon-
strate that a work-stealing runtime is not just feasible on manycore
architectures with SPMs, but such a runtime can also signi�cantly
improve the performance of irregular workloads when executing
on these architectures. We also explore three optimizations that
allow the runtime to leverage unused SPM space for further perfor-
mance bene�t. Our dynamic task parallel programming framework
achieves 1.2–28.5⇥ speedup on workloads that bene�t from our
techniques, and only induces minimal overhead for workloads that
do not.

∗Both authors contributed equally to this research.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582020

CCS CONCEPTS
• Computer systems organization!Multicore architectures;
• Computing methodologies! Parallel computing method-
ologies; Parallel algorithms.

KEYWORDS
Manycore architecture, parallel programming, load-balancing,
scratchpad memory, �ne-grained threading

ACM Reference Format:
Lin Cheng, Max Ruttenberg, Dai Cheol Jung, Dustin Richmond, Michael
Taylor, Mark Oskin, and Christopher Batten. 2023. Beyond Static Parallel
Loops: Supporting Dynamic Task Parallelism on Manycore Architectures
with Software-Managed Scratchpad Memories. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3582016.3582020

1 INTRODUCTION
Scratchpad memories (SPMs) provide key advantages in single-chip
parallel architectures. Most crucially, they improve the e�ciency
and scaling of the memory system by removing the need for a
coherence protocol and associated network tra�c. When used ef-
fectively, SPMs can yield critical performance and energy savings
by reducing data movement, improving synchronization times, and
eliminating overheads that can arise from false sharing. As a result,
academic and industry chip-makers have increasingly favored these
software-managed fast memories over L1 caches as core counts
scale from the tens to hundreds and thousands [2, 11, 12, 18, 41], a
trend illustrated in Figure 1.

Replacing the traditional L1 caches in favor of SPMs comes at a
cost to software productivity. Manycore architectures (i.e., those
with more than a hundred cores) that rely heavily on SPMs are
notoriously challenging to program. Such systems usually require
programmers to write applications in low-level C environments

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

46

https://orcid.org/0000-0003-4551-2002
https://orcid.org/0000-0001-7949-7475
https://orcid.org/0000-0002-3165-4213
https://orcid.org/0000-0002-4587-8947
https://orcid.org/0000-0002-4074-6347
https://orcid.org/0000-0003-3384-4894
https://orcid.org/0000-0002-2835-667X
https://doi.org/10.1145/3582016.3582020
https://doi.org/10.1145/3582016.3582020
https://doi.org/10.1145/3582016.3582020
http://creativecommons.org/licenses/by/4.0/

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Lin Cheng, Max Ru�enberg, Dai Cheol Jung, Dustin Richmond, Michael Taylor, Mark Oskin, and Christopher Ba�en

2000 2005 2010 2015 2020
100

101

102

103

N
um

be
ro

fC
or

es

HW-Based Coherent Cache
SW-Centric Coherent Cache
Software Managed Scratchpad

HammerBlade [12]
KiloCore [11]

Celerity [18]
Epiphany-V [41]

SW26010 [32]
Teraflops [22]

Godson-T [54]

big.TINY [58]

Figure 1: On Chip Memory Hierarchy in Manycore Architec-
tures – SPM is needed for manycore architectures to reach very
high core counts. Filled marker = real chip; un�lled marker = pro-
posal/simulator only. Data is in part from CPU DB [17].

and/or directly in assembly. This places the burden on the program-
mer to explicitly manage data coherence among private memories
and adopt a more restricted programming model (e.g., explicit task
partitioning [29], message passing [41], and remote store program-
ming [18]). The cumbersome programming environment coupled
with the need for software optimizations to realize the performance
promised by hardware is a critical barrier to widespread adoption
of most manycore architectures with software-managed SPMs.

One commonmethod to facilitate programming on such architec-
tures is by providing domain-speci�c frameworks. This approach
has had success in application spaces such as graph processing [12]
and deep learning [15]. These frameworks express domain-speci�c
workloads e�ectively and achieve high performance. However, not
every domain is covered. Extending and re-purposing these frame-
works for another domain requires non-trivial e�ort by program-
mers. General-purpose parallel programming frameworks provide
more �exibility than domain-speci�c ones. However, most such
frameworks (e.g., OpenCL [30]) usually adopt a single-program-
multiple-data (SPMD) programmingmodel, in which native support
for dynamic work scheduling and load balancing is highly limited,
if provided at all.

In this work, we take inspiration from the success of the dy-
namic task parallel programming model in the multi-core era, and
attempt to address the programmability challenge of manycore
architectures with software-managed SPMs by o�ering a dynamic
task parallel programming framework that is similar to those that
are common on multi-core systems (e.g., Intel Cilk Plus [24], Intel
Threading Building Blocks (TBB) [25], and OpenMP [5, 42]). These
programming frameworks allow parallel tasks to be generated and
mapped to hardware dynamically through a software runtime. They
can express a wide range of parallel patterns, provide automatic
load balancing, and improve portability [38].

We demonstrate our ideas by implementing the proposed dy-
namic task parallel programming framework on an open source
manycore. Our approach allows dynamic task parallel applications
written for traditional hardware-based cache coherence multi-cores
to work on manycore architectures with only minimal changes to

the software. In Section 2, we provide a general background on our
target open-source manycore architecture, work-stealing runtimes,
and the manycore architecture programmability challenge. In Sec-
tion 3, we describe in detail how to implement a work-stealing
runtime, which is the core component of dynamic task parallel
frameworks, on manycore architectures with software-managed
SPMs. In Section 4, we discuss three optimizations for enabling
the runtime to leverage SPMs and achieve high performance. In
Section 5 and Section 6, we use a cycle-accurate RTL evaluation
methodology to demonstrate the potential of our approach with
four categories of workloads: static-balanced, static-unbalanced,
dynamic-balanced, and dynamic-unbalanced. While conventional
wisdom believes implementing awork-stealing runtime is either not
viable or not bene�cial on systems that do not have caches [58, 61],
our evaluation demonstrates that our proposed task parallel pro-
gramming framework can achieve 1.2⇥–28.5⇥ speedup for work-
loads that bene�t from our techniques, and only induce minimal
overhead for workloads that do not.

The contributions of this work are: (1) we provide, to the best of
our knowledge, the �rst work that describes the implementation of
a work-stealing runtime on manycore architectures with software-
managed SPMs; (2) we summarize three optimizations which enable
the runtime to leverage scratchpad memories to achieve high per-
formance; and (3) we provide a detailed cycle-accurate evaluation
using a silicon-validated RTL design of an open source manycore
architecture.

2 BACKGROUND
In this section, we �rst introduce the target manycore architecture.
We then give a brief introduction on dynamic task parallelism and
the programmability challenge of manycore architectures.

2.1 Target Manycore Architecture
While manycore architectures have a broad software and hard-
ware design space, they usually share a set of common features.
These features include simple cores, software-managed memory
systems, mesh-based on-chip networks, and simple low-level pro-
gramming interfaces. In this section, we provide a brief introduction
on the HammerBlade architecture which is representative of mod-
ern manycore architectures [1, 11, 12, 18, 41, 48, 49].

The HammerBlade manycore architecture is a con�gurable-sized
array of scalar RISC-V cores supporting the �oating-point and AMO
extensions. Each core owns a 4 KB region of low-latency SPM.
Cores communicate with a load/store interface over a 2-D mesh-
with-ruching on chip network (OCN) [26, 44]. Fig. 2 presents an
architectural diagram of a small-scale (i.e., 128-core) HammerBlade
system. There are four levels of the memory hierarchy: a core-
local scratchpad; inter-core scratchpad(s); a banked, last-level cache
(LLC); and DRAM. The core-local SPM, remote SPMs, caches, and
other network locations are mapped to non-intersecting regions
of a core’s address space. Consequently, the architecture exposes a
partitioned global address space (PGAS) programming model.

Memory operations can complete out of order when accessing
remote SPM due to HammerBlade’s relaxed-consistency model.
This introduces complexity during synchronization. Software can
enforce memory ordering explicitly with fences.

47

Beyond Static Parallel Loops: Supporting Dynamic Task Parallelism on Manycore Architectures... ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

L

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

LLLLLLL LLLLLLLL

LLLLLLLL LLLLLLLL

DRAM Memory Controller

FPURV32 IMUL

4KB Instruction
Cache

4KB Scratchpad Mem

Mesh
Network
Router

DRAM Memory Controller

Figure 2: HammerBlade Manycore Architecture Hardware –
A version of HammerBlade with 128 cores (C) and 32 last-level
cache (L) banks interconnected via mesh-based on-chip network;
each core is a RISC-V RV32IMAF processor (RV32) with instruction
cache and 4 KB SPM.

2.2 Programming Models for Dynamic Task
Parallelism

Task parallelism is a style of parallel programming where the work-
load is divided into tasks (i.e., units of computation that can execute
in parallel). Dynamic task parallelism is a subset of task parallelism
in which tasks and dependencies among tasks are generated at run-
time. Dynamically generated tasks are assigned to available worker
threads based on a certain scheduling algorithm. The most common
computation model for dynamic task parallelism is the fork-join
model. It was popularized by MIT Cilk [8] and then adopted by
various parallel programming frameworks [13, 24, 25, 31, 47, 51]. In
a task parallel programming framework that adopts the fork-join
model, the process in which a task forks two or more parallel tasks
is also referred to as spawning tasks. The newly created tasks are
called the child tasks and the original task is called the parent. The
parent task can continue until it reaches the point where the join
(also commonly referred to as wait) primitive is called. The parent
task blocks until all of its child tasks have �nished. The fork-join
model has the following properties: (1) a task can only wait for its
children to join (e.g. no waiting on locks); and (2) a task cannot
complete until all of its children complete and join it. This set of
properties is called fully-strict in Cilk literature [9, 20].

Work-stealing is likely the most widely-adopted scheduling algo-
rithm for task parallel programming frameworks [10]. In a typical
work-stealing runtime, each thread is associated with a task queue
to store tasks that are ready for execution. The task queue is usu-
ally implemented with a double-ended queue (deque). When a task
spawns a child task, it enqueues the child on to the task queue of
the executing thread. When a thread becomes idle, either because a
parent task is waiting for its child tasks to return or the thread has
no active task running, it attempts to dequeue a task from its own
task queue from the tail (i.e., in last-in-�rst-out (LIFO) order). If the
task queue is empty, the thread then attempts to steal a task from
the head of the task queue of another thread (i.e., in �rst-in-�rst-out
(FIFO) order). The stealing thread becomes a thief, and the thread
whose tasks are stolen becomes a victim. Stealing in FIFO order
allows the thief to steal a task that is located higher in the task
graph, which typically contains more work. The stealing mecha-
nism automatically balances the workload across threads, leads to
better locality, and helps establish time and space bounds [10, 20].

2.3 Manycore Architecture Programmability
Challenge

Manycore architectures that have high core counts (i.e., more than
a hundred cores) and adopt software-manage scratchpad mem-
ories have been proposed and fabricated by both academia and
industry [2, 11, 12, 18, 41]. While the hardware has gained most
of the attention, the software stack of such architectures is less
explored. As is the case with similar architectures, programming
HammerBlade without loss of domain generality requires using a
low-level C runtime environment. This demands that the program-
mer have both an extensive domain knowledge for their application
and for the underlying hardware. Concerns such as data placement,
synchronization, and load-balancing are left entirely to the program-
mer. Having to use a low-level C runtime environment prevents
easily reusing existing code written for multi-cores and requires
most applications to be completely rewritten for such manycore
architectures.

Prior works propose leveraging a domain-speci�c framework
approach to address the manycore programmability challenge (e.g.,
machine learning frameworks based on adapting PyTorch [15] and
graph processing frameworks based on porting GraphIt [12]). A
domain-speci�c framework approach has three main drawbacks:
(1) programmers need to rewrite their applications to use the con-
structs provided by the framework; (2) the framework is designed
for a speci�c domain, meaning it is di�cult to express computation
from other domains; and (3) there is no easy way for a programmer
who has little knowledge about the underlying manycore hardware
to extend the framework.

3 SUPPORTING DYNAMIC TASK
PARALLELISM ON MANYCORE
ARCHITECTURES

In this work, we propose resolving the manycore architecture
programmability challenge by implementing a TBB/Cilk-like dy-
namic task parallel programming framework on such systems. Com-
pared to the typical low-level C runtimes provided by these archi-
tectures which usually adopt the SPMD programming model, the
proposed framework supports parallel patterns beyond simple static
parallel loops, allows parallel patterns to be arbitrarily nested, and
provides dynamic load balancing. Compared to prior work on re-
solving the programmability challenge through domain-speci�c
frameworks, our framework is general-purpose. Furthermore, it
provides an interface with which programmers that have used
Cilk/TBB or OpenMP are familiar, making it possible to port legacy
code to manycore architectures.

The core component of the proposed TBB/Cilk-like dynamic
task parallel programming framework is a work-stealing runtime.
While how to implement work-stealing runtimes on systems with
hardware-based coherence [8], software-centric coherence [36, 53,
58], and distributed memory [19, 45, 50] has been studied exten-
sively in the literature, conventional wisdom claims that imple-
menting such a runtime is either not viable or not bene�cial on
systems with software-managed scratchpad memories [58, 61].

In this section, we �rst demonstrate our programming model
using running examples. We give details on how we implement
a low-level API for spawning and synchronizing with new tasks.

48

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Lin Cheng, Max Ru�enberg, Dai Cheol Jung, Dustin Richmond, Michael Taylor, Mark Oskin, and Christopher Ba�en

1 template <typename Func>
2 class FibTask : public Task {
3 public:
4 FibTask(int n_, int* sum_,
5 Task* parent_) :
6 n(n_), sum(sum_),
7 parent(parent_);
8 Task* execute() {
9 if (n < 2) {
10 *sum = n;
11 return;
12 }
13
14 int x, y;
15 FibTask a(n - 1, &x, this);
16 FibTask b(n - 2, &y, this);
17 this->set_ready_count(1);
18
19 task::spawn(b);
20 a.execute();
21
22 task::wait();
23 *sum = x + y;
24 return nullptr;
25 }
26 private:
27 int n;
28 int* sum;
29 Task* parent;
30 };

(a) fib using spawn and wait

1 class Task {
2 public:
3 Task();
4 virtual Task* execute();
5 void set_ready_count(
6 int ready_count);
7 private:
8 int ready_count;
9 };

(b) Task base class

1 int fib(int n) {
2 if (n < 2) {
3 return n;
4 }
5 int x, y;
6 parallel_invoke(
7 [&]{ x = fib(n - 1); },
8 [&]{ y = fib(n - 2); }
9);
10 return x + y;
11 }

(c) fib using parallel_invoke

1 void vvadd(int a[], int b[],
2 int dst[], int n) {
3 parallel_for(0, n,
4 [&](int i) {
5 dst[i] = a[i] + b[i];
6 });
7 }

(d) vvadd using parallel_for

1 void sum(int a[], int n) {
2 int ident = 0;
3 parallel_reduce(0, n, ident,
4 [&](int i) {
5 return a[i];
6 },
7 [](int x, int y) {
8 return x + y;
9 });
10 }

(e) sum using parallel_reduce

Figure 3: Task-Based Parallel Programs – Examples for calculating the Fibonacci number
using (a) a low-level API with explicit calls to spawn() and wait(), the implementations of
which are shown in Figure 4; and (c) a high-level API with templated parallel_invoke()
pattern. (b) shows the Task based class from which the FibTask class inherits in (a). (d)
and (e) show alternative templated patterns parallel_for() and parallel_reduce()
respectively.

We also give a description of a higher-level API for expressing
common parallel programming patterns. Lastly, We describe a naive
implementation of a work-stealing runtime on the HammerBlade
manycore, before discussing key optimizations in Section 4.

3.1 Running Example
We use an application programming interface (API) similar to In-
tel TBB to illustrate our programming model (see Figure 3). Each
task is described by a C++ class derived from the Task base class
(Figure 3 (b)) which contains an execute() method and a meta-
data variable ready_count, also known as the reference counter.
This metadata tracks a task’s un�nished children. After a task �n-
ishes execution, it checks if it has a parent task. If so, the child will
decrement the ready_count variable of its parent task to signal its
completion. A task in wait will be blocked until its ready_count
reaches 0 (i.e., all children have completed their execution). This
mechanism enforces the ordering between parent and children: a
task cannot complete until all of its children complete and join
it (see Section 2.2). Programmers override the virtual execute()
function to hold the logic of the concrete task. In this example (Fig-
ure 3 (a)), after creating two child tasks a and b, one for fib(n-1)
and one for fib(n-2), the parent task (i.e., fib(n)) puts fib(n-2)
onto the task queue and executes fib(n-1) locally, before calling
wait(), which blocks its execution until task fib(n-2) returns.
The parent task then calculates fib(n) by adding the partial results
from both tasks and returns.

Besides the low-level APIs, our framework also provides tem-
plated functions that support various parallel patterns. This in-
cludes parallel_invoke() for divide-and-conquer (Figure 3 (c)),

parallel_for() for parallel loops (Figure 3 (d)), and parallel_
reduce() for parallel reduction (Figure 3 (e)).

3.2 A Naive Work-Stealing Runtime
The key challenge of implementing a work-stealing runtime on a
system like HammerBlade is to cope with the lack of data coherence
mechanisms. Typical work-stealing runtimes are built upon various
shared data structures (e.g., task queues and reference counters).
Where to allocate them and how to keep them coherent is critical
to both correctness and performance. While possible if carefully
implemented, programmers usually avoid keeping copies of shared
data in software-managed scratchpads. Instead, they tend to allo-
cate them in the last shared level of the memory hierarchy. While
doing so causes longer memory latency when accessing this shared
data, allocating it in SPM would require software to keep it coher-
ent, introducing signi�cant software complexity. By allocating all
data in the shared memory space, we can easily implement a naive
work-stealing runtime that runs on the HammerBlade manycore
architecture. Namely, the runtime does not utilize the scratchpads
at all: all data lives in the DRAM address space (recall that Ham-
merBlade adopts a PGASmemory model, and DRAM has an address
space that is separated from the scratchpads).

Figure 4 (a) shows an implementation of the spawn() and wait()
functions for this naive work-stealing runtime. spawn enqueues a
task pointer onto the current thread’s task queue, and wait puts
the current thread into a scheduling loop. Within the scheduling
loop, a thread �rst checks if all of its child tasks have returned (i.e.,
ready_count has a non-zero value). If so, the thread exits from the
scheduling loop and resumes the execution of the parent task (line

49

Beyond Static Parallel Loops: Supporting Dynamic Task Parallelism on Manycore Architectures... ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

8). Otherwise, the thread �rst attempts to pop a task from the end
of its own task queue (i.e., LIFO order, lines 9–15). If there is no
task left in the local queue, the current thread becomes a thief and
attempts to steal tasks from the queue of another thread, a victim.
Tasks are stolen from the victim’s head (i.e., FIFO order, lines 17–24).
The victim is selected randomly (line 17). When a task is executed,
its parent’s reference counter is atomically decremented (lines 14
and 23).

Readers familiar with Intel TBB-like work-stealing runtimes may
notice that this implementation is similar to the implementation on
traditional hardware coherent multi-cores. On hardware coherent
multi-cores, hardware cache coherence protocols keep multiple
copies of shared data coherent. On HammerBlade, as all data is
allocated in DRAM, there is exactly one copy of every shared data.
All cores access the same copy. Note that the atomics used for
reference counter decrement have release semantics associated.
This is to ensure that writes by child tasks complete before the
parent task can exit from the scheduling loop (i.e., reference counter
reaches 0).

4 SCRATCHPAD ENHANCED RUNTIME
Prior work has shown that leveraging the scratchpadmemory is crit-
ical to achieving peak performance on manycore architectures [15].
However, SPMs are often underutilized due to the high demand
they put on programmers, in addition to the fact that not every
workload is able to bene�t from leveraging them (e.g., streaming
workloads that do not have any reuse of input data). The naive
work-stealing runtime we introduced in Section 3 allocates all data,
including both the stack and runtime data structures, such as the
task queues, in DRAM. While this naive implementation yields a
functionally correct work-stealing runtime, it is likely to have sub-
optimal performance due to high memory latency and contention
at the LLC for applications that have frequent stack operations,
task queue operations, or both. Instead of leaving the SPMs unused,
we introduce three optimizations which enable work-stealing run-
times to e�ciently leverage scratchpads if they are not claimed by
programmers. To the best of our knowledge, this is the �rst work
that describes the implementation of a work-stealing runtime that
automatically utilizes SPMs on manycore architectures.

Before the runtime can safely claim scratchpad space for its own,
it has to know how much scratchpad space is reserved by program-
mers for user code. Reserving scratchpad space on Mosaic is real-
ized through two APIs: (1) spm_reserve() and (2) spm_malloc().
spm_reserve() sets the maximum amount of SPM a core will use
throughout execution. Programmers cannot reserve more space
than what is available in the hardware (i.e., 4 KB). spm_malloc()
returns a pointer to a chunk of memory allocated in the scratch-
pad. If the total amount of memory allocated/requested through
spm_malloc() is larger than the amount set by spm_reserve(),
it reports a failure by returning a null pointer. Our work-stealing
runtime allocates a bu�er at the top of the scratchpad as requested
by the user, and automatically uses the scratchpad space that is not
claimed by the user for both the stack and the task queue. By default,
our runtime reserves 512 B of a threads’s SPM for the task queue
and leaves the remaining 3.5 KB for application tasks. However, we
also provide APIs to allow experienced programmers to �ne-tune

the runtime usage of the scratchpad. For example, the programmer
can instruct the runtime to only scratchpad allocate the stack but
not the task queue.

4.1 Scratchpad-Allocated Stack
Allocating the stack in SPM has been mentioned and explored

by various prior work in the literature [15]. However, there are
two main concerns on doing the same in the context of a work-
stealing runtime: (1) user data can become shared variables when
tasks are stolen; and (2) the stack can easily over�ow the size of
the scratchpad (e.g., recursively called runtime functions such as
wait() and divide-and-conquer algorithms with deep recursion
depth).

Data in the user code (e.g., y in line 14 of Figure 3 (a)) includes
potential shared variables that can be accessed by more than one
core if the corresponding task b in line 16 is stolen. However, this
is not an issue for manycore architectures which adopt the PGAS
memory model (e.g., HammerBlade). The PGAS memory model
allows every core to read and write any other core’s scratchpad
(see Section 2.1), and it enables us to keep unique copies of shared
data in a core’s SPM. For example, assume y mentioned above is
allocated in core_0’s scratchpad, and the corresponding task (i.e., b)
is stolen by core_1. When core_1 accesses y through the address
taken at line 16 while creating the task, it performs a direct remote
scratchpad access. The y in the scratchpad of the parent task’s core
remains as the only copy of y. The fully-strict properties of dynamic
task parallelism (see Section 2.2) guarantees that reads and writes
by core_0 and core_1 to y will not result in any data-race.

Manycore architectures like HammerBlade usually have limited
per core scratchpad space (e.g., each core in HammerBlade has a
4 KB SPM). Applications running recursive algorithms (e.g., divide-
and-conquer) can easily create deep call stacks, which cannot �t
in the SPM. When the stack does not �t, ideally we would like to
keep the active and more recent frames (i.e., top frames) in scratch-
pad memory, since these frames are more likely to be accessed
than older ones. To achieve this, one can either put the base of the
stack in DRAM, and only start allocating in the scratchpad when
the stack reaches a certain depth, or one can spill the older stack
frames to DRAM when the scratchpad becomes full. However, both
approaches have their caveats: starting in DRAM requires deter-
mining an ideal switching depth which can vary from workload
to workload, while stack spilling cannot be realized without imple-
menting complex hardware/software mechanisms. In this work, we
opt for a simpler but less ideal solution: rather than keeping the top
frames in scratchpads, we keep the bottom frames. When the stack
over�ows available SPM space, it automatically goes to DRAM, and
we refer to this as over�owing to DRAM. While over�owing does
happen, it only happens in applications with deep recursion depth.
We optimize for the common case in which the stack can �t in
scratchpads.

We leveraged a software/hardware co-design approach and ex-
tended each core with a light-weight hardware extension that
snoops on the stack pointer register. We added two new control
and status registers (CSRs). One for storing the DRAM over�ow
threshold (i.e., lowest address of the stack space in scratchpad),
and the other for storing the pointer to the DRAM over�ow bu�er.

50

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Lin Cheng, Max Ru�enberg, Dai Cheol Jung, Dustin Richmond, Michael Taylor, Mark Oskin, and Christopher Ba�en

1 void task::spawn(task* t) {
2 tq[tid].lock_aq()
3 tq[tid].enq(t)
4 tq[tid].lock_rl()
5 }
6
7 void task::wait(task* p) {
8 while (p->rc > 0) {
9 tq[tid].lock_aq()
10 task* t = tq[tid].deq()
11 tq[tid].lock_rl()
12 if (t) {
13 t->execute()
14 amo_sub_lr(t->p->rc, 1)
15 }
16 else {
17 int vid = choose_victim()
18 tq[vid].lock_aq()
19 t = tq[vid].steal()
20 tq[vid].lock_rl()
21 if (t) {
22 t->execute()
23 amo_sub_lr(t->p->rc, 1)
24 }
25 }
26 }
27 }

(a) Runtime Data in DRAM

1 void task::spawn(task* t) {
2 spm_lock.lock_aq()
3 spm_tq.enq(t)
4 spm_lock.lock_rl()
5 }
6
7 void task::wait(task* p) {
8 while (p->rc > 0) {
9 spm_lock.lock_aq()
10 task* t = spm_tq.deq()
11 spm_lock.lock_rl()
12 if (t) {
13 t->execute()
14 amo_sub_lr(t->p->rc, 1)
15 }
16 else {
17 int vid = choose_victim()
18 TaskQ* remote_tq =
19 get_remote_ptr(vid, &spm_tq)
20 QLock* remote_lock =
21 get_remote_ptr(vid, &spm_lock)
22 remote_lock->lock_aq()
23 t = remote_tq->steal()
24 remote_lock->lock_rl()
25 if (t) {
26 t->execute()
27 amo_sub_lr(t->p->rc, 1)
28 }
29 }
30 }
31 }

(b) Runtime Data in Scratchpad

Figure 4: Work-Stealing Runtime
Implementations – Pseudo-code of
spawn and wait functions for: (a) having
runtime data in DRAM; and (b) having
runtime data in scratchpads. tq = array
of task queues; tid = thread id; lock_aq
= acquire lock; lock_lr = release lock;
rc = ready count; deq = dequeue from
the tail of the task queue; enq = enqueue
to the tail of the task queue; steal =
dequeue from the head of the task
queue; choose_victim = random victim
selection; amo_sub_lr atomic
fetch-and-sub with release semantics;
spm_lock = task queue lock allocated in
scratchpad; spm_tq = task queue
allocated in scratchpad;
get_remote_pointer = calculate the
address of a piece of data in another
core’s scratchpad.

When a new frame is pushed onto the stack and the stack pointer is
modi�ed, we check if the stack is over�owed (i.e., new stack pointer
has become smaller than the DRAM over�ow threshold). If so, we
replace the stack pointer with the pointer to the core’s DRAM over-
�ow bu�er and allocate the new frame in DRAM. Similar checks
and replacements are performed when a frame is popped o� the
stack. By default, the runtime allocates a 256 KB stack space for
each core to enable deep recursion calls that can produce many
stack frames. As we have mentioned before, the runtime calculates
available stack space using the information given by programmers
through spm_reserve(). It then allocate a bu�er with proper size
for each core in DRAM, and writes both the pointer of the DRAM
allocated bu�er and over�ow threshold address to corresponding
CSRs.

Although we chose to implement over�owing to DRAM on Ham-
merBlade with a software/hardware co-design approach, the same
functionality can be easily implemented in software with modi�ca-
tions to the compiler on a system where making hardware changes
is not feasible. Namely, we can take an approach similar to one
proposed by [57] which modi�es the compiler to generate check-
points at which an over�ow stack region will be swapped-in when
the newly created frame would not �t in SPM. A pointer rewrite
scheme can redirect the new stack pointer to the DRAM over�ow
bu�er. While this software solution involves adding extra instruc-
tions compared to our software/hardware co-design approach, this
check is light-weight and the fast path (i.e., frames other than the
frame that crosses the boundary) contains only two instructions: a
load instruction for loading the over�ow threshold address and a
conditional jump which compares the stack pointer with the thresh-
old address. The threshold address can and should be allocated in
the scratchpad for low overhead access.

4.2 Scratchpad-Allocated Task Queue
A common goal of various parallel programming frameworks is to
reduce the overhead of their runtimes. Our framework is not an
exception. In the naive runtime implementation, all runtime data
structures, including the core local task queues, are allocated in
DRAM.Applicationswith �ne-grained tasks tend to induce frequent
task queue operations as they generate more tasks than coarse-
grained ones. For these applications, being able to manipulate the
local task queue e�ciently is key to achieving high performance.
The local scratchpad has a 2-cycle access latency where the DRAM
has an access latency of tens to hundreds of cycles. Therefore,
instead of going to DRAM for runtime data, we would like to keep
them in the SPMs for faster accesses.

Similar to what we have mentioned in Section 4.1, data coher-
ence is not an issue as we keep only one copy of data and perform
remote scratchpad accesses if the data is located in another core’s
SPM. However, unlike the user data, to which a pointer is passed
around dynamically, a core must know before run-time where other
cores’ task queues are located in order to conduct stealing without
�rst accessing a DRAM allocated centralized data structure, such
as the array of pointers to task queues (i.e., tg[] in Figure 4 (a)).
Having such a DRAM allocated data structure diminishes the ben-
e�t of keeping stealing tra�c away from DRAM. To achieve this,
we reserve, by default, the top 512 B of the scratchpad for the core
local task queue. The task queue is allocated at a �xed o�set from
the scratchpad base pointer across all cores. Therefore, if we have a
pointer to the local task queue, we can easily calculate the pointer
of the task queue of any other core. Figure 4 (b) shows an implemen-
tation of spawn() and wait() for our runtime which has both the
stack and runtime data structures in the SPMs. The �rst noticeable
di�erence is instead of loading the victim’s queue from an array

51

Beyond Static Parallel Loops: Supporting Dynamic Task Parallelism on Manycore Architectures... ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0 2 4 6 8 10 12 14

0
1

2
3

4
5

6
7

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.3

0.1 0.2 0.3 0.4 0.2 0.4 0.5 0.2 0.4 0.4 0.3 0.4 0.4 0.3 0.4 0.5

0.2 0.4 0.5 0.5 0.4 0.5 0.6 0.3 0.5 0.6 0.4 0.6 0.6 0.4 0.5 0.6

0.4 0.6 0.7 0.8 0.5 0.7 0.8 0.5 0.8 0.7 0.5 0.6 0.8 0.5 0.7 0.7

0.6 0.8 0.8 0.9 0.6 0.8 0.9 0.6 0.8 0.9 0.7 0.8 0.8 0.6 0.9 1.0

0.8 0.9 1.0 1.0 0.8 0.9 0.9 0.7 0.9 0.9 0.8 0.8 0.9 0.8 0.8 1.0

Figure 5: Normalized Remote Scratchpad Load Latency – Re-
mote scratchpad load latency of 128 cores arranged in 16 rows and
8 columns, normalized to the core which has the highest latency.

0 250 500 750 1000 1250 1500 1750 2000
Execution Time (K Cycles)

w/ RD

w/o RD

K1 K2 K3 K4 K5 K6

Figure 6: Performance Impact of Read-Only Data Duplica-
tion – Execution time of six parallel kernels (K1 to K6) in one
iteration of PageRank with and without read-only data duplication
optimization.

(line 18 in Figure 4 (a)), we calculate the address of victim’s queue
using the address of the local queue (lines 18–19 in Figure 4 (b)).
We also separate the spin lock protecting the task queue from the
queue itself (lines 2–4 in Figure 4 (b)). Doing so allows us to directly
calculate the address of the remote spin lock (lines 20–21 in Fig-
ure 4 (b)): we do not need the remote scratchpad access for loading
the pointer of the lock as in the case where the lock is a member of
the task queue.

4.3 Read-Only Data Duplication
After implementing the two optimizations described above, pro�l-
ing data collected from the one of the apps (i.e., PageRank) shows
an unexpected pattern. Figure 5 shows a heat map of normalized re-
mote scratchpad access latency measured on each core in the 16⇥ 8
mesh. From the plot we can observe a clear pattern: cores that are
located farther away from core_0 (upper left corner) generally have
longer remote scratchpad access latency. Note that, the distance
in Y-direction has a more signi�cant impact than the distance in
X-direction. This is because HammerBlade adopts X-Y routing and
when all other cores are accessing core_0, the bandwidth in the
Y-direction is much scarcer. The di�erence of latency within the
same row is caused by the network topology of the 2-D mesh-with-
ruching OCN [26, 44]. Our work-stealing runtime selects victims
randomly, and thus we expect cores read and write their peers’
scratchpads uniformly and there should not be any hot spots.

A closer look at the pro�ling data revealed the causes: (1) when
we implement the high-level templated functions, such as parallel_
for(), we keep a pointer to the user de�ned lambda function in
the customized task class; and (2) in the user code, we write the

0.0 0.5 1.0 1.5 2.0
Speedup

Fib-S

Fib

Both stack and task queue in DRAM
Stack in DRAM and task queue in SPM
Stack in SPM and task queue in DRAM
Both stack and task queue in SPM

Figure 7: Speedup from Optimizing Data-Placement with
SPM in Work-Stealing Runtime – Fib = measured speedups
with the proposed SW/HW co-design scheme; Fib-S = estimated
speedups with the 2-instruction SW-only scheme. Note that when
both the stack and the tasks queues are in DRAM, Fib and Fib-S
reduce to a common implementation and thus have identical time-
to-completions.

lambda functions using reference capture (&), including for read-
only values (e.g., pointers dst in line 5 of Figure 3 (d)). On systems
with hardware-base or software-centric coherence, this read-only
data can be cached and reused. However, in our case, these val-
ues are all allocated on the scratchpad of core_0, and thus other
cores repeatedly load from core_0. This tra�c to core_0 causes
congestion in the OCN. We resolve this issue by changing both the
runtime and user code to duplicate read-only data that is allocated
in the scratchpad (e.g., capture dst in Figure 3 (d) by value). We
show the performance impact of the read-only data duplication
optimization on PageRank in Figure 6. Each iteration of PageRank
is composed by six parallel kernels. The proposed optimization is
able to reduce execution time of all but one kernel, and achieve an
overall speedup of 1.57⇥. Read-only data duplication applies to the
case where the stack is DRAM allocated as well. It helps eliminate
the hot spot in LLC in a similar manner as it eliminates the hot spot
in core_0’s SPM. We enable this optimization for all work-stealing
runtime con�gurations.

4.4 Micro-Benchmarking
We use Fib, a widely adopted micro-benchmark for demonstrating
work-stealing runtimes in the literature, to illustrate the bene�ts of
having the runtime leveraging the scratchpads. Figure 3 (c) shows its
implementation, and Section 5.1 provides details on the simulated
hardware. Fib is known for generating many tasks each of which
only contains a minimal amount of compute. It yields both frequent
stack operations (both runtime function calls and user-de�ned
functor calls) and frequent task queue operations. We evaluate Fib
on four variants of the runtime: both stack and task queue in DRAM
which is the naive implementation we introduced in Section 3, stack
in DRAM and task queue in scratchpad, stack in scratchpad and
task queue in DRAM, and both stack and task queue in scratchpad.
Results are summarized in Figure 7. From the plot we can observe
that, as we expected, the naive runtime implementation has the
worst performance. As we add optimizations and migrate either
the stack or the task queue to scratchpad memories, we observe

52

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Lin Cheng, Max Ru�enberg, Dai Cheol Jung, Dustin Richmond, Michael Taylor, Mark Oskin, and Christopher Ba�en

improved performance due to reduced access latency. Compared
with task queue in SPM, stack in SPM shows better performance
and it illustrates that having low latency access to the stack is more
important for Fib. This is caused by: (1) the task queue is protected
by a spin lock and the time spent on getting the lock, instead of
accessing the task queue itself, dominates the execution time of
pushing/popping task queues; and (2) stack operations (e.g., register
spilling and saving/restoring saved registers) generate more tra�c
than task queue operations. Best performance is achieved when
both optimizations are applied (i.e., both task queue and stack in
SPM).

We also provide a �rst-order estimation on the impact of imple-
menting the stack over�owing technique with the 2-instruction
scheme in software (Section 4.1) by adding an additional 2-cycle
delay to each jal and ret instruction. Results are illustrated in Fig-
ure 7 as Fib-S. We can observe that both con�gurations which have
stack in SPM achieve less performance improvement for Fib-s than
for Fib due to the overhead added by the extra instructions. How-
ever, both variants still perform signi�cantly better than the naive
implementation. Note that Fib is close to the worst case for the po-
tential software over�owing scheme, as it produces many tasks each
with little compute and thus frequent stack frame pushing/popping
with short-living task body. In more realistic workloads, we expect
the overhead of the potential software over�owing scheme to be
much less signi�cant.

5 EVALUATION METHODOLOGY
In this section, we describe our RTL-level cycle-accurate perfor-
mance modeling methodology. We used this to quantitatively eval-
uate the proposed work-stealing runtime. We also give a brief in-
troduction on the workloads we used in the evaluation.

5.1 Simulated Hardware
We model the HammerBlade manycore architecture using cycle-
accurate RTL simulation. We leverage an RTL simulator to model
a silicon-validated small-scale early version of the HammerBlade
manycore system running at 1.5 GHz with 16 columns and 8 rows
(i.e., 128-cores in total). The RTL of this design has been validated
in silicon. The DRAM timing is modeled with the timing-accurate
open-source DRAMSim3 simulator [33]. We model a single 1.0 GHz
HBM2 channel with a bus width of 64 and a burst length of 4, yield-
ing a theoretical peak bandwidth of 16 GB/s. We model one HBM2
channel because, through experimentation, we found that 128 cores
is required to saturate a single channel’s bandwidth. Performance
counters are implemented with nonsynthesizable SystemVerilog
bind statements. This allows us to conduct performance analysis
without introducing any overhead to the workloads or modifying
the digital logic design.

5.2 Runtimes
We conduct evaluation on both a traditional static runtime which
supports only statically scheduled parallel loops and the proposed
work-stealing runtime. We implement two variants of the static
runtime, one variant has stacks allocated in DRAM and the other
has stacks allocated in the SPM. We evaluate all four variants of
the work-stealing runtime as in Section 4.4.

Balanced

D
yn
am

ic

PageRank

UTS

SpMVMatMul

SpMatrixTranspose

NQueens
MatrixTranspose

BFS

CilkSort

St
at
ic

Unbalanced

Figure 8: Anatomy of Workloads – we categorize workloads
into four categories based on if he workload leverages dynamic
parallelism and if the tasks have load imbalance

5.3 Workloads
We use a group of nine workloads to evaluate our proposed parallel
programming framework, and the applications are summarized in
Table 1. We select workloads with varied parallelization methods.
MatMul, SpMV, and SpMatrixTranspose are dense matrix multipli-
cation, sparse matrix dense vector multiplication, and sparse ma-
trix transpose, respectively. All three workloads are implemented
in-house and leverage a single parallel loop. PageRank and BFS
implement pull-based PageRank and pull/push hybrid breadth-�rst
search with the the Ligra graph processing framework [52]. Both
mainly use a pair of nested parallel loops: The outer loop iterates
over vertices in the active vertex set while the inner loop iterates
over a particular vertex’s neighbors. Both MatrixTranspose and
CilkSort mainly use recursive spawn-and-sync parallelization (i.e,
parallel_invoke()). MatrixTranspose is dense matrix transpose
and CilkSort performs parallel mergesort. Both do not have static
baseline implementations as spawn-and-sync parallelization starts
with a single task. Without a dynamic runtime, their execution is
serialized on a single core. NQueens uses bactracking to solve the
N-queens problem. It is parallelized over the potential positions of
the next queen to be placed on the board and contains recursive
parallel loops. UTS is the Unbalanced Tree Search benchmark intro-
duced by Olivier et al. [40], which contains recursive parallel loops
to enumerate an unbalanced tree. Among these nine workloads,
only MatMul, which allocates a 3 KB bu�er, utilizes SPM in user
code.We characterize these nine workloads into four categories (i.e.,
static-balanced, static-unbalanced, dynamic-balanced, and dynamic-
unbalanced) by two metrics: (1) if the workload leverages dynamic
parallelism; and (2) if the tasks have load imbalance (see Figure 8).

6 RESULTS
Table 1 summarizes the cycles and dynamic instruction counts of
simulated con�gurations. Figure 9 shows speedup of workloads
over a static runtime with stack in SPM. We plot MatrixTranspose
and CilkSort separately in Figure 10, as they do not have static
baselines. Comparing the left-most two bars in Figure 9, we can see
that in the context of the static runtime, allocating the stack in SPM
does not provide signi�cant improvement over allocating the stack
in DRAM, except in the case of NQueens. Workloads other than
NQueens do not have frequent stack operations when running with
the static runtime, and thus leaving the stack in DRAM does not

53

Beyond Static Parallel Loops: Supporting Dynamic Task Parallelism on Manycore Architectures... ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 1: Simulated Workloads – Cat = workload category; SB = static-balanced; SU = static-unbalanced; DB = dynamic-balanced; DU =
dynamic-unbalanced; PM = parallelization methods; pf = parallel_for, npf = nested or recursive parallel_for and ss = recursive spawn
and sync; Input = input dataset; DI = dynamic instruction count in millions; C = simulated cycles in thousands.

Static Runtime Work-Stealing Runtime

DRAM Stack SPM Stack DRAM Stack DRAM Stack SPM Stack SPM Stack
DRAM Queue SPM Queue DRAM Queue SPM Queue

Cat Name PM Input DI(M) C(K) DI(M) C(K) DI(M) C(K) DI(M) C(K) DI(M) C(K) DI(M) C(K)

SB MatMul pf 256 37 543 37 512 38 527 39 556 39 573 38 509
512 289 6914 289 6579 293 5049 295 5333 294 5321 297 5260

SU PageRank npf g14k16 11 1586 11 1685 23 1649 24 1451 23 1425 25 1343
email 11 5679 11 5384 27 1786 29 1638 24 1471 28 1358
c-58 15 5136 15 5136 32 2257 40 2257 33 2044 38 1961

SU BFS npf g14k16 3 1114 3 1062 22 1149 27 1102 21 914 26 871
bundle1 6 1988 6 2065 30 1881 40 1892 29 1604 39 1561
c-58 7 1943 7 1881 27 1852 35 1806 26 1495 33 1440

SU SpMV pf bundle1 4 1483 4 1476 6 1005 7 995 6 1007 8 978
email 2 4144 2 4129 95 4046 132 3820 87 3657 142 4060
c-58 3 3442 3 3444 10 1047 14 1012 11 1019 15 1009

SU SpMatrix pf bundle1 42 50850 42 50718 183 12877 281 13409 189 12911 279 12992
Transpose email 22 47310 22 47343 1112 45864 1569 44351 1112 45456 1622 45391

c-58 24 16570 24 16655 91 7568 123 7325 89 7222 129 7177

DB Matrix ss 512 – – – – 3 496 3 502 3 416 3 421
Transpose 1024 – – – – 8 2238 9 2240 8 2031 8 1969

DU CilkSort ss 16384 – – – – 7 304 9 279 6 264 8 253
131072 – – – – 30 1799 31 1658 29 1305 32 1264

DU NQueens npf 8 4 1094 4 513 8 545 9 546 8 140 8 151
9 19 5371 19 2522 36 2478 37 2508 37 910 37 1026
10 100 24820 100 11691 177 11089 182 11381 181 6695 181 7367

DU UTS npf small-t1 11 90684 11 90228 53 3266 71 3236 55 3280 71 3156
small-t3 13 127199 13 126594 468 21028 663 21209 480 20878 680 20770

MatMul-256

MatMul-512
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

Static scheduler, stack in DRAM
Static scheduler, stack in SPM
Work-stealing, both stack and task queue in DRAM

Work-stealing, stack in DRAM and task queue in SPM
Work-stealing, stack in SPM and task queue in DRAM
Work-stealing, both stack and task queue in SPM

PR-g14k16
PR-email

PR-c-58

BFS-g14k16

BFS-bundle1
BFS-c-58

NQ-8 NQ-9
NQ-10

0

1

2

3

4

SpMV-bundle1

SpMV-c-58

SpMV-email

SpMT-bundle1

SpMT-email

SpMT-c-58
0

1

2

3

4

UTS-t1
UTS-t3

0

5

10

15

20

25

30

Figure 9: Work-stealing runtime provides a speedup between 1.2 - 28⇥ and a slowdown of no more than 10% – PR = PageRank,
NQ = NQueens, SpMT = SpMatrixTranspose. Applying data-placement optimizations to leverage the SPM provides an additional bene�t of
as much as 25% and compensates for any slowdown observed from work-stealing overhead.

54

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Lin Cheng, Max Ru�enberg, Dai Cheol Jung, Dustin Richmond, Michael Taylor, Mark Oskin, and Christopher Ba�en

0.6 0.8 1.0 1.2 1.4
Speedup

MatTrans
512

MatTrans
1024

CilkSort
16384

CilkSort
131072

Work-stealing, both stack and task queue in DRAM
Work-stealing, stack in DRAM and task queue in SPM
Work-stealing, stack in SPM and task queue in DRAM
Work-stealing, both stack and task queue in SPM

Figure 10: Performance of CilkSort and MatrixTranspose –
normalized to having both stack and task queue in SPM; MatTrans
= MatrixTranspose. Note that the X-axis starts at 0.5.

incur signi�cant overheads. NQueens has heavy reads and writes to
the stack as it frequently copies stack allocated arrays. Allocating
the stack in DRAM leads to severe performance degradation.

Comparing the static scheduler that places stack in SPM to our
baseline work-stealing runtime that has both the stack and the task
queue in DRAM, we can observe that we either only incur minimal
overheads over a traditional static runtime (e.g., in the cases of
MatMul-256 and NQueens-8) or achieve non-trivial performance
improvement (e.g., PR-email and UTS-t1 are able to achieve 3⇥ and
25⇥ better performance, respectively). This demonstrates the bene-
�t of running irregular workloads with a work-stealing runtime on
manycores. As expected, PageRank, SpMV, and SpMatrixTranspose
show input dependent behavior and achieve di�erent speedups on
di�erent inputs (e.g., PageRank shows only moderate speedup on
the synthetic graph g14k16, but achieves 3⇥ speedup on real-world
graph email).MatMul with 512⇥512 input matrices shows an unex-
pected 25% performance improvement over the static baseline. This
is because while there is no inherent load imbalance in our tiled im-
plementation, cores experience non-uniform memory latency due
to their locations in the 2-D mesh OCN. Dynamic load-balancing
helps mitigate this di�erence by scheduling more compute to cores
with lower memory latency.

Di�erent workloads show varied bene�t from our optimization
techniques that leverage the SPM space not claimed by the pro-
grammer. PageRank is able to bene�t from both optimizations and
achieves best performance when both the stack and the task queue
are in SPM. BFS can only outperform the static baseline with op-
timizations enabled, and SPM-allocated stack has a higher impact
on BFS than SPM-allocated task queue. NQueens utilizes the stack
heavily and achieves the best performance when the SPM is re-
served solely for the stack. In this con�guration, fewer stack frames
are over�owed to DRAM. We also observe that as the input size
increases from 8 to 10, more moderate speedup is achieved by our
work-stealing runtime compared to the static baseline. This is be-
cause larger inputs incur deeper stacks and thus more stack frame
over�ows to DRAM, NQueens becomes more DRAM bandwidth
bound. MatrixTranspose and CilkSort are also able to bene�t from

24 8 16 32 64 128
Number of Active Cores

0

20

40

60

80

100

120

Sp
ee

du
p

O
ve

rO
ne

C
or

e

Ideal
NQueens
MatMul

CilkSort
PageRank
SpMV

BFS
MatrixTranspose
SpMatrixTranspose

Figure 11:Workload Scaling – inputs: MatMul = 256; PageRank =
g14k16; MatrixTranspose = 512; NQueens = 8; BFS = g18k8; CilkSort
= 131072; SpMV= u16k32; SpMatrixTranspose = c-58. Data collected
on work-stealing runtime with both task and task queue in SPM.

having the stack in SPM (see Figure 10). SpMV, SpMatrixTrans-
pose, and UTS do not have either frequent stack or frequent task
queue operations. Moreover, both SpMV and SpMatrixTranspose
are already DRAM bandwidth bounded. Extra tra�c to DRAM in-
curred by allocating both stack and task queue in DRAM has only
insigni�cant impact. As a result, our optimizations do not yield
better performance on these three workloads.

Across all workloads, we observe an increase in the number
of dynamic instructions on work-stealing runtimes vs. on static
runtimes (see Table 1). This is expected as it is well-known that
work-stealing runtimes add overheads from various sources (e.g.,
task creation and scheduling), especially when working with very
�ne-grained tasks. We also observe an increase in the number of
dynamic instructions when the SPM-allocated task queue optimiza-
tion is enabled. This is because with reduced task queue access
latency, cores can perform stealing attempts faster and fail more
when there is no task to steal. These instructions are executed by
idle cores that cannot �nd ready tasks and they are not part of the
critical path.

We also conduct a scalability study with all workloads except
UTS. We did not include UTS due to its extensively long simulation
time. Results are shown in Figure 11. NQueens scales the best since,
with more cores, more stack allocated data can be kept in SPM.
CilkSort, as the name suggests, is an algorithm well suited to a
dynamic task parallel runtime and is also well balanced, minimizing
the overhead from stealing. MatMul is another balanced workload
that scales well; it has high arithmetic intensity and loads from
DRAM infrequently. MatrixTranspose is memory intensive and its
scalability is limited by memory bandwidth. BFS, PageRank, SpMV,
and SpMatrixTranspose are similarly bounded by memory, and in
addition they can su�er from severe imbalance. While our runtime
is a major boon to these workloads (static scheduling fairs much
worse), task stealing becomes more frequent on unbalanced inputs
as the core count increases.

To summarize, the proposed work-stealing runtime: (1) either
improves performance of static-balanced workloads by migrating
tasks away from cores that have long memory latency or induces

55

Beyond Static Parallel Loops: Supporting Dynamic Task Parallelism on Manycore Architectures... ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

only minimal overheads; (2) improves performance of irregular
workloads which show input dependent behavior when there is
input induced load imbalance; (3) e�ciently supports dynamic-
balanced and dynamic-unbalanced workloads to achieve high per-
formance, and (4) provides high scalability. Our proposed opti-
mization techniques which automatically leverage SPM are able
to improve performance of applications that have frequent stack
and/or frequent task queue operations (i.e., NQueens, MatrixTrans-
pose, PageRank, and BFS) and incur only minimal overheads on
workloads that cannot bene�t from them.

7 RELATEDWORK
Early manycore research prototypes integrated 16–110 cores on
a single die [22, 23, 35, 39, 54–56]. The industry has adopted the
manycore approach as well and products available typically include
64–256 cores [6, 21, 27, 28, 32, 46, 59, 60]. Recent research proto-
types have scaled core counts by an order-of-magnitude to over a
thousand cores (e.g., 1000-core KiloCore [11], 1024-core Epiphany-
V [41], and 4096-core Manticore [62])

A number of prior works explored work-stealing runtimes on
manycore architectures that provide software-centric cache coher-
ence. Long et al. [36] implemented a Cilk-like runtime on a 64-core
manycore architecture with a shared L2 cache and non-coherent
private L1 caches. They attacked the shared data coherence issue by
leveraging a bloom �lter based hardware mechanism, Coherence
Vector, to identify memory locations that should not be cached in
non-coherent private L1 caches. The proposed runtime stores all
runtime-related shared data (e.g., task queues) into the Coherence
Vector. For user data with parent-child dependency, they exploit
the DAG-consistency [7] and insert L1 invalidate and write-back
instructions in the runtime. Similarly, Wang et al. [58] worked on a
similar system (i.e., big.TINY) and also proposed inserting L1 cache
invalidation and write-back instructions at proper locations in their
Cilk-like runtime. Unlike Long et al. who identi�ed runtime shared
data as non-cachable locations, Wang et al. proposed to leverage the
same self-invalidation and self-�ush mechanism for keeping run-
time shared data coherent. For example, after locking a task queue,
a core performs a L1 cache invalidation to avoid reading stale data
when accessing the task queue. To mitigate the frequent L1 cache in-
validation and write-back induced by task queue operations, Wang
et al. proposed a hardware-based mechanism, direct task stealing,
which makes task queue a private data structure. Stealing is made
possible by having the thief send a user-level interrupt to the victim.
The victim then pops a task from its task queue on behalf of the
thief. Tagliavini et al. [53] implemented an OpenMP runtime on
a manycore architecture that has non-coherent private L1 caches.
Similar to both works mentioned above, the private L1 caches need
to be self-invalidated and self-�ushed at proper time to maintain
coherence. Unlike the two Cilk-like runtimes that have per thread
task queues, their proposal leverages a centralized task queue. All
three works studied manycore architectures with software-centric
cache coherence, while our work targets architectures that have
only software-managed scratchpads. Orr et al. [43] implemented a
Cilk-like work-stealing runtime on GPGPUs with software-centric
caches.

Although not a manycore, the Cray T3D/E architectures [4, 16]
bear similarities to HammerBlade. Both are global shared mem-
ory architectures capable of parallel work-sharing programming
models. A notable di�erence is that the Cray machines’ notion of
local memories pertains to abundant-but-slow DRAM, as opposed
to HammerBlade’s local memories being fast-but-scarce SRAM.
Nonetheless, we believe that techniques from this work could be
applied to these Cray machines.

Zakkak et al. [61] proposed an implementation of the Java virtual
machine on a SPM manycore and adopted work-dealing instead of
work-stealing. Our work, to the best of our knowledge, describes
the �rst implementation of a Cilk-like work-stealing runtime for
manycore architectures with only software-managed SPM. Alvarez
et al. [3] described a task-based parallel runtime which can trans-
parently use the SPM for holding input and output data in a hybrid
memory hierarchy. Prior work also studied work-stealing runtimes
on PGAS or distributed memory clusters, including [19, 45, 50]. Li et
al. [34] studied e�cient implementations of conditional division on
manycore architectures. Their work focused on improving the work
scheduling e�ciency on top of an existing work-stealing runtime
and is orthogonal to ours. Chen et al. [14] and Margerm et al. [37]
explored generating task parallel accelerators with coherent caches.
Our work can be applied to support accelerators with SPMs.

8 CONCLUSION
We demonstrate that, in contrast to conventional wisdom, a work-
stealing runtime is viable and bene�cial on manycore architectures
with only software-managed scratchpad memories. This work pro-
vides programmers a familiar programming model for e�cient soft-
ware development on manycore architectures like HammerBlade,
and achieves signi�cant performance improvements over tradi-
tional programming models such as statically scheduled parallel
loops (i.e., up to 3.94⇥ speedup for workloads that can be statically
scheduled and up to 28.5⇥ speedup for workloads with dynamic
parallelism). This work is a small yet important step towards solv-
ing the manycore architecture programmability challenge. While
we evaluated our work-stealing runtime on HammerBlade, our
techniques are applicable to other PGAS manycore architectures
that have software-managed scratchpads memories.

ACKNOWLEDGMENTS
The HammerBlade architecture development was funded exclu-
sively by DARPA SDH Award #FA8650-18-2-7863. The dynamic
task-task parallel programming framework and work-stealing run-
time was supported in part by NSF PPoSS Award #2118709 and the
Center for Applications Driving Architectures (ADA), one of six
centers of JUMP, a Semiconductor Research Corporation program
co-sponsored by DARPA, as well as equipment donations from Intel.
The authors acknowledge and thankMoyangWang and Tuan Ta for
useful discussions on implementing state-of-the-art work-stealing
runtimes. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the o�cial policies or endorsements, either
expressed or implied, of AFRL and DARPA or the U.S. Government.

56

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Lin Cheng, Max Ru�enberg, Dai Cheol Jung, Dustin Richmond, Michael Taylor, Mark Oskin, and Christopher Ba�en

REFERENCES
[1] Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott Davidson, Paul

Gao, Gai Liu, Atieh Lot�, Julian Puscar, Anuj Rao, Austin Rovinski, Loai Salem,
Ningxiao Sun, Christopher Torng, Luis Vega, Bandhav Veluri, Xiaoyang Wang,
Shaolin Xie, Chun Zhao, Ritchie Zhao, Christopher Batten, Ronald G. Dreslinski,
Ian Galton, Rajesh K. Gupta, Patrick P. Mercier, Mani Srivastava, Michael B. Tay-
lor, and Zhiru Zhang. 2017. Celerity: An Open-Source RISC-V Tiered Accelerator
Fabric. Symp. on High Performance Chips (Hot Chips) (Aug 2017).

[2] Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott Davidson, Paul
Gao, Gai Liu, Anuj Rao, Austin Rovinski, Ningxiao Sun, Christopher Torng, Luis
Vega, Bandhav Veluri, Shaolin Xie, Chun Zhao, Ritchie Zhao, Christopher Bat-
ten, Ronald G. Dreslinski, Rajesh K. Gupta, Michael B. Taylor, and Zhiru Zhang.
2017. Experiences Using the RISC-V Ecosystem to Design an Accelerator-Centric
SoC in TSMC 16nm. Workshop on Computer Architecture Research with RISC-V
(CARRV) (Oct 2017).

[3] Lluc Alvarez, Miquel Moretó, Marc Casas, Emilio Castillo, Xavier Martorell,
Jesús Labarta, Eduard Ayguadé, and Mateo Valero. 2015. Runtime-Guided Man-
agement of Scratchpad Memories in Multicore Architectures. Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT) (Oct 2015). https:
//doi.org/10.1109/PACT.2015.26

[4] E. Anderson, J. Brooks, C. Grassl, and S. Scott. 1997. Performance of the CRAY
T3E Multiprocessor. Int’l Conf. on High Performance Networking and Computing
(Supercomputing) (Nov 1997), 39–39. https://doi.org/10.1145/509593.509632

[5] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoe�inger, Yuan Lin, Fed-
erico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. 2009.
The Design of OpenMP Tasks. IEEE Trans. on Parallel and Distributed Systems
(TPDS) 20, 3 (Mar 2009), 404–418. https://doi.org/10.1109/TPDS.2008.105

[6] Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin Joyce, Vince Leung,
John MacKay, Mike Reif, Liewei Bao, John Brown, Matthew Mattina, Chyi-Chang
Miao, Carl Ramey, Dave Wentzla�, Walker Anderson, Ethan Berger, Nat Fair-
banks, Durlov Khan, Froilan Montenegro, Jay Stickney, and John Zook. 2008.
TILE64 Processor: A 64-Core SoCwithMesh Interconnect. Int’l Solid-State Circuits
Conf. (ISSCC) (Feb 2008). https://doi.org/10.1109/ISSCC.2008.4523070

[7] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson,
and Keith H. Randall. 1996. An Analysis of Dag-Consistent Distributed Shared-
Memory Algorithms. Symp. on Parallel Algorithms and Architectures (SPAA) (Jun
1996). https://doi.org/10.1145/237502.237574

[8] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: An E�cient Multithreaded
Runtime System. Symp. on Principles and Practice of Parallel Programming (PPoPP)
(Jul 1995). https://doi.org/10.1145/209937.209958

[9] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. 1996. Cilk: An E�cient Multithreaded
Runtime System. J. Parallel and Distrib. Comput. 37, 1 (Aug 1996), 55–69.

[10] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded
Computations by Work Stealing. J. ACM 46, 5 (Sep 1999), 720–748. https:
//doi.org/10.1145/324133.324234

[11] Brent Bohnenstiehl, Aaron Stillmaker, Jon J. Pimentel, Timothy Andreas, Bin Liu,
Anh T. Tran, Emmanuel Adeagbo, and Bevan M. Baas. 2017. KiloCore: A 32-nm
1000-Processor Computational Array. IEEE Journal of Solid-State Circuits (JSSC)
52, 4 (Apr 2017), 891–902. https://doi.org/10.1109/JSSC.2016.2638459

[12] Ajay Brahmakshatriya, Emily Furst, Victor Ying, Claire Hsu, Changwan Hong,
Max Ruttenberg, Yunming Zhang, Dai Cheol Jung, Dustin Richmond, Michael
Taylor, Julian Shun, Mark Oskin, Daniel Sanchez, and Saman Amarasinghe.
2021. Taming the Zoo: The Uni�ed GraphIt Compiler Framework for Novel
Architectures. Int’l Symp. on Computer Architecture (ISCA) (Jun 2021). https:
//doi.org/10.1109/ISCA52012.2021.00041

[13] P. Charles, C. Grotho�, V. Sarkar, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. 2005. X10: An Object-Oriented Approach to Non-Uniform
Cluster Computing. Conf. on Object-Oriented Programming Systems Languages
and Applications (OOPSLA) (Oct 2005). https://doi.org/10.1145/1103845.1094852

[14] Tao Chen, Shreesha Srinath, Christopher Batten, and Edward Suh. 2018. An
Architectural Framework for Accelerating Dynamic Parallel Algorithms on Re-
con�gurable Hardware. Int’l Symp. on Microarchitecture (MICRO) (Oct 2018).
https://doi.org/10.1109/MICRO.2018.00014

[15] Lin Cheng, Peitian Pan, Zhongyuan Zhao, Krithik Ranjan, Jack Weber, Bandhav
Veluri, Seyed Borna Ehsani, Max Ruttenberg, Dai Cheol Jung, Preslav Ivanov,
Dustin Richmond, Michael B. Taylor, Zhiru Zhang, and Christopher Batten. 2022.
A Tensor Processing Framework for CPU-Manycore Heterogeneous Systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
41, 6 (2022), 1620–1635. https://doi.org/10.1109/TCAD.2021.3103825

[16] Cray Research, Inc 1993. CRAY T3D System Architecture Overview. Cray Re-
search, Inc. http://www.bitsavers.org/pdf/cray/HR-04033_CRAY_T3D_System_
Architecture_Overview_Sep93.pdf

[17] AndrewDanowitz, Kyle Kelley, JamesMao, John P. Stevenson, andMarkHorowitz.
2012. CPUDB: RecordingMicroprocessor History. ACMQueue (Apr 2012), 10–27.

[18] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawaj, Austin Rovin-
ski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao, Steve Dai, Aporva Amarnath,
Bandhav Veluri, Paul Gao, Anuj Rao, Gai Liu, Rajesh K. Gupta, Zhiru Zhang,
Ronald G. Dreslinski, Christopher Batten, and Michael B. Taylor. 2018. The Celer-
ity Open-Source 511-Core RISC-V Tiered Accelerator Fabric: Fast Architectures
and Design Methodologies for Fast Chips. IEEE Micro 38, 2 (Mar/Apr 2018), 30–41.
https://doi.org/10.1109/MM.2018.022071133

[19] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek
Nieplocha. 2009. Scalable Work Stealing. Int’l Conf. on High Performance Net-
working and Computing (Supercomputing) (Nov 2009). https://doi.org/10.1145/
1654059.1654113

[20] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Imple-
mentation of the Cilk-5 Multithreaded Language. ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI) (Jun 1998). https:
//doi.org/10.1145/277652.277725

[21] Tom R. Halfhill. 2020. ThunderX3’s Cloudburst of Threads: Marvell Previews
96-core 384-thread Arm Server Processor. Microprocessor Report, The Linley Group
(Apr 2020).

[22] Yatin Hoskote, Sriram Vangal, Arvind Singh, Nitin Borkar, and Shekhar Borkar.
2007. A 5-GHz Mesh Interconnect for a Tera�ops Processor. IEEE Micro 27, 5
(Sep/Oct 2007), 51–61. https://doi.org/10.1109/MM.2007.4378783

[23] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gre-
gory Ruhl, David Jenkins, HowardWilson, Nitin Borkar, Gerhard Schrom, Fabrice
Pailet, Shailendra Jain, Tiju Jacob, Satish Yada, Sraven Marella, Praveen Sali-
hundam, Vasantha Erraguntla, Michael Konow, Michael Riepen, Guido Droege,
Joerg Lindemann, Matthias Gries, Thomas Apel, Kersten Henriss, Tor Lund-
Larsen, Sebastian Steibl, Shekhar Borkar, Vivek De, Rob Van Der Wijngaart,
and Timothy Mattson. 2010. A 48-Core IA-32 Message-Passing Processor
with DVFS in 45nm CMOS. Int’l Solid-State Circuits Conf. (ISSCC) (Feb 2010).
https://doi.org/10.1109/ISSCC.2010.5434077

[24] Intel Corporation 2012. Intel Cilk Plus Language Extension Speci�cation. Intel
Corporation. https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1665.htm

[25] Intel Corporation 2019. Intel Threading Building Blocks. Intel Corporation.
https://software.intel.com/en-us/intel-tbb

[26] Dai Cheol Jung, Scott Davidson, Chun Zhao, Dustin Richmond, and Michael Bed-
ford Taylor. 2020. Ruche Networks: Wire-Maximal, No-Fuss NoCs : Special
Session Paper. Int’l Symp. on Networks-on-Chip (NOCS) (Apr 2020). https:
//doi.org/10.1109/NOCS50636.2020.9241586

[27] Kalray 2022 (accessed Aug 2022). Kalray MPPA Products. Online Webpage.
https://www.kalrayinc.com/products/mppa-technology/.

[28] David Kanter. 2015. Knights Landing Reshapes HPC.
[29] John H. Kelm, Daniel R. Johnson, Matthew R. Johnson, Neal C. Crago, William

Tuohy, Aqeel Mahesri, Steven S. Lumetta, Matthew I. Frank, and Sanjay J. Pa-
tel. 2009. Rigel: An Architecture and Scalable Programming Interface for a
1000-core Accelerator. Int’l Symp. on Computer Architecture (ISCA) (Jun 2009).
https://doi.org/10.1145/1555754.1555774

[30] Khronos Working Group 2011. OpenCL Speci�cation, v1.2. Khronos Working
Group. http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[31] Charles E. Leiserson. 2009. The Cilk++ Concurrency Platform. Design Automation
Conf. (DAC) (Jul 2009). https://doi.org/10.1145/1629911.1630048

[32] L. Li, J. Fang, H. Fu, J. Jiang, W. Zhao, C. He, X. You, and G. Yang. 2018.
swCa�e: A Parallel Framework for Accelerating Deep Learning Applications
on Sunway TaihuLight. Int’l Conf. on Cluster Computing (Sep 2018). https:
//doi.org/10.48550/arXiv.1903.06934

[33] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob. 2020. DRAMsim3: A Cycle-
Accurate, Thermal-Capable DRAM Simulator. Computer Architecture Letters
(CAL) (Jul 2020). https://doi.org/10.1109/LCA.2020.2973991

[34] Zheng Li, Jose Duato, Olivier Certner, and Olivier Temam. 2010. Scalable Hard-
ware Support for Conditional Parallelization. Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT) (Sep 2010).

[35] Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, Ilia Lebedev, and Srinivas De-
vadas. 2013. Hardware-Level Thread Migration in a 110-Core Shared-Memory
Multiprocessor. Technical Report 512. MIT CSAIL CSG.

[36] Guo-Ping Long, Jun-Chao Zhang, and Dong-Rui Fan. 2008. Architectural Support
and Evaluation of Cilk Language on Many-Core Architectures. Chinese Journal of
Computers 31, 11 (2008), 1975–1985. https://doi.org/10.3724/SP.J.1016.2008.01975

[37] Steven Margerm, Amirali Shari�an, Apala Guha, Arrvindh Shriraman, and
Gilles Pokam. 2018. TAPAS: Generating Parallel Accelerators from Paral-
lel Programs. Int’l Symp. on Microarchitecture (MICRO) (Oct 2018). https:
//doi.org/10.1109/MICRO.2018.00028

[38] Michael McCool, Arch D. Robinson, and James Reinders. 2012. Structured Parallel
Programming: Patterns for E�cient Computation. Morgan Kaufmann.

[39] Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Jonathan Balkind,
Alexey Lavrov, Mohammad Shahrad, Samuel Payne, and David Wentzla�. 2017.
Piton: A Manycore Processor for Multitenant Clouds. IEEE Micro 37, 2 (Mar/Apr
2017), 70–80. https://doi.org/10.1109/MM.2017.36

[40] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sadayappan,
and Chau-Wen Tseng. 2006. UTS: An Unbalanced Tree Search Benchmark. Int’l

57

https://doi.org/10.1109/PACT.2015.26
https://doi.org/10.1109/PACT.2015.26
https://doi.org/10.1145/509593.509632
https://doi.org/10.1109/TPDS.2008.105
https://doi.org/10.1109/ISSCC.2008.4523070
https://doi.org/10.1145/237502.237574
https://doi.org/10.1145/209937.209958
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/324133.324234
https://doi.org/10.1109/JSSC.2016.2638459
https://doi.org/10.1109/ISCA52012.2021.00041
https://doi.org/10.1109/ISCA52012.2021.00041
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1109/MICRO.2018.00014
https://doi.org/10.1109/TCAD.2021.3103825
http://www.bitsavers.org/pdf/cray/HR-04033_CRAY_T3D_System_Architecture_Overview_Sep93.pdf
http://www.bitsavers.org/pdf/cray/HR-04033_CRAY_T3D_System_Architecture_Overview_Sep93.pdf
https://doi.org/10.1109/MM.2018.022071133
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1145/277652.277725
https://doi.org/10.1145/277652.277725
https://doi.org/10.1109/MM.2007.4378783
https://doi.org/10.1109/ISSCC.2010.5434077
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1665.htm
https://software.intel.com/en-us/intel-tbb
https://doi.org/10.1109/NOCS50636.2020.9241586
https://doi.org/10.1109/NOCS50636.2020.9241586
https://www.kalrayinc.com/products/mppa-technology/
https://doi.org/10.1145/1555754.1555774
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://doi.org/10.1145/1629911.1630048
https://doi.org/10.48550/arXiv.1903.06934
https://doi.org/10.48550/arXiv.1903.06934
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.3724/SP.J.1016.2008.01975
https://doi.org/10.1109/MICRO.2018.00028
https://doi.org/10.1109/MICRO.2018.00028
https://doi.org/10.1109/MM.2017.36

Beyond Static Parallel Loops: Supporting Dynamic Task Parallelism on Manycore Architectures... ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Workshop on Lanaguages and Compilers for Parallel Computing (LCPC) (Nov 2006).
https://doi.org/10.1007/978-3-540-72521-3_18

[41] Andreas Olofsson. 2016. Epiphany-V: A 1024-processor 64-bit RISC System-On-
Chip. Computing Research Repository (CoRR) arXiv:abs/1610.01832 (Aug 2016).
https://doi.org/10.48550/arXiv.1610.01832

[42] OpenMP Architecture Review Board 2013. OpenMP Application Program Interface,
Version 4.0. OpenMP Architecture Review Board. http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf

[43] Marc S. Orr, Bradford M. Beckmann, Steven K. Reinhardt, and David A. Wood.
2014. Fine-Grain Task Aggregation and Coordination on GPUs. Int’l Symp.
on Computer Architecture (ISCA) (Jul 2014). https://doi.org/10.1109/ISCA.2014.
6853209

[44] Yanghui Ou, Shady Agwa, and Christopher Batten. 2020. Implementing Low-
Diameter On-Chip Networks for Manycore Processors Using a Tiled Physi-
cal Design Methodology. Int’l Symp. on Networks-on-Chip (NOCS) (Sep 2020).
https://doi.org/10.1109/NOCS50636.2020.9241710

[45] Guilherme P. Pezzi, Marcia C. Cera, Elton Mathias, Nicolas Maillard, and Philippe
O. A. Navaux. 2007. On-line Scheduling of MPI-2 Programs with Hierarchi-
cal Work Stealing. Int’l Symp. on Computer Architecture and High Performance
Computing (SBAC-PAD) (Oct 2007). https://doi.org/10.1109/SBAC-PAD.2007.36

[46] Carl Ramey. 2011. TILE-Gx100 ManyCore Processor: Acceleration Interfaces
and Architecture. Symp. on High Performance Chips (Hot Chips) (Aug 2011).
https://doi.org/10.1109/HOTCHIPS.2011.7477491

[47] James Reinders. 2007. Intel Threading Building Blocks: Out�tting C++ for Multi-core
Processor Parallelism. O’Reilly.

[48] Austin Rovinski, Chun Zhao, Khalid Al-Hawaj, Paul Gao, Shaolin Xie, Christo-
pher Torng, Scott Davidson, Aporva Amarnath, Luis Vega, Bandhav Veluri,
Anuj Rao, Tutu Ajayi, Julian Puscar, Steve Dai, Ritchie Zhao, Dustin Rich-
mond, Zhiru Zhang, Ian Galton, Christopher Batten, Michael B. Taylor, and
Ron G. Dreslinski. 2019. A 1.4 GHz 695 Giga RISC-V Inst/s 496-core Many-
core Processor with Mesh On-Chip Network and an All-Digital Synthesized
PLL in 16nm CMOS. Symp. on VLSI Technology and Circuits (VLSI) (Jun 2019).
https://doi.org/10.23919/VLSIC.2019.8778031

[49] Austin Rovinski, Chun Zhao, Khalid Al-Hawaj, Paul Gao, Shaolin Xie, Christo-
pher Torng, Scott Davidson, Aporva Amarnath, Luis Vega, Bandhav Veluri, Anuj
Rao, Tutu Ajayi, Julian Puscar, Steve Dai, Ritchie Zhao, Dustin Richmond, Zhiru
Zhang, Ian Galton, Christopher Batten, Michael B. Taylor, and Ron G. Dreslinski.
2019. Evaluating Celerity: A 16nm 695 Giga-RISC-V Instructions/s Manycore
Processor with Synthesizable PLL. IEEE Solid-State Circuits Letters (SSCL) 2, 12
(Dec 2019), 289–292. https://doi.org/10.1109/LSSC.2019.2953847

[50] Vijay A. Saraswat, Prabhanjan Kambadur, Sreedhar Kodali, David Grove, and
Sriram Krishnamoorthy. 2011. Lifeline-Based Global Load Balancing. SIGPLAN
Not. (feb 2011), 201–212. https://doi.org/10.1145/2038037.1941582

[51] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. 2017. Tapir:
Embedding Fork-Join Parallelism into LLVM’s Interemdiate Representation.
Symp. on Principles and Practice of Parallel Programming (PPoPP) (Feb 2017).
https://doi.org/10.1145/3155284.3018758

[52] Julian Shun and Guy Blelloch. 2013. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. Symp. on Principles and Practice of Parallel
Programming (PPoPP) (Feb 2013). https://doi.org/10.1145/2517327.2442530

[53] Giuseppe Tagliavini, Daniele Cesarini, and Andrea Marongiu. 2018. Unleashing
Fine-Grained Parallelism on Embedded Many-Core Accelerators with Light-
weight OpenMP Tasking. IEEE Transactions on Parallel and Distributed Systems
29, 9 (2018), 2150–2163. https://doi.org/10.1109/TPDS.2018.2814602

[54] Guangming Tan, Dongrui Fan, Junchao Zhang, Andrew Russo, and Guang R. Gao.
2008. Experience on Optimizing Irregular Computation for Memory Hierarchy in
Manycore Architecture. Symp. on Principles and Practice of Parallel Programming
(PPoPP) (Feb 2008). https://doi.org/10.1145/1345206.1345255

[55] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzla�, Fae Gho-
drat, Ben Greenwald, Henry Ho�mann, Paul Johnson, Walter Lee, Arvind Saraf,
Nathan Shnidman, Volker Strumpen, Saman Amarasinghe, and Anant Agarwal.
2003. A 16-Issue Multiple-Program-Counter Microprocessor with Point-to-Point
Scalar Operand Network. Int’l Solid-State Circuits Conf. (ISSCC) (Feb 2003).
https://doi.org/10.1109/ISSCC.2003.1234253

[56] Pascal Vivet, Eric Guthmuller, Yvain Thonnart, Gael Pillonnet, Guillaume Moritz,
IvanMiro-Panadès, Cesar Fuguet, Jean Durupt, Christian Bernard, Didier Varreau,
Julian Pontes, Sebastien Thuries, David Coriat, Michel Harrand, Denis Dutoit,
Didier Lattard, Lucile Arnaud, Jean Charbonnier, Perceval Coudrain, Arnaud
Garnier, Frederic Berger, Alain Gueugnot, Alain Greiner, Quentin Meunier, Alexis
Farcy, Alexandre Arriordaz, Severine Cheramy, and Fabien Clermidy. 2020. A
220GOPS 96-Core Processor with 6 Chiplets 3D-Stacked on an Active Inter-
poser O�ering 0.6ns/mm Latency, 3Tb/s/mm2 Inter-Chiplet Interconnects and
156mW/mm2@ 82%-Peak-E�ciency DC-DC Converters. Int’l Solid-State Circuits
Conf. (ISSCC) (Feb 2020). https://doi.org/10.1109/ISSCC19947.2020.9062927

[57] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer.
2003. Capriccio: Scalable Threads for Internet Services. Symp. on Operating Sys-
tems Principles (SOSP) (Oct 2003), 268–281. https://doi.org/10.1145/945445.945471

[58] Moyang Wang, Tuan Ta, Lin Cheng, and Christopher Batten. 2020. E�ciently
Supporting Dynamic Task Parallelism on Heterogeneous Cache-Coherent Sys-
tems. Int’l Symp. on Computer Architecture (ISCA) (Jun 2020). https://doi.org/10.
1109/ISCA45697.2020.00025

[59] David Wentzla�, Patrick Gri�n, Henry Ho�man, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant
Agarwal. 2007. On-Chip Interconnection Architecture of the Tile Processor. IEEE
Micro 27 (Sep/Oct 2007), 15–31. Issue 5. https://doi.org/10.1109/MM.2007.4378780

[60] Bob Wheeler. 2020. Ampere Maxes Out at 128 Cores. Microprocessor Report, The
Linley Group (Jul 2020).

[61] Foivos S. Zakkak and Polyvios Pratikakis. 2016. Building a Java™ Virtual Ma-
chine for Non-Cache-Coherent Many-Core Architectures. Int’l Workshop on
Java Technologies for Real-Time and Embedded Systems (JTRES) (Aug 2016).
https://doi.org/10.1145/2990509.2990510

[62] Florian Zaruba, Fabian Schuiki, and Luca Benini. 2021. Manticore: A 4096-Core
RISC-V Chiplet Architecture for Ultrae�cient Floating-Point Computing. IEEE
Micro (Mar/Apr 2021). https://doi.org/10.48550/arXiv.2008.06502

Received 2022-10-20; accepted 2023-01-19

58

https://doi.org/10.1007/978-3-540-72521-3_18
https://doi.org/10.48550/arXiv.1610.01832
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://doi.org/10.1109/ISCA.2014.6853209
https://doi.org/10.1109/ISCA.2014.6853209
https://doi.org/10.1109/NOCS50636.2020.9241710
https://doi.org/10.1109/SBAC-PAD.2007.36
https://doi.org/10.1109/HOTCHIPS.2011.7477491
https://doi.org/10.23919/VLSIC.2019.8778031
https://doi.org/10.1109/LSSC.2019.2953847
https://doi.org/10.1145/2038037.1941582
https://doi.org/10.1145/3155284.3018758
https://doi.org/10.1145/2517327.2442530
https://doi.org/10.1109/TPDS.2018.2814602
https://doi.org/10.1145/1345206.1345255
https://doi.org/10.1109/ISSCC.2003.1234253
https://doi.org/10.1109/ISSCC19947.2020.9062927
https://doi.org/10.1145/945445.945471
https://doi.org/10.1109/ISCA45697.2020.00025
https://doi.org/10.1109/ISCA45697.2020.00025
https://doi.org/10.1109/MM.2007.4378780
https://doi.org/10.1145/2990509.2990510
https://doi.org/10.48550/arXiv.2008.06502

	Abstract
	1 Introduction
	2 Background
	2.1 Target Manycore Architecture
	2.2 Programming Models for Dynamic Task Parallelism
	2.3 Manycore Architecture Programmability Challenge

	3 Supporting Dynamic Task Parallelism on Manycore Architectures
	3.1 Running Example
	3.2 A Naive Work-Stealing Runtime

	4 Scratchpad Enhanced Runtime
	4.1 Scratchpad-Allocated Stack
	4.2 Scratchpad-Allocated Task Queue
	4.3 Read-Only Data Duplication
	4.4 Micro-Benchmarking

	5 Evaluation Methodology
	5.1 Simulated Hardware
	5.2 Runtimes
	5.3 Workloads

	6 Results
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

