
1620 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

A Tensor Processing Framework for
CPU-Manycore Heterogeneous Systems

Lin Cheng , Peitian Pan, Student Member, IEEE, Zhongyuan Zhao, Krithik Ranjan , Jack Weber ,
Bandhav Veluri, Seyed Borna Ehsani, Max Ruttenberg, Dai Cheol Jung ,

Preslav Ivanov, Graduate Student Member, IEEE, Dustin Richmond , Michael B. Taylor , Senior Member, IEEE,
Zhiru Zhang , Senior Member, IEEE, and Christopher Batten , Member, IEEE

Abstract—Future CPU-manycore heterogeneous systems can
provide high peak throughput by integrating thousands of sim-
ple, independent, energy-efficient cores in a single die. However,
there are two key challenges to translating this high peak
throughput into improved end-to-end workload performance:
1) manycore co-processors rely on simple hardware putting
significant demands on the software programmer and 2) many-
core co-processors use in-order cores that struggle to tolerate
long memory latencies. To address the manycore programma-
bility challenge, this article presents a dense and sparse tensor
processing framework based on PyTorch that enables domain
experts to easily accelerate off-the-shelf workloads on CPU-
manycore heterogeneous systems. To address the manycore
memory latency challenge, we use our extended PyTorch frame-
work to explore the potential for decoupled access/execute (DAE)
software and hardware mechanisms. More specifically, we pro-
pose two software-only techniques, naïve-software DAE and
systolic-software DAE, along with a lightweight hardware access
accelerator to further improve area-normalized throughput. We
evaluate our techniques using a combination of PyTorch operator
microbenchmarking and real-world PyTorch workloads running
on a detailed register-transfer-level model of a 128-core many-
core architecture. Our evaluation on three real-world dense and
sparse tensor workloads suggests these workloads can achieve
approximately 2–6× performance improvement when scaled to a
future 2000-core CPU-manycore heterogeneous system compared

Manuscript received December 16, 2020; revised March 22, 2021 and
July 2, 2021; accepted July 18, 2021. Date of publication August 10, 2021;
date of current version May 20, 2022. This work was supported in part by
NSF CRI Award under Grant 1512937; in part by NSF SHF Award under
Grant 1527065; in part by NSF SHF under Grant 1909661; in part by DARPA
SDH Award under Grant FA8650-18-2-7863; and in part by Facebook and
Xilinx. This article was recommended by Associate Editor G. Tagliavini.
(Corresponding author: Lin Cheng.)

Lin Cheng, Peitian Pan, Zhongyuan Zhao, Krithik Ranjan, Preslav Ivanov,
Zhiru Zhang, and Christopher Batten are with the School of Electrical
and Computer Engineering, Cornell University, Ithaca, NY 14853 USA
(e-mail: lc873@cornell.edu; pp482@cornell.edu; zz546@cornell.edu;
kr397@cornell.edu; pi57@cornell.edu; zhiruz@cornell.edu;
cbatten@cornell.edu).

Jack Weber was with the School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY 14853 USA. He is now with Accenture, New
York, NY, USA (e-mail: jlw422@cornell.edu).

Bandhav Veluri, Max Ruttenberg, Dustin Richmond, and Michael
B. Taylor are with the Paul Allen School of Computer Science
and Engineering, University of Washington, Seattle, WA 98105 USA
(e-mail: bandhav@uw.edu; mrutt@cs.washington.edu; dustinar@uw.edu).

Seyed Borna Ehsani was with the Paul Allen School of Computer Science
and Engineering, University of Washington, Seattle, WA 98105 USA. He is
now with Apple Inc., Los Altos, CA, USA (e-mail: borna.ehsani@gmail.com).

Dai Cheol Jung is with the Department of Electrical and Computer
Engineering, University of Washington, Seattle, WA 98105 USA (e-mail:
dcjung@uw.edu).

Digital Object Identifier 10.1109/TCAD.2021.3103825

to an 18-core out-of-order CPU baseline, while potentially achiev-
ing higher area-normalized throughput and improved energy
efficiency compared to general-purpose graphics processing units.

Index Terms—Accelerator architectures, open source software,
parallel programming, software libraries.

I. INTRODUCTION

MANYCORE architectures integrate a large number
of simple cores within a single die using a tiled

physical design methodology, and these cores are usu-
ally interconnected through a packet-based on-chip network.
Compared to general-purpose multicores, the manycore
approach can improve energy efficiency and throughput
per unit area on highly parallel workloads. Compared to
application-specific accelerators, the manycore approach can
be tailored to accelerate a wider range of applications. Early
manycore research prototypes included 16–110 cores [1]–[6]
and manycore processors in industry now include 64–128
cores [7]–[12]. Recent research prototypes have scaled core
counts by an order-of-magnitude, including the 496-core
Celerity [13], 1000-core KiloCore [14], 1024-core Epiphany-
V [15], and 4096-core Manticore [16]. General-purpose graph-
ics processing units (GPGPUs) also seek to integrate a massive
number of execution pipelines on a single die [17], [18],
but GPGPUs take a fundamentally different microarchitectural
approach from manycore architectures. GPGPUs group 16–
32 execution pipelines and shared local memory into tens of
SIMT/SIMD processors to amortize overheads with lock-step
execution, while manycore architectures turn each execution
pipeline into its own simple core with its own small local
memory to enable completely independent execution. Like
GPGPUs, manycore architectures are unlikely to completely
replace traditional multicore CPUs as standalone comput-
ing platforms. Manycore architectures will likely remain as
co-processors in CPU-manycore heterogeneous systems. We
identify two key challenges to translating high peak through-
put into improved end-to-end workload performance on such
systems.

Manycore Programmability Challenge: The flexibility
offered by manycore co-processors means programmers must
navigate a broad software design and optimization space. This
is compounded by the fact that manycore co-processors rely
on simple hardware that requires programmers to manage

1937-4151 c⃝ 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4551-2002
https://orcid.org/0000-0002-6083-6251
https://orcid.org/0000-0002-1688-6358
https://orcid.org/0000-0002-3165-4213
https://orcid.org/0000-0002-4587-8947
https://orcid.org/0000-0002-4074-6347
https://orcid.org/0000-0002-0778-0308
https://orcid.org/0000-0002-2835-667X

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1621

many concerns explicitly in software. For example, some
manycore co-processors leverage scratchpad memories to cre-
ate a partitioned global address space (PGAS) instead of
using hardware-based cache coherence, and this requires pro-
grammers to control data movement explicitly in software.
In addition, programmers must carefully consider work dis-
tribution, load balancing, and on-chip network congestion.
Compared to other architectures that have been studied exten-
sively, the software stack of CPU-manycore heterogeneous
systems remains less explored.

A promising approach to addressing the manycore pro-
grammability challenge is through high-level libraries that pro-
vide ready-to-use hand-optimized operators embedded within
a high-level language. GPGPUs now provide many such
libraries, including CuPy [19], PyTorch [20], TensorFlow [21],
and cuGraph [22]. In this work, we demonstrate the potential
for a high-level library approach to address the manycore pro-
grammability challenge by extending the PyTorch framework
for both dense and sparse tensor processing on a representative
CPU-manycore heterogeneous system with a RISC-V many-
core co-processor. Our extended PyTorch framework currently
provides over 100 operators that leverage both a traditional
optimized data-parallel approach (as in GPGPUs), and novel
programming models and optimizations enabled by the unique
features of manycore co-processors. For example, we propose
a new cyclic bank sparse row (CBSR) sparse matrix format
and padding technique that optimizes the data layout for many-
core co-processors with global caches and memory controllers
at the edge.

Manycore Memory Latency Challenge: Memory latency
hiding is now at the center of modern microarchitecture
design as the performance gap between compute and memory
continues to increase. Multicore CPUs rely on complex out-
of-order execution to hide memory latency, while GPGPUs
rely on extreme temporal multithreading with fine-grain con-
text switching to also hide memory latency. Both of these
techniques require extensive hardware resources and are not
applicable to the simple cores used in manycore arechitec-
tures. Stall-on-use, which allows independent instructions to
be issued while a long-latency memory instruction is still
pending [23], [24], is a lightweight mechanism to enable
memory latency hiding in simple in-order cores. However,
our results show this technique alone cannot fully resolve
the memory latency issue, and it still dominates the execu-
tion time of manycore co-processors for many critical PyTorch
operators (e.g., matrix multiplication, 2-D convolution, sparse
matrix–vector multiplication, and matrix–vector multiplica-
tion). Moreover, as manycore architectures generally adopt a
mesh-like on-chip network topology, both network bisection
bandwidth and the bandwidth to higher levels of the memory
hierarchy become scarcer when scaled to future manycore
architectures with thousands of cores, leading to increased
network congestion and memory access latencies.

Decoupled access/execute (DAE) architectures have been
proposed in the literature to aid memory latency hiding by
splitting one program into two instruction streams: 1) an
access stream and 2) an execute stream [25]. The access
stream contains all instructions related to accessing memory,
and the execute stream contains the remaining instructions

for computation. If the access stream can run sufficiently
far ahead, the execute stream will no longer stall due to
load-use dependencies. In this work, we use our extended
PyTorch framework to explore DAE in the context of the tar-
get manycore co-processor. In Section IV, we propose two
software-only techniques, naïve-software DAE and systolic-
software DAE: naïve-software DAE pairs an access core
with an execute core interconnected through software queues
allocated in each core’s scratchpad memory, while systolic-
software DAE exploits data reuse to share one access core
across multiple execute cores. In Section V, we propose
combining lightweight access accelerators with our software
techniques to further improve area normalized throughput. Our
evaluation on several important PyTorch operators shows soft-
ware/hardware co-design to enable DAE programming can
achieve up to 1.32× throughput improvement compared to
an aggressive data-parallel baseline.

In Section VI, we evaluate three real-world workloads using
the extended PyTorch tensor processing framework includ-
ing: a dense residual neural network (ResNet) for computer
vision, a dense deep-learning autoencoder-based recommender
system (RecSys) for movie recommendations, and a sparse
local graph clustering system based on an iterative shrinkage-
thresholding algorithm for personalized page ranking. We
execute the PyTorch CPU software natively and co-simulate
the PyTorch manycore software on a detailed register-transfer-
level model of a 128-core manycore co-processor with 32-bit
RISC-V cores and a high-bandwidth main-memory system.
Our results suggest these workloads can achieve approxi-
mately 2–6× performance improvement when scaled to a
future 2000-core CPU-manycore heterogeneous system com-
pared to an 18-core out-of-order CPU baseline. At the same
time, we argue that the manycore approach can enable higher
area-normalized throughput and improved energy-efficiency
compared to GPGPUs.

The primary contributions of this work are: 1) we extend
PyTorch to enable optimized dense and sparse tensor process-
ing on CPU-manycore heterogeneous systems with minimal
modifications to existing workloads (Section III); 2) we pro-
pose two software-only techniques, naïve-software DAE and
systolic-software DAE, to enable access/execute decoupling in
the context of a manycore co-processor (Section IV); 3) we
propose to combine lightweight hardware access accelerators
with both software schemes to further improve area-normalized
throughput on the target CPU-manycore heterogeneous system
(Section V); and 4) we conduct an end-to-end evaluation on
three real-world tensor workloads to demonstrate the promise
of the proposed framework (Section VI). While we conduct our
studies on a specific manycore architecture, our techniques can
be broadly applied to any manycore architecture that allows
direct core-to-core communication.

II. TARGET CPU-MANYCORE HETEROGENEOUS SYSTEM

Although the manycore software and hardware design space
is broad, there are several common features, including rela-
tively simple cores, mesh-based on-chip networks, software-
managed memory systems, and low-level software APIs. In

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

1622 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

Fig. 1. Target CPU-Manycore Heterogeneous System Hardware: (a) target system includes a CPU with its own attached DRAM and a manycore co-processor
also with its own attached DRAM; (b) manycore co-processor includes 16×8 simple cores (C) and 32 LLC (L) banks interconnected via mesh-based on-chip
network; and (c) each core is a RISC-V RV32IMAF processor (RV32) with instruction cache and 4-KB scratchpad memory.

this section, we describe an early version of the HammerBlade
(HB) architecture [26] that captures these common features.

A. Target System Hardware

The HB manycore architecture includes hundreds of inde-
pendent cores with simple scalar pipelines, low-latency
software-managed scratchpad memories, and support for inte-
ger, floating-point, and atomic memory instructions. Cores
communicate over the memory-mapped 2-D mesh on-chip-
network (OCN), and adopt stall-on-use for exploiting pipeline
parallelism and memory latency hiding. In addition to the
scalar cores, there is a stand-alone host CPU that manages exe-
cution. Fig. 1 presents an architectural diagram of a small-scale
HB CPU-manycore heterogeneous system.

The HB manycore memory hierarchy has four levels:
1) DRAM; 2) a banked, last-level cache (LLC); 3) intercore
scratchpad(s); and 4) a core-local scratchpad. The core-local
scratchpad, remote scratchpads, caches, and other network
locations are mapped to nonintersecting regions of a core’s
address space. Consequently, the HB manycore architecture
exposes a PGAS-like memory model with software control
over data placement.

B. Target System Software

The HB manycore architecture provides a kernel-centric
programming abstraction, similar to CUDA. Kernel code is
written from the perspective of a single thread executing on
a core. Kernel execution and scheduling is managed through
runtime software on the host processor. This provides an
SPMD-like execution model. Unlike CUDA, the target system
software supports remote store programming [27], which
allows a core to perform remote stores into any other core’s
scratchpad.

C. Manycore Challenges

We identify two key challenges to realizing the promised
peak throughput of CPU-manycore heterogeneous systems.

Manycore Programmability Challenge: Similar to other
manycore architectures, the target manycore architecture
exposes low-level hardware details to the software stack. This

requires programmers to manage many concerns explicitly. In
addition, programmers must carefully consider work distribu-
tion, load balancing, network congestion, and even instruction
cache pressure. Facing vast options and a broad software
design space, programmers can struggle to quickly develop
optimal implementations.

Manycore Memory Latency Challenge: Memory latency
hiding is critical to modern microarchitectures as the
performance gap between compute and memory continues to
increase. This memory wall has a more significant impact
on manycore architectures for two reasons: 1) with a strong
emphasis on area efficiency, the cores in a manycore archi-
tecture cannot leverage traditional complex hardware mech-
anisms for memory latency hiding (e.g., out-of-order exe-
cution and fine-grain multithreading), and have to rely on
lightweight approaches such as stall-on-use and 2) manycore
architectures almost always adopt a mesh-like topology for
their OCNs. As we scale to large-scale manycore architec-
tures with thousands of cores, both mesh bisection band-
width and mesh perimeter bandwidth to higher levels of the
memory hierarchy scale slower (i.e., linearly) than the num-
ber of cores (i.e., quadratically). Scarce bandwidth can easily
lead to severe congestion increasing overall memory access
latencies.

III. TENSOR PROCESSING FRAMEWORK FOR

CPU-MANYCORE HETEROGENEOUS SYSTEMS

PyTorch [20] is a widely adopted open-source tensor pro-
cessing framework that provides an easy to use Python
frontend for highly optimized tensor operators implemented
in a low-level C++ ATen library [28]. In this section, we first
present our tensor processing framework for CPU-manycore
heterogeneous systems developed from PyTorch. We then
evaluate and analyze a set of representative operators with
microbenchmarks on the target system to identify performance
bottlenecks.

A. PyTorch on CPU-Manycore Heterogeneous Systems

We extend PyTorch and build an open-source tensor pro-
cessing framework for CPU-manycore heterogeneous systems

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1623

Fig. 2. Different Backends for Extended PyTorch Framework: (a) native execution on CPU without new backend; (b) emulation backend: host code executes
natively on CPU and device code also executes natively on CPU for functional testing; (c) cosimulation backend: host code executes natively on CPU and
device code executes on Verilog RTL simulator for cycle-accurate performance evaluation; and (d) prototype backend: host code executes natively on CPU
and device code executes on a real FPGA/ASIC prototype.

Fig. 3. Extended PyTorch Framework for CPU-Manycore Heterogeneous Systems: Blue lines 26 and 29–30 in (a) are the only changes required to port
an existing workload (e.g., training a deep neural network) written with PyTorch to run on the target CPU-manycore heterogeneous system. Red lines show
the (simplified) dispatch chain for the PyTorch ReLu operator: Python frontend (a) dispatches to platform agnostic ATen operator (b), which dispatches to
manycore backend CPU host function (c), which finally launches the manycore device function (d).

to address the manycore programmability challenge. PyTorch’s
Python-level operators are platform agnostic; a dynamic dis-
patcher in ATen chooses the appropriate implementation for
execution at runtime. The actual ATen operators can be either
platform agnostic or platform specific. Platform specific imple-
mentations are grouped into backends (e.g., a CPU backend
or a GPGPU backend). Platform agnostic operators are part
of the CPU backend as well. New platforms can be easily
supported by plugging new backends into ATen’s dynamic
dispatcher. We extend PyTorch with a new ATen backend
to support both dense and sparse tensor processing on the

target manycore co-processor. With our framework, tensor
workloads can run exclusively on the CPU of the target het-
erogeneous system without any changes to the code. In this
scenario, the CPU backend supports the framework’s Python
APIs and data are stored in CPU host memory [see Fig. 2(a)].
One can also choose to accelerate tensor workloads on the
manycore co-processor with minimal changes to the existing
code [see Fig. 3(a)]. Only changing three lines is necessary:
one for migrating the neural network model to the many-
core co-processor and two for migrating the input data and
expected labels. PyTorch operators that are platform specific

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

1624 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

will be dispatched to the manycore backend, and data will be
automatically migrated as needed [see Fig. 2(d)].

An example workload using the proposed framework is
shown in Fig. 3. When the PyTorch operator nn.ReLu()
is used in Python code, its ATen counterpart relu() is
called. In this case, relu() is platform agnostic (i.e., runs
on the CPU), and is implemented by reusing a platform-
specific ATen operator [i.e., threshold()]. Since model
in line 26 of Fig. 3(a) is on the manycore co-processor, the
call to threshold() in line 4 of Fig. 3(b) is dispatched to
the manycore implementation [Fig. 3(c)], and compute is then
offloaded to the manycore co-processor [Fig. 3(d)].

We have ported over 100 tensor operators, including matrix
multiplication, 2-D convolution, most elementwise operators
(e.g., add and subtract), reductions (e.g., sum and mean), and
sparse operators (e.g., sparse matrix–vector multiplication). All
operators are hand tuned and aggressively optimized: scratch-
pad memory is utilized to enable data reuse and increase arith-
metic intensity; stall-on-use is leveraged to exploit pipeline
parallelism and hide memory latency; and unrolling is used to
balance instruction cache performance and loop overhead.

For sparse operators, prior work has shown that the layout of
sparse tensors can significantly impact performance [29]–[31].
In our framework, we implement a novel CBSR tensor layout.
CBSR is designed to reduce LLC bank conflicts and network
congestion by ensuring cores only access LLC banks located
in the same column. Fig. 4 shows an example using traditional
compressed sparse row (CSR), CBSR, and CBSR+Padding
formats for a 4 × 4 sparse matrix. In this simplified example,
our architecture has one DRAM channel with four LLC banks.
Each core only accesses one row of the sparse matrix. The data
block size within each bank is two data elements and follows
the cyclic memory partitioning scheme of [32]. In CSR, the
indices of nonzero values of different rows may fall into the
same bank, which leads to memory bank conflicts when dif-
ferent cores access either column indices or values (i.e., C0
accesses v2 and C1 accesses v3). Using CBSR can eliminate
the memory bank conflict between cores when accessing either
indices or values, but memory conflicts still remain when one
core is accessing the indices and the other core is accessing
the values (i.e., C0 is accessing v0 and C1 is accessing col-
umn indices of v3). CBSR+Padding makes indices and values
aligned to the same LLC bank, and memory bank conflicts
can be completely eliminated.

Our tensor processing framework and the emulation infras-
tructure are open source.1 We use state-of-the-art test-driven
design based on pytest,2 Hypothesis [33],3 and contin-
uous integration.4 Operator development proceeds through
three levels of emulation, simulation, and finally, hardware
execution.

1) Emulation Backend: We first develop both the CPU and
manycore functions of PyTorch operators using the emulation
backend [Fig. 2(b)]. Emulation provides the same APIs as the

1https://github.com/cornell-brg/hb-pytorch
2https://pytest.org
3https://github.com/HypothesisWorks/hypothesis
4https://travis-ci.com/github/cornell-brg/hb-pytorch

Fig. 4. CSR and CBSR sparse tensor formats. (a) CSR format. (b) CBSR
format. (c) CBSR+Padding format.

actual manycore co-processor runtime. It enables functional
verification, fast turnaround time, and standard debugging
tools (e.g., gdb) on manycore device functions. When building
with the emulation backend, offloading uses native function
calls, data migration uses regular memory copy, and device
functions will be executed natively on the host.

2) Cosimulation Backend: After functional verification,
we move to cycle-accurate RTL simulation [Fig. 2(c)]. In
this environment, we again verify correctness, and iterate to
optimize performance with architectural counters. The cosim-
ulation backend leverages an RTL simulator (e.g., Verilator)5

to model a small-scale version of the HB system running
at 1 GHz with 16 columns and 8 rows. To model DRAM
timing, we use the open-source DRAMSim3 library [34], a
timing accurate simulator. Architectural performance coun-
ters are inserted using nonsynthesizable SystemVerilog bind
statements for no-cost performance analysis of kernels. The
RTL for this design has been validated in silicon. Host code
executes natively on an Intel Xeon E7-8867v4 CPU.

3) Prototype Backend: Eventually, we plan to sup-
port moving to a real FPGA/ASIC prototype [Fig. 2(d)].
Preliminary work has demonstrated the feasibility of using
an FPGA prototype to study larger workloads than possible in
simulation.

B. Microbenchmarking

We conduct a scalability study on a set of representative
PyTorch operators shown in Table I. These operators vary in
arithmetic intensity and enable understanding the performance

5https://github.com/verilator/verilator

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1625

TABLE I
OPERATOR MICROBENCHMARKING

Fig. 5. ATen Operator Micro-Benchmarking: Scalability of a representative
set of ATen operators. See Table I for operator description and input sizes.
Normalized to single core performance.

of our framework on the target CPU-manycore heterogeneous
system. Fig. 5 shows that arithmetic-intensive operators, such
as MatMul and Conv2D, scale well and achieve a sustained
throughput of 78.5 GFLOP/s and 68.0 GFLOP/s, respectively.
Memory-intensive dense operators, such as AddMV, Sum,
and Add, show only moderate scalability, as they can eas-
ily saturate the manycore co-processor’s memory bandwidth.
EmbBack is implemented with fine-grained locking, in which
each embedding (Emb) entry is associated with a spin lock
to resolve update conflicts and scales well up to 64 active
cores. However, increased memory latency, instead of lock
contention, is the primary reason EmbBack scales poorly to
128 active cores. SpMV scales better than other memory-
intensive operators because of the CBSR tensor layout, which
is specifically designed to avoid LLC bank conflicts on the
target manycore co-processor.

We study four operators that are critical to many real-
world tensor workloads in more detail: MatMul, Conv2D,
AddMV, and SpMV. Fig. 6 shows that the cycles per instruc-
tion (CPI) increases with the number of active cores. For
arithmetic-intensive operators, such as MatMul and Conv2D,
the number of stall-on-network cycles (i.e., load/store requests
to LLC cannot be sent due to network congestion) reduces
the overall performance after reaching 64 active cores [see
Fig. 6(a) and (b)]. Even with only one active core, MatMul
and Conv2D cannot hide enough memory latency to avoid

stall-on-use (i.e., true data dependency). Both MatMul and
Conv2D can use tiling. Larger tiling blocks increase data
reuse resulting in higher arithmetic intensity and thus, bet-
ter performance. However, the necessity of moving large data
blocks to the scratchpads with in-order scalar cores introduces
phased behavior into these arithmetic-intensive operators. A
data-loading phase moves a large block of data into the
scratchpad, followed by an execute phase to consume the data
block. To move data to the scratchpads, we use a pair of regular
load and store instructions. A core first loads a word into one
of its registers and then explicitly stores the data into its core-
local scratchpad. We can hide memory latency by unrolling the
loop so that the instruction stream has a long sequence of loads
followed by a long sequence of stores. With stall-on-use, we
are able to have many memory requests in-flight, which amor-
tizes the memory latency. However, even after applying these
optimizations, memory latency still contributes significantly to
the overall execution time.

For memory-intensive operators, such as AddMV and
SpMV, the number of stall cycles increases quickly beyond
16 active cores [see Fig. 6(c) and (d)]. This is likely due to
a limited number of LLC banks. With more active cores than
available LLC banks, even if memory accesses from cores
can be evenly distributed, LLC contention remains. Fig. 6
shows that unlike AddMV, SpMV execution time is dominated
by stall-on-use cycles instead of stall-on-network cycles. This
indicates the CSBR tensor layout is able to significantly reduce
network congestion.

IV. SOFTWARE-ENABLED DAE

Section III confirmed that memory latency is a major factor
in the performance of both dense and sparse tensor opera-
tors on the target architecture. We expect memory latency
to become an even more significant issue in future CPU-
manycore heterogeneous systems with thousands of cores and
2-D mesh on-chip networks, as bisection bandwidth and band-
width going off the mesh to higher levels of the memory
hierarchy scale linearly while the number of cores scales
quadratically. We can either tolerate the ever growing memory
latency, or we can reduce the amount of data transferred.
GPGPUs explored both directions through extreme temporal
multithreading with fine-grain context switching (latency hid-
ing) and memory coalescing (reducing data movement). As
demonstrated for conventional processors in prior work [25],
[35], [36], DAE can reduce or eliminate memory latency and

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

1626 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

Fig. 6. Per Core CPI: CPI continues to increase with the number of active cores. Memory latency dominates execution time in all four operators when
using 128 cores. Stall-on-Network = load request cannot be sent due to OCN contention; Stall-on-Use = load request has been sent but response have not
received; memory latency = Stall-on-Network + Stall-on-Use. (a) MatMul. (b) Conv2D. (c) AddMV. (d) SpMV.

improve performance. In this section, we leverage software-
based DAE to realize both latency hiding and data movement
reduction in the context of a manycore architecture. We pro-
pose naïve-software DAE and systolic-software DAE, and we
then evaluate their performance against optimized data-parallel
baseline implementations.

A. Naïve-Software DAE

We first explore DAE using pairs of cores: one as the access
core and one as the execute core. In a typical DAE architec-
ture, access and execute are connected by hardware queues for
communication. In the context of a PGAS manycore, we lever-
age remote store programming and create software queues in
the execute core’s scratchpad for the same purpose. We refer
to this software DAE scheme as naïve-software DAE.

In naïve-software DAE, the access core sends requests
to higher levels of the memory hierarchy to load data into
its registers. Unlike the data-movement scheme described in
Section III, the access core stores the loaded value into its
peer’s scratchpad (i.e., the software queue). When data become
available, the execute core reads the data block, performs com-
putation, yields the queue space, and writes back the results
(if necessary). In many DAE architectures, writing back the
results is also done by the access core. However, our early
analysis suggested writing results from an execute core to an
access core, and then to higher levels of memory hierarchy
provided no benefit. Thus, in naïve-software DAE, execute
cores write results directly back to DRAM. Since the block
currently being processed stays in the software queue (i.e., the
execute core pops the entry only after finishing computation),
at least two entries in each software queue are necessary to
enable access/execute decoupling. This puts increased demand
on the scratchpad resulting in smaller tile sizes compared to
a data-parallel baseline.

We implement six operators with naïve-software DAE:
1) MatMul; 2) Conv2D; 3) Conv2D-iB (i.e., Conv2D backward
w.r.t. input images); 4) Conv2D-fB (i.e., Conv2D backward
w.r.t. filters); 5) AddMV; and 6) SpMV. The baselines are
hand-tuned data-parallel implementations. We add a second
baseline for each operator, in which we only activate 50%
of the cores in the manycore co-processor using the data
parallel implementation. We refer to this second baseline as
50%-idle. We include this baseline to understand if the ben-
efit of naïve-software DAE comes from fewer cores making

Fig. 7. Naïve and Systolic Software DAE: TP/CC = throughput per compute
core; TP/Sys = overall throughput per system; MatMul showing 768×768×
768; Conv2D, Conv2D-iB, and Conv2D-fB showing 32 images batch; AddMV
showing 768×768; and SpMV showing FB-Johns55. See Table II for detailed
input specification.

memory requests. Since the target manycore is built with scalar
cores, each core can inject at most one memory request every
cycle. With only 50% cores active, the maximum possible
new requests per cycle is halved. This may relieve network
congestion and improve operator performance.

The results are summarized in Fig. 7 and Table II. Compared
to the baseline, 50%-idle generally achieves much lower over-
all throughput, as expected with half of the cores active.
However, we also observe an increase in per-core throughput,
especially in the cases of AddMV and SpMV. This improve-
ment matches our observation in Section III that increasing the
number of active cores can reduce performance due to network
congestion. We also observe that for these two operators,
naïve-software DAE only provides marginal improvement, or
hurts performance because low arithmetic intensity means
there is not enough time for the access core to load a block
before the execute core needs to consume this block. However,
for arithmetic-intensive operators (i.e., MatMul, Conv2D,
Conv2D-iB, and Conv2D-fB), naïve-software DAE signifi-
cantly improves the per-compute-core throughput. Compared
to the baseline, naïve-software DAE is able to improve per-
compute-core throughput by 1.5–1.9×. Compared to 50%-idle,
naïve-software DAE is able to improve per-compute-core

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1627

throughput by 1.3–1.5×, despite using smaller tiling block
sizes than both the baseline and 50%-idle. While this improve-
ment over 50%-idle partially comes from having 2× the
resources and offloading load and address generation instruc-
tions to access cores, the main source of performance benefit
comes from memory-latency hiding. In Conv2D, 13% of
the dynamic instructions are related to load and address
generation, and these instructions are offloaded to access
cores. However, we observe 53% performance improvement
over 50%-idle.

B. Systolic-Software DAE

While naïve-software DAE implementations show signifi-
cant per-compute-core improvement, the overall performance
decreases because the per-compute-core improvement does not
outweigh the reduced number of compute cores performing
useful work. To translate the high per-compute-core through-
put to an overall performance improvement, we must change
the ratio of access to execute cores. However, having one
access core serve two or more execute cores can also degrade
performance when the execute cores finish faster than the
access core can supply data. For example, in MatMul, an
access core cannot finish loading data for two execute cores
before its execute counterparts finish consuming their cur-
rent blocks, and thus, the execute cores will need to stall.
Alternatively, multiple access cores could fetch data for a sin-
gle execute core. Unfortunately, an asymmetric ratio of access
and execute cores results in access cores writing data to exe-
cute cores located multiple hops away, which can increase
network congestion and further slow down data transfers.
Instead of having an access core load independent data blocks
for each execute core it serves, we can exploit the fact that the
same data are needed by multiple execute cores by intelligently
placing the compute and having execute cores pass data blocks
in a systolic fashion (i.e., in-compute array reuse). We call
this scheme systolic-software DAE. Since systolic-software
DAE is only feasible for operators with significant data reuse,
we focus on the arithmetic-intensive operators (i.e., MatMul,
Conv2D, Conv2D-iB, and Conv2D-fB) in the following
sections.

The systolic-software DAE implementation of MatMul
uses a similar approach as output-stationary systolic hard-
ware accelerators for MatMul, although the systolic-software
DAE implementation operates at block granularity instead
of scalar value granularity. In systolic-software DAE, blocks
of input data are loaded by access cores on the West and
North edges of the manycore array, and these blocks are
passed along either horizontally or vertically [see Fig. 8(a)].
The systolic-software DAE implementation of Conv2D is
implemented in a 1-D systolic manner with replication. An
input block is passed along a chain of execute cores, in
which each execute core applies a different filter to the
block [see Fig. 8(b)]. MatMul and Conv2D implemented
with systolic-software DAE on a 128-core device that has
64% or 88% more, respectively, execute cores compared to
naïve-software DAE.

Fig. 8. Systolic Mapping: SSD = systolic-software DAE; ID = idle core;
AC = access core; and EC = execute core. In (a), data are loaded by access
cores, and is passed along by execute cores to the South and to the East,
while in (b), data are passed in one direction only.

We implement the four arithmetic-intensive operators (i.e.,
MatMul, Conv2D, Conv2D-iB, and Conv2D-fB) with systolic-
software DAE. The results are summarized in Fig. 7 and the
systolic-software DAE columns of Table II. Conv2D-iB and
Conv2D-fB can be implemented in ways that are similar to
Conv2D and MatMul, respectively. Across all four operators,
systolic-software DAE has a per-compute-core throughput that
is lower than naïve-software DAE, but still up to 1.5× higher
than the data-parallel baseline. This is because execute cores
in systolic-software DAE need to pass data blocks to their
neighboring execute cores in addition to performing the actual
computation. Additional instructions for data movement lead
to lower throughput. However, systolic-software DAE benefits
from the additional execute cores, and achieves up to 1.25×
increased system throughput. Note that systolic-software DAE
also has fewer compute cores than the baseline. There are three
cases (i.e., Conv2D with a batch size of 2 and Conv2D-fB with
a batch size of 2 and 4) where systolic-software DAE performs
worse than the baseline. This is because in systolic-software
DAE, data blocks need to be passed from execute core to
execute core. Thus, there is a much longer warmup phase for
systolic-software DAE, and this results in worse performance
when the batch size is small.

V. HARDWARE-ACCELERATED DAE

Naïve-software DAE and systolic-software DAE leverage
existing hardware mechanisms in the CPU-manycore hetero-
geneous system and demonstrate both per-compute-core and
per-system throughput improvements. However, software-only
approaches have two disadvantages. First, general-purpose
cores are area inefficient for data access tasks. Most access
tasks only require basic integer arithmetic and simple con-
trol flow for 1-D and 2-D array accesses, but cores in the
manycore co-processor are equipped with instruction caches,
data scratchpads, and floating point units. Second, dedicat-
ing general-purpose cores to data access tasks reduces the
peak throughput of the manycore co-processor. While systolic-
software DAE can help mitigate this issue by reducing the
number of access cores, most operators still require the
first column and/or the first row of cores in the manycore
co-processor to load data.

We adopt a software/hardware co-design approach to
address these challenges. We design and implement an access
accelerator (AX), a configurable hardware unit that streams
data from the LLC to the scratchpad of a target execute core.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

1628 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

TABLE II
OPERATOR THROUGHPUT

Compared to general-purpose cores, an access accelerator is
significantly more area efficient, yet still provides the benefits
of DAE. This lightweight access accelerator also achieves the
same peak computation throughput as the baseline manycore
with very low area overhead. While having hardware engines
that are dedicated for moving data (e.g., DMA engines) is
not a new idea, the proposed access accelerator is unique in
its ability to act as a first-class citizen in both the mesh-
based on-chip network and the remote store programming
model.

A. Access Accelerator Design

Data Access Tasks: Fig. 9 shows the data access pseudocode
of the Conv2D kernel and illustrates how the access cores load
data from the LLC and pad zeros to the input feature map
block. While we explored several operators with software-only
DAE schemes, their data access patterns are all similar. In gen-
eral, data access tasks involve two nested for loops that load
a matrix of size dim_x by dim_y into the scratchpad of
the target execute core and an optional padding process that
pads zeros around the matrix. This generic data access pattern
can be efficiently implemented as an access accelerator that

Fig. 9. Conv2D Forward Data Access: In the Conv2D forward kernel, the
access cores run program in (a) and load input feature map blocks into the
target data scratchpad as shown in (b). Note the access cores calculate src
and pad zeros (in red) to the imap buffer.

correctly performs common data access tasks given the meta-
data about the accesses (i.e., the source address, dimensions,
strides, padding information, and the destination address).

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1629

Fig. 10. Access accelerator architecture and integration: (a) architecture
of the access accelerator and how it connects to a mesh network router and
(b) access accelerators integrated in the first row and first column of the target
manycore. X = access accelerator (AX), L = LLC bank, and C = compute
core (CC).

Accelerator Design: Fig. 10(a) shows the architecture
of the access accelerator and how it is connected to a
mesh network router. At the core of the access accel-
erator is a configurable address generator and a padding
engine. These two modules generate a stream of memory
requests. Since the mesh network in the target manycore
system is only point-to-point ordered, the access accelera-
tor also includes a reorder queue to reorder the memory
responses from different LLC banks. The request arbiter
arbitrates between memory read requests to the LLC and
remote store requests to the target scratchpad because there
is only one master interface exposed by the mesh network
router. Finally, an address translator is required because
the execute cores configure access accelerators using virtual
addresses.

Accelerator Integration: Fig. 10(b) illustrates how access
accelerators are integrated. In the baseline manycore, each
mesh network router is connected to a RISC-V core. To inte-
grate the access accelerators, we extend the mesh network
and instantiate access accelerators at the top row and the left-
most column. This composition works particularly well with
systolic-software DAE implementations where most on-chip
network traffic is between neighboring cores or accelerators.
This composition also ensures a fair comparison with the
baseline manycore system for two reasons. First, the access
accelerator manycore (AX manycore) has the same number of
LLC banks and the same DRAM bandwidth as the baseline
manycore. Second, the AX manycore has the same effective
mesh network bandwidth as the baseline. The AX manycore
mesh network does have larger bisection bandwidth than in
the baseline manycore. However, this additional bandwidth
does not translate into improved throughput because the extra
network links and routers are mostly used to provide access to
LLC banks to the access accelerators. The AX is a first-class
citizen in the remote store programming model: execute cores
control a neighbor AX by performing remote stores into the
AX’s memory-mapped control registers, and the AX performs

Fig. 11. Access accelerator (AX) and general-purpose core (GC) Normalized
Area: AX eliminates instruction cache, data scratchpad, FPU, etc., and is 5×
smaller than a GC in a similar CMOS technology. RX/TX = RX/TX adapter,
Ctrl = control logic, and Dpath = data path.

remote stores into its neighboring execute core’s scratchpad
upon receiving data from the LLC.

B. Access Accelerator Evaluation

Area: Fig. 11 compares the post-place-and-route area of an
access accelerator in a CMOS 14/16 nm technology and a GC
from prior work in a similar process [37]. We can see from
the figure that the access accelerator is highly area efficient.
The network router and endpoint consumes about 40% and the
accelerator data path consumes about 30% of the access accel-
erator area. The transmit adapter (TX) includes a 32-element
FIFO to buffer responses from the LLC, and consumes around
30% of the accelerator area. Overall, the access accelerator is
5× smaller than the general-purpose core, making it an area-
efficient choice for data access tasks. The AX manycore [with
an extra AX row and AX column as shown in Fig. 10(b)] only
increases the overall area by 2.9% compared to the baseline
manycore.

Naïve-Accelerated DAE: Similar to the naïve-software DAE
evaluation (NSD, see Section IV-A), we evaluate the area effi-
ciency of the access accelerators using a naïve-accelerated
DAE (NAD) composition. In NAD, each execute core is
paired with an access accelerator that replaces the access core.
Fig. 12(a) and the NAD column of Table II show the per-
compute-core throughput and the area-normalized per-system
throughput of different operators under NAD. We can see
that compared to NSD, NAD has similar per-compute-core
throughput since both access cores and access accelerators
are able to decouple data access from the computation on
execute cores. However, NAD has significantly higher area-
normalized per-system throughput (46% on average) than
NSD. This difference is the largest on the matrix multipli-
cation (MatMul) operator, where NAD achieves 52% higher
area-normalized per-system throughput. The superior area-
normalized per-system throughput of NAD over NSD confirms
that our access accelerator is significantly more area efficient
on data access tasks than general-purpose cores, and still
provides the same throughput benefits of DAE. We did not
implement and evaluate NAD versions of memory-intensive
operators (i.e., AddMV and SpMV). NAD cannot address the
fact that these operators are largely limited by memory band-
width. Prior evaluation has shown that a data-parallel scheme
is more effective (see Section IV-A).

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

1630 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

Fig. 12. Naïve and Systolic Accelerated DAE: TP/CC = throughput per
compute core; TP/Sys = overall throughput per system; MatMul showing
768 × 768 × 768; Conv2D, Conv2D-iB, and Conv2D-fB showing 32 images
batch; AddMV showing 768 × 768; and SpMV showing FB-Johns55. See
Table II for detailed input specification. (a) Naïve accelerated DAE. (b)
Systolic accelerated DAE.

Systolic-Accelerated DAE: As discussed earlier, systolic-
software DAE dedicates multiple general-purpose cores to load
data at the cost of manycore compute resources. Based on
the systolic-software DAE (SSD, see Section IV-B), we cre-
ate the systolic-accelerated DAE composition (SAD), which
uses the access accelerator manycore described in Section V-A
to run systolic-software DAE implementations. Fig. 12(b)
and the SAD column of Table II show the per-compute-
core throughput and area-normalized per-system throughput
of different operators under SAD. We can see that compared
to SSD, SAD has similar per-compute-core throughput since
both designs are able to achieve decoupled access/execute.
In terms of overall area-normalized per-system throughput,
SAD has an average of 4.8% better throughput than SSD.
On MatMul, SAD is able to achieve 13.9% better average
throughput than SSD. On the target 16×8 manycore array,
the SSD approach uses eight (Conv2D and Conv2D-iB) or
23 (MatMul and Conv2D-fB) general-purpose cores for data
accesses. Therefore, the maximum overall per system through-
put improvement of SAD on the same manycore is 6% or
18% (depending on the kernel). In addition, the execute cores
in SAD need to perform remote memory stores to configure

the access accelerators for every input feature map block,
which occupies computation cycles. Despite having more
moderate throughput improvements over the highly optimized
SSD design, SAD still achieves the highest area-normalized
throughput on the four evaluated kernels among all six designs
(baseline, 50%-idle, NSD, SSD, NAD, and SAD). Compared
to the baseline, the AX manycore introduces one extra cycle to
the memory latency when accessing LLC banks in the north.
However, this should have negligible performance impact on
operators that cannot leverage SAD, as our prior results in
Section III-B have shown that network congestion is the main
source of stalls for operators implemented with a data-parallel
scheme.

VI. FIRST-ORDER ANALYSIS OF SW/HW SCALABILITY

In this section, we conduct first-order end-to-end evaluation
on three tensor workloads to evaluate our framework’s abil-
ity to enable optimized dense and sparse tensor processing on
CPU-manycore heterogeneous systems with minimal modifi-
cations to existing workloads. We first introduce the workloads
and then describe our evaluation methodology. We finish
by estimating the performance of the these workloads when
scaled to a future 2000-core CPU-manycore heterogeneous
system against an aggressive multicore CPU.

A. Emerging Tensor Workloads

1) Residual Neural Network: ResNets are one form of con-
volutional neural networks (CNNs) for image classification,
which won the 2015 ImageNet large-scale visual recognition
challenge by allowing the network’s accuracy to scale with
its depth [38]. ResNet introduces residual blocks, which are
shortcut connections between nonneighboring layers, to over-
come a number of training difficulties (e.g., vanishing gradient
problem) faced by conventional CNN models. In this work, we
build and train a 9-layer ResNet model (i.e., ResNet-9) on the
CIFAR-10 dataset.

2) Recommender System: The input to a RecSys is a list
of items a user has previously “liked,” and the output is a list
of items with scores predicting how much the user might like
an unseen item. An autoencoder is a specific kind of unsu-
pervised artificial neural network that learns to copy its input
to its output through an intermediate “bottleneck” layer for
dimensionality reduction. In this work, we build and train this
RecSys on the MovieLens 10M dataset.

3) Local Graph Clustering (LGC-ISTA): Local graph clus-
tering is an approximate variant of the personalized PageRank
algorithm. Its goal is to find a cluster of nodes that are neigh-
bors of a given seed node. We implement iterative shrinkage
thresholding, which minimizes the loss function of a graph
signal vector such that all nodes in the neighborhood of the
seed node are associated with high scores, while other nodes
receive low scores. The algorithm uses the input adjacency
matrix and degree matrix to generate a sparse matrix. It then
iteratively updates the gradient, vector, and loss function using
SpMV, elementwise multiply, add, and subtraction operations.
We run 50 iterations for each seed node on the FB-Johns55
dataset.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1631

B. Methodology

A common practice to evaluate full-size workloads on simu-
lators is to extract each occurrence of the kernels, and evaluate
them individually with either random data or reconstructed
data outside of PyTorch. However, this approach leads to
inaccuracies since random or reconstructed data may not rep-
resent the actual data layout during execution. To address this
challenge, we have developed a redispatching approach that
automates the evaluation process and preserves runtime data
layout. We first determine which operators in a workload we
would like to evaluate, flag them, and then start running the
workload on the CPU. When a call site is reached, the exe-
cution is forked into a CPU instance (running natively) and
a manycore instance (running on an RTL simulator). After
both runs return, manycore results are validated against CPU
results. With redispatching, workload evaluation can be easily
parallelized by launching many copies of the workload; one
copy for each kernel of interest.

Since it is not feasible to simulate a 2000-core many-
core architecture at reasonable simulation speed, we simulate
a smaller 128-core heterogeneous system running 1/16 of
the work using the co-simulation infrastructure described in
Section III. We then scale the performance of the manycore
co-processor to a full 2000-core system via weak scaling. We
compare the scaled performance against the performance of
running the full workload on the host multicore CPU, which
is an aggressive 18-core out-of-order superscalar running at
2.4 GHz (Intel Xeon E7-8867v4).

C. Results

By leveraging 2-D convolution operators with SAD imple-
mentations in ResNet, we estimate ResNet can achieve 2×
better performance on the target manycore system than on
the aggressive multicore CPU (see Table III). 2-D convolu-
tion operators run much faster on the manycore system by
exploiting massive parallelism, but batch normalization and
its backward pass (i.e., BatchNorm and BatchNormBack) per-
form worse on the manycore system compared to the CPU.
This is because frequent synchronization is needed in batch
normalization operators, and synchronizing the manycore
system currently involves higher overhead than synchronizing
a multicore CPU. Compared to having 2-D convolution opera-
tors implemented with a traditional data-parallel approach, we
are able to train ResNet-9 13% faster with systolic-accelerated
DAE. Specifically, we observed that Conv2D-fB with systolic-
accelerated DAE achieves 2.1× better performance than
its data-parallel counterpart, which is higher than we have
observed in microbenchmarks (see Table IV). Further inspec-
tion reveals that unlike the microbenchmarks we used in prior
sections, inputs to convolution layers in ResNet do not fit in
the LLC. Unstructured memory accesses in the data-parallel
implementation lead to significantly more LLC misses.

We estimate RecSys can achieve 5.9× better performance
on the target manycore system than on the multicore
CPU. Compute intensive operators, such as AddMM and
AddMMBack, generally have better performance on the target

TABLE III
RESNET EXECUTION BREAKDOWN

TABLE IV
RECSYS EXECUTION BREAKDOWN

TABLE V
LOCAL GRAPH CLUSTERING EXECUTION BREAKDOWN

system because the manycore can better exploit the paral-
lelism in these operators. We also observe that the largest
performance improvement comes from Emb, EmbBack, and
Sum. This improvement can be traced to two causes: 1) these
operators are memory intensive, and compared to a multicore
CPU, the manycore co-processor has a much higher total
memory bandwidth (1 TB/s) and 2) we apply optimization
techniques that are not available by default in the CPU ATen

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

1632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

backend, such as kernel fusion and intermediate value removal.
On the manycore co-processor, we are able to fuse Emb
and Sum together to eliminate intermediate value reads and
writes. We also explored leveraging systolic-accelerated DAE
MatMul in RecSys. However, the dimensions of MatMul
instances in RecSys generally lead to severe internal fragmen-
tation [39], and thus, worse than baseline performance due
to wasted computation. TPUv1 faced a similar issue. Unlike
specialized hardware accelerators, we have the flexibility of
falling back to a data-parallel implementation with a many-
core architecture. We believe other workloads that have more
systolic DAE friendly MatMul dimensions will see significant
benefits.

We estimate LGC-ISTA can achieve 5.7× better
performance on the target manycore system than on the
multicore CPU (Table. V). We observe that unlike RecSys,
clustering spends more time on the CPU host than on the
co-processor. This is because the input graph has high spar-
sity, and thus, manycore device functions for those operations
will not run for long enough time to cover the offloading
overhead.

In summary, we estimate all three workloads will be able
to achieve much higher (i.e., up to 5.9×) performance on the
target CPU-manycore heterogeneous system compared to an
aggressive multicore CPU baseline. Note that the weak scaling
approach we adopt is optimistic and meant for demonstrating
the potential of a future full manycore system, rather than
as a rigorous comparison. While computing 1/16 of the out-
put on a 128-core system demonstrates that we have enough
software parallelism to fully utilize the 2000-core system, var-
ious architectural challenges (e.g., LLC coherence, DRAM
channel scaling, and cross channel data movement) must be
solved with minimal performance penalty to realize the esti-
mated performance. This work provides a software stack that
lays the groundwork for researchers to explore solutions to
these challenges in future work. To help estimate how a future
2000-core system might compare to a GPGPU, we can con-
sider a previously proposed manycore architecture with 496
RISC-V cores [37], [40]. This prior work has shown the
ability to achieve 93.04 Giga RISC-V instructions/s per watt
and 45.57 GRVIS/mm2. Given these prior results, the target
CPU-manycore heterogeneous system can potentially achieve
significantly higher area-normalized throughput and energy
efficiency compared to GPGPUs. Again, this work provides
a software stack that can enable more detailed comparative
analysis of manycore architectures versus GPGPUs and other
programmable accelerators.

VII. RELATED WORK

A wide variety of coarse-grain parallel architectures has
been developed over the past decade to exploit pipeline paral-
lelism. Architectures, such as Eyeriss [41] and DianNao [42],
are domain-specific accelerators for CNNs. Later versions sup-
port operations on sparse tensors. These proposals demonstrate
similar parallel dataflow patterns. The TPU [43] and VTA [44]
architectures integrate systolic matrix-multiply and vector pro-
cessing units to accelerate more general machine learning

computations. More general purpose architectures also exist:
RAW [45] uses an interprocessor scalar operand network to
forward results between processors. Plasticine [46] contains a
mesh of general-purpose compute units for processing work-
loads from machine learning, data, and graph analytics. These
architectures exploit pipeline parallelism by composing coarse
grain functional units, similar to our work.

Many architectural solutions have been proposed to decou-
ple memory and compute operations [25]. Decoupled supply
compute (DeSC) [35] is an automatic extension of DAE
for general-purpose CMPs that uses a “supplier device”
and a “compute device,” similar to our naïve-software DAE
approach. The load slice core [24] is a form of restricted
out-of-order machine. With an additional pipeline, load and
address generation slices can be issued out-of-order and
speculatively with respect to compute slices, while remain-
ing in-order within a slice. Slice formation is handled by
hardware. Tran et al. [47] proposed an SW/HW co-design
method. Instructions are grouped into access and execute
phases at compile time. Access phases can run and commit
out-of-order with respect to execute phases at runtime. Both
techniques rely on hardware that is more complex than the
target manycore architecture provides (e.g., superscalar cores).
Manticore [16] introduces custom ISA extensions to leverage
DAE and improve FPU utilization. Techniques proposed in this
work aim to enable DAE in the context of a manycore with
thousands of simple stall-on-use in-order scalar cores, and with
existing programming model and core microarchitecture. The
cell processor [36] includes per-core DMA engines to overlap
computation with data transfer. The Epiphany processor [15]
also includes a DMA engine. This prior work explores pairs of
memory and compute engines, while our approach extends this
idea with AX’s along the periphery of the target architecture.
Our approach is more similar to CoRAM [48], where a control
thread can manage multiple scratchpads on an FPGA device.
Recent work has shown the potential of using a chiplet-based
approach to scale the target manycore achitecture to thousands
of cores [6], [16].

Several high-level languages have been created to express
complex pipeline parallelism in programming. StreamIt [49]
exposed pipeline parallelism for the RAW architecture. More
recent work has enabled pipeline parallelism for general-
purpose machines. Interstellar [50] is an extension to Halide’s
scheduling with pipeline parallelism expressions. Spatial [51]
is a general-purpose DSL for expressing pipelines and can
target Plasticine [46]. These languages are higher level than
our own development language and can be used in the future
to ease programmer expression of pipeline parallelism on
manycore architectures.

One approach to exploiting software pipelines is through
parallel frameworks such as PyTorch [20]. These frame-
works use prebuilt libraries with hand-optimized primitives
that exploit software pipelines, and abstract designers from
the complexity of expression. For example, TVM [44] sup-
ports CPUs, GPUs, and also the VTA [52] architecture.
TensorFlow [21] has backends for CPUs, GPUs, as well as
the Google TPU [43]. Our work adds another backend to these
state-of-the-art software stacks.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1633

VIII. CONCLUSION

Programmability and memory latency are the key challenges
in CPU-manycore heterogeneous systems. In this article,
we addressed the programmability challenge with a tensor
processing framework in a high-level library that abstracts
hand-optimized operators for dense and sparse workloads.
Through end-to-end evaluation of dense and sparse tensor
workloads, we showed that the proposed framework can poten-
tially achieve up to 5.9× better performance on a 2000-core
CPU-manycore heterogeneous system compared to an aggres-
sive multicore CPU. We addressed the manycore memory
latency challenge by exploring both software and hardware-
accelerated DAE schemes on the manycore co-processor.
Operators implemented with our techniques achieve up to
1.32× throughput improvement, compared to an aggressive
data-parallel baseline.

ACKNOWLEDGMENT

The authors would thank Intel, Synopsys, Cadence, and
ARM for and equipment, tool, and/or physical IP donations.
The authors acknowledge and thank Kexin Zheng, Janice
Wei, Angela Zou, Yuwei Hu, and Adrian Sampson for using
the proposed PyTorch framework and providing useful feed-
back. The authors also thank Shunning Jiang and Hanchen
Jin for their advice in developing domain-specific accelerators
for integrating into manycore co-processors, and Zichao Yue
for his contributions to the proposed CBSR format. Finally,
the authors thank the entire Bespoke Silicon Group at the
University of Washington for manycore RTL development and
the PyTorch and RISC-V communities for developing and
supporting the software infrastructure that serves as the foun-
dation for this work. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of
AFRL, DARPA, or the U.S. Government.

REFERENCES

[1] M. B. Taylor et al., “A 16-issue multiple-program-counter microproces-
sor with point-to-point scalar operand network,” in Proc. Int. Solid-State
Circuits Conf. (ISSCC), Feb. 2003, pp. 170–171.

[2] M. McKeown et al., “Piton: A manycore processor for multitenant
clouds,” IEEE Micro, vol. 37, no. 2, pp. 70–80, Mar./Apr. 2017.

[3] J. Howard et al., “A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS,” in Proc. Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2010, pp. 108–109.

[4] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51–61, Sep./Oct. 2007.

[5] M. Lis, K. S. Shim, M. H. Cho, I. Lebedev, and S. Devadas, “Hardware-
level thread migration in a 110-core shared-memory multiprocessor,”
Dept. Comput. Struct. Group, MIT CSAIL, Cambridge, MA, USA,
Rep. 512, Nov. 2013.

[6] P. Vivet et al., “2.3 a 220GOPS 96-core processor with 6 chiplets 3D-
stacked on an active interposer offering 0.6ns/mm latency, 3Tb/s/mm2
inter-chiplet interconnects and 156mW/mm2@ 8%-peak-efficiency DC-
DC converters,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2020, pp. 46–48.

[7] S. Bell et al., “Tile64—Processor: A 64-core SoC with mesh
interconnect,” in Proc. Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2008, pp. 88–89.

[8] C. Ramey, “TILE-Gx100 manycore processor: Acceleration interfaces
and architecture,” in Proc. Symp. High Perform. Chips (Hot Chips),
Aug. 2011, pp. 1–21.

[9] D. Kanter, Knights Landing Reshapes HPC, Microprocess. Rep.,
Mountain View, CA, USA, Sep. 2015.

[10] B. Wheeler, Ampere Maxes Out at 128 Cores, Microprocess. Rep. Linley
Group, Mountain View, CA, USA, Jul. 2020.

[11] T. R. Halfhill, Thunderx3’s Cloudburst of Threads: Marvell Previews
96-Core 384-Thread Arm Server Processor, Microprocess. Rep. Linley
Group, Mountain View, CA, USA, Apr. 2020.

[12] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, Sep./Oct. 2007.

[13] S. Davidson et al., “The Celerity open-source 511-core RISC-V tiered
accelerator fabric: Fast architectures and design methodologies for fast
chips,” IEEE Micro, vol. 38, no. 2, pp. 30–41, Mar./Apr. 2018.

[14] B. Bohnenstiehl et al., “KiloCore: A 32-nm 1000-processor computa-
tional array,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 891–902,
Apr. 2017.

[15] A. Olofsson, “Epiphany-V: A 1024 processor 64-bit RISC system-on-
chip,” Aug. 2016. [Online]. Available: arXiv:abs/1610.01832.

[16] F. Zaruba, F. Schuiki, and L. Benini, “Manticore: A 4096-core RISC-
V chiplet architecture for ultraefficient floating-point computing,” IEEE
Micro, vol. 41, no. 2, pp. 36–42, Mar./Apr. 2021.

[17] J. Burgess, “RTX on: The NVIDIA turing architecture,” in Proc. Symp.
High Perform. Chips (Hot Chips), Aug. 2019. [Online]. Available:
https://old.hotchips.org/hc31/HC31_2.12_NVIDIA_final.pdf

[18] M. Mantor, “7nm ‘Navi’ GPU—A GPU built for performance and effi-
ciency,” in Proc. Symp. High Perform. Chips (Hot Chips), Aug. 2019,
pp. 1–28.

[19] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “CuPy: A
NumPy-compatible library for NVIDIA GPU calculations,” in Proc.
Conf. Neural Inf. Process. Syst. (NeurIPS), Dec. 2017, pp. 1–7.

[20] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Conf. Neural Inf. Process. Syst. (NeurIPS),
Dec. 2019, pp. 8024–8035.

[21] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. Symp. Oper. Syst. Design Implement. (OSDI), Nov. 2016,
pp. 265–283.

[22] (2020). cuGraph—GPU Graph Analytics. Accessed: Nov. 22, 2020.
[Online]. Available: https://github.com/rapidsai/cugraph

[23] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimizations
for exploiting memory-level parallelism,” in Proc. Int. Symp. Comput.
Archit. (ISCA), Jun. 2004, pp. 76–89.

[24] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout, “The
load slice core microarchitecture,” in Proc. Int. Symp. Comput. Archit.
(ISCA), Jun. 2015, pp. 272–284.

[25] J. E. Smith, “Decoupled access/execute computer architectures,” ACM
Trans. Comput. Syst., vol. 2, no. 4, pp. 289–308, Nov. 1984.

[26] A. Brahmakshatriya et al., “Taming the zoo: The unified graphit com-
piler framework for novel architectures,” in Proc. Int. Symp. Comput.
Archit. (ISCA), Jun. 2021, pp. 429–442.

[27] H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote store program-
ming,” in Proc. Int. Conf. High Perform. Embedded Archit. Compilers
(HiPEAC), Jan. 2010, pp. 3–17.

[28] (2020). ATen: A TENsor Library for C++11. Accessed: Nov. 22, 2020.
[Online]. Available: https://github.com/zdevito/ATen

[29] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A high
memory bandwidth FPGA accelerator for sparse matrix-vector multipli-
cation,” in Proc. IEEE 22nd Annu. Int. Symp. Field Program. Custom
Comput. Mach. (FCCM), May 2014, pp. 36–43.

[30] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations,” in Proc. Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2020, pp. 689–702.

[31] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “MatRaptor: A
sparse-sparse matrix multiplication accelerator based on row-wise prod-
uct,” in Proc. Int. Symp. Microarchit. (MICRO), Oct. 2020, pp. 766–780.

[32] Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong, “Memory partitioning
for multidimensional arrays in high-level synthesis,” in Proc. Design
Autom. Conf. (DAC), Jun. 2013, pp. 1–8.

[33] D. R. MacIver et al., “Hypothesis: A new approach to property-based
testing,” J. Open Source Softw., vol. 4, no. 43, p. 1891, Nov. 2019.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

1634 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

[34] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: A
cycle-accurate, thermal-capable dram simulator,” IEEE Comput. Archit.
Lett., vol. 19, no. 2, pp. 106–109, Jul.–Dec. 2020.

[35] T. J. Ham, J. L. Aragón, and M. Martonosi, “DeSC: Decoupled supply-
compute communication management for heterogeneous architectures,”
in Proc. Int. Symp. Microarchit. (MICRO), Waikiki, HI, USA, Dec. 2015,
pp. 191–203.

[36] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki, “Synergistic processing in Cell’s multicore architecture,”
IEEE Micro, vol. 26, no. 2, pp. 10–24, Mar./Apr. 2006.

[37] A. Rovinski et al., “A 1.4 GHz 695 Giga RISC-V Inst/s 496-core many-
core processor with mesh on-chip network and an all-digital synthesized
PLL in 16nm CMOS,” in Proc. Symp. VLSI Technol. Circuits (VLSI),
Jun. 2019, pp. C30–C31.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Dec. 2015. [Online]. Available: arXiv:abs/1512.03385.

[39] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking TPU, GPU,
and CPU platforms for deep learning,” Jul. 2019. [Online]. Available:
arXiv:abs/1907.10701.

[40] A. Rovinski et al., “Evaluating celerity: A 16-nm 695 Giga-RISC-V
instructions/s manycore processor with synthesizable PLL,” IEEE Solid-
State Circuits Lett., vol. 2, no. 12, pp. 289–292, Dec. 2019.

[41] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “14.5 eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks,” in Proc. Int. Solid-State Circuits Conf. (ISSCC), Feb. 2016,
pp. 262–263.

[42] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in Proc. Int. Conf. Archit. Support
Program. Lang. Oper. Syst. (ASPLOS), Mar. 2014, pp. 269–284.

[43] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in Proc. Int. Symp. Comput. Archit. (ISCA), Jun. 2017,
pp. 1–12.

[44] T. Chen et al., “TVM: An automated end-to-end optimizing compiler for
deep learning,” Aug. 2018. [Online]. Available: arXiv:abs/1802.04799.

[45] M. B. Taylor et al., “Evaluation of the RAW microprocessor: An
exposed-wire-delay architecture for ILP and streams,” in Proc. Int. Symp.
Comput. Archit. (ISCA), Jun. 2004, pp. 2–13.

[46] R. Prabhakar et al., “Plasticine: A reconfigurable architecture for par-
allel patterns,” in Proc. Int. Symp. Comput. Archit. (ISCA), Jun. 2017,
pp. 389–402.

[47] K.-A. Tran, A. Jimborean, T. E. Carlson, K. Koukos, M. Själander, and
S. Kaxiras, “SWOOP: Software-hardware co-design for non-speculative,
execute-ahead, in-order cores,” in Proc. ACM SIGPLAN Conf. Program.
Lang. Design Implement. (PLDI), Jun. 2018, pp. 328–343.

[48] E. S. Chung, J. C. Hoe, and K. Mai, “CoRAM: An in-fabric memory
architecture for FPGA-based computing,” in Proc. Int. Symp. Field
Program. Gate Arrays (FPGA), Feb. 2011, pp. 97–106.

[49] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs,” in Proc. Int.
Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS), Oct. 2006,
pp. 151–162.

[50] X. Yang et al., “Interstellar: Using Halide’s scheduling language to ana-
lyze DNN accelerators,” in Proc. Int. Conf. Archit. Support Program.
Lang. Oper. Syst. (ASPLOS), Mar. 2020, pp. 369–383.

[51] D. Koeplinger et al., “Spatial: A language and compiler for application
accelerators,” in Proc. ACM SIGPLAN Conf. Program. Lang. Design
Implement. (PLDI), Jun. 2018, pp. 296–311.

[52] T. Moreau et al., “A hardware–software blueprint for flexible deep learn-
ing specialization,” IEEE Micro, vol. 39, no. 5, pp. 8–16, Sep./Oct. 2019.

Lin Cheng received the five year B.S./M.S. degree
in computer Science from the University of Illinois
at Urbana-Champaign, Champaign, IL, USA, in
2017. He is currently pursuing the Ph.D. degree in
computer science with Cornell University, Ithaca,
NY, USA.

His research interests include improving the
performance of dynamic languages and supporting
them on emerging compute platforms.

Peitian Pan (Student Member, IEEE) received the
B.S. degree in computer science from Shanghai
Jiao Tong University, Shanghai, China, in 2018. He
is currently pursuing the Ph.D. degree in electrical
and computer engineering with Cornell University,
Ithaca, NY, USA.

His research interests include agile hard-
ware development methodologies and computer
architecture.

Zhongyuan Zhao received the B.S. degree from
the School of Electronics and Information, Harbin
Institute of Technology, Harbin, China, in 2012,
and the Ph.D. degree from the Department
of Nano/Micro Electronics, Shanghai Jiao Tong
University, Shanghai, China.

He is currently a Postdoctoral Research Associate
with Cornell University, Ithaca, NY, USA. His
research interests include compiler and architec-
ture optimization for coarse-grained reconfigurable
computing platform and deep learning accelerators,

programming language design, and performance optimization for manycore
architectures.

Krithik Ranjan is currently pursuing the B.S.
degree in electrical and computer engineering with
Cornell University, Ithaca, NY, USA.

He is an Embedding Software Engineering Intern
with Qualcomm Technologies, San Diego, CA,
USA. His research interests include embedding
systems, robotics, human–computer interaction, and
assistive technology.

Jack Weber received the B.S. degree in electrical
and computer engineering with Cornell University,
Ithaca, NY, USA, in 2021.

He is currently an Advanced Application
Engineering Analyst with Accenture, New York,
NY, USA.

Bandhav Veluri received the B.Tech. degree from
IIT Roorkee, Roorkee, India, in 2016, and the M.S.
degree from the University of Washington, Seattle,
WA, USA, in 2020, where he is currently pursuing
the Ph.D. degree with Bespoke Silicon Group and
Networks & Mobile Systems Lab.

His research interests include systems, low-power
sensing, and machine learning.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1635

Seyed Borna Ehsani received the B.Sc. degree in
computer engineering from the Sharif University of
Technology, Tehran, Iran, in 2018, and the M.Sc.
degree in computer science and engineering from
the University of Washington, Seattle, WA, USA, in
2020.

He is a Graphics Software Engineer with Apple
Inc., Los Altos, CA, USA. His research interests
include computer architecture, GPUs and manycore
systems design, 3-D graphics, application program-
ming Interface design, and parallel programming.

Max Ruttenberg received the B.S. degree from
Lehigh University, Bethlehem, PA, USA, in 2014.
He is currently pursuing the Ph.D. degree with the
Bespoke Silicon Group, University of Washington,
Seattle, WA, USA.

His research interests include computer architec-
ture, parallel programming, high-performance com-
puting, graph analytics, and emerging memory
technologies.

Dai Cheol Jung received the B.Sc. degree from
Brown University, Providence, RI, USA, in 2015,
and the M.Sc. degree from the University of
Washington, Seattle, WA, USA, in 2019, where he
is currently pursuing the Ph.D. degree.

His research interests include parallel architecture,
network-on-chip, and VLSI.

Preslav Ivanov (Graduate Student Member, IEEE)
received the B.S. degree in electrical and computer
engineering from Old Dominion University, Norfolk,
VA, USA, in 2020. He is currently pursuing the
Ph.D. degree in electrical and computer engineer-
ing with Cornell University, Ithaca, NY, USA.

His research focus is in computer architecture,
particularly modeling application specific accel-
erators for combinations of performance, energy
efficiency, and lowered cost while optimizing algo-
rithms to leverage the new hardware.

Dustin Richmond received the B.Sc. degree from
the University of Washington, Seattle, WA, USA, in
2012, and the Ph.D. degree in computer engineer-
ing from the University of California at San Diego,
San Diego, CA, USA, in 2018.

He is a Postdoctoral Research Associate with the
Bespoke Silicon Group, University of Washington.
His research interests include programming lan-
guages, reconfigurable systems, and hardware
security.

Dr. Richmond was awarded the National Science
Foundation Graduate Research Fellowship in 2012, and a Powell Fellowship
in 2013.

Michael B. Taylor (Senior Member, IEEE) received
the A.B. degree in computer science from Dartmouth
College, Hanover, NH, USA, in 1996, and the S.M.
and Ph.D. degrees from the Massachusetts Institute
of Technology, Cambridge, MA, USA, in 1999 and
2007, respectively.

He has been an Associate Professor with the
Paul Allen School of Computer Science and the
Department of Electrical and Computer Engineering,
University of Washington, Seattle, WA, USA, since
2017. Previously, he was a Visiting Research

Scientist with Google, Mountain View, CA, USA, and YouTube, San Bruno,
CA, USA, and an Associate Professor with tenure in the Computer Science
and Engineering Department, University of California at San Diego, San
Diego, CA, USA.

Zhiru Zhang (Senior Member, IEEE) received
the B.S. degree in computer science from Peking
University, Beijing, China, in 2001, and the M.S.
and Ph.D. degrees in computer science from the
University of California at Los Angeles, Los
Angeles, CA, USA, in 2003 and 2007, respectively.

He is an Associate Professor with the School
of Electrical and Computer Engineering, Cornell
University, Ithaca, NY, USA. Prior to joining Cornell
University, he was a Co-Founder of AutoESL Design
Technologies Inc., Cupertino, CA, USA, a high-

level synthesis start-up company. He later served as a Software Development
Manager with Xilinx Inc., San Jose, CA, USA, after Xilinx acquired AutoESL.
His current research interests include new algorithms, architectures, design
methodologies, and automation tools for heterogeneous computing.

Dr. Zhang’s research has been recognized with the DAC Under-40
Innovators Award, the Rising Professional Achievement Award from the
UCLA Henry Samueli School of Engineering and Applied Science, the
DARPA Young Faculty Award, the IEEE CEDA Ernest S. Kuh Early Career
Award, the NSF CAREER Award, the Ross Freeman Award for Technical
Innovation from Xilinx, as well as multiple best paper awards.

Christopher Batten (Member, IEEE) received
the B.S. degree in EE from the University of
Virginia, Charlottesville, VA, USA, in 1999, the
M.Phil. degree in engineering from the University of
Cambridge, Cambridge, U.K., in 2000, and the Ph.D.
degree in EECS from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 2010.

He is currently an Associate Professor of
ECE with Cornell University, Seattle, WA, USA.
His research is at the intersection of computer
architecture, electronic design automation, and
digital VLSI.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2022 at 01:54:13 UTC from IEEE Xplore. Restrictions apply.

