A Scalable Cellular Logic Technology Using Zinc-Finger Proteins

Christopher Batten, Ronny Krashinsky, Thomas Knight, Jr.

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
June 20, 2004
Synthetic Biology

• Synthetic biology hopes to bring engineering practices common in other engineering disciplines to the field of molecular genetics and thus create a novel nanoscale computational substrate

• Advantages
 – Tightly integrated biological inputs and outputs
 – Easily grow thousands of computational engines
 – Natural use of directed evolution

• Disadvantages
 – Speed is on the order of millihertz (tens of seconds)
 – Modest computational capability of each engine

Synthetic biology is not an attempt to replace silicon computing!
Synthetic Biology Applications

- Autonomous biochemical sensors
- Biomaterial manufacturing
- Programmed therapeutics
- Smart agriculture
- Engineered experimental systems for biologists

M. Elowitz and S. Leibler
A synthetic oscillatory network of transcriptional regulators
Nature, January 2000
Outline

• Background
 – Protein expression basics
 – Transcription-based cellular logic
 – Zinc-Finger Proteins (ZFPs)

• Proposed ZFP Logic Technology

• Evaluation
 – Analytical model
 – Simulation results

• Future Work and Conclusions
Protein Expression Basics

- RNA polymerase binds to promoter
- RNAP transcribes gene into messenger RNA
- Ribosome translates messenger RNA into protein
Protein Expression Basics

- RNA polymerase binds to promoter
- RNAP transcribes gene into messenger RNA
- Ribosome translates messenger RNA into protein
Protein Expression Basics

- RNA polymerase (RNAP) binds to promoter
- **RNAP transcribes gene into messenger RNA**
- Ribosome translates messenger RNA into protein
Protein Expression Basics

- RNA polymerase binds to promoter
- RNAP transcribes gene into messenger RNA
- Ribosome translates messenger RNA into protein
Regulation Through Repression

• Repressor proteins can bind to the promoter and block the RNA polymerase from performing transcription
• The DNA site near the promoter recognized by the repressor is called an **operator**
• The target gene can code for another repression protein enabling regulatory cascades
Transcription-Based Inverter

- Protein concentrations are analogous to electrical wires.
- Proteins are not physically isolated, so unique wires require unique proteins.

\[\begin{array}{c}
1 & \quad 0 \\
& \quad \downarrow \\
& \quad \text{O}
\end{array} \quad \begin{array}{c}
\text{R} \\
\text{X}
\end{array} \quad \begin{array}{c}
0 & \quad 1 \\
& \quad \downarrow \\
& \quad \text{Z}
\end{array} \]
Simple Inverter Model

Chemical Equations

Repressor Binding \(R + O \leftrightarrow RO \quad K_{R+R} = \frac{(O)(R)}{(RO)} \)
Protein Synthesis \(O \rightarrow O + Z \quad k_x \)
Protein Decay \(Z \rightarrow k_{deg} \)

Total Concentration Equations

Total Operator \((O_T) = (O) + (RO) \)
Total Repressor \((R_T) = (R) + (RO) \approx (R) \quad if \quad (R_T) >> (O) \)

Transfer Function Derivation

\[
\frac{(O)}{(O_T)} = \frac{(O)}{(O) + (RO)} = \frac{1}{1 + (RO)/(O)} = \frac{1}{1 + (R)/K_{R+R}}
\]

\[
\frac{d(Z)}{dt} = k_x \cdot (O) - k_{deg} \cdot (Z) = 0 \quad at \ equilibrium
\]

\[
(Z) = \frac{k_x}{k_{deg}} \cdot \frac{(O_T)}{1 + (R)/K_{R+R}}
\]
Simple Inverter Model

Chemical Equations

Repressor Binding \(R + O \leftrightarrow RO \) \(K_{R+R} = \frac{(O)(R)}{(RO)} \)

Protein Synthesis \(O \rightarrow O + Z \) \(k_x \)

Protein Decay \(Z \rightarrow k_{\text{deg}} \)

Total Concentration Equations

Total Operator \((O_T) = (O) + (RO) \)

Total Repressor \((R_T) = (R) + (RO) \approx (R) \) if \((R_T) >> (O) \)

Transfer Function Derivation

\[
\frac{(O)}{(O_T)} = \frac{(O)}{(O) + (RO)} = \frac{1}{1 + \frac{(RO)}{(O)}} = \frac{1}{1 + \frac{(R)}{K_{R+R}}}
\]

\[
\frac{\text{d}(Z)}{\text{d}t} = k_x \cdot (O) - k_{\text{deg}} \cdot (Z) = 0 \text{ at equilibrium}
\]

\[
(Z) = \frac{k_x}{k_{\text{deg}}} \cdot \frac{(O_T)}{1 + \frac{(R)}{K_{R+R}}}
\]
Cooperativity

- Cooperative DNA binding is where the binding of one protein increases the likelihood of a second protein binding
- Cooperativity adds more non-linearity to the system
 - Increases switching sensitivity
 - Improves robustness to noise
Cooperative Inverter Model

Chemical Equations

Coop Binding: \(R + R + O \Leftrightarrow R_2O \) \(K_{R2O} = \frac{(O)(R)^2}{(R_2O)} \)

Protein Synthesis: \(O \rightarrow O + Z \) \(k_x \)

Protein Decay: \(Z \rightarrow \) \(k_{deg} \)

Total Concentration Equations

Total Operator: \((O_T) = (O) + (R_2O) \)

Total Repressor: \((R_T) = (R) + 2\cdot(R_2O) \approx (R) \) \(if \ (R_T) \gg (O) \)

Transfer Function Derivation

\[
\frac{(O)}{(O_T)} = \frac{(O)}{(O) + (RO)} = \frac{1}{1 + (RO)/(O)} = \frac{1}{1 + (R)^2/K_{R20}}
\]

\[
\frac{d(Z)}{dt} = k_x \cdot (O) - k_{deg} \cdot (Z) = 0 \ at \ equilibrium
\]

\[
(Z) = \frac{k_x}{k_{deg}} \cdot (O) = \frac{k_x}{k_{deg}} \cdot \frac{(O)}{1 + (R)^2/K_{R20}}
\]

Cooperative Non-Linearity
Cooperative Inverter Model

Chemical Equations

Coop Binding \[R + R + O \leftrightarrow R_2O \]

Protein Synthesis \[O \rightarrow O + Z \]

Protein Decay \[Z \rightarrow k_{\text{deg}} \]

Total Concentration Equations

Total Operator \[(O_T) = (O) + (R_2O) \]

Total Repressor \[(R_T) = (R) + 2\cdot(R_2O) \approx (R) \text{ if } (R_T) >> (O) \]

Transfer Function Derivation

\[\frac{(O)}{(O_T)} = \frac{(O)}{(O) + (RO)} = \frac{1}{1 + (RO)/(O)} = \frac{1}{1 + (R)^2/K_{R2O}} \]

\[\frac{d(Z)}{dt} = k_x \cdot (O) - k_{\text{deg}} \cdot (Z) = 0 \text{ at equilibrium} \]

\[(Z) = \frac{k_x}{k_{\text{deg}}} \cdot \frac{(O_T)}{(O)} = \frac{k_x}{k_{\text{deg}}} \cdot \frac{1}{1 + (R)^2/K_{R2O}} \]

Cooperative Non-Linearity
Cellular Logic Summary

- Current systems are limited to less than a dozen gates
 - Three inverter ring oscillator [Elowitz00]
 - RS latch [Gardner00]
 - Inter-cell communication [Weiss01]

- A natural repressor-based logic technology presents serious scalability issues
 - Scavenging natural repressor proteins is time consuming
 - Matching natural repressor proteins to work together is difficult

- Sophisticated synthetic biological systems require a scalable cellular logic technology with good cooperativity
 - Zinc-finger proteins can be engineered to create many unique proteins relatively easily
 - Zinc-finger proteins can be fused with dimerization domains to increase cooperativity
 - A cellular logic technology of only zinc-finger proteins should hopefully be easier to characterize
Single Zinc-Finger Structure

- Alpha Helix
- DNA Three Base Recognition Region
- Two Beta Sheets
- Zinc Atom
Poly-Finger ZFPs

A.C. Jamieson, J.C. Miller, and C.O. Pabo.
Drug discovery with engineered zinc-finger proteins.
Nature Reviews Drug Discovery, May 2003
Engineering ZFPs

- Early hopes for a code to simply map amino-acid residues to DNA bases have not materialized [Choo94]
- Some success has been had engineering ZFP fingers to recognize GNNG sequences [Dreier00, Segal99]
- These GNNG fingers can then be easily composed into poly-finger ZFPs
- Recent work has broadened these techniques to include ANNA fingers [Dreier01]

We are nearing the point where an appropriate poly-finger ZFP can be easily composed from a library of fingers to recognize almost any DNA sequence.
Engineering ZFP Dimers

- Dimerization is the natural phenomenon where two proteins bind together
- Dimerization is a form of cooperative DNA binding and increases cooperativity
- Two-finger ZFPs have been fused to GCN4 leucine zipper dimerization domains to create cooperative ZFP DNA binding proteins [Wolfe00]
Proposed ZFP Logic Technology

• Use two-finger ZFPs fused to a GCN4 leucine zipper as basic repressor monomer
• Each gate/wire has a unique engineered ZFP
• Why two-finger monomers?
 – Recognizes 6 base pairs permitting an encoding space suitable for hundreds of gates
 – Specificity suitable for *E. coli* genome
 – Affinity suitable for biologic circuit dynamics
• Since all gates have identical leucine zipper dimerization domains, monomers from different gates could dimerize causing **inter-gate interference**
Proposed ZFP Logic Technology

- Leucine Zipper
- A1
- A2
- ZFP
- ZFP

Pr

ZFRP Gene A

TTGACA

-35

N17

TATAAT

-10

N5-7

ZFRP Gene Z

Leucine Zipper

Z1

ZFP

ZFP

Z2
Proposed ZFP Logic Technology

Leucine Zipper

Dimerization

ZFP Operator (12 Bases)

ZFRP Gene A

ZFRP Gene Z

Pr
Proposed ZFP Logic Technology

Leucine Zipper

Dimerization with Interference Protein

Interference From Other Gates

ZFP Operator (12 Bases)

Dimerization

Pr

ZFRP Gene A

ZFRP Gene Z
Analytical Model

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Equilibrium Constant</th>
<th>Equation</th>
<th>Remote Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimerization</td>
<td>(K_{R+R})</td>
<td>(\frac{(R)^2}{(R_2)})</td>
<td>(e^{\frac{E_{\text{dim}}}{RT}})</td>
</tr>
<tr>
<td>Dimer Binding</td>
<td>(K_{R_2+O})</td>
<td>(\frac{(O)(R_2)}{(R_2O)})</td>
<td>(e^{\frac{2E_{\text{op}}}{RT}})</td>
</tr>
<tr>
<td>Monomer Binding</td>
<td>(K_{R+R})</td>
<td>(\frac{(O)(R)}{(OR)})</td>
<td>(e^{\frac{E_{\text{op}}}{RT}})</td>
</tr>
<tr>
<td>Monomer Binding</td>
<td>(K_{R+R})</td>
<td>(\frac{(O)(R)}{(RO)})</td>
<td>(e^{\frac{E_{\text{op}}}{RT}})</td>
</tr>
<tr>
<td>Cooperative Binding</td>
<td>(K_{OR+R})</td>
<td>(\frac{(OR)(R)}{(R_2O)})</td>
<td>(e^{\frac{E_{\text{op}+E_{\text{dim}}}}{RT}})</td>
</tr>
<tr>
<td>Cooperative Binding</td>
<td>(K_{RO+R})</td>
<td>(\frac{(RO)(R)}{(R_2O)})</td>
<td>(e^{\frac{E_{\text{op}+E_{\text{dim}}}}{RT}})</td>
</tr>
<tr>
<td>Protein Synthesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Decay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimerization</td>
<td>(K_{X+X})</td>
<td>(\frac{(X)^2}{(X_2)})</td>
<td>(e^{\frac{E_{\text{dim}}}{RT}})</td>
</tr>
<tr>
<td>Inter-Gate Interference</td>
<td>(K_{X+R})</td>
<td>(\frac{(X)(R)}{(XR)})</td>
<td>(e^{\frac{E_{\text{dim}}}{RT}})</td>
</tr>
</tbody>
</table>

\(K \): Equilibrium dissociation constant
\(k \): Dynamic rate constant
\(E \): Binding energy or change in potential energy caused by the reaction
 More negative \(E \) means the reaction is more likely to occur
Dimerization and Operator Energy

Leucine Zipper

Interference From Other Gates

E_{dim}

E_{op}

ZFRP Gene A

ZFRP Gene Z
Percent Operator Bound

- For **very low dimerization energies**, system approaches uncooperative repressor monomer system
- For **very high dimerization energies**, system approaches uncooperative covalently bonded repressor system
- For **moderate dimerization energies**, the system is cooperative i.e. the slope of the curve is steeper than for the uncooperative systems
Cooperativity

\[E_{op} = [-1: -15] \text{ kcal} \]
Inter-Gate Interference

\[E_{\text{dim}} = -2 \text{ kcal}, K_{\text{dim}} = 3.6 \times 10^{-2} \text{ M} \]

\[E_{\text{dim}} = -6 \text{ kcal}, K_{\text{dim}} = 4.5 \times 10^{-5} \text{ M} \]

\[E_{\text{dim}} = -4 \text{ kcal}, K_{\text{dim}} = 1.3 \times 10^{-3} \text{ M} \]

\[E_{\text{dim}} = -8 \text{ kcal}, K_{\text{dim}} = 1.6 \times 10^{-6} \text{ M} \]

Operator % Bound vs. Repressor Concentration (M)
Desired Dimerization Energy

• Tradeoffs in setting the dimerization energy
 – Stronger dimerization energy increases cooperativity
 – Stronger dimerization energy increases inter-gate interference

We desire the weakest dimerization energy which still achieves the maximum cooperativity

![Graph showing cooperativity and repressor concentration](image-url)
Transfer Curve and Interference

- No Interference
- $X_T = 1 \times 10^{-7}$ M
- $X_T = 5 \times 10^{-4}$ M
- $X_T = 1 \times 10^{-3}$ M

Output Protein Concentration (M)

Repressor Concentration (Rt) (M)
Transfer Curve and Interference

Max output protein concentration per gate is 5×10^{-7} M

Inter-gate interference must be below 10^{-4} M
Transfer Curve and Interference

Max output protein concentration per gate is 5×10^{-7} M

To first order, could have $\frac{10^{-4}}{5 \times 10^{-7}} \approx 200$ gates

Inter-gate interference must be below 10^{-4} M
Transfer Curve and Cooperativity
Future Work

• Model and Design Improvements
 – Model system transient response
 – Model stochastic effects
 – Design a system with increased cooperativity

• Implementation
 – Simple test circuits to investigate use of two finger ZFP dimer as a cooperative repressor in *E. coli*
 – Engineered zinc-finger system with heterodimers to implement more complex logic gates
Conclusions

• Current natural repressor-based biological circuits are limited to less than a dozen gates
• A cellular logic technology based on zinc-finger proteins should enable hundreds of gates
• Careful engineering of the dimerization energy can help mitigate inter-gate interference without sacrificing cooperativity