
Simplified Vector-Thread Architectures for
Flexible and Efficient Data-Parallel Accelerators

by

Christopher Francis Batten

B.S. in Electrical Engineering, University of Virginia, May 1999
M.Phil. in Engineering, University of Cambridge, August 2000

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 29, 2010

Certified by .
Krste Asanović

Associate Professor, University of California, Berkeley
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Department Committee on Graduate Students
Electrical Engineering and Computer Science

2

Simplified Vector-Thread Architectures for
Flexible and Efficient Data-Parallel Accelerators

by

Christopher Francis Batten
Submitted to the Department of Electrical Engineering and Computer Science

on January 29, 2010, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

This thesis explores a new approach to building data-parallel accelerators that is based on simplify-
ing the instruction set, microarchitecture, and programming methodology for a vector-thread archi-
tecture. The thesis begins by categorizing regular and irregular data-level parallelism (DLP), before
presenting several architectural design patterns for data-parallel accelerators including the multiple-
instruction multiple-data (MIMD) pattern, the vector single-instruction multiple-data (vector-SIMD)
pattern, the single-instruction multiple-thread (SIMT) pattern, and the vector-thread (VT) pattern.
Our recently proposed VT pattern includes many control threads that each manage their own array
of microthreads. The control thread uses vector memory instructions to efficiently move data and
vector fetch instructions to broadcast scalar instructions to all microthreads. These vector mecha-
nisms are complemented by the ability for each microthread to direct its own control flow.

In this thesis, I introduce various techniques for building simplified instances of the VT pattern. I
propose unifying the VT control-thread and microthread scalar instruction sets to simplify the mi-
croarchitecture and programming methodology. I propose a new single-lane VT microarchitecture
based on minimal changes to the vector-SIMD pattern. Single-lane cores are simpler to implement
than multi-lane cores and can achieve similar energy efficiency. This new microarchitecture uses
control processor embedding to mitigate the area overhead of single-lane cores, and uses vector
fragments to more efficiently handle both regular and irregular DLP as compared to previous VT ar-
chitectures. I also propose an explicitly data-parallel VT programming methodology that is based on
a slightly modified scalar compiler. This methodology is easier to use than assembly programming,
yet simpler to implement than an automatically vectorizing compiler.

To evaluate these ideas, we have begun implementing the Maven data-parallel accelerator. This
thesis compares a simplified Maven VT core to MIMD, vector-SIMD, and SIMT cores. We have
implemented these cores with an ASIC methodology, and I use the resulting gate-level models to
evaluate the area, performance, and energy of several compiled microbenchmarks. This work is the
first detailed quantitative comparison of the VT pattern to other patterns. My results suggest that
future data-parallel accelerators based on simplified VT architectures should be able to combine the
energy efficiency of vector-SIMD accelerators with the flexibility of MIMD accelerators.

Thesis Supervisor: Krste Asanović
Title: Associate Professor, University of California, Berkeley

4

Acknowledgements

I would like to first thank my research advisor, Krste Asanović, who has been a true mentor, pas-
sionate teacher, inspirational leader, valued colleague, and professional role model throughout my
time at MIT and U.C. Berkeley. This thesis would not have been possible without Krste’s constant
stream of ideas, encyclopedic knowledge of technical minutia, and patient yet unwavering support.
I would also like to thank the rest of my thesis committee, Christopher Terman and Arvind, for their
helpful feedback as I worked to crystallize the key themes of my research.

Thanks to the other members of the Scale team at MIT for helping to create the vector-thread
architectural design pattern. Particular thanks to Ronny Krashinsky, who led the Scale team, and
taught me more than he will probably ever know. Working with Ronny on the Scale project was,
without doubt, the highlight of my time in graduate school. Thanks to Mark Hampton for having the
courage to build a compiler for a brand new architecture. Thanks to the many others who made both
large and small contributions to the Scale project including Steve Gerding, Jared Casper, Albert Ma,
Asif Khan, Jaime Quinonez, Brian Pharris, Jeff Cohen, and Ken Barr.

Thanks to the other members of the Maven team at U.C. Berkeley for accepting me like a real Berke-
ley student and helping to rethink vector threading. Particular thanks to Yunsup Lee for his tremen-
dous help in implementing the Maven architecture. Thanks to both Yunsup and Rimas Avizienis for
working incredibly hard on the Maven RTL and helping to generate such detailed results. Thanks to
the rest of the Maven team including Chris Celio, Alex Bishara, and Richard Xia. This thesis would
still be an idea on a piece of green graph paper without all of their hard work, creativity, and dedica-
tion. Thanks also to Hidetaka Aoki for so many wonderful discussions about vector architectures.
Section 1.4 discusses in more detail how the members of the Maven team contributed to this thesis.

Thanks to the members of the nanophotonic systems team at MIT and U.C. Berkeley for allowing
me to explore a whole new area of research that had nothing to do with vector processors. Thanks to
Vladimir Stajanović for his willingness to answer even the simplest questions about nanophotonic
technology, and for being a great professional role model. Thanks to Ajay Joshi, Scott Beamer, and
Yong-Jin Kwon for working with me to figure out what to do with this interesting new technology.

Thanks to my fellow graduate students at both MIT and Berkeley for making every extended in-
tellectual debate, every late-night hacking session, and every conference trip such a wonderful ex-
perience. Particular thanks to Dave Wentzlaff, Ken Barr, Ronny Krashinsky, Edwin Olson, Mike
Zhang, Jessica Tseng, Albert Ma, Mark Hampton, Seongmoo Heo, Steve Gerding, Jae Lee, Nirav
Dave, Michael Pellauer, Michal Karczmarek, Bill Thies, Michael Taylor, Niko Loening, and David
Liben-Nowell. Thanks to Rose Liu and Heidi Pan for supporting me as we journeyed from one
coast to the other. Thanks to Mary McDavitt for being an amazing help throughout my time at MIT
and even while I was in California.

Thanks to my parents, Arthur and Ann Marie, for always supporting me from my very first exper-
iment with Paramecium to my very last experiment with vector threading. Thanks to my brother,
Mark, for helping me to realize that life is about working hard but also playing hard. Thanks to my
wife, Laura, for her unending patience, support, and love through all my ups and downs. Finally,
thanks to my daughter, Fiona, for helping to put everything into perspective.

5

6

Contents

1 Introduction 13
1.1 Transition to Multicore & Manycore General-Purpose Processors 13

1.2 Emergence of Programmable Data-Parallel Accelerators 19

1.3 Leveraging Vector-Threading in Data-Parallel Accelerators 21

1.4 Collaboration, Previous Publications, and Funding 22

2 Architectural Design Patterns for Data-Parallel Accelerators 25
2.1 Regular and Irregular Data-Level Parallelism . 25

2.2 Overall Structure of Data-Parallel Accelerators 30

2.3 MIMD Architectural Design Pattern . 32

2.4 Vector-SIMD Architectural Design Pattern . 36

2.5 Subword-SIMD Architectural Design Pattern . 41

2.6 SIMT Architectural Design Pattern . 43

2.7 VT Architectural Design Pattern . 48

2.8 Comparison of Architectural Design Patterns . 53

2.9 Example Data-Parallel Accelerators . 55

3 Maven: A Flexible and Efficient Data-Parallel Accelerator 61
3.1 Unified VT Instruction Set Architecture . 61

3.2 Single-Lane VT Microarchitecture Based on Vector-SIMD Pattern 62

3.3 Explicitly Data-Parallel VT Programming Methodology 66

4 Maven Instruction Set Architecture 69
4.1 Instruction Set Overview . 69

4.2 Challenges in a Unified VT Instruction Set . 74

4.3 Vector Configuration Instructions . 77

4.4 Vector Memory Instructions . 80

4.5 Calling Conventions . 82

4.6 Extensions to Support Other Architectural Design Patterns 83

4.7 Future Research Directions . 86

7

4.8 Related Work . 89

5 Maven Microarchitecture 91
5.1 Microarchitecture Overview . 91

5.2 Control Processor Embedding . 99

5.3 Vector Fragment Merging . 100

5.4 Vector Fragment Interleaving . 102

5.5 Vector Fragment Compression . 104

5.6 Leveraging Maven VT Cores in a Full Data-Parallel Accelerator 107

5.7 Extensions to Support Other Architectural Design Patterns 109

5.8 Future Research Directions . 111

5.9 Related Work . 113

6 Maven Programming Methodology 117
6.1 Programming Methodology Overview . 117

6.2 VT Compiler . 122

6.3 VT Application Programming Interface . 124

6.4 System-Level Interface . 127

6.5 Extensions to Support Other Architectural Design Patterns 128

6.6 Future Research Directions . 132

6.7 Related Work . 133

7 Maven Evaluation 135
7.1 Evaluated Core Configurations . 135

7.2 Evaluated Microbenchmarks . 138

7.3 Evaluation Methodology . 141

7.4 Cycle-Time and Area Comparison . 145

7.5 Energy and Performance Comparison for Regular DLP 147

7.6 Energy and Performance Comparison for Irregular DLP 151

7.7 Computer Graphics Case Study . 157

8 Conclusion 161
8.1 Thesis Summary and Contributions . 161

8.2 Future Work . 163

Bibliography 165

8

List of Figures

1.1 Trends in Transistors, Performance, and Power for General-Purpose Processors 14

1.2 Qualitative Comparison of Multicore, Manycore, and Data-Parallel Accelerators 17

1.3 Examples of Data-Parallel Accelerators . 20

2.1 General-Purpose Processor Augmented with a Data-Parallel Accelerator 30

2.2 MIMD Architectural Design Pattern . 32

2.3 Mapping Regular DLP to the MIMD Pattern . 33

2.4 Mapping Irregular DLP to the MIMD Pattern . 34

2.5 Vector-SIMD Architectural Design Pattern . 36

2.6 Mapping Regular DLP to the Vector-SIMD Pattern 38

2.7 Mapping Irregular DLP to the Vector-SIMD Pattern 39

2.8 Subword-SIMD Architectural Design Pattern . 42

2.9 SIMT Architectural Design Pattern . 44

2.10 Mapping Regular DLP to the SIMT Pattern . 45

2.11 Mapping Irregular DLP to the SIMT Pattern . 46

2.12 VT Architectural Design Pattern . 49

2.13 Mapping Regular DLP to the VT Pattern . 51

2.14 Mapping Irregular DLP to the VT Pattern . 52

3.1 Maven Data-Parallel Accelerator . 62

3.2 Multi-Lane versus Single-Lane Vector-Thread Units 63

3.3 Explicitly Data-Parallel Programming Methodology 67

4.1 Maven Programmer’s Logical View . 70

4.2 Example Maven Assembly Code . 75

4.3 Examples of Various Vector Configurations . 78

4.4 Memory Fence Examples . 81

5.1 Maven VT Core Microarchitecture . 93

5.2 Executing Irregular DLP on the Maven Microarchitecture 97

5.3 Example of Vector Fragment Merging . 101

9

5.4 Example of Vector Fragment Interleaving . 103

5.5 Example of Vector Fragment Compression . 105

5.6 Extra Scheduling Constraints with Vector Fragment Compression 106

5.7 Maven Data-Parallel Accelerator with Array of VT Cores 108

5.8 Microarchitecture for Quad-Core Tile . 108

6.1 Maven Software Toolchain . 119

6.2 Regular DLP Example Using Maven Programming Methodology 120

6.3 Irregular DLP Example Using Maven Programming Methodology 121

6.4 Low-Level Example Using the Maven Compiler . 123

6.5 Example of Vector-Fetched Block After Preprocessing 126

6.6 Maven System-Level Software Stack . 127

6.7 Regular DLP Example Using Maven MIMD Extensions 128

6.8 Regular DLP Example Using Maven Traditional-Vector Extensions 130

6.9 Regular DLP Example Using Maven SIMT Extensions 131

7.1 Microbenchmarks . 138

7.2 Evaluation Software and Hardware Toolflow . 142

7.3 Chip Floorplan for vt-1x8 Core . 144

7.4 Normalized Area for Core Configurations . 146

7.5 Results for Regular DLP Microbenchmarks . 149

7.6 Results for Regular DLP Microbenchmarks with Uniform Cycle Time 150

7.7 Results for Irregular DLP Microbenchmarks . 152

7.8 Divergence in Irregular DLP Microbenchmarks . 154

7.9 Results for bsearch Microbenchmark without Explicit Conditional Moves 156

7.10 Computer Graphics Case Study . 157

7.11 Divergence in Computer Graphics Kernels . 159

10

List of Tables

2.1 Different Types of Data-Level Parallelism . 26

2.2 Mechanisms for Exploiting Data-Level Parallelism 54

4.1 Maven Scalar Instructions . 72

4.2 Maven Vector Instructions . 73

4.3 Scalar Register Usage Convention . 82

4.4 Maven Vector-SIMD Extensions . 84

4.5 Maven Vector-SIMD Extensions (Flag Support) . 85

6.1 Maven VT Application Programming Interface . 118

7.1 Evaluated Core Configurations . 136

7.2 Instruction Mix for Microbenchmarks . 140

7.3 Absolute Area and Cycle Time for Core Configurations 145

7.4 Instruction Mix for Computer Graphics Kernels . 158

11

12

Chapter 1

Introduction

Serious technology issues are breaking down the traditional abstractions in computer architecture.

Power and energy efficiency are now first-order design constraints, and the road map for standard

CMOS technology has never been more challenging. At the same time, emerging data-parallel

applications are growing in popularity but also in complexity, with each application requiring a mix

of both regular and irregular data-level parallelism. In response to these technology and application

demands, computer architects are turning to multicore and manycore processors augmented with

data-parallel accelerators, where tens to hundreds of both general-purpose and data-parallel cores

are integrated in a single chip.

In this thesis, I argue for a new approach to building data-parallel accelerators that is based

on our recently proposed vector-thread architectural design pattern. The central theme of my the-

sis is that simplifying the vector-thread pattern’s instruction set, microarchitecture, and program-

ming methodology enables large arrays of vector-thread cores to be used in data-parallel accelera-

tors. These simplified vector-thread accelerators combine the energy efficiency of single-instruction

multiple-data (SIMD) accelerators with the flexibility of multiple-instruction multiple-data (MIMD)

accelerators.

This chapter begins by examining the current transition to multicore and manycore processors

and the emergence of data-parallel accelerators, before outlining the key contributions of the thesis

and how they advance the state of the art in vector-thread architectures.

1.1 Transition to Multicore & Manycore General-Purpose Processors

Figure 1.1 shows multiple trends for a variety of high-performance desktop and server general-

purpose processors from several manufactures over the past 35 years. We focus first on four met-

rics: the number of transistors per die, the single-thread performance as measured by the SPECint

benchmarks, the processor’s clock frequency, and the processor’s typical power consumption. We

can clearly see the effect of Moore’s Law with the number of transistors per die doubling about

13

Figure 1.1: Trends in Transistors, Performance, and Power for General-Purpose Processors – Various
metrics are shown for a selection of processors usually found in high-performance desktop and server sys-
tems from 1975 to 2010. For over 30 years, engineers used increased clock frequencies and power hungry
architectural techniques to turn the wealth of available transistors into single-thread performance. Unfortu-
nately, power constraints are forcing engineers to integrate multiple cores onto a single die in an attempt to
continue performance scaling, albeit only for parallel applications. (Data gathered from publicly available
data-sheets, press-releases, and SPECint benchmark results. Some data gathered by M. Horowitz, F. Labonte,
O. Shacham, K. Olukoton, and L. Hammond of Stanford University. Single-thread performance is reported as
the most recent SPECint results normalized to the performance of an Intel 80286 processor. SPECint results
for many recent processors include auto-parallelization making it difficult to estimate single-thread perfor-
mance. Conversion factors for different SPECint benchmark suites are developed by analyzing processors
that have SPECint results for more than one suite.)

14

every two years. Computer architects exploited this wealth of transistors to improve single-thread

performance in two ways. Architects used faster transistors and deeper pipelines to improve pro-

cessor clock frequency, and they also used techniques such as caches, out-of-order execution, and

superscalar issue to further improve performance.

For example, the MIPS R2000 processor released in 1985 required 110 K transistors, ran at

16 MHz, had no on-chip caches, and used a very simple five-stage pipeline [Kan87]. The DEC Al-

pha 21164 was released just ten years later and required 10 M transistors, ran at 300 MHz, included

on-chip instruction and data caches, and used a seven-stage pipeline with four-way superscalar issue,

all of which served to improve single-thread performance by almost two orders of magnitude over

processors available in the previous decade [ERPR95]. The Intel Pentium 4, which was released

five years later in 2000, was an aggressive attempt to exploit as much single-thread performance

as possible resulting in another order-of-magnitude performance improvement. The Pentium 4 re-

quired 42 M transistors, ran at 2+ GHz, included large on-chip caches, and used a 20-stage pipeline

with superscalar issue and a 126-entry reorder buffer for deep out-of-order execution [HSU+01].

These are all examples of the technology and architectural innovation that allowed single-thread

performance to track Moore’s Law for over thirty years. It is important to note that this perfor-

mance improvement was basically transparent to software; application programmers simply waited

two years and their programs would naturally run faster with relatively little work.

As illustrated in Figure 1.1, the field of computer architecture underwent a radical shift around

2005 when general-purpose single-threaded processors became significantly limited by power con-

sumption. Typical processor power consumption has leveled off at 100–125 W, since higher power

consumption requires much more expensive packaging and cooling solutions. Since power is di-

rectly proportional to frequency, processor clock frequencies have also been recently limited to a

few gigahertz. Although single-threaded techniques such as even deeper pipelines and wider su-

perscalar issue can still marginally improve performance, they do so at significantly higher power

consumption. Transistor densities continue to improve, but computer architects are finding it diffi-

cult to turn these transistors into single-thread performance. Due to these factors, the industry has

begun to de-emphasize single-thread performance and focus on integrating multiple cores onto a

single die [OH05, ABC+06]. We have already started to see the number of cores approximately

double every two years, and, if programmers can parallelize their applications, then whole applica-

tion performance should once again start to track Moore’s Law.

For example, the AMD 4-core Opteron processor introduced in 2007 required 463 M transis-

tors, ran at 2+ GHz, and included four out-of-order superscalar cores in a single die [DSC+07]. Al-

most every general-purpose processor manufacturer is now releasing multicore processors including

Sun’s 8-core Niagara 2 processor [NHW+07] and 16-core Rock processor [CCE+09], Intel’s 8-core

Xeon processor [RTM+09], Fujitsu’s 8-core SPARC64 VIIIfx processor [Mar09], and IBM’s 8-core

POWER7 processor [Kal09]. The current transition to multiple cores on a chip is often referred to

15

as the multicore era, and some predict we will soon enter the manycore era with hundreds of very

simple cores integrated onto a single chip [HBK06]. Examples include the Tilera TILE64 pro-

cessor with 64 cores per chip [BEA+08] and the Intel terascale prototypes with 48–80 cores per

chip [VHR+07, int09].

Power consumption constrains more than just the high-performance processors in Figure 1.1.

Power as well as energy have become primary design constraints across the entire spectrum of

computing, from the largest data center to the smallest embedded device. Consequently, arrays

of processing cores have also been adopted in laptops, handhelds, network routers, video pro-

cessors, and other embedded systems. Some multicore processors for mobile clients are simply

scaled down versions of high-performance processors, but at the embedded end of the spectrum,

multicore-like processors have been available for many years often with fixed-function features

suitable for the target application domain. Examples include ARM’s 4-core Cortex-A9 MPCore

processor [arm09], Raza Microelectronics’ 8-core XLR network processor [Kre05], Cavium Net-

works’ 16-core Octeon network processor [YBC+06], Cisco’s Metro network router chip with 188

Tensilica Extensa cores [Eat05], and PicoChip’s 430-core PC101 signal-processing array [DPT03].

The precise distinction between multicore/manycore and general-purpose/embedded is obviously

gray, but there is a clear trend across the entire industry towards continued integration of more

processing cores onto a single die.

Figure 1.2 illustrates in more detail why the move to multicore and manycore processors can

help improve performance under a given power constraint. The figure qualitatively shows the per-

formance (tasks per second) on the x-axis, the energy-efficiency (energy per task) on the y-axis, and

power consumption as hyperbolic iso-power curves. Any given system will have a power constraint

that maps to one of the iso-power curves and limits potential architectural design choices. For ex-

ample, a processor in a high-performance workstation might have a 125 W power constraint, while a

processor in a mobile client might be limited to just 1 W. Point A in the figure shows where a hypo-

thetical simple RISC core, similar to the MIPS R2000, might lie in the energy-performance space.

The rest of the space can be divided into four quadrants. Alternative architectures which lie in the

upper left quadrant are probably unattractive, since they are both slower and less energy-efficient

than the simple RISC core. Alternative architectures which lie in the lower left quadrant are lower

performance but might also require much less energy per task. While such architectures are suitable

when we desire the lowest possible energy (e.g., processors for wireless sensor networks), in this

thesis I focus on architectures that balance performance and energy-efficiency. The best architec-

tures are in the lower right quadrant with improved performance and energy-efficiency, but building

such architectures can be challenging for general-purpose processors which need to handle a wide

variety of application types. Instead, most general-purpose architectural approaches lie in the upper

right quadrant with improved performance at the cost of increased energy per task.

For example, an architecture similar to the DEC Alpha 21164 might lie at point B if implemented

16

Figure 1.2: Qualitative Comparison of Multicore, Manycore, and Data-Parallel Accelerators – Out-
of-order execution, superscalar issue, and superpipelining increase processor performance but at significant
cost in terms of energy per task (A→B→C). Multicore processors improve performance at less energy per
task by using multiple complex cores and scaling the voltage to improve energy-efficiency (C→D→E) or
by using multiple simpler and more energy-efficient cores (C→B→F). Unfortunately, parallelization and
energy overheads can reduce the benefit of these approaches. Data-parallel accelerators exploit the special
properties of data-parallel applications to improve performance while also reducing the energy per task.

in the same technology as the simple RISC core at point A. It would have higher single-thread

performance but also require more energy per task due to additional pipeline registers, branch pre-

diction logic, unnecessary work through misspeculation, and parallel dependency checking logic.

An architecture similar to the Intel Pentium 4 implemented in the same technology might lie at

point C and would again improve single-thread performance at even higher energy per task due

to more expensive pipelining, higher misspeculation costs, and highly associative out-of-order is-

sue and reordering logic. Architectural techniques for single-thread performance might continue

to marginally improve performance, but they do so with high energy overhead and thus increased

power consumption. Although there has been extensive work analyzing and attempting to mitigate

the energy overhead of complex single-thread architectures, multicore processors take a different

approach by relying on multiple cores instead of continuing to build an ever more complicated

single-core processor.

Figure 1.2 illustrates two techniques for improving performance at the same power consump-

tion as the complex core at point C: multiple complex cores with voltage scaling (C→D→E) or

multiple simple and more energy-efficient cores (C→B→F). The first technique instantiates mul-

tiple complicated cores as shown by the transition from point C to point D. For completely parallel

17

applications, the performance should improve linearly, since we can execute multiple tasks in par-

allel, and ideally the energy to complete each task should remain constant. Instead of spending a

certain amount of energy to complete each task serially, we are simply spending the same amount

of energy in parallel to finish executing the tasks sooner. Of course, as Figure 1.2 illustrates, higher

performance at the same energy per task results in higher power consumption which means point D

exceeds our processor power constraint. Since energy is quadratically proportional to voltage, we

can use frequency and voltage scaling to turn some of the performance improvement into reduced

energy per task as shown by the transition from point D to point E. Using static or dynamic volt-

age scaling to improve the energy-efficiency of parallel processing engines is a well understood

technique which has been used in a variety of contexts [GC97, DM06, dLJ06, LK09]. A second

technique, which achieves a similar result, reverts to simpler cores that are both lower energy and

lower performance, and then compensates for the lower performance by integrating multiple cores

onto a single chip. This is shown in Figure 1.2 as the transition from point C to point B to point F.

Comparing point C to point E and F we see that multicore processors can improve performance at

less energy per task under a similar power constraint. Note that we can combine voltage scaling and

simpler core designs for even greater energy-efficiency. Manycore processors are based on a similar

premise as multicore processors, except they integrate even more cores onto a single die and thus

require greater voltage scaling or very simple core designs to still meet the desired power constraint.

The multicore approach fundamentally depends on resolving two key challenges: the parallel

programming challenge and the parallel energy-efficiency challenge. The first challenge, paral-

lel programming, has been well-known for decades in the high-performance scientific community,

but now that parallel programming is moving into the mainstream it takes on added importance.

Applications that are difficult to parallelize will result in poor performance on multicore proces-

sors. Even applications which are simple to parallelize might still be difficult to analyze and thus

tune for greater performance. The second challenge, parallel energy-efficiency, is simply that it

is difficult to make each individual core significantly more energy-efficient than a single mono-

lithic core. Voltage scaling without drastic loss in performance is becoming increasingly difficult

in deep sub-micron technologies due to process variation and subthreshold leakage at low volt-

ages [GGH97, FS00, CC06]. This means instantiating many complex cores is unlikely to result in

both an energy-efficient and high-performance solution. While simpler cores can be more energy-

efficient, they can only become so simple before the loss in performance starts to outweigh reduced

power consumption. Finally, even with energy-efficient cores, there will inevitably be some en-

ergy overhead due to multicore management, cache coherence, and/or direct communication costs.

Overall, the parallel programming challenge and the parallel energy-efficiency challenge mean that

points above and to the left of the ideal multicore architectures represented by points E and F more

accurately reflect real-world designs. In the next section, we discuss tackling these challenges

through the use of accelerators specialized for efficiently executing data-parallel applications.

18

1.2 Emergence of Programmable Data-Parallel Accelerators

Data-parallel applications have long been the dominant form of parallel computing, due to the

ubiquity of data-parallel kernels in demanding computational workloads. A data-parallel applica-

tion is one in which the most straightforward parallelization approach is to simply partition the

input dataset and apply a similar operation across all partitions. Conventional wisdom holds that

highly data-parallel applications are limited to the domain of high-performance scientific comput-

ing. Examples include molecular dynamics, climate modeling, computational fluid dynamics, and

generic large-scale linear-algebra routines. However, an honest look at the current mainstream ap-

plication landscape reveals a wealth of data-parallelism in such applications as graphics rendering,

computer vision, medical imaging, video and audio processing, speech and natural language un-

derstanding, game physics simulation, encryption, compression, and network processing. Although

all of these data-level parallel (DLP) applications contain some number of similar tasks which op-

erate on independent pieces of data, there can still be a significant amount of diversity. On one

end of the spectrum is regular data-level parallelism, characterized by well-structured data-access

patterns and few data-dependent conditionals meaning that all tasks are very similar. In the mid-

dle of the spectrum is irregular data-level parallelism, characterized by less structured data-access

patterns and some number of (possibly nested) data-dependent conditionals meaning that the tasks

are less similar. Eventually an application might become so irregular that the tasks are performing

completely different operations from each other with highly unstructured data-access patterns and

significant dependencies between tasks. These applications essentially lie on the opposite end of

the spectrum from regular DLP and are better characterized as task-level parallel (TLP).

DLP applications can, of course, be mapped to the general-purpose multicore processors dis-

cussed in the previous section. In fact, the distinguishing characteristics of DLP applications (many

similar independent tasks) make them relatively straightforward to map to such architectures and

thus help mitigate the parallel programming challenge. Unfortunately, general-purpose multicore

processors have no special mechanisms for efficiently executing DLP applications. Such processors

execute DLP and TLP applications in the same way, meaning that we can expect both an increase

in performance and increase in energy per task compared to a single simple core regardless of the

type of parallelism. Given the large amount of data-level parallelism in modern workloads and the

energy overheads involved in multicore architectures, it’s not difficult to see that we will soon be

once again seriously limited by system power constraints.

The desire to exploit DLP to improve both performance and energy-efficiency has given rise

to data-parallel accelerators which contain an array of programmable data-parallel cores. In this

thesis, I loosely define a data-parallel accelerator to be a coprocessor which is meant to augment

a general-purpose multicore processor, and which contains dedicated mechanisms well suited to

executing DLP applications. We should expect data-parallel accelerators to lie in the lower right

quadrant of Figure 1.2 with higher performance and lower energy per task as compared to a single

19

(a) UC Berkeley T0
Vector Processor

(b) Stanford Imagine
Stream Processor

(c) IBM Cell
General Accelerator

(d) NVIDIA Fermi
Graphics Processor

Figure 1.3: Examples of Data-Parallel Accelerators – Demands for higher performance and/or lower
energy per task on data-parallel applications has lead to the emergence of data-parallel accelerators from
uni-processor vector and stream processors, to more general SIMD accelerators, to general-purpose graphic
processors with hundreds of data-parallel engines on a single chip.

general-purpose core. This is especially true for regular DLP applications, but probably less so

for irregular DLP applications. Even so, an accelerator which can flexibly execute a wider array of

DLP applications will be more attractive than one which can only execute regular DLP applications.

Ideally a system will combine both general-purpose cores and data-parallel cores so that the best

energy-performance trade-off can be achieved for any given application [WL08].

Figure 1.3 illustrates a few representative data-parallel accelerators. The Berkeley Spert-II sys-

tem included the T0 vector processor with an 8-lane vector unit and was used as an accelerator for

neural network, multimedia, and digital signal processing [WAK+96, Asa98]. The Stanford Imag-

ine stream processor was a research prototype which included an 8-lane vector-like processing unit

and was evaluated for a variety of data-parallel kernels [RDK+98]. These early examples contain a

single tightly coupled data-parallel accelerator, while the more recent IBM Cell processor contains

an array of eight simple subword-SIMD processors controlled by a single general-purpose proces-

sor integrated on the same chip [GHF+06]. Perhaps the most wide-spread example of data-parallel

accelerators are the graphics processors found in most mainstream workstations and mobile clients.

NVIDIA’s CUDA framework [NBGS08] and AMD/ATI’s Close-to-the-Metal initiative [ati06] en-

able the many vector-like cores on a graphics processor to be used as a programmable data-parallel

accelerator. For example, the recently announced Fermi graphics processor from NVIDIA includes

32 data-parallel cores each with a flexible 16-lane vector-like engine suitable for graphics as well as

more general data-parallel applications [nvi09]. To help us reason about these different approaches

and motivate the rest of my work, Chapter 2 will introduce a set of architectural design patterns

which capture the key characteristics of various data-parallel accelerators used both in industry and

research.

20

1.3 Leveraging Vector-Threading in Data-Parallel Accelerators

In this thesis, I propose a new approach to building data-parallel accelerators that is based on

the vector-thread architectural design pattern. Vector-threading (VT) includes a control thread that

manages a vector of microthreads. The control thread uses vector memory instructions to efficiently

move blocks of data between memory and each microthread’s registers, and vector fetch instructions

to broadcast scalar instructions to all microthreads. These vector mechanisms are complemented

by the ability for each microthread to direct its own control flow when necessary. This logical

view is implemented by mapping the microthreads both spatially and temporally to a set of vector

lanes contained within a vector-thread unit (VTU). A seamless intermixing of vector and threaded

mechanisms allows VT to potentially combine the energy efficiency of SIMD accelerators with the

flexibility of MIMD accelerators.

The Scale VT processor is our first implementation of these ideas specifically targeted for use

in embedded devices. Scale uses a generic RISC instruction set architecture for the control thread

and a microthread instruction set specialized for VT. The Scale microarchitecture includes a simple

RISC control processor and a complicated (but efficient) four-lane VTU. The Scale programming

methodology requires either a combination of compiled code for the control processor and assembly

programming for the microthreads or a preliminary vectorizing compiler specifically written for

Scale. For more information, see our previous publications on the Scale architecture [KBH+04a,

KBH+04b], memory system [BKGA04], VLSI implementation [KBA08], and compiler [HA08].

Based on our experiences designing, implementing, and evaluating Scale, I have identified three

primary directions for improvement to simplify both the hardware and software aspects of the VT

architectural design pattern. These improvements include a unified VT instruction set architecture, a

single-lane VT microarchitecture based on the vector-SIMD pattern, and an explicitly data-parallel

VT programming methodology, and they collectively form the key contribution of this thesis. To

evaluate these ideas we have begun implementing the Maven data-parallel accelerator, which in-

cludes a malleable array of tens to hundreds of vector-thread engines. These directions for improve-

ment are briefly outlined below and discussed in more detail in Chapter 3.

• Unified VT Instruction Set Architecture – I propose unifying the VT control-thread and

microthread scalar instruction sets such that both types of thread execute a very similar generic

RISC instruction set. This simplifies the microarchitecture and the programming methodology,

as compared to the specialized microthread instruction set used in Scale. Chapter 4 will discuss

the Maven instruction set in general as well as the specific challenges encountered with a unified

instruction set.

• Single-Lane VT Microarchitecture Based on the Vector-SIMD Pattern – I propose a new

approach to implementing VT instruction sets that closely follows a simple traditional vector-

SIMD microarchitecture as much as possible. This is in contrast to the more complex mi-

21

croarchitecture used in Scale. I also propose using single-lane VTUs as opposed to Scale’s

multi-lane VTU or the the multi-lane vector units common in other data-parallel accelerators.

A vector-SIMD-based single-lane VT microarchitecture is simpler to implement and can have

competitive energy-efficiency as compared to more complicated multi-lane VTUs. Chapter 5

will describe the basic Maven microarchitecture before introducing techniques that reduce the

area overhead of single-lane VTUs and improve efficiency when executing irregular DLP.

• Explicitly Data-Parallel VT Programming Methodology – I propose an explicitly data-

parallel programming methodology suitable for VT data-parallel accelerators that combines

a slightly modified C++ scalar compiler with a carefully written support library. The result is a

clean programming model that is considerably easier than assembly programming, yet simpler

to implement as compared to an automatic vectorizing compiler, such as the Scale compiler.

Chapter 6 will explain the required compiler changes and the support library’s implementation,

as well as show several examples to illustrate the Maven programming methodology.

The unifying theme across these directions for improvement is a desire to simplify all aspects of

the VT architectural design pattern, yet still preserve the primary advantages. To evaluate our ideas,

we have implemented Maven as well as various other data-parallel cores using a semi-custom ASIC

methodology in a TSMC 65 nm process. Chapter 7 will use the resulting placed-and-routed gate-

level models to evaluate the area, performance, and energy of several compiled microbenchmarks.

This work is the first detailed quantitative evaluation of the VT design pattern compared to other

design patterns for data-parallel accelerators.

1.4 Collaboration, Previous Publications, and Funding

As with all large systems research projects, this thesis describes work which was performed as

part of a group effort. Although I was personally involved at all levels, from gate-level design to

compiler optimizations, the ideas and results described within this thesis simply would not have

been possible without collaborating with my colleagues and, of course, the integral guidance of our

research adviser, Krste Asanović.

The initial VT architectural design pattern was developed by Krste Asanović, Ronny Krashin-

sky, and myself while at the Massachusetts Institute of Technology from 2002 through 2008, and we

designed and fabricated the Scale VT processor to help evaluate the VT concept. Ronny Krashinsky

was the lead architect for Scale, and I worked with him on the Scale architecture and the overall

direction of the project. I was responsible for the Scale memory system which included developing

new techniques for integrating vector processors into cache hierarchies, designing and implement-

ing a microarchitectural simulator for the non-blocking, highly-associative cache used in our early

studies, and finally implementing the RTL for the memory system used in the fabricated Scale pro-

totype. Much of the work in this thesis evolved from my experiences working on the Scale project.

22

The Maven VT core was developed by myself and a group of students during my time as a

visiting student at the University of California, Berkeley from 2007 through 2009. I was the lead

architect for the Maven project and helped direct the development and evaluation of the architecture,

microarchitecture, RTL implementation, compiler, and applications. I was directly responsible for

the Maven instruction set architecture, the Maven C++ compiler and programming support libraries,

the implementation of several benchmarks, the development of the Maven assembly test suite, and

the detailed paper design of the microarchitecture for the Maven single-lane core. Hidetaka Aoki

made significant contributions to some of our very early ideas about single-lane VTUs. Yunsup Lee

played a very large role in the Maven project including working on the initial C++ compiler port

to a modified MIPS back-end, developing the Maven functional simulator, and setting up the CAD

tool-flow. Most importantly, Yunsup took the lead in writing the RTL for the Maven VTU. Rimas

Avizienis wrote the Maven proxy kernel and implemented the RTL for both the Maven control

processor and the multithreaded MIMD processor used in our evaluation. Chris Celio wrote the

RTL for the Maven vector memory unit. The benchmarks used to evaluate Maven were written

by myself, Chris Celio, Alex Bishara, and Richard Xia. Alex took the lead in implementing the

graphics rendering application for Maven (discussed in Section 7.7, and also worked on augmenting

the functional simulator with a simple performance model.

The majority of the work in this thesis is previously unpublished. Some of the initial vision for

the Maven processor was published in a position paper co-authored by myself and others entitled

“The Case for Malleable Stream Architectures” from the Workshop on Streaming Systems, 2008

[BAA08].

This work was funded in part by DARPA PAC/C Award F30602-00-20562, NSF CAREER

Award CCR-0093354, the Cambridge-MIT Institute, an NSF Graduate Research Fellowship, and

donations from Infineon Corporation and Intel Corporation.

23

24

Chapter 2

Architectural Design Patterns for
Data-Parallel Accelerators

This chapter will introduce a framework for reasoning about the diversity in both data-parallel ap-

plications and data-parallel accelerators. The chapter begins by illustrating in more detail the dif-

ferences between regular and irregular data-level parallelism (Section 2.1), and then discusses the

overall structure of data-parallel accelerators found in both industry and academia (Section 2.2). Al-

though the memory system and inter-core network play a large role in such accelerators, what really

distinguishes a data-parallel accelerator from its general-purpose counterpart is its highly-optimized

data-parallel execution cores. Sections 2.3–2.7 present five architectural design patterns for these

data-parallel cores: multiple-instruction multiple-data (MIMD), vector single-instruction multiple-

data (vector-SIMD), subword single-instruction multiple-data (subword-SIMD), single-instruction

multiple-thread (SIMT), and vector-thread (VT). An architectural design pattern captures the key

features of the instruction set, microarchitecture, and programming methodology for a specific style

of architecture. The design patterns are abstract enough to enable many different implementations,

but detailed enough to capture the distinguishing characteristics. Each pattern includes example

mappings of two simple yet representative loops reflecting regular and irregular data-level paral-

lelism, and also discusses an accelerator which exemplifies the pattern. The chapter concludes with

a comparison of the patterns (Section 2.8), and a discussion of how the five patterns can help cate-

gorize various accelerators in industry and academia (Section 2.9).

2.1 Regular and Irregular Data-Level Parallelism

Different types of data-level parallelism (DLP) can be categorized in two dimensions: the regu-

larity with which data memory is accessed and the regularity with the control flow changes. Regular

data-level parallelism has well structured data accesses where the addresses can be compactly en-

coded and are known well in advance of when the data is ready. Regular data-level parallelism also

25

(a) Regular Data Access & Regular Control Flow
Unit-stride loads (A[i],B[i]) and store (C[i])

for (i = 0; i < n; i++)
C[i] = A[i] + B[i];

(b) Regular Data Access & Regular Control Flow
Strided load (A[2*i]) and store (C[2*i])

for (i = 0; i < n; i++)
C[2*i] = A[2*i] + A[2*i+1];

(c) Regular Data Access & Regular Control Flow
Shared load (x)

for (i = 0; i < n; i++)
C[i] = x * A[i] + B[i];

(d) Irregular Data Access & Regular Control Flow
Indexed load (D[A[i]]) and store (E[C[i]])

for (i = 0; i < n; i++)
E[C[i]] = D[A[i]] + B[i];

(e) Regular Data Access & Irregular Control Flow
Unit-stride loads/store with data-dependent
if-then-else conditional

for (i = 0; i < n; i++)
x = (A[i] > 0) ? y : z;
C[i] = x * A[i] + B[i];

(f) Irregular Data Access & Irregular Control Flow
Conditional load (B[i]), store (C[i]), and
computation (x * A[i] + B[i])

for (i = 0; i < n; i++)
if (A[i] > 0)
C[i] = x * A[i] + B[i];

(g) Transforming Irregular Control Flow
Previous example split into irregular compress
loop and then shorter loop with regular
control flow and both regular and irregular
data access

for (m = 0, i = 0; i < n; i++)
if (A[i] > 0)
D[m] = A[i]; E[m] = B[i];
I[m++] = i;

for (i = 0; i < m; i++)
C[I[i]] = x * D[i] + E[i];

(h) Irregular Data Access & Irregular Control Flow
Inner loop with data-dependent number of iterations
(B[i]) and pointer dereference (*A[i])

for (i = 0; i < n; i++)
C[i] = 0;
for (j = 0; j < B[i]; j++)
C[i] += (*A[i])[j];

(i) Irregular Data Access & Irregular Control Flow
Inner loop with complex data-dependent exit
condition, nested control flow, and conditional
loads/stores

for (i = 0; i < n; i++)
C[i] = false; j = 0;
while (!C[i] & (j < m))
if (A[i] == B[j++])
C[i] = true;

(j) Inter-Task Dependency Mixed with DLP
Cross-iteration dependency (C[i] = C[i-1])

for (C[0] = 0, i = 1; i < n; i++)
C[i] = C[i-1] + A[i] * B[i];

(k) Task-Level Parallelism Mixed with DLP
Call through function pointer deference (*A[i])

for (i = 0; i < n; i++)
(*A[i])(B[i]);

Table 2.1: Different Types of Data-Level Parallelism – Examples expressed in a C-like pseudocode and
are ordered from regular data-level parallelism at the top to irregular data-level parallelism at the bottom.

26

has well structured control flow where the control decisions are either known statically or well in

advance of when the control flow actually occurs. Irregular data-level parallelism might have less

structured data accesses where the addresses are more dynamic and difficult to predict, and might

also have less structured control flow with data-dependent control decisions. Irregular DLP might

also include a small number of inter-task dependencies that force a portion of each task to wait for

previous tasks to finish. Eventually a DLP kernel might become so irregular that it is better catego-

rized as exhibiting task-level parallelism. Table 2.1 contains many simple loops which illustrate the

spectrum from regular to irregular DLP.

Table 2.1a is a simple vector-vector addition loop where elements of two arrays are summed

and written to a third array. Although the number of loop iterations (i.e., the size of the arrays)

is often not known until run-time, it does not depend on the array data and still results in a very

regular execution. These kind of data accesses are called unit-stride accesses meaning that the array

elements are accessed consecutively. This loop, as well as all the loops in Table 2.1, can be mapped

to a data-parallel accelerator by considering each loop iteration as a separate data-parallel task. This

loop represents the most basic example of regular DLP: elements are accessed in a very structured

way and all of the iterations perform identical operations. Although simple, many data-parallel

applications contain a great deal of code which is primarily unit-stride accesses with regular control

flow so we should expect data-parallel accelerators to do very well on these kind of loops.

Table 2.1b–c illustrates loops which are also well structured but have slightly more complicated

data accesses. In Table 2.1b, each iteration accesses every other element in the A and C arrays.

These kind of accesses are called strided accesses and in this example the stride is two. Although

still well structured, because strided accesses read or write non-consecutive elements they can result

in execution inefficiencies especially for power-of-two or very large strides. Notice that each loop

iteration loads two consecutive elements of the array A. These make up a special class of strided

accesses called segment accesses, and they are common when working with arrays of structures or

objects [BKGA04]. For example, the loop iteration might be accessing the real and imaginary parts

of a complex number stored in an array of two-element structures. Table 2.1c is a common loop

in linear algebra where we multiply each element in the array A by the scalar value x and add the

result to the corresponding element in the array B. Unlike the previous examples, this loop requires

a scalar value to be distributed across all iterations. These kind of accesses are sometimes called

shared accesses. Although not as simple as unit-stride, data-parallel accelerators should still be able

to take advantage of strided, segment, and shared accesses for improved performance and efficiency.

Table 2.1d illustrates a loop with irregular data accesses but with regular control flow. Elements

from one array are used to index into a different array. For example, while the array A is accessed

with unit stride, the order in which the array D is accessed is not known until run-time and is data

dependent. These kind of accesses are often called indexed accesses although they are also called

gather accesses (for loads) and scatter accesses (for stores). Many data-parallel applications have a

27

mix of both regular and irregular data accesses, so effective data-parallel accelerators should be able

handle many different ways of accessing data. It is important to note, that even if the accelerator

does no better than a general-purpose multicore processor with respect to irregular data accesses,

keeping the data loaded on the accelerator enables more efficient execution of the regular portions

of the application.

Table 2.1e–f illustrates loops with irregular control flow. In Table 2.1e, an if statement is used

to choose which scalar constant should be multiplied by each element of the array A. Although the

conditional is data-dependent so that each task might use a different constant, the execution of each

task will still be very similar. These type of small conditionals lend themselves to some form of

conditional execution such as predication or a conditional move instruction to avoid branch over-

heads. Table 2.1f illustrates a more complicated conditional where the actual amount of work done

by each task might vary. Some tasks will need to complete the multiplication and addition, while

other tasks will skip this work. Notice that the data-dependent control flow also creates irregular

data accesses to the B and C arrays. While the conditional store to C is essential for correctness, it

might be acceptable to load all elements of B even though only a subset will actually be used. In

general-purpose code, speculatively loading an element might cause a protection fault, but this is

less of a concern for data-parallel accelerators which often have very coarse-grain protection facili-

ties. However, using conditional execution for the entire loop is less attractive, since it can result in

significant wasted work. Data-parallel accelerators which can handle irregular control flow are able

to execute a wider variety of data-parallel applications, and as with irregular data access, even if

this does not significantly improve the irregular portions of an application it can enable much more

efficient execution of the regular portions.

Table 2.1g illustrates a technique for transforming irregular DLP into regular DLP. The first

irregular loop compresses only those elements for which the condition is true into three temporary

arrays. The second loop is then completely regular and iterates over just those elements for which

the condition is true. This kind of transformation is often called compression, and the dual transfor-

mation where elements are moved from consecutive indices to sparse indices is called expansion. A

data-parallel accelerator which has no mechanisms for irregular control flow might need to execute

the first loop on the general-purpose processor before being able to execute the second loop on the

data-parallel accelerator. Accelerators for which irregular control flow is possible but inefficient

might also use this type of transformation, and might even provide special vector compress and

expand instructions to facilitate these transformations. There is a fundamental tension between the

time and energy required to perform the transformation and the efficiency of handling irregular con-

trol flow. Data-parallel accelerators which can efficiently execute irregular control flow can avoid

these types of transformations and execute the control flow directly.

Table 2.1h–i illustrates more complicated irregular control flow with nested loops. These loops

can be mapped to a data-parallel accelerator in one of two ways: outer loop parallelization where

28

each task works on a specific iteration of the outer loop, or inner loop parallelization where each task

works on a specific iteration of the inner loop. In Table 2.1h, the outer loop contains an inner loop

with a data-dependent number of iterations. Each element of the array A is a pointer to a separate

subarray. The number of elements in each of these subarrays is stored in the array B. So the inner

loop sums all elements in a subarray, and the outer loop iterates over all subarrays. In Table 2.1i,

each iteration of the outer loop searches the array B for a different value (A[i]) and writes whether

or not this value was found to the output array C. In both examples, all tasks are performing similar

operations (accumulating subarray elements or searching for a value), but the irregular control flow

means that different tasks can have very different amounts of work to do and/or be executing similar

operations but at different points in time. Both examples also contain irregular data accesses. This

kind of irregular DLP can be challenging for some data-parallel accelerators, but note that both

examples still include a small number of regular data accesses and, depending on the data-dependent

conditionals, there might actually be quite a bit of control flow regularity making it worthwhile to

map these loops to a data-parallel accelerator.

The loops in Table 2.1j–k are at the opposite end of the spectrum from regular data-level par-

allelism. The loop in Table 2.1j contains a cross-iteration dependency, since each iteration uses the

result of the previous iteration. Even though this results in inter-task dependencies, there is still

regular DLP available in this example. We can use regular unit-stride accesses to read the A and B

arrays, and all tasks can complete the multiplication in parallel. In Table 2.1k, each iteration of the

loop calls an arbitrary function through a function pointer. Although all of the tasks could be doing

completely different operations, we can still use a regular data access to load the array B. It might be

more reasonable to categorize such loops as task-level parallel or pipeline parallel where it is easier

to reason about the different work each task is performing as opposed to focusing on partitioning

the input dataset. (See [MSM05] for an overview of data-level parallelism, task-level parallelism,

pipeline parallelism, as well as other parallel programming patterns.)

Clearly there is quite a variety in the types of DLP, and there have been several studies which

demonstrate that full DLP applications contain a mix of regular and irregular DLP [SKMB03,

KBH+04a, RSOK06, MJCP08]. Accelerators which can handle a wider variety of DLP are more

attractive than those which are restricted to just regular DLP for many reasons. First, it is possible

to improve performance and energy-efficiency even on irregular DLP. Second, even if the perfor-

mance and energy-efficiency on irregular DLP is similar to a general-purpose processor, by keeping

the work on the accelerator we make it easier to exploit regular DLP inter-mingled with irregular

DLP. Finally, a consistent way of mapping both regular and irregular DLP simplifies the program-

ming methodology.

29

2.2 Overall Structure of Data-Parallel Accelerators

Data-parallel accelerators augment a general-purpose processor and are specialized for execut-

ing the types of data-parallelism introduced in the previous section. The general-purpose processor

distributes data-parallel work to the accelerator, executes unstructured code not suitable for the

accelerator, and manages system-level functions. Ideally, data-parallel code should have improved

performance and energy-efficiency when executing on the accelerator as compared to the same code

running on the general-purpose processor. Figure 2.1 shows various approaches for combining a

general-purpose processor with a data-parallel accelerator.

Figure 2.1a shows a two-chip solution where the accelerator is a discrete component connected

to the general-purpose processor through an off-chip interconnect. In this organization, both the

general-purpose processor and the accelerator can share a common pool of main-memory or possi-

bly include dedicated memory for each chip. Both the Berkeley T0 vector processor and the Stan-

ford Imagine stream processor shown in Figures 1.3a and 1.3b are discrete accelerators that serve as

coprocessors for a general-purpose processor. These examples include a single data-parallel core,

but more recent accelerators use a tiled approach to integrate tens of cores on a single chip. In

(a) Discrete Accelerator

(b) Partially Integrated Accelerator

(c) Fully Integrated Accelerator

Figure 2.1: General-Purpose Processor Augmented
with a Data-Parallel Accelerator – (a) discrete accel-
erators might have their own main-memory and com-
municate with the general-purpose processor via an off-
chip interconnect, (b) partially integrated accelerators
share main-memory and communicate with the general-
purpose processor via an on-chip interconnect, (c) fully
integrated accelerators tightly couple a general-purpose
and data-parallel core into a single tile (GPC = general-
purpose core, DPC = data-parallel core, LM = local
memory, R = on-chip router)

30

Figure 2.1a a tile is comprised of one or more cores, some amount of local memory, and an on-chip

network router which are then instantiated across both the general-purpose processor and the accel-

erator in a very regular manner. The NVIDIA Fermi architecture shown in Figure 1.3d includes 32

cores tiled across the discrete accelerator.

Unfortunately, discrete accelerators suffer from large startup overheads due to the latency and

bandwidth constraints of moving data between the general-purpose processor and the accelerator.

The overheads inherent in discrete accelerators have motivated a trend towards integrated acceler-

ators that can more efficiently exploit finer-grain DLP. Figure 2.1b shows an integration strategy

where the data-parallel cores are still kept largely separate from the general-purpose cores. An

early example, shown in Figure 1.3c, is the IBM Cell processor, which integrated a general-purpose

processor with eight data-parallel cores on the same die [GHF+06]. Figure 2.1c shows an even

tighter integration strategy where a general-purpose and data-parallel core are combined into a sin-

gle tile. Industry leaders have indicated their interest in this approach, and it seems likely that fully

integrated accelerators will be available sometime this decade [HBK06, amd08].

It is important to distinguish the data-parallel accelerators described so far from previous large-

scale multi-node data-parallel machines. Some of these machines are similar in spirit to the patterns

presented later in this chapter including multithreaded machines such as the Denelcor HEP machine

and Cray MTA machine, and vector machines such as those offered by Cray, CDC, Convex, NEC,

Hitachi, and Fujitsu. (See [URv03] for a survey of multithreaded machines and [EVS98, Oya99,

HP07, Appendix F.10] for a survey of vector machines.) These machines are expensive supercom-

puters primarily intended for high-performance scientific computing. They are designed with less

emphasis on reducing the energy per task, and more focus on achieving the absolute highest per-

formance possible. Programming such machines can often be cumbersome, especially for irregular

DLP on vector supercomputers. Data-parallel accelerators, on the other hand, must be low cost and

thus are implemented either on a single-chip or tightly integrated with a general-purpose proces-

sor. They must be easy to program and flexibly handle a diverse range of DLP applications with

high energy-efficiency. We can learn much from multi-node data-parallel machines, and they in-

spire some of the architectural design patterns described in this chapter. Data-parallel accelerators,

however, offer a new set of opportunities and challenges.

Although the communication mechanism between the general-purpose processor and acceler-

ator, the intra-accelerator network, and the accelerator memory system are all critical aspects of

an effective implementation, in this thesis I focus on the actual data-parallel cores. These special-

ized cores are what distinguish accelerators from general-purpose processors and are the key to the

accelerator’s performance and efficiency advantages. Just as there are many types of data-level par-

allelism, there are many types of data-parallel cores; each with its own strengths and weaknesses.

To help understand this design space, the rest of this chapter presents five architectural patterns for

the design of data-parallel cores.

31

2.3 MIMD Architectural Design Pattern

The multiple-instruction multiple-data (MIMD) pattern is perhaps the simplest approach to

building a data-parallel accelerator. A large number of scalar cores are replicated across a sin-

gle chip. Programmers can map each data-parallel task to a separate core, but without any dedicated

DLP mechanisms, it is difficult to gain an energy-efficiency advantage when executing DLP appli-

cations. These scalar cores can be extended to support per-core multithreading which helps improve

performance by hiding various control flow, functional unit, and memory latencies.

Figure 2.2 shows the programmer’s logical view and an example implementation for the multi-

threaded MIMD pattern. I assume that all of the design patterns in this chapter include a host thread

as part of the programmer’s logical view. The host thread runs on the general-purpose processor

and is responsible for application startup, configuration, interaction with the operating system, and

managing the data-parallel accelerator. I refer to the threads which run on the data-parallel accelera-

tor as microthreads, since they are lighter weight than the threads which run on the general-purpose

processor. Microthreads are under complete control of the user-level application and may have sig-

nificant limitations on what kind of instructions they can execute. Although a host thread may be

virtualized by the operating system, microthreads are never virtualized meaning there is a one-to-one

correspondence between microthreads and hardware thread contexts in the data-parallel accelera-

tor. In this pattern, the host thread communicates with the microthreads through shared memory.

The primary advantage of the MIMD pattern is the flexible programming model, and since every

core can execute a fully independent task, there should be little difficulty in mapping both regular

and irregular DLP applications. This simplifies the parallel programming challenge compared to

the other design patterns, but the primary disadvantage is that this pattern does little to address the

parallel energy-efficiency challenge.

(a) Programmer’s Logical View (b) Implementation of 2 Cores
Each With 2-Microthreads

Figure 2.2: MIMD Architectural Design Pattern – A general-purpose host thread uses shared memory to
manage an array of microthreads. Each scalar microthread works on a different partition of the input dataset
and is responsible for its own data access and control flow. Microthreads correspond to physical hardware
contexts which are distributed across cores in the implementation. (HT = host thread, µT = microthread)

32

1 div m, n, nthreads
2 mul t, m, tidx
3 add a_ptr, t
4 add b_ptr, t
5 add c_ptr, t
6

7 sub t, nthreads, 1
8 br.neq t, tidx, notlast
9 rem m, n, nthreads

10 notlast:
11

12 load x, x_ptr
13

14 loop:
15 load a, a_ptr
16 load b, b_ptr
17 mul t, x, a
18 add c, t, b
19 store c, c_ptr
20

21 add a_ptr, 1
22 add b_ptr, 1
23 add c_ptr, 1
24

25 sub m, 1
26 br.neq m, 0, loop

(a) Pseudo-Assembly

(b) Execution Diagram for 2-Core,
4-Microthread Implementation

Figure 2.3: Mapping Regular DLP to the MIMD Pattern – Example (a) pseudo-assembly and (b) execu-
tion corresponding to Table 2.1c. Execution diagram starts with load at line 12. Since there are no explicit
mechanisms for rgular DLP exposed as part of a MIMD instruction set, DLP codes are always encoded as a
set of scalar operations. For regular DLP, these operations execute in lock step but with little improvement
in energy efficiency. (Assume * ptr and n are inputs. nthreads = total number of microthreads, tidx =
current microthread’s index, uti = microthread i. Pseudo-assembly line (1–2) determine how many elements
each microthread should process, (3–5) set array pointers for this microthread, (7–9) last microthread only
processes leftover elements, (12) shared scalar load, (15–16) scalar loads, (17–18) scalar arithmetic, (19)
unit-stride vector store, (21–23) increment array pointers, (25–26) decrement loop counter and branch if not
done.)

33

1 div m, n, nthreads
2 mul t, m, tidx
3 add a_ptr, t
4 add b_ptr, t
5 add c_ptr, t
6

7 sub t, nthreads, 1
8 br.neq t, tidx, notlast
9 rem m, n, nthreads

10 notlast:
11

12 load x, x_ptr
13

14 loop:
15 load a, a_ptr
16 br.eq a, 0, done
17

18 load b, b_ptr
19 mul t, x, a
20 add c, t, b
21 store c, c_ptr
22

23 done:
24 add a_ptr, 1
25 add b_ptr, 1
26 add c_ptr, 1
27

28 sub m, 1
29 br.neq m, 0, loop

(a) Pseudo-Assembly

(b) Execution Diagram for 2-Core,
4-Microthread Implementation

Figure 2.4: Mapping Irregular DLP to the MIMD Pattern – Example (a) pseudo-assembly and (b) execu-
tion corresponding to Table 2.1f. Execution diagram starts with load at line 12. Irregular DLP maps naturally
since each microthread can use scalar branches for complex control flow. The microthreads are coherent
(executing in lock-step) before the scalar branch but then diverge after the branch. (Assume * ptr and n are
inputs. nthreads = total number of microthreads, tidx = current microthread’s index, uti = microthread i.
Pseudo-assembly line (1–2) determine how many elements each microthread should process, (3–5) set array
pointers for this microthread, (7–9) last microthread only processes leftover elements, (12) shared scalar load,
(15–16) check data-dependent conditional and skip work if possible, (18–21) conditionally executed scalar
ops, (24–26) increment array pointers, (28–29) decrement loop counter and branch if not done.)

34

Figure 2.3a demonstrates how we might map the regular DLP loop shown in Table 2.1c to the

MIMD pattern. The first ten lines of the pseudo-assembly code divide the work among the mi-

crothreads such that each thread works on a different consecutive partition of the input and output

arrays. Although more efficient partitioning schemes are possible, we must always allocate the work

at a fine-grain in software. Also notice that in the MIMD pattern all microthreads redundantly load

the shared scalar value x (line 12). This might seem trivial, but the lack of a specialized mechanism

to handle shared loads and possibly also shared computation can adversely impact many regular

DLP codes. Similarly there are no specialized mechanisms to take advantage of the regular data

accesses. Figure 2.3b shows an example execution diagram for a 2-core, 4-microthread implemen-

tation with two-way multithreading. The scalar instructions from each microthread are interleaved

in a fixed pattern. Since threads will never bypass values between each other, a fixed thread inter-

leaving can improve energy-efficiency by eliminating the need for some interlocking and bypassing

control logic. Unfortunately, a fixed interleaving can also cause poor performance on scalar code

or when one or more threads are stalled. A more dynamic scheduling scheme can achieve higher

performance by issuing any thread on any cycle, but then we must once again include the full in-

terlocking and bypassing control logic to support back-to-back instructions from the same thread.

For this and all execution diagrams in this chapter, we limit the number of function unit resources

for simplification. In this example, each core can only execute one instruction at a time, but a real-

istic implementation would almost certainly include support for executing multiple instructions at

once either through dynamic superscalar issue or possibly static VLIW scheduling; both of which

can exploit instruction-level parallelism to enable increased performance at the cost of some energy

overhead.

Figure 2.4a demonstrates how we might map the irregular DLP loop shown in Table 2.1f to the

MIMD pattern. It is very natural to map the data-dependent conditional to a scalar branch which

simply skips over the unnecessary work when possible. It is also straight-forward to implement con-

ditional loads and stores of the B and C arrays by simply placing them after the branch. Figure 2.4b

shows how the microthreads are coherent (execute in lock-step) before the branch and then diverge

after the data-dependent conditional with µT1 and µT2 quickly moving on to the next iteration.

After a few iterations the microthreads will most likely be completely diverged.

The recently proposed 1000-core Illinois Rigel accelerator is a good example of the MIMD

pattern with a single thread per scalar core [KJJ+09]. The Rigel architects specifically rational-

ize the decision to use standard scalar RISC cores with no dedicated hardware mechanisms for

regular DLP to enable more efficient execution of irregular DLP [KJJ+09]. Sun’s 8-core Niagara

processors exemplify the spirit of the multithreaded MIMD pattern with 4–8 threads per core for a

total of 32–64 threads per chip [KAO05, NHW+07]. The Niagara processors are good examples

of the multithreading pattern, although they are not specifically data-parallel accelerators. Niagara

threads are heavier-weight than microthreads, and Niagara is meant be a stand-alone processor as

35

opposed to a true coprocessor. Even so, the Niagara processors are often used to execute both reg-

ular and irregular DLP codes, and their multithreading enables good performance on these kinds

of codes [Wil08]. Niagara processors dynamically schedule active threads, giving priority to the

least-recently scheduled thread. Threads can become inactive while waiting for data from cache

misses, branches to resolve, or long-latency functional units such as multiplies and divides. These

MIMD accelerators can be programmed using general-purpose parallel programming frameworks

such as OpenMP [ope08b] and Intel’s Thread Building Blocks [Rei07], or in the case of the Rigel

accelerator, a custom task-based framework is also available [KJL+09].

2.4 Vector-SIMD Architectural Design Pattern

In the vector single-instruction multiple-data (vector-SIMD) pattern a control thread uses vector

memory instructions to move data between main memory and vector registers, and vector arithmetic

instructions to operate on vectors of elements at once. As shown in Figure 2.5a, one way to think

of this pattern is as if each control thread manages an array of microthreads which execute in lock-

step; each microthread is responsible for one element of the vector. In this context, microthreads are

sometimes referred to as virtual processors [ZB91]. The number of microthreads per control thread,

or synonymously the number of elements per vector register, is also called the hardware vector

(a) Programmer’s Logical View (b) Implementation of
2-Lane, 4-Microthread Core

Figure 2.5: Vector-SIMD Architectural Design Pattern – A general-purpose host thread uses shared mem-
ory to manage a large number of control threads. Each control thread is in turn responsible for managing a
small array of microthreads using a combination of vector memory and arithmetic commands. The input
dataset is partitioned across the control threads at a coarse granularity and then partitioned again across the
microthreads at a fine granularity. A control thread and its array of microthreads map to a single core in the
implementation; the control thread executes on a control processor, and the microthreads are striped both
spatially and temporally across some number of vector lanes. Each control thread’s array of microthreads
execute in lockstep. The vector issue unit, vector lanes, and vector memory unit are often referred to as a
vector unit. (HT = host thread, CT = control thread, µT = microthread, CP = control processor, VIU = vector
issue unit, VMU = vector memory unit.)

36

length (e.g., four in Figure 2.5a). As in the MIMD pattern, a host thread runs on the general purpose

processor and manages the data-parallel accelerator. Unlike the MIMD pattern, a host thread in

the vector-SIMD pattern only interacts with the control threads through shared memory and does

not directly manage the microthreads. This explicit two-level hierarchy is an important part of the

vector-SIMD pattern. Even though the host thread and control threads must still allocate work at

a coarse-grain amongst themselves via software, this configuration overhead is amortized by the

hardware vector length. The control thread in turn distributes work to the microthreads with vector

instructions enabling very efficient execution of fine-grain DLP.

Figure 2.5b shows a prototypical implementation for a single vector-SIMD core. The control

thread is mapped to a control processor (CP) and the microthreads are striped across an array of

vector lanes. In this example, there are two lanes and the vector length is four meaning that two

microthreads are mapped to each lane. The vector memory unit (VMU) handles executing vector

memory instructions which move data between the data memory and the vector register file in large

blocks. The vector issue unit (VIU) handles the dependency checking and eventual dispatch of vec-

tor arithmetic instructions. Together the VIU, VMU, and the vector lanes are called a vector unit.

Vector units can have varying numbers of lanes. At one extreme are purely spatial implementations

where the number of lanes equals the hardware vector length, and at the other extreme are purely

temporal implementations with a single lane. Multi-lane implementations improve throughput and

amortize area overheads at the cost of increased design complexity, control broadcast energy in

the VIU, and memory crossbar energy in the VMU. An important part of the vector-SIMD pattern

is represented by the queue in Figure 2.5b, which enables the control processor to be decoupled

from the vector unit [EV96]. This decoupling allows the control thread to run-ahead and better

tolerate various latencies, but also means the control thread must use vector memory fence instruc-

tions to properly order memory dependencies between the control thread and the microthreads. In

addition to decoupling, vector-SIMD control processors can leverage more sophisticated architec-

tural techniques such as multithreading [EV97], out-of-order execution [EVS97], and superscalar

issue [QCEV99]. Such control processors accelerate vector execution but also enable higher per-

formance on general-purpose codes. Eventually, vector-SIMD control processor might become so

general-purpose that the resulting data-parallel accelerator should really be regarded as a unified

accelerator in the spirit of Figure 2.1c. (See [HP07, Appendix F] for a more detailed introduction to

vector instruction sets and microarchitecture.)

Regular DLP maps very naturally to the vector-SIMD pattern. Figure 2.6a shows the vector-

SIMD pseudo-assembly corresponding to the regular loop in Table 2.1c. Since this thesis focuses

on a single core, I do not show any of the instructions required for coarse-grain data partitioning

across cores. Unit-stride vector memory instructions (lines 5–6,9) efficiently move consecutive

blocks of data in and out of vector registers. It is also common to provide special vector instructions

for handling strided, indexed, and sometimes segment accesses. Vector-vector arithmetic instruc-

37

1 load x, x_ptr
2

3 loop:
4 setvl vlen, n
5 load.v VA, a_ptr
6 load.v VB, b_ptr
7 mul.sv VT, x, VA
8 add.vv VC, VT, VB
9 store.v VC, c_ptr

10

11 add a_ptr, vlen
12 add b_ptr, vlen
13 add c_ptr, vlen
14

15 sub n, vlen
16 br.neq n, 0, loop

(a) Pseudo-Assembly

(b) Execution Diagram for 2-Lane, 4-Microthread Core

Figure 2.6: Mapping Regular DLP to the Vector-SIMD Pattern – Example (a) pseudo-assembly and (b)
execution corresponding to Table 2.1c. Regular DLP maps naturally using vector memory and arithmetic
commands. Each iteration of the stripmine loop works on vlen elements at once. (Assume * ptr and n are
inputs. Vi = vector register i, *.v = vector command, *.vv = vector-vector op, *.sv = scalar-vector op, eli =
element i. Pseudo-assembly line (1) shared scalar load, (4) set active hardware vector length, (5–6) unit-stride
vector loads, (7–8) vector arithmetic, (9) unit-stride vector store, (11–13) increment array pointers, (15–16)
decrement loop counter and branch if not done.)

tions (line 8) efficiently encode regular arithmetic operations across the full vector of elements, and

a combination of a scalar load and a scalar-vector instruction (lines 1,7) can easily handle shared

accesses. In the vector-SIMD pattern the hardware vector length is not fixed by the instruction set

but is instead stored in a special control register. The setvl instruction takes the application vector

length (n) as an input and writes the minimum of the application vector length and the hardware

vector length to the given destination register vlen (line 4). As a side-effect, the setvl instruction

sets the active vector length which essentially specifies how many of the microthreads are active

and should participate in a vector instruction. Software can use the setvl instruction to process

the vectorized loop in blocks equal to the hardware vector length without knowing what the actual

hardware vector length is at compile time. The setvl instruction will naturally handle the final

iteration when the application vector length is not evenly divisible by the hardware vector length;

setvl simply sets the active vector length to be equal to the final remaining elements. This tech-

nique is called stripmining and enables a single binary to handle varying application vector lengths

while still running on many different implementations with varying hardware vector lengths.

Figure 2.6b shows the execution diagram corresponding to the regular DLP pseudo-assembly

38

1 load x, x_ptr
2

3 loop:
4 setvl vlen, n
5 load.v VA, a_ptr
6 load.v VB, b_ptr
7 cmp.gt.v VF, VA, 0
8

9 mul.sv VT, x, VA, VF
10 add.vv VC, VT, VB, VF
11 store.v VC, c_ptr, VF
12

13 add a_ptr, vlen
14 add b_ptr, vlen
15 add c_ptr, vlen
16

17 sub n, vlen
18 br.neq n, 0, loop

(a) Pseudo-Assembly

(b) Execution Diagram for 2-Lane, 4-Element Implementation

Figure 2.7: Mapping Irregular DLP to the Vector-SIMD Pattern – Example (a) pseudo-assembly and (b)
execution corresponding to Table 2.1f. Irregular DLP maps less naturally requiring the use of vector flags
to conditionally execute operations for just a subset of the elements. Managing complex nested control flow
can be particularly challenging. (Assume * ptr and n are inputs. Vi = vector register i, VF = vector flag
register, *.v = vector command, *.vv = vector-vector op, *.sv = scalar-vector op, eli = element i. Pseudo-
assembly line (1) shared scalar load, (4) set active hardware vector length, (5–6) unit-stride vector loads, (7)
set vector flag register VF based on comparing VA to zero, (9–10) conditional vector arithmetic under flag,
(11) conditional vector store under flag, (13–15) increment array pointers, (17–18) decrement loop counter
and branch if not done.)

for the two-lane, four-microthread implementation pictured in Figure 2.5b. The vector memory

commands are broken into two parts: the address portion goes to the VMU which will issue the re-

quest to memory while the register write/read portion goes to the VIU. For vector loads, the register

writeback waits until the data returns from memory and then controls writing the vector register file

two elements per cycle over two cycles. Notice that the VIU/VMU are decoupled from the vector

lanes to allow the implementation to overlap processing multiple vector loads. The vector arith-

metic operations are also processed two elements per cycle over two cycles. The temporal mapping

of microthreads to the same lane is an important aspect of the vector-SIMD pattern. We can eas-

ily imagine using a larger vector register file to support longer vector lengths that would keep the

vector unit busy for tens of cycles. The fact that one vector command can keep the vector unit busy

for many cycles decreases instruction issue bandwidth pressure. So as in the MIMD pattern we

can exploit instruction-level parallelism by adding support for executing multiple instructions per

39

microthread per cycle, but unlike the MIMD pattern it may not be necessary to increase the issue

bandwidth, since one vector instruction occupies a vector functional unit for many cycles. Almost

all vector-SIMD accelerators will take advantage of multiple functional units and also support by-

passing (also called vector chaining) between these units. A final point to note is how the control

processor decoupling and multi-cycle vector execution enables the control thread to continue exe-

cuting while the vector unit is still processing older vector instructions. This decoupling means the

control thread can quickly work through the loop overhead instructions (lines 11–16) so that it can

start issuing the next iteration of the stripmine loop as soon as possible.

Figure 2.6 helps illustrate three ways the vector-SIMD pattern can improve energy-efficiency:

(1) the microthreads simply do not execute some operations which must be executed for each ele-

ment in the MIMD pattern (e.g., the shared load on line 1, the pointer arithmetic on lines 11–13,

and the loop control overhead on lines 15–16); these instructions are instead executed by the control

thread either once outside the stripmine loop or once for every vlen elements inside the stripmine

loop; (2) for those arithmetic operations that the microthreads do need to execute (e.g., the actual

multiplication and addition associated with lines 7–8), the CP and VIU can amortize various over-

heads such as instruction fetch, decode, and dependency checking over vlen elements; and (3) for

those memory accesses which the microthreads still need to execute (e.g., the unit-stride accesses on

lines 5–6,9) the VMU can efficiently move the data in large blocks. (See [LSFJ06] for a first-order

quantitative study of the energy-efficiency of vector-SIMD compared to a standard general-purpose

processor.)

Mapping irregular DLP to the vector-SIMD pattern can be significantly more challenging than

mapping regular DLP. Figure 2.7a shows the vector-SIMD pseudo-assembly corresponding to the

irregular loop in Table 2.1f. The key difference from the regular DLP example in Figure 2.6 is the

use of a vector flag to conditionally execute the vector multiply, addition, and store instructions

(lines 9–11). Although this might seem simple, leveraging this kind of conditional execution for

more complicated irregular DLP with nested conditionals (e.g., Table 2.1h–k) can quickly require

many independent flag registers and complicated flag arithmetic [SFS00]. Figure 2.7b shows the

execution diagram for this irregular DLP loop. In this example, microthreads which are inactive

because the corresponding flag is false still consume execution resources. This is called a vlen-time

implementation, since the execution time of a vector instruction is proportional to the vector length

regardless of how many microthreads are inactive. A more complicated density-time implementa-

tion skips inactive elements meaning that the execution time is proportional to the number of active

elements [SFS00]. Density-time can be quite difficult to implement in a multi-lane vector unit,

since the lanes are no longer strictly executing in lock-step. This is one motivation for our interest

in single-lane vector units.

Note that even though this is an irregular DLP loop, we can still potentially improve energy-

efficiency by offloading instructions onto the control thread, amortizing control overheads, and

40

using vector memory accesses. These savings must be balanced by the wasted energy for processing

elements which are inactive. There are however opportunities for optimization. It is possible to

bypass flag writes so that inactive elements can attempt to use clock or data gating to minimize

energy. Once the entire flag register is written it may be possible to discard vector instructions

for which no microthreads are active, but the implementation still must fetch, decode, and process

these instructions. A density-time implementation will of course eliminate any work for inactive

microthreads at the cost of increased control complexity.

The Berkeley Spert-II system uses the T0 vector-SIMD processor to accelerate neural network,

multimedia, and digital signal processing applications [WAK+96, Asa98]. The T0 instruction set

contains 16 vector registers; unit-stride, strided, and indexed vector memory instructions; and a

variety of integer and fixed-point vector arithmetic instructions. Conditional vector move instruc-

tions enable data-dependent conditional control flow. The T0 microarchitecture uses a simple RISC

control processor and eight vector lanes, and it supports a vector length of 32. Three independent

vector functional units (two for vector arithmetic operations and one for vector memory operations)

enable execution of up to 24 operations per cycle. The Spert-II system includes a Sun Sparc proces-

sor for general-purpose computation and the discrete T0 data-parallel accelerator on an expansion

card. The Spert-II system uses hand-coded assembly to vectorize critical kernels, but vectorizing

compilers are also possible [DL95].

2.5 Subword-SIMD Architectural Design Pattern

The subword single-instruction multiple-data (subword-SIMD) architectural pattern is closely

related to the vector-SIMD pattern but also captures some important differences. Figure 2.8 illus-

trates the programmer’s logical view and an example implementation for this pattern. As with the

vector-SIMD pattern, a host thread manages a collection of control threads which map to control

processors each with its own vector-like unit. However, the defining characteristic of the subword-

SIMD pattern is that the “vector-like unit” is really a standard full-word scalar datapath with stan-

dard scalar registers often corresponding to a double-precision floating-point unit. The pattern lever-

ages these existing scalar datapaths in the SIMD unit to execute multiple narrow-width operations

in a single cycle. For example, in Figure 2.8 each register in the SIMD unit is 64-bit wide but we can

treat this register as containing 8× 8-bit, 4× 16-bit, 2× 32-bit, or 1× 64-bit operands. The exe-

cution resources are similarly partitioned enabling special SIMD instructions to execute vector-like

arithmetic operations. Some subword-SIMD variants support bitwidths larger than the widest scalar

datatype, in which case the datapath can only be fully utilized with subword-SIMD instructions.

Other variants unify the control thread and SIMD unit such that the same datapath is used for both

control, scalar arithmetic, and subword-SIMD instructions. Unified subword-SIMD saves area but

eliminates any chance of control-thread decoupling.

41

In subword-SIMD, the number of elements which can be processed in a cycle is a function of

how many elements can be packed into the word width. Since this number can vary depending on

element size, the subword-SIMD datapath must be tightly integrated. Data movement into and out

of the SIMD register file must be in full-word blocks, and there are often alignment constraints or

performance implications for unaligned loads and stores. Software is often responsible for shuffling

data elements via special permute operations so that elements are in the correct positions. These fac-

tors lead to a large amount of cross-element communication which can limit subword-SIMD widths

to around 128–256 bits and also complicate temporal as opposed to purely spatial implementations.

As illustrated in Figure 2.8 the full-word SIMD width is exposed to software requiring code to be

rewritten for differently sized SIMD units. Ultimately, a programmer must think about the unit as a

single wide datapath as opposed to a vector of elements, and this can make mapping irregular DLP

applications to subword-SIMD units challenging. One advantage of subword SIMD is that the full

datapath can be sometimes be leveraged for non-DLP code which uses full-width operands (e.g.,

double-precision operations on a 64-bit subword-SIMD datapath).

There are several characteristics of the subword-SIMD pattern which helps distinguish this pat-

tern from the vector-SIMD pattern. Subword SIMD has short vector lengths which are exposed to

software as wide fixed-width datapaths, while vector-SIMD has longer vector lengths exposed to

software as a true vector of elements. In vector-SIMD, the vector length is exposed in such a way

that the same binary can run on many different implementations with varying hardware resources

(a) Programmer’s Logical View (b) Implementation of
Subword-SIMD Core

Figure 2.8: Subword-SIMD Architectural Design Pattern – A general-purpose host thread uses shared
memory to manage a large number of control threads. Each control thread has its own SIMD unit which can
execute full-word memory commands and subword-SIMD arithmetic commands to process multiple narrow
width operations at once. The input dataset is partitioned across the control threads at a coarse granularity
and then partitioned again across subword elements at a very fine granularity. A control thread and its SIMD
unit map to a single core in the implementation. In the subword-SIMD pattern, the hardware vector length is
fixed and part of the instruction set meaning there is little abstraction between the logical view and the actual
implementation. (HT = host thread, CT = control thread, CP = control processor, VIU = vector issue unit,
VMU = vector memory unit.)

42

and/or amounts of temporal versus spatial microthreading. Additionally, vector-SIMD has more

flexible data-movement operations which alleviates the need for software data shuffling. In this the-

sis, I focus less on the subword-SIMD pattern, because the vector-SIMD pattern is better suited to

applications with large amounts of data-parallelism as opposed to a more general-purpose workload

with smaller amounts of data-parallelism.

The IBM Cell processor includes a general-purpose processor implementing the standard Power

instruction set as well as an array of eight data-parallel cores interconnected by a on-chip ring net-

work [GHF+06]. Each data-parallel core includes a unified 128-bit subword-SIMD datapath which

can execute scalar operations as well as 16× 8-bit, 8× 16-bit, 4× 32-bit, or 2× 64-bit operations.

The data-parallel cores can only access memory with aligned 128-bit operations, so special permute

operations are required for unaligned accesses. Unaligned or scalar stores require multiple instruc-

tions to read, merge, and then write a full 128-bit value. Subword-SIMD conditional moves are

provided for data-dependent conditionals, although each data-parallel core’s control thread also has

standard scalar branches. The Cell processor is a good example of the subword-SIMD pattern for

dedicated data-parallel accelerators, but almost all general-purpose processors have also included

some form of subword-SIMD for over a decade. Examples include Intel’s MMX and SSE exten-

sions for the IA-32 architecture, AMD’s 3DNow! extensions for the IA-32 architecture, MIPS’

MIPS-3D extensions for the MIPS32 and MIPS64 architectures, HP’s MAX extensions for the PA-

RISC architecture, and Sun’s VIS extensions for the Sparc architecture (see [SS00] for a survey of

subword-SIMD extensions in general-purpose processors). These extensions help general-purpose

processors better execute data-parallel applications, and are a first step towards the full integration

shown in Figure 2.1c. In terms of programming methodology, many modern compilers include in-

trinsics for accessing subword-SIMD operations, and some compilers include optimization passes

that can automatically vectorize regular DLP.

2.6 SIMT Architectural Design Pattern

The single-instruction multiple-thread (SIMT) pattern is a hybrid pattern with a programmer’s

logical view similar to the MIMD pattern but an implementation similar to the vector-SIMD pattern.

As shown in Figure 2.9, the SIMT pattern supports a large number of microthreads which can

each execute scalar arithmetic and control instructions. There are no control threads, so the host

thread is responsible for directly managing the microthreads (usually through specialized hardware

mechanisms). A microthread block is mapped to a SIMT core which contains vector lanes similar

to those found in the vector-SIMD pattern. However, since there is no control thread, the VIU

is responsible for amortizing overheads and executing the microthread’s scalar instructions in lock-

step when they are coherent. The VIU also manages the case when the microthreads execute a scalar

branch possibly causing them to diverge. Micro-threads can sometimes reconverge through static

hints in the scalar instruction stream or dynamic hardware mechanisms. SIMT only has scalar loads

43

Figure 2.9: SIMT Architectural Design Pattern – A general-purpose host thread manages a large number
of microthreads using dedicated hardware schedulers. The input dataset is partitioned across the microthreads
at a fine granularity, and each microthread executes scalar instructions. A block of microthreads is mapped to
a single core which is similar in spirit to a vector unit. A SIMT vector issue unit can dynamically transform
the same scalar instruction executed across a core’s microthreads into vector-like arithmetic commands, and a
SIMT vector memory unit can dynamically transform regular data accesses across a core’s microthreads into
vector-like memory commands. (HT = host thread, µT = microthread, VIU = vector issue unit, VMU = vector
memory unit.)

and stores, but the VMU can include a memory coalescing unit which dynamically detects when

these scalar accesses can be turned into vector-like memory operations. The SIMT pattern usually

exposes the concept of a microthread block to the programmer: barriers are sometimes provided

for intra-block synchronization, and application performance depends heavily on the coherence and

coalescing opportunities within a microthread block.

Regular DLP maps to the SIMT pattern in a similar way as in the MIMD pattern except that each

microthread is usually only responsible for a single element as opposed to a range of elements (see

Figure 2.10a). Since there are no control threads and thus nothing analogous to the vector-SIMD

pattern’s setvl instruction, a combination of dedicated hardware and software is required to man-

age the stripmining. The host thread tells the hardware how many microthread blocks are required

for the computation and the hardware manages the case when the number of requested microthread

blocks is greater than what is available in the actual hardware. In the common case where the ap-

plication vector length is not statically guaranteed to be evenly divisible by the microthread block

size, each microthread must use a scalar branch to verify that the computation for the corresponding

element is actually necessary (line 1). Notice that as with the MIMD pattern, each microthread is

responsible for its own address calculation to compute the location of its element in the input and

output arrays (lines 3–5).

Figure 2.10b shows the execution diagram corresponding to the regular DLP pseudo-assembly

for the two-lane, four-element implementation pictured in Figure 2.9b. Scalar branch management

corresponding to the branch at line 1 will be discussed later in this section. Without a control

thread, all four microthreads redundantly perform address calculations (lines 3–4) and the actual

44

1 br.gte tidx, n, done
2

3 add a_ptr, tidx
4 add b_ptr, tidx
5 add c_ptr, tidx
6

7 load x, x_ptr
8

9 load a, a_ptr
10 load b, b_ptr
11 mul t, x, a
12 add c, t, b
13 store c, c_ptr
14 done:

(a) Pseudo-Assembly

(b) Execution Diagram for 2-Lane, 4-Microthread Implementation

Figure 2.10: Mapping Regular DLP to the SIMT Pattern – Example (a) pseudo-assembly and (b) exe-
cution corresponding to Table 2.1c. Since there are no explicit mechansims for regular DLP exposed as part
of a SIMT instruction set, DLP codes are always encoded as a set of scalar operations for each microthread.
The implementation attempts to execute coherent scalar arithmetic ops with vector-like efficiencies and turn
unit-stride scalar accesses into vector-like memory ops with dynamic coalescing. (Assume * ptr and n are
inputs. tidx = current microthread’s index, uti = microthread i. Pseudo-assembly line (1) branch to handle
situations where application vector length n is not evenly divisible by the hardware vector length, (3–5) set
array pointers for this microthread, (7) shared scalar load, (9–10) scalar loads, (11–12) scalar arithmetic, (13)
scalar store.)

45

1 br.gte tidx, n, done
2

3 add a_ptr, tidx
4 load a, a_ptr
5 br.eq a, 0, done
6

7 add b_ptr, tidx
8 add c_ptr, tidx
9

10 load x, x_ptr
11 load b, b_ptr
12 mul t, x, a
13 add c, t, b
14 store c, c_ptr
15 done:

(a) Pseudo-Assembly

(b) Execution Diagram for 2-Lane, 4-Microthread Implementation

Figure 2.11: Mapping Irregular DLP to the SIMT Pattern – Example (a) pseudo-assembly and (b) ex-
ecution corresponding to Table 2.1f. Irregular DLP maps naturally since each SIMT microthread already
exclusively uses a scalar instruction set and thus can leverage scalar branches which are dynamically turned
into vector-like flags. (Assume * ptr and n are inputs. tidx = current microthread’s index, uti = microthread
i. Pseudo-assembly line (1) branch to handle situations where application vector length n is not evenly divis-
ible by the hardware vector length, (3–5) check data-dependent conditional and skip work if possible, (7–8)
set remaining array pointers for this microthread, (10) shared scalar load, (11) scalar loads, (12–13) scalar
arithmetic, (14) scalar store.)

46

scalar load instruction (lines 9–10) even though these are unit-stride accesses. SIMT instruction

sets may, however, provide special addressing modes to help streamline this process. The VMU

dynamically checks all four addresses, and if they are consecutive, then the VMU will transform

these accesses into a single vector-like memory operation. Also notice that since there is no control

thread to amortize the shared load at line 7, all four microthreads must redundantly load x. The

VMU may be able to dynamically coalesce this into one scalar load which is then broadcast to

all four microthreads. Since the microthreads are coherent when they execute the scalar multiply

and addition instructions (lines 11–12), the VIU should be able to execute them with vector-like

efficiencies. The VMU attempts to coalesce well-structured stores (line 13) as well as loads.

Figure 2.10 illustrates some of the issues that can prevent the SIMT pattern from achieving

vector-like energy-efficiencies on regular DLP. The microthreads must redundantly execute instruc-

tions that would otherwise be amortized onto the control thread (lines 1–7). Regular data accesses

are encoded as multiple scalar accesses which then must be dynamically transformed (at some en-

ergy overhead) into vector-like memory operations. In addition, the lack of a control thread prevents

access-execute decoupling which can efficiently tolerate memory latencies. Even so, the ability to

achieve vector-like efficiencies on coherent arithmetic microthread instructions helps improve SIMT

energy-efficiency compared to the MIMD pattern.

Of course, the SIMT pattern’s strength is on irregular DLP as shown in Figure 2.11. Instead

of using vector flags which are cumbersome for complicated control flow, SIMT enables encod-

ing data-dependent conditionals as standard scalar branches (lines 1,5). Figure 2.11b shows how

the SIMT pattern handles these scalar branches in a vector-like implementation. After issuing the

scalar branch corresponding to line 5, the VIU waits for the microthread block to calculate the

branch resolution based on each microthread’s scalar data. Essentially, the VIU then turns these

branch resolution bits into a dynamically generated vector flag register which is used to mask off

inactive elements on either side of the branch. Various SIMT implementations handle the details

of microthread divergence differently, but the basic idea is the same. In contrast to vector-SIMD

(where the control processor is decoupled from the vector unit making it difficult to access the vector

flag registers), SIMT can avoid fetching instructions when the vector flag bits are all zero. So if the

entire microthread block takes the branch at line 5, then the VIU can completely skip the instructions

at lines 7–14 and start the microthread block executing at the branch target. Conditional memory ac-

cesses are naturally encoded by simply placing them after a branch (lines 10–11,14). SIMT instruc-

tion sets will likely include conditional execution (e.g., predication or conditional move instructions)

to help mitigate branch overhead on short conditional regions of code. Notice that even though the

microthreads have diverged there are still opportunities for partial vector-like energy-efficiencies.

In this example, the VIU can still amortize by the number of active elements the instruction fetch,

decode, and dependency checking for the scalar multiply and addition instructions at lines 12–13.

Just as in the vector-SIMD pattern, both vlen-time and density-time implementations are possible.

47

The SIMT pattern has been recently developed as a way for more general data-parallel pro-

grams to take advantage of the large amount of compute resources available in modern graphics

processors. For example, the NVIDIA Fermi graphics processor includes 32 SIMT cores each with

16 lanes suitable for graphics as well as more general data-parallel applications [nvi09]. Each mi-

crothread block contains 32 microthreads, but there are many more than two microthreads per lane

because Fermi (and indeed all graphics processors) have heavily multithreaded VIUs. This means

that many microthread blocks are mapped to the same data-parallel core and the VIU is respon-

sible for scheduling these blocks onto the execution resources. A block is always scheduled as a

unit, and there are no vector-like efficiencies across blocks time-multiplexed onto the same core.

This is analogous to mapping many control threads to the same control processor each with their

own independent array of microthreads mapped to the same set of vector lanes. Multithreading the

VIU allows Fermi to better hide the branch resolution latency illustrated in Figure 2.11b and also

hide memory latencies compensating for the lack of control-thread decoupling. Fermi microthreads

have a standard scalar instruction set which includes scalar loads and stores, integer arithmetic op-

erations, double-precision floating point arithmetic operations, and atomic memory operations for

efficient inter-microthread synchronization and communication. Some execution resources (e.g.,

load/store units and special fixed function arithmetic units) are shared among two cores. Various

SIMT frameworks such as Microsoft’s DirectX Compute [Mic09], NVIDIA’s CUDA [NBGS08],

Stanford’s Brook [BFH+04], and OpenCL [ope08a] allow programmers to write high-level code

for the host thread and to specify the scalar code for each microthread as a specially annotated

function. A combination of off-line compilation, just-in-time optimization, and hardware actually

executes the data-parallel program. Unfortunately, much of the low-level software, instruction set,

and microarchitecture for graphics processors are not publicly disclosed, but the SIMT pattern de-

scribed in this section captures the general features of these accelerators based on publicly available

information.

2.7 VT Architectural Design Pattern

The vector-thread (VT) pattern is also a hybrid pattern but takes a very different approach as

compared to the SIMT pattern introduced in the previous section. Figure 2.12a illustrates the pro-

grammer’s logical view for the VT pattern. Like the vector-SIMD pattern, the host thread manages

a collection of control threads through shared memory and each control thread in turn manages

an array of microthreads. Similar to the vector-SIMD pattern, this allows various overheads to be

amortized onto the control thread, and control threads can also execute vector memory commands

to efficiently handle regular data accesses. Unlike the vector-SIMD pattern, the control thread does

not execute vector arithmetic instructions but instead uses a vector fetch instruction to indicate the

start of a scalar instruction stream which should be executed by the microthreads. The microthreads

execute coherently, but as in the SIMT pattern, they can also diverge after executing scalar branches.

48

(a) Programmer’s Logical View (b) Implementation of
2-Lane, 4-Microthread Core

Figure 2.12: VT Architectural Design Pattern – A general-purpose host thread uses shared memory to
manage a large number of control threads. Each control thread is in turn responsible for managing a small
array of microthreads using a combination of vector memory commands and vector fetch commands. The
input dataset is partitioned across the control threads at a coarse granularity and then partitioned again across
the microthreads at a fine granularity. A control thread and its array of microthreads map to a single core
which is similar in spirit to a vector-SIMD core. A control thread’s array of microthreads begins executing
in lockstep with each vector fetch but can diverge when microthreads execute data-dependent control flow.
(HT = host thread, CT = control thread, µT = microthread, CP = control processor, VIU = vector issue unit,
VMU = vector memory unit.)

Figure 2.12b shows a typical implementation for a two-lane VT core with four microthreads.

The control thread is mapped to a decoupled control processor and the microthreads are mapped

both spatially and temporally to the vector lanes. Vector memory instructions use the VMU to

execute in a very similar fashion as with vector-SIMD and thus achieve similar efficiencies. The

VIU has its own port to the instruction memory which allows it to process vector fetch instructions.

For vector-fetched instructions which are coherent across the microthreads, the implementation

should achieve similar efficiencies as a vector-SIMD implementation. As with the MIMD and

SIMT-patterns, VT allows scalar branches to encode complex data-dependent control flow which

can simplify the programming methodology. Compared to a vector-SIMD implementation, VT

requires additional control complexity in the VIU to handle the microthreads scalar instruction set

but should have similar efficiency on regular DLP and simplifies mapping irregular DLP.

Regular DLP maps very naturally to the VT pattern. Figure 2.13a shows the VT pseudo-

assembly corresponding to the regular DLP loop in Table 2.1c. Stripmining (line 5), loop control

(line 11–16), and regular data accesses (lines 6–7,9) are handled just as in the vector-SIMD pat-

tern. Instead of vector arithmetic instructions, we use a vector fetch instruction (line 8) with one

argument which indicates the instruction address at which all microthreads should immediately start

executing (e.g., the instruction at the ut code label). All microthreads execute these scalar instruc-

tions (lines 20–21) until they reach a stop instruction (line 22). An important part of the VT pattern

49

is the interaction between vector registers as accessed by the control thread, and scalar registers

as accessed by each microthread. In this example, the unit-stride vector load at line 6 writes the

vector register VA with vlen elements. Each microthread’s scalar register a implicitly refers to that

microthread’s element of the vector register (e.g., µT0’s scalar register a implicitly refers to the

first element of the vector register VA and µT(vlen-1)’s scalar register a implicitly refers to the last

element of the vector register VA.). In other words, the vector register VA as seen by the control

thread and the scalar register a as seen by the microthreads are two views of the same register. The

microthreads cannot access the control thread’s scalar registers, since this would significantly com-

plicate control processor decoupling. Shared accesses are thus communicated with a scalar load by

the control thread (line 1) and then a scalar-vector move instruction (line 2) which copies the given

scalar register value into each element of the given vector register. This scalar value is then available

for all microthreads to reference (e.g., as microthread scalar register z on line 20).

Figure 2.13b illustrates how this regular DLP loop would execute on the implementation pic-

tured in Figure 2.12b. An explicit scalar-vector move instruction (line 2) writes the scalar value into

each element of the vector register two elements per cycle over two cycles. The unit-stride vector

load instructions (lines 6–7) execute exactly as in the vector-SIMD pattern. The control processor

then sends the vector fetch instruction to the VIU. The VIU fetches the scalar multiply and addi-

tion instructions (lines 20–21) and issues them across the microthreads. When the VIU fetches and

decodes the stop instruction (line 22) it moves on to process the next command waiting for it in

the vector command queue. As in vector-SIMD, VT supports control processor decoupling, and

by offloading the microthread instruction fetch to the VIU, the control processor is actually able to

more quickly run-ahead to the next set of instructions.

Figure 2.13 demonstrates how VT achieves vector-like energy-efficiency on regular DLP. Con-

trol instructions are executed once by the control thread per-loop (lines 1–2) or per-iteration (lines 11–

16). Because the microthreads are coherent in this example, the VIU is able to amortize instruction

fetch, decode, and dependency checking for vector arithmetic instructions (lines 20–21). VT uses

the exact same vector memory instructions to efficiently move blocks of data between memory and

vector registers (lines 6–7,9). There are however some overheads including the extra scalar-vector

move instruction (line 2), vector fetch instruction (line 8), and microthread stop instruction (line 22).

Irregular DLP also maps naturally and potentially more efficiently to the VT pattern, since one

can use scalar branches to encode complicated control flow. Figure 2.14a shows the VT pseudo-

assembly corresponding to the irregular loop in Table 2.1f. The primary difference from the regular

DLP loop is that this example includes a scalar branch as the first vector-fetched instruction on

line 20. Microthreads thus completely skip the multiplication and addition if possible. The condi-

tional store is encoded by simply placing the store after the branch (line 24) similar to the MIMD

and SIMT examples. As with the SIMT pattern, VT instruction sets will likely include conditional

execution (e.g., predication or conditional move instructions) to help mitigate branch overhead on

50

1 load x, x_ptr
2 mov.sv VZ, x
3

4 loop:
5 setvl vlen, n
6 load.v VA, a_ptr
7 load.v VB, b_ptr
8 fetch.v ut_code
9 store.v VC, c_ptr

10

11 add a_ptr, vlen
12 add b_ptr, vlen
13 add c_ptr, vlen
14

15 sub n, vlen
16 br.neq n, 0, loop
17 ...
18

19 ut_code:
20 mul t, z, a
21 add c, t, b
22 stop

(a) Pseudo-Assembly
(b) Execution Diagram for 2-Lane, 4-Microthread Implementation

Figure 2.13: Mapping Regular DLP to the VT Pattern – Example (a) pseudo-assembly and (b) execution
corresponding to Table 2.1c. Regular DLP maps naturally using vector memory and vector-fetched scalar
arithmetic commands. Each iteration of the stripmine loop works on vlen elements at once. (Assume * ptr
and n are inputs. Vi = vector register i, *.v = vector command, *.sv = scalar-vector op, uti = microthread
i. In vector-fetched microthread code, scalar register i corresponds to vector register Vi. Pseudo-assembly
line (1–2) shared load and move scalar x to all elements in vector register VX, (5) set active hardware vector
length, (6–7) unit-stride vector loads, (8) vector fetch so that all microthreads start executing the scalar ops at
label ut code, (9) unit-stride vector store, (11–13) increment array pointers, (15–16) decrement loop counter
and branch if not done, (20–21) microthread scalar ops, (22) stop executing microthreads and continue to
next vector command.)

short conditional regions of code. Notice that we must explicitly pass the c ptr base address so

that each microthread can calculate an independent store address (line 23) when the branch is not

taken. The vector-SIMD pattern uses a conditional vector store instruction to amortize some of this

address calculation overhead. In this example, loading the B array is hoisted out of the conditional

code (line 7). Depending on how often the branch is taken, it might be more efficient to transform

this vector load into a vector-fetched scalar load so that we only fetch data which is actually used.

The MIMD and SIMT examples use this approach, while the vector-SIMD example also encodes

the load as a unit-stride vector memory instruction.

Figure 2.14b shows the execution diagram corresponding to the irregular DLP loop. Similar to

the SIMT pattern, the VIU must wait until all microthreads resolve the scalar branch to determine

how to proceed. If all microthreads either take or do not take the branch, then the VIU can simply

51

1 load x, x_ptr
2 mov.sv VZ, x
3

4 loop:
5 setvl vlen, n
6 load.v VA, a_ptr
7 load.v VB, b_ptr
8 mov.sv VD, c_ptr
9 fetch.v ut_code

10

11 add a_ptr, vlen
12 add b_ptr, vlen
13 add c_ptr, vlen
14

15 sub n, vlen
16 br.neq n, 0, loop
17 ...
18

19 ut_code:
20 br.eq a, 0, done
21 mul t, z, a
22 add c, t, b
23 add d, tidx
24 store c, d
25 done:
26 stop

(a) Pseudo-Assembly

(b) Execution Diagram for 2-Lane, 4-Microthread Implementation

Figure 2.14: Mapping Irregular DLP to the VT Pattern – Example (a) pseudo-assembly and (b) execution
corresponding to Table 2.1f. Irregular DLP also maps naturally since each microthread can use standard
scalar branches for data-dependent control flow. (Assume * ptr and n are inputs. Vi = vector register i,
*.v = vector command, *.sv = scalar-vector op, eli = microthread i, tidx = current microthread’s index.
In vector-fetched microthread code, scalar register i corresponds to vector register Vi. Pseudo-assembly line
(1–2) shared load and move scalar x to all elements of vector register VX, (5) set active hardware vector
length, (6–7) unit-stride vector loads, (8) move array C base pointer to all elements of vector register VD, (9)
vector fetch so that all microthreads start executing the scalar ops at label ut code, (11–13) increment array
pointers, (15–16) decrement loop counter and branch if not done, (20) check data-dependent conditional and
skip work if possible, (21–22) microthread scalar ops, (23–24) scalar store, (26) stop executing microthreads
and continue to next vector command.)

52

start fetching from the appropriate address. If some microthreads take the branch while others

do not, then the microthreads diverge and the VIU needs to keep track of which microthreads are

executing which side of the branch. Although dynamic reconvergence detection hardware or static

reconvergence hints in the microthread instruction stream are possible, they are not required for

good performance on most applications. Each new vector fetch instruction naturally causes the

microthreads to reconverge. As with the vector-SIMD and SIMT patterns, VT can also provide

vlen-time and density-time implementations.

The VT architectural design pattern was developed as part of our early work on intermingling

vector and threaded execution mechanisms. VT was proposed independently from the SIMT pattern,

although we have since recognized some of the similarities between the two approaches. The Scale

VT processor was our first implementation of the VT pattern [KBH+04a, BKGA04, KBA08]. Scale

includes a specialized microthread instruction set with software-exposed clustered functional units,

sophisticated predication, and explicit thread-fetches instead of scalar branches. Thread-fetches

essentially enable variable-length branch-delay slots that help hide microthread control flow laten-

cies. The Scale implementation includes a simple RISC control processor and a four-lane VTU.

Each lane has four execution clusters resulting in a peak vector unit throughput of 16 operations per

cycle. Scale’s programming methodology uses either a combination of compiled code for the con-

trol thread and hand-coded assembly for the microthreads, or a preliminary version of a vectorizing

compiler written specifically for Scale [HA08].

2.8 Comparison of Architectural Design Patterns

This chapter has presented five architectural patterns for the design of data-parallel cores. Ta-

ble 2.2 summarizes the mechanisms provided by each pattern to exploit regular and irregular DLP.

Since the MIMD pattern has no explicit regular DLP mechanisms, programmers simply use scalar

memory, arithmetic, and control instructions regardless of whether the application exhibits reg-

ular or irregular DLP. The MIMD pattern can include conditional execution such as predication

or conditional move instructions to help mitigate branch overheads in irregular control flow. The

vector-SIMD pattern is at the opposite end of the spectrum with a significant focus on mechanisms

for efficiently exploiting regular DLP. Notice that scalar memory and arithmetic instructions ex-

ecuted on the control thread can also be used to exploit regular DLP by amortizing shared loads

and computation. The vector-SIMD pattern relies on indexed vector memory accesses, conditional

loads/stores, and vector flags or vector conditional move instructions for irregular DLP. Very com-

plicated irregular DLP might need to be executed serially on the control thread. The subword-SIMD

pattern is similar in spirit to the vector-SIMD pattern but uses subword and full-word operations in-

stead of true vector instructions. Irregular data accesses are usually encoded with a combination of

full-word memory operations with subword permute instructions. The SIMT pattern lacks a control

thread meaning that only microthread instructions are available for exploiting DLP. Scalar instruc-

53

Regular Data
Access

Regular Control
Flow

Irregular Data
Access

Irregular Control
Flow

MIMD µT scalar ld/st µT scalar instr µT scalar ld/st
µT scalar branch

µT cexec scalar instr

Vector
SIMD

vector unit-stride,
strided ld/st vector instr

vector indexed ld/st

vector cexec ld/st
vector cexec instr

Subword
SIMD full-word ld/st subword instr

full-word ld/st with
subword permute

instr
subword cexec instr

SIMT µT scalar ld/st with
HW coalescing

µT scalar instr with
HW coherence µT scalar ld/st

µT scalar branches

µT cexec scalar instr

VT vector unit-stride,
strided ld/st

vector-fetched µT
scalar instr with HW

coherence
µT scalar ld/st

µT vector-fetched
scalar branches

µT cexec instr

Table 2.2: Mechanisms for Exploiting Data-Level Parallelism – Each architectural design pattern has
different mechanisms for handling both regular and irregular DLP. Note that control thread instructions can
be used for regular DLP to refactor shared data accesses and computation. (µT = microthread, CT = control
thread, ld/st = loads/stores, instr = instruction, cexec = conditionally executed (e.g., predication or conditional
move instructions), HW = hardware)

tions with hardware coherence (i.e., instructions executed with vector-like efficiencies) and memory

coalescing are critical to achieving good performance and low energy with the SIMT pattern. The

VT pattern uses its control thread to execute vector memory instructions and also to amortize control

overhead, shared loads, and shared computation. Regular DLP is encoded as vector-fetched coher-

ent microthread instructions and irregular DLP is encoded with vector-fetched scalar branches. As

with the other patterns, both SIMT and VT can include conditionally executed microthread instruc-

tions to help mitigate branch overhead.

Based on a high-level understanding of these design patterns it is possible to abstractly catego-

rize the complexity required for mapping regular and irregular DLP. The MIMD and SIMT patterns

are the most straight-forward, since the programmer’s view is simply a collection of microthreads.

Regular DLP maps easily to vector-SIMD and subword-SIMD, but irregular DLP can be much more

challenging. Our hope is that mapping both regular and irregular DLP should be relatively straight-

forward for the VT pattern. However, there are still some complexities when using the VT pattern

54

including refactoring scalar microthread memory operations into vector memory instructions, and

partitioning code into multiple vector-fetched blocks.

We can also qualitatively predict where a core using each pattern might fall in the energy-

performance space first described in Figure 1.2. Compared to a single-threaded MIMD core, a

multithreaded MIMD core will result in higher performance by hiding various execution latencies,

but this comes at some energy cost due to the larger physical register file. Thread scheduling might

either add overhead or reduce overhead if a simple scheduler enables less pipeline and bypass-

ing logic. The general energy-performance trends should be similar for both regular and irregular

DLP. A vector-SIMD core should achieve lower energy per task on regular DLP and higher perfor-

mance due to control processor decoupling and hiding execution latencies through vector length.

A multi-lane vector-SIMD core will improve throughput and potentially result in additional control

amortization, but comes at the cost of increased cross-lane broadcast and VIU/VMU complexity.

It is important to note that even a single-lane vector-SIMD core should improve performance at

reduced energy per task on regular DLP. On irregular DLP the energy-performance advantage of

the vector-SIMD pattern is much less clear. Very irregular DLP loops might need to be mapped to

the control thread resulting in poor performance and energy-efficiency. Irregular DLP mapped with

vector flags and vector conditional move instructions may come at energy costs proportional to the

vector length. Density-time implementations have their own sources of overhead. The subword-

SIMD pattern can be seen as a less effective version of the vector-SIMD pattern. Subword-SIMD

has short vector lengths, may not support control thread decoupling, and has potentially even less

support for irregular DLP so we can expect subword-SIMD to lie between MIMD and vector-SIMD

in the energy-performance space. Although the SIMT pattern can perform better than the vector-

SIMD pattern on irregular DLP, SIMT requires extra hardware to dynamically exploit regular DLP

in the microthread instruction stream. Without a control thread there is less opportunity for amor-

tizing overheads. Thus we can expect the SIMT pattern to perform better than vector-SIMD on very

irregular DLP, but worse on regular DLP. The VT pattern attempts to preserve some of the key fea-

tures of the vector-SIMD pattern that improve efficiency on regular DLP (e.g., control thread, vector

memory instructions, and vector-fetched coherent microthread instructions) while also allowing a

natural way to efficiently exploit irregular DLP with vector-fetched scalar branches.

2.9 Example Data-Parallel Accelerators

The previous sections discussed one or two accelerators which best exemplified each pattern

including the Illinois Rigel 1000-core accelerator [KJJ+09], the Sun Niagara multithreaded proces-

sors [KAO05, NHW+07], the Berkeley Spert-II system with the T0 vector processor [WAK+96,

Asa98], the IBM Cell subword-SIMD accelerator [GHF+06], the NVIDIA Fermi graphics proces-

sor [nvi09], and the Scale VT processor [KBH+04a, KBA08]. In this section, I briefly describe

other data-parallel accelerators and then illustrate which set of patterns best characterize the pro-

55

grammer’s logical view and implementation. As we will see, most accelerators actually leverage

aspects from more than one pattern.

MIT Raw & Tilera TILE64 Processors – The MIT Raw processor is a classic example of the

MIMD pattern with 16 simple RISC cores connected by multiple mesh networks [TKM+03]. Al-

though Raw lacks dedicated hardware support for exploiting DLP, much of its evaluation work-

load included a combination of regular and irregular DLP [TLM+04, GTA06]. The commercial

successor to Raw is the Tilera TILE64 processor with 64 simple cores also connected by multi-

ple mesh networks [BEA+08]. TILE64 adds limited DLP support in the form of unified 32-bit

subword-SIMD, which allows the primary scalar integer datapath to execute 4× 8-bit, 2× 16-bit,

or 1× 32-bit operations per cycle. TILE64 is targeted towards the video and network processing

application domains. Both the Raw and TILE64 processors also include a novel statically ordered

on-chip network. This network enables data to be efficiently streamed between cores and is partic-

ularly well suited to spatially mapping graphs of pipeline-parallel and task-parallel kernels. When

viewed with this mechanism in mind, these processors resemble the systolic-array architectural pat-

tern. The systolic-array pattern was not discussed in this chapter, but has been used for data-parallel

accelerators in the past. This pattern streams data through an array of processing elements to per-

form the required computation.

Cisco CRS-1 Metro and Intel IXP-2800 Network Processors – Although network processors are

less general than most of the accelerators discussed in this chapter, they are beginning to employ

arrays of standard programmable processors. Packet processing is to some degree a data-parallel

application, since an obvious approach is to partition incoming packets such that they can be pro-

cessed in parallel. However, this application is a good example of highly irregular DLP, because

packets arrived skewed in time and the processing per packet can vary widely. Thus it is not sur-

prising that network processors have leaned towards the MIMD pattern with many simple scalar or

multithreaded cores. The Intel IXP-2800 network processor includes an integrated general-purpose

XScale processor for executing the host-thread and 16 multithreaded engines specialized for packet

processing [int04]. The Cisco CRS-1 Metro network processor leverages 188 scalar Tensilica Ex-

tensa cores, with packets being distributed one per core [Eat05].

Alpha Tarantula Vector Processor – Tarantula was a industrial research project that explored

adding vector-SIMD extensions to a high-performance Alpha processor with the specific purpose

of accelerating data-parallel applications [EAE+02]. In contrast to the subword-SIMD extensions

common in today’s general-purpose processors [SS00], Tarantula was much closer to the vector-

SIMD pattern. Although it was meant to be used with one core per chip, the sophisticated general-

purpose control processor means it can be seen as a first step towards the full integration shown

in Figure 2.1c. Tarantula has several interesting features including tight integration with an out-

of-order superscalar multithreaded control processor, an address reordering scheme to minimize

56

memory bank conflicts, and extensive support for masked vector operations. The Tarantula instruc-

tion set includes 32 vector registers each with 128× 64-bit elements. The vector unit uses 16 vector

lanes and several independent vector functional units; the physical register file includes more than

32 vector registers to support the multithreaded control processor.

Stanford Imagine & SPI Storm-1 Stream Processors – Stream processors are optimized for a

subset of data-parallel applications that can be represented as streams of elements flowing between

computational kernels. These processors have a very similar implementation as the vector-SIMD

pattern. The primary difference is an emphasis on a software-controlled memory hierarchy that en-

ables stream processors to carefully manage bandwidth utilization throughout the memory system.

Additionally, stream processors usually have a dedicated hardware interface between the general-

purpose host processor and the accelerator’s control processor. Irregular DLP is handled with vector

masks or conditional streams (similar to vector compress and expand operations). The Stanford

Imagine processor includes a small microcontroller as the control processor and eight vector lanes,

and it supports a hardware vector length of eight [RDK+98]. The commercial successor to Imag-

ine is the SPI Storm-1 processor which increases the number of vector lanes to 16 and integrates

the general-purpose host processor on-chip [KWL+08]. Both processors contain vector functional

units that are statically scheduled through a VLIW encoding and include a software exposed clus-

tered vector register file. These processors include novel vector memory instructions that efficiently

stage segments in a large software-controlled stream register file (similar to a backup vector reg-

ister file). Data-parallel accelerators based on stream processors can be thought of as adhering to

the main features of the vector-SIMD pattern, albeit with some extra features suitable for the more

limited streaming programming model.

Berkeley VIRAM Vector Processor – The Berkeley VIRAM processor is a classic instance of

the vector-SIMD pattern with four 64-bit vector lanes and a hardware vector length of 32 [Koz02,

KP03]. It abstracts the hardware vector length with an instruction similar to setvl, and it in-

cludes vector flag, compress, and expand operations for conditional execution. However, VIRAM

resembles the subword-SIMD pattern in one key aspect, since it allows software to specify the ele-

ment width of vector operations. The vector length can thus range from 32× 64-bit, to 64× 32-bit,

to 128× 16-bit. Other large-scale vector-SIMD machines, such as the CDC STAR-100 and the

TI ASC, have included a similar feature that enabled a 64-bit lane to be split into two 32-bit

lanes [HP07, Appendix F.10].

NVIDIA G80 Family Graphics Processors – NVIDIA first proposed the SIMT pattern when in-

troducing the G80 family of graphics processors as a more general platform for data-parallel ac-

celeration [LNOM08]. Specifically, the GeForce 8800 GPU was one of the first GPUs to unify

the various specialized graphics pipelines (e.g., vertex, geometry, and pixel pipelines) into a single

unified programmable shader that could also be programmed for general compute operations with

57

a general-purpose programming language. The GeForce 8800’s VIU is highly multithreaded to

help hide various execution latencies. One of the key reasons the NVIDIA G80 family was quickly

adopted for use as data-parallel accelerators was the high-level explicitly data-parallel CUDA pro-

gramming methodology [NBGS08].

ATI Radeon R700 Family Graphics Processor – The ATI Radeon R700 family of graphics pro-

cessors closely resembles the SIMT pattern [ati09]. One extension is that each microthread executes

five-way VLIW instructions. As discussed in the SIMT pattern, no control thread is exposed and mi-

crothreads can execute control instructions which are managed by the VIU. Similar to the NVIDIA

GPUs, the VIU is highly multithreaded to help hide various execution latencies. ATI’s program-

ming methodology was initially very different from NVIDIA’s high-level CUDA framework. ATI

released the raw hardware instruction set as part of its Close-to-the-Metal initiative [ati06], and

hoped third-parties would develop the software infrastructure necessary for programmers to use the

ATI GPUs as data-parallel accelerators. More recently, ATI has been leveraging OpenCL [ope08a]

to simplify their programming methodology.

Intel Larrabee Graphics Processor – The future Intel accelerator known as Larrabee is initially

planned for use in graphics processors, but Larrabee’s programmable data-parallel cores makes it

suitable for accelerating a wider range of data-parallel applications [SCS+09]. Larrabee includes

tens of data-parallel cores each with its own 16-lane vector unit. Like vector-SIMD, it has fixed-

width elements (32 b) and more sophisticated vector memory instructions to support indexed ac-

cesses. Like subword-SIMD, it has a fixed vector length exposed as part of the instruction set and

includes vector permute instructions, which require significant inter-microthread communication.

Larrabee includes vector flags for conditional execution. One interesting aspect of Larrabee is that

it uses a four-way multithreaded control processor, and thus each control thread has its own inde-

pendent set of vector registers. Even though it is common for some of the threads to be executing the

same code (i.e., exploiting DLP across both the control threads and the microthreads), the Larrabee

architects found it advantageous to choose multithreading over longer vector lengths to enable better

handling of irregular DLP.

ClearSpeed CSX600 Processor – The CSX600 data-parallel accelerator includes a specialized

control processor that manages an array of 96 SIMD processing elements [cle06]. A common front-

end distributes identical instructions to all of the processing elements. Instead of vector memory

instructions, each processing element can independently load from or store to its own private local

memory. There is, however, support for an independently controlled direct-memory access engine

which can stream data in to and out of a staging area. Irregular control flow is handled with a flag

stack to simplify nested conditionals. The CSX600 is an instance of the distributed-memory SIMD

(DM-SIMD) pattern not discussed in this chapter. As illustrated by the CSX600, The DM-SIMD

pattern includes an amortized control unit with an array of processing engines similar to to vector

58

lanes, but each lane has its own large local memory.

TRIPS Processor – The TRIPS processor has a specific emphasis on flexibly supporting instruction-

level, data-level, and task-level parallelism [SNL+03]. Although TRIPS has been specifically ad-

vocated as a data-parallel accelerator [SKMB03], it does not conveniently fit into any of the archi-

tectural patterns introduced in this chapter. It can support various types of parallelism, but it does

so with coarse-grain modes, while the patterns in this chapter avoid modes in favor of intermin-

gling regular and irregular DLP mechanisms. TRIPS lacks a control processor for amortizing con-

trol overheads, has nothing equivalent to vector memory operations, and relies on a small caching

scheme to amortize instruction fetch for regular DLP. When in DLP mode, TRIPS is unable to sup-

port arbitrary control flow as in the SIMT and VT patterns. While TRIPS can flexibly support many

different types of parallelism, the patterns in this chapter focus on exploiting DLP as the primary

goal.

59

60

Chapter 3

Maven: A Flexible and Efficient
Data-Parallel Accelerator

Maven is a new instance of the vector-thread (VT) architectural design pattern well suited for use

in future data-parallel accelerators. Maven is a malleable array of vector-thread engines that can

scale from a few to hundreds of flexible and efficient VT cores tiled across a single chip. As shown

in Figure 3.1, each Maven VT core includes a control processor, a vector-thread unit, and a small

L1 instruction cache. L2 cache banks are also distributed across the accelerator, and an on-chip

network serves to connect the cores to the cache banks. Although the memory system and on-chip

network are important aspects of the Maven accelerator, in this thesis, I focus on the instruction set,

microarchitecture, and programming methodology of a single Maven VT core. These data-parallel

cores are one of the key distinguishing characteristics of data-parallel accelerators as compared to

general-purpose processors. In this chapter, I introduce the three primary techniques for building

simplified instances of the VT pattern: a unified VT instruction set architecture, a single-lane VT

microarchitecture based on the vector-SIMD pattern, and an explicitly data-parallel VT program-

ming methodology. These simplified VT cores should be able to combine the energy-efficiency of

SIMD accelerators with the flexibility of MIMD accelerators.

3.1 Unified VT Instruction Set Architecture

In the Maven unified VT instruction set, both the control thread and the microthreads execute

the same scalar instruction set. This is significantly different from our earlier work on the Scale

VT processor, which uses a specialized microthread instruction set. Although an elegant feature

in itself, a unified VT instruction set can also simplify the microarchitecture and programming

methodology. The microarchitecture can be more compact by sharing common functional units

between the control thread and the microthreads, and the microarchitecture development can also

be simplified by refactoring common hardware modules such as the instruction decode logic. A

61

Figure 3.1: Maven Data-Parallel Accelerator – Maven is a malleable array of vector-thread engines with
each Maven VT core including a control processor, a vector-thread unit, and a small L1 instruction cache.
An on-chip network connects the cores to each other and to the shared L2 cache. (CP = control processor,
VTU = vector-thread unit, L1 = private L1 instruction cache, L2 = shared L2 cache)

unified VT instruction set can be easier for programmers and compilers to reason about, since both

types of thread execute the same kind of instructions. Similarly, a single compiler infrastructure can

be used when compiling code for both types of thread, although code annotations might be useful for

performance optimizations specific to one type of thread. For example, we might be able to improve

performance by scheduling some instructions differently for the microthreads versus the control

thread. This can also allow the same compiled code to be executed by both types of thread which

leads to better code reuse and smaller binaries. Of course the instruction sets cannot be completely

unified. The control thread instruction set is a proper superset of the microthread instruction set

because microthreads are not able to execute vector instructions and system instructions.

There are, however, some challenges in designing a unified VT instruction set. Minimizing

architectural state increases in importance, since it can significantly impact the supported number

of microthreads. Even a well designed unified VT instruction set will unfortunately give up some

opportunities for optimization via specialized control-thread and microthread instructions. For ex-

ample, Scale provided multi-destination instructions that are only really suitable for its software-

exposed clustered architecture. Scale also provided a specialized microthread control flow instruc-

tion that simplified hiding the branch resolution latency. As another example, we might choose to

increase the number of control-thread scalar registers relative to the number of microthread scalar

registers. This could improve control-thread performance on unstructured code with instruction-

level parallelism.

3.2 Single-Lane VT Microarchitecture Based on Vector-SIMD Pattern
One of the first design decisions when applying the VT architectural design pattern to a large-

scale accelerator is choosing the size of each data-parallel core. There is a spectrum of possible

62

(a) Single Core with 4-Lane VTU (b) Four Cores Each with a Single-Lane VTU

Figure 3.2: Multi-Lane versus Single-Lane Vector-Thread Units – A single-core with a four-lane VTU
has the same ideal vector compute and memory throughput as four cores each with a single-lane VTU. The
multi-lane VTU might have better energy-efficiency and performance, since it can support longer hardware
vector lengths (e.g., 16 µTs) compared to the single-lane VTUs (e.g., 4 µTs each), but single-lane VTUs can
still be very competitive when executing regular DLP. The advantage of single-lane VTUs is that they are
easier to implement than multi-lane VTUs especially with respect to efficiently executing irregular DLP.
(CP = control processor, µT = microthread, VIU = vector issue unit, VMU = vector memory unit, VTU =
vector-thread unit)

grain sizes from coarse-grain designs with few cores each containing many VT lanes and many

microthreads per lane, to fine-grain designs with many cores each containing few VT lanes and few

microthreads per lane. At the extremely coarse-grain end of the spectrum, we might use a single VT

core with one control processor managing hundreds of lanes. Although such an accelerator would

support very long hardware vector lengths, it would likely have worse energy-efficiency compared

to multiple medium-sized VT cores. Control overheads amortized by the control processor and VIU

would probably be outweighed by broadcasting control information to all lanes and by supporting

a large crossbar in the VMU for moving data between memory and the lanes. At the extremely

fine-grain end of the spectrum, we might use hundreds of cores each with a single lane and one

microthread per lane. Of course with only one microthread per lane, there is little energy or per-

formance benefit. For these reasons, we can narrow the design space to cores with a few lanes per

VTU and a moderate number of microthreads per lane.

Figure 3.2 illustrates one possible core organization with four VT lanes and four microthreads

per lane for a total hardware vector length of 16. This four-lane configuration is similar in spirit to

the Scale VT processor. The VIU will broadcast control information to all four lanes, and the VMU

includes a crossbar and rotation network for arbitrarily rearranging elements when executing vector

loads and stores. To support efficient execution of indexed accesses (and to some extent strided

accesses), the VMU should be capable of generating up to four independent memory requests per

cycle, and the memory system should be able to sustain a corresponding amount of address and data

bandwidth. The VIU and VMU become more complex as we increase the number of vector lanes

63

in a VT core. Because the VT pattern allows microthreads to diverge, the VIU will need to manage

multiple instruction fetch streams across multiple lanes at the same time to keep the execution

resources busy, and the VMU will need to handle arbitrary microthread loads/stores across the

lanes. Since VT is explicitly focused on executing irregular DLP efficiently, we might also choose

to implement some form of density-time execution to minimize overheads associated with inactive

microthreads. All of these concerns suggest decoupling the VT lanes so that they no longer execute

in lock step, but decoupled lanes require more control logic per lane.

Figure 3.2 illustrates a different approach where each core contains a single-lane VTU. Multi-

lane VTUs use a spatio-temporal mapping of microthreads to lanes, while a single-lane VTU uses

just temporal execution to achieve its performance and energy advantages. Trade-offs between

multi-lane and single-lane cores in terms of flexibility, performance, energy-efficiency, design com-

plexity, and area are briefly described below.

• Flexibility – Mapping highly irregular DLP or other forms of parallelism, such as task-level

parallelism or pipeline parallelism, can be more difficult with multi-lane cores as opposed to

single-lane cores. Because each single-lane core has its own control thread, the cores can

operate independently from each other enabling completely different tasks to be easily mapped

to different cores. Mapping completely different tasks to different microthreads within a multi-

lane core will result in poor performance due to limited instruction bandwidth and the tight

inter-lane coupling. Of course, we can map different tasks to different multi-lane cores, but

then it is not clear how well we will be able to utilize the multi-lane VTUs. Single-lane cores

move closer to the finer-grain end of the core-size spectrum increasing flexibility.

• Performance – A single-lane core will obviously have lower throughput than a multi-lane core,

but as shown in Figure 3.2b, we can make up for this loss in performance by mapping an ap-

plication across multiple cores each with its own single-lane VTU. We assume the multi-lane

core has one address generator and address port per lane and that the number of functional units

per lane is always the same, so a regular DLP application mapped to both the single four-lane

core and the four single-lane cores in Figure 3.2 will have similar ideal arithmetic and mem-

ory throughput. An irregular DLP application might even have higher performance on the four

single-lane cores, since the cores can run completely separately. A multi-lane core should sup-

port longer hardware vector lengths, but the marginal performance improvement decreases as

we increase the vector length. For example, the memory system usually operates at a natural

block size (often the L2 cache line size), so vector memory accesses longer than this block size

might see less performance benefit. As another example, longer vector lengths refactor more

work onto the control thread, but there is a limit to how much this can impact performance.

Longer hardware vector lengths help decoupling, but the four single-lane cores have four times

the control processor throughput. This can make up for the shorter vector lengths and provide

64

a similar amount of aggregate decoupling across all four control processors as compared to

a multi-lane core with longer vector lengths. Density-time mechanisms can improve perfor-

mance in both multi- and single-lane vector units at the expense of a more irregular execution.

Such mechanisms are much easier to implement in single-lane vector units, since the irregular

execution occurs in time as opposed to both time and space.

• Energy-Efficiency – Multi-lane cores amortize control overheads through spatial and temporal

execution of the microthreads, while single-lane cores amortize control energy solely through

temporal execution of the microthreads. The longer hardware vector lengths supported by a

multi-lane core do help improve this control energy amortization, but there are several mitigat-

ing factors. First, the marginal energy-efficiency improvement decreases as we move to longer

hardware vector lengths, since control energy is only one part of the total core energy. In addi-

tion, multi-lane VTUs have increased control-broadcast energy in the VIU and crossbar energy

in the VMU. We can also always trade-off area for energy-efficiency by increasing the physical

vector register file size in single-lane cores to enable greater amortization through temporal ex-

ecution of more microthreads. This of course assumes the energy overhead of the larger register

file does not outweigh the benefit of greater amortization.

• Design Complexity – Single-lane VTUs can be simpler to implement because there is no need

for any tightly coupled inter-lane communication. Each core is designed independently, and

then cores are tiled across the chip to form the full data-parallel accelerator. We may, however,

want to group a few single-lane cores together physically to share local memory or on-chip

network interfaces, but this does not affect the logical view where each core is a completely

separate programmable entity with its own control thread. In addition, it is simpler to implement

density-time execution in a single-lane VTU.

• Area – Probably the most obvious disadvantage of using multiple single-lane cores is the area

overhead of providing a separate control processor per lane. We introduce a technique called

control processor embedding that allows the control processor to share long-latency functional

units and memory ports with the VTU. This significantly reduces the area overhead of including

a control processor per vector lane. A unified instruction set helps enable control processor

embedding, since both the control thread and the microthreads have identical functional unit

requirements. It is important to note that an efficient multi-lane VTU, such as Scale, will mostly

likely require decoupled lanes with more control logic per lane. This reduces the marginal

increase in area from a multi-lane VTU to multiple single-lane VTUs.

Our interest in using single-lane VT cores for Maven is based on the assumption that a small

increase in area is worth reduced design complexity, increased flexibility, equivalent (or greater)

performance, and comparable energy-efficiency as compared to multi-lane VT cores.

We would like a single-lane Maven VT core to execute regular DLP with vector-like energy ef-

65

ficiency, so we have chosen to design the Maven VT core to be as similar as possible to a traditional

vector-SIMD microarchitecture. This in contrast to the Scale VTU which had a unique microarchi-

tecture specific to VT. Of course, Scale’s unique microarchitecture enabled a variety of interesting

features such as atomic instruction block interleaving, cross-microthread register-based communi-

cation, vector segment accesses, and decoupled clustered execution. By following the vector-SIMD

pattern more closely, we can simplify the implementation and perform a detailed comparison of the

exact mechanisms required to enable VT capabilities.

We add vector fragments to a vector-SIMD microarchitecture to handle vector-fetched arith-

metic and control flow instructions. A fragment contains a program counter and a bit mask rep-

resenting which microthreads are part of the fragment. A vector-SIMD microarchitecture always

executes full vector operations that contain all microthreads, while a VT microarchitecture executes

vector fragments that can contain a subset of the microthreads. Vector fragments are fundamentally

different than the vector flag registers common in vector-SIMD implementations. A vector flag reg-

ister simply contains a set of bits, while a vector fragment more directly represents the control flow

for a subset of microthreads. Vector fragments, and the various mechanisms used to manipulate

them, are the key to efficiently executing both regular and irregular DLP on a Maven VT core.

We can extend the basic vector fragment mechanism in three ways to help improve efficiency

when executing irregular DLP. Vector fragment merging allows fragments to dynamically recon-

verge at run-time. Vector fragment interleaving helps hide the relatively long vector-fetched scalar

branch latency as well as other execution latencies. Vector fragment compression helps eliminate

the energy and performance overheads associated with inactive microthreads in a fragment. Adding

support for vector fragments and these additional extensions is largely limited to modifying the VIU

of a traditional vector-SIMD core. This allows such VT cores to maintain many of energy-efficiency

advantages of a vector-SIMD core, while at the same time increasing the scope of programs that can

be mapped to the core.

3.3 Explicitly Data-Parallel VT Programming Methodology

Although accelerators have often relied on either hand-coded assembly or compilers that can

automatically extract DLP, there has been recent interest in explicitly data-parallel programming

methodologies. In this approach, the programmer writes code for the host thread and explicitly

specifies a data-parallel task that should be executed on all of the microthreads in parallel. As shown

in Figure 3.3, there is usually a two-level hierarchy of the microthreads exposed to the programmer.

This hierarchy enables more efficient implementations and is common across the patterns: in the

MIMD pattern this corresponds to the set of microthreads mapped to the same core, in the SIMT

pattern this corresponds to microthread blocks, and in SIMD and VT patterns this corresponds to

the control threads. A key difference in the patterns is whether or not this two-level hierarchy is

captured in the instruction set implicitly (as in the MIMD and SIMD patterns) or explicitly (as in

66

Figure 3.3: Explicitly Data-Parallel Programming Methodology – The host thread explicitly specifies
data-parallel tasks and manages executing them on all the microthreads. Microthreads are implicitly or ex-
plicitly grouped into a two-level hierarchy. Start Data-Parallel Tasks

the SIMD and VT patterns). Any explicitly data-parallel programming methodology must expose

the two-level hierarchy in some way for good performance, but with the SIMD and VT patterns

the methodology must also provide a mechanism for generating high-quality code for the control

threads.

In Maven, we leverage a slightly modified scalar compiler to generate efficient code for the con-

trol thread and microthreads, and we use a carefully written support library to capture the fine-grain

interaction between the two types of thread. A unified VT instruction set is critical to leveraging the

same scalar compiler for both types of thread. The result is a clean programming model that is con-

siderably easier to implement than assembly programming, yet simpler to implement as compared

to an automatic vectorizing compiler, such as the one used in Scale.

67

68

Chapter 4

Maven Instruction Set Architecture

This chapter describes Maven’s unified VT instruction set and the design decisions behind various

aspects of the instruction set. Section 3.1 has already motivated our interest in a unified VT instruc-

tion set. Section 4.1 gives an overview of the instruction set including the programmer’s model, a

brief description of all scalar and vector instructions, and two example assembly programs that will

be referenced through the rest of the chapter. Section 4.2 goes into more detail about the specific

challenges involved in unifying the control thread and microthread instruction sets. Sections 4.3–4.5

elaborate in more detail about certain aspects of the instruction set including the vector configura-

tion process (Section 4.3), vector memory instructions (Section 4.4), and the register usage and

calling convention used by Maven (Section 4.5). Section 4.6 discusses various instruction set ex-

tensions that can allow reasonable emulations of the MIMD, vector-SIMD, and SIMT architectural

design patterns. The chapter concludes with future research directions (Section 4.7) and related

work (Section 4.8).

4.1 Instruction Set Overview

As with all VT architectures, the programmer’s logical view of a single Maven VT core consists

of a control thread which manages an array of microthreads (see Figure 4.1). A unique feature of

the Maven instruction set compared to earlier VT architectures is that both the control thread and

the microthreads execute a nearly identical 32-bit scalar RISC instruction set. Maven supports a

full complement of integer instructions as well as IEEE compliant single-precision floating-point

instructions. The control thread includes a program counter, 32 general-purpose registers, 4–32

vector registers, and several vector control registers. Scalar register number zero and vector register

number zero are always fixed to contain the value zero. Each microthread has its own programmer

counter and one element of the vector registers, meaning that each microthread effectively has 4–

32 scalar general-purpose registers. Since vector register number zero is fixed to contain the value

zero, each microthread’s scalar register number zero is also fixed to contain the value zero. The three

69

Figure 4.1: Maven Programmer’s Logical View – The control thread includes 32 general-purpose registers
and a standard MIPS-like instruction set with support for both integer and single-precision floating-point
arithmetic. Vector configuration instructions read and write three control registers (vl, vlmax, vcfg) which
change the number of available and active microthreads. Each microthread has its own program counter (pc)
and can execute the same set of instructions as the control thread except for vector and system instructions.
(CT = control thread, µT = microthread, GPR = general purpose register)

vector control registers (vcfg, vlmax, vl) change the number of available and active microthreads

(see Section 4.3 for more details).

The Maven instruction set could leave the hardware vector length completely unbounded so that

implementations could provide very short hardware vector lengths or very long hardware vector

lengths without restriction. There are, however, some benefits to defining a minimum and maximum

hardware vector length as part of the instruction set. A programmer can avoid stripmining overhead

if the application vector length is statically known to be smaller than the minimum hardware vector

length, and a programmer can statically reserve memory space for a hardware register if there is a

maximum hardware vector length. For these reasons, Maven specifies a minimum hardware vector

length of four and a maximum hardware vector length of 64.

The Maven programmer’s model makes no guarantees concerning the execution interleaving

of microthreads. Microthreads can be executed in any order and any subset of microthreads can

be executed in parallel. Software is also not allowed to rely on a consistent microthread execution

interleaving over multiple executions of the same code. Avoiding any execution guarantees enables

both spatial and temporal mapping of microthreads and also allows microthread mappings to change

over time. Although the Section 3.2 made a case for single-lane VTUs, future implementations of

the Maven instruction set are free to also use multi-lane VTUs. An example microthread instruction

interleaving for a two-lane, four-microthread VTU is shown in Figure 2.13b. The figure illustrates

how µT0–1 execute in parallel, µT2–3 execute in parallel, and µT0–1 execute before µT2–3. Fig-

ure 2.13b implies that a vector fetch or other vector instruction acts as a barrier across the lanes, but

this is overly restrictive and Maven does not guarantee this behavior. An implementation with de-

70

coupled lanes might allow each lane to execute very different parts of the program at the same time.

The programmer can, of course, rely on the fact that the vector store on line 9 will correctly read

the result of the vector-fetched multiply and addition on lines 20–21 for each microthread. In other

words, microthreads execute in program order including the effect of vector memory operations on

that microthread.

Although there are no guarantees concerning the microthread execution interleaving, the con-

trol thread is guaranteed to execute in parallel with the microthreads. For example, Figure 2.13b

illustrates the control thread executing the loop control overhead in parallel with the microthreads

executing the multiply and addition operations. Software is allowed to explicitly rely on this paral-

lel execution to enable communication between the control thread and microthreads while they are

running. This enables more flexible programming patterns such as a work-queue pattern where the

control thread distributes work to the microthreads through a work queue in memory or an early-exit

pattern where one control thread might notify other control threads through memory to abort the

computation running on their microthreads. A disadvantage of guaranteeing parallel control-thread

execution, is that it eliminates the possibility of a completely sequential implementation. A sequen-

tial implementation executes the control thread until a vector fetch instruction, sequentially executes

each microthread until completion, and then resumes execution of the control thread. Compared to

sequential implementations, parallel control-thread execution has higher performance because it en-

ables control-thread decoupling, and it also enables more flexible programming patterns making it

a more attractive option.

Table 4.1 shows the scalar instruction set used by both the control thread and microthreads. The

control thread can execute all listed instructions (including the microthread specific instructions),

while the microthreads can execute all listed instructions except for control-thread specific instruc-

tions. Most of the listed instructions’ function and encoding are based on the MIPS32 instruction

set [mip09, Swe07], with the exceptions being the floating-point instructions and those instructions

marked by an asterisk. Maven unifies the MIPS32 integer and floating-point registers into a single

register space with 32 general-purpose registers. All floating-point instructions can read and write

any general-purpose register, and floating-point comparisons target a general-purpose register in-

stead of a floating-point condition-code register. These modifications required small changes to the

floating-point instruction encoding format. Maven also eliminates the special hi and lo registers

for integer multiply and division instructions. Instead, Maven provides integer multiply, divide, and

remainder instructions that read and write any general-purpose register. Maven also provides atomic

memory operations instead of using the standard MIPS32 load-linked and store-conditional instruc-

tions. The stop and utidx instructions have special meaning when executed by a microthread:

a vector fetch starts execution of a microthread and the stop instruction stops execution of a mi-

crothread; the utidx instruction writes the index of the executing microthread to a general purpose

register. The microthread index can be used to implement indexed vector memory accesses or to en-

71

Scalar Integer Arithmetic Instructions

addu, subu, addiu Integer arithmetic
and, or xor, nor, andi, ori, xori Logical operations
slt, sltu, slti, sltiu Set less than comparisons
mul, div*, divu*, rem*, remu* Long-latency integer arithmetic
lui Load upper 16 bits from immediate
sllv, srlv, srav, sll, srl, sra Left and right shifts

Scalar Floating-Point Arithmetic Instructions

add.s, sub.s, mul.s, div.s Floating-point arithmetic
abs.s, neg.s, sqrt.s
round.w.s, trunc.w.s, ceil.w.s, floor.w.s Floating-point to integer conversions
cvt.s.w Integer to floating-point conversion
c.f.s, c.un.s, c.eq.s, c.ueq.s, c.olt.s Floating-point comparisons
c.ult.s, c.ole.s, c.ule.s, c.sf.s
c.seq.s, c.ngl.s, c.lt.s, c.le.s, c.ngt.s

Scalar Memory Instructions

lb, lh, lw, lbu, lhu Load byte, halfword, word (signed/unsigned)
sb, sh, sw Store byte, halfword, word

Scalar Control Instructions

beq, bne, bltz, bgez, blez, bgtz Conditional branches
j, jr, jal, jalr Unconditional jumps
movz, movn Conditional moves

Scalar Synchronization Instructions

sync Memory fence
amo.add*, amo.and*, amo.or* Atomic memory operations

Control-Thread Specific Instructions

mfc0, mtc0 Move to/from coprocessor 0 registers
syscall, eret System call, return from exception

Microthread Specific Instructions

stop* Stop microthread
utidx* Write microthread index to destination

Table 4.1: Maven Scalar Instructions – This is a relatively standard RISC instruction set. Non-floating-
point instructions without an asterisk are similar in function and encoding to the corresponding instructions in
the MIPS32 instruction set [mip09, Swe07]. Floating-point instructions use the same set of general-purpose
registers as integer operations, and floating-point comparison instructions target a general-purpose register
instead of a floating-point condition code register. Instructions with an asterisk are specific to Maven and
include divide and remainder instructions that target a general-purpose register and atomic memory opera-
tions. The control thread can execute all listed instructions including the microthread specific instructions;
the stop instruction is a nop and the utidx instruction always returns -1. Microthreads can execute all but
the control-thread specific instructions.

72

Vector Configuration Instructions

vcfgivl rdst, rlen, nvreg Set vlmax based on nvreg vector regs, then execute setvl
vcfgivli rdst, nlen, nvreg Set vlmax based on nvreg vector regs, then execute setvli
setvl rdst, rlen Set vl based on app vector length rlen, then set rdst = min(vl,rlen)
setvli rdst, nlen Set vl based on app vector length nlen, then set rdst = min(vl,nlen)

Vector Unit-Stride & Strided Memory Instructions

l{w,h,b}.v Rdst, rbase Load vector reg Rdst from mem[rbase] with unit-stride
l{hu,bu}.v Rdst, rbase (unsigned and signed variants)
l{w,h,b}st.v Rdst, rbase, rstride Load vector reg Rdst from mem[rbase] with stride rstride
l{hu,bu}st.v Rdst, rbase, rstride (unsigned and signed variants)
s{w,h,b}.v Rsrc, rbase Store vector reg Rsrc to mem[rbase] with unit-stride
s{w,h,b}st.v Rsrc, rbase, rstride Store vector reg Rsrc to mem[rbase] with stride rstride

Vector Memory Fence Instructions

sync.{l,g} Memory fence between executing thread’s scalar loads and stores
sync.{l,g}.v Memory fence between vector ld/st, µT ld/st
sync.{l,g}.cv Memory fence between CT scalar ld/st, vector ld/st, µT ld/st

Vector Move Instructions

mov.vv Rdst, Rsrc Move vector reg Rsrc to vector reg Rdst
mov.sv Rdst, rsrc Move control thread reg rsrc to all elements of vector reg Rdst
mtut Rdst, rutidx, rsrc Move control thread reg rsrc to element rutidx of vector reg Rdst
mfut Rsrc, rutidx, rdst Move element rutidx of vector reg Rsrc to control thread reg rsrc

Vector Fetch Instructions

vf label Start microthreads executing instructions at label
vfr raddr Start microthreads executing instructions at address in reg raddr

Table 4.2: Maven Vector Instructions – As with all VT instruction sets, Maven includes vector configura-
tion and memory instructions as well as vector-fetch instructions. (CT = control-thread, µT = microthread,
r = scalar register specifier, R = vector register specifier, n = immediate value, {w,h,b} = word, halfword,
and byte vector memory variants, {hu,bu} = unsigned halfword and unsigned byte vector memory variants,
{l,g} = local and global synchronization variants)

able different microthreads to execute different code based on their index. To facilitate code reuse,

the control thread can also execute these two instructions: the stop instruction does nothing and

the utidx instruction always returns -1 enabling software to distinguish between when it is run-

ning on the control thread and when it is running on a microthread. Instructions unique to Maven

are encoded with an unused primary MIPS32 opcode and a secondary opcode field to distinguish

instructions.

In addition to these differences from MIPS32, Maven has no branch delay slot and excludes

many instructions such as branch-likely instructions, branch-and-link instructions, test-and-trap in-

structions, unaligned loads and stores, merged multiply-accumulates, rotates, three-input floating-

point instructions, and bit manipulation instructions such as count leading zeros and bit-field ex-

73

traction. Some of these instructions are deprecated by MIPS32 (e.g., branch-likely instructions),

some are not very useful with our C/C++-based programming methodology (e.g., branch-and-link

instructions), and a few might be useful in future versions of the Maven instruction set (e.g., merged

multiply-accumulates).

Table 4.2 shows the vector instructions that can be executed by the control thread to manage

the array of microthreads. The vector configuration instructions enable reading and writing vector

control registers that change the number of active microthreads and are described in more detail

in Section 4.3. Maven includes a standard set of vector load/store instructions and vector memory

fences, which are described in more detail in Section 4.4. Although it is possible to move vector

registers with a vector-fetched scalar move instruction, a dedicated mov.vv instruction simplifies

implementing vector register allocation in the Maven programming methodology. It is also possible

to require that data be moved from the control-thread scalar registers to vector registers through

memory, but it can be much more efficient to provide dedicated instructions such as mov.sv which

copies a control-thread scalar register value to every element of a vector register and mtut/mfut

(move to/from microthread) which transfers data between a control-thread scalar register and a

single element in a vector register. Maven provides two vector fetch instructions with different

ways of specifying the target address from which microthreads should begin executing: the vf

instruction includes a 16-bit offset relative to the vf instruction’s program counter, and the vfr

instruction reads the target address from a general-purpose register. The Maven vector instructions

are encoded with several unused primary MIPS32 opcodes (for the vector load/store instructions

and the vf instruction) or with a MIPS32 coprocessor 2 primary opcode and a secondary opcode

field.

The assembly code for two small examples is shown in Figure 4.2. These examples correspond

to the regular DLP loop in Table 2.1c and the irregular DLP loop in Table 2.1f, and both examples

were compiled using the Maven programming methodology described in Chapter 6. The assembly

code is similar in spirit to the pseudo-assembly shown in Figures 2.13 and 2.14, but of course the

real assembly code corresponds to an actual Maven binary. These examples will be referenced

throughout the rest of this chapter.

4.2 Challenges in a Unified VT Instruction Set

Minimizing architectural state in a unified VT instruction set is critical, since every microthread

will usually need its own copy of this state. For example, the base MIPS32 instruction set in-

cludes special 32-bit hi and lo registers. The standard integer multiply instruction reads two 32-bit

general-purpose registers and writes the full 64-bit result to the hi and lo registers. The standard

integer divide instruction also reads two 32-bit general-purpose registers and writes the 32-bit quo-

tient into the lo register and the 32-bit remainder into the hi register. These special registers enable

multiply and divide instructions to write two registers without an extra write port in the general-

74

1 19c: vcfgivl v0, a3, 5
2 1a0: mov.sv VA0, a4
3 1a4: blez a3, 1e0
4 1a8: move v0, zero
5

6 1ac: subu a4, a3, v0
7 1b0: setvl a4, a4
8 1b4: sll v1, v0, 2
9 1b8: addu a6, a1, v1

10 1bc: addu a5, a2, v1
11 1c0: lw.v VV0, a6
12 1c4: lw.v VV1, a5
13 1c8: vf 160 <ut_code>
14 1cc: addu v0, v0, a4
15 1d0: addu v1, a0, v1
16 1d4: slt a4, v0, a3
17 1d8: sw.v VV0, v1
18 1dc: bnez a4, 1ac
19

20 1e0: sync.l.cv
21 1e4: jr ra
22

23 ut_code:
24 160: mul v0, a0, v0
25 164: addu v0, v0, v1
26 168: stop

(a) Regular DLP Example

1 1b0: vcfgivl v0, a3, 7
2 1b4: mov.sv VA1, a4
3 1b8: blez a3, 1f4
4 1bc: move v0, zero
5

6 1c0: subu a4, a3, v0
7 1c4: setvl a4, a4
8 1c8: sll v1, v0, 2
9 1cc: addu a5, a0, v1

10 1d0: mov.sv VA0, a5
11 1d4: addu a5, a2, v1
12 1d8: addu v1, a1, v1
13 1dc: lw.v VV0, v1
14 1e0: lw.v VV1, a5
15 1e4: vf 160 <ut_code>
16 1e8: addu v0, v0, a4
17 1ec: slt v1, v0, a3
18 1f0: bnez v1, 1c0
19

20 1f4: sync.l.cv
21 1f8: jr ra
22

23 ut_code:
24 160: blez v0, 17c
25 164: mul v0, a1, v0
26 168: utidx a2
27 16c: sll a2, a2, 2
28 170: addu a2, a0, a2
29 174: addu v1, v0, v1
30 178: sw v1, 0(a2)
31 17c: stop

(b) Irregular DLP Example

Figure 4.2: Example Maven Assembly Code – Assembly code generated from Maven programming
methodology discussed in Chapter 6 for (a) regular DLP loop corresponding to Table 2.1c and (b) irregu-
lar DLP loop corresponding to Table 2.1f. ($i = scalar register i, $vi = vector register i. Each line begins
with instruction address. Assume following register initializations: a0 = base pointer for array C, a1 = base
pointer for array A, a2 = base pointer for array B, a3 = size of arrays, a4 = scalar value x. See Figures 4.1
and 4.2 for a list of all Maven instructions. Section 4.5 discusses the register usage and calling conventions.)

75

purpose register file. MIPS32 also includes a separate 32-entry floating-point register space and

eight floating-point condition-code registers. Separate hi, lo, and floating-point registers allow the

long-latency integer multiplier, integer divider, and floating-point units to run decoupled from the

primary integer datapath without additional write ports or any sophisticated write-port arbitration,

which would be required with a unified register file. Unfortunately, these separate registers also

more than double the amount of architectural state compared to the integer registers alone. As we

will see in Chapter 7, the register file is a significant portion of the overall core area so the addi-

tional architectural state translates into less microthreads for a given area constraint and thus shorter

hardware vector lengths.

Maven unifies MIPS32’s 32 integer registers, hi and lo registers, 32 floating-point registers, and

eight floating-point condition code registers into a single 32-entry general-purpose register space.

These changes require new integer multiply, divide, and remainder instructions that write a single

general-purpose register. These new instructions are more limited (i.e., multiplies produce a 32-bit

result instead of a 64-bit result and two instructions are required to calculate both the quotient and

remainder), but they are actually a better match for our C/C++-based programming methodology.

A more important issue with a unified register space is that it complicates decoupling long-latency

operations, but earlier studies [Asa98] and our own experiments have indicated that the overhead is

relatively small for moving from a 2-read/1-write register file to a 2-read/2-write register file. By

adding a second write port we can simplify decoupled implementations, yet still support a unified

register space. However, the dependency checking logic is still more complicated to efficiently

utilize multiple functional units with varying latencies and a unified register space. Maven also

avoids instructions that have additional implicit architectural state such as the cvt.w.s instruction,

which relies on a floating-point control register to determine the rounding mode. Maven instead

supports the standard MIPS32 conversion instructions which explicitly specify the rounding mode

in the opcode (e.g., round.w.s).

There are some trade-offs involved in choosing to base the Maven unified scalar instruction set

on a standard RISC instruction set such as MIPS32, particularly with respect to control flow instruc-

tions. MIPS32 includes a single-cycle branch-delay slot which Maven eliminates to simplify future

implementations which may leverage more sophisticated issue logic (e.g., limited superscalar issue

or even out-of-order issue). The control processor branch resolution latency is relatively short, so

a simple branch predictor can effectively help hide this latency. Unfortunately, the branch resolu-

tion latency for vector-fetched scalar branches can be quite long, which also implies a single-cycle

branch-delay slot would be less effective. Figure 2.14b shows how the VIU must wait for all mi-

crothreads to resolve the branch, and this latency will increase with more microthreads per lane.

Depending on the specifics of the actual implementation, this long branch resolution latency could

significantly degrade performance, especially for situations with few instructions on either side of

the branch.

76

One standard architectural technique is to replace some branches with conditional execution

(e.g., predication). Conditionally executed instructions are always processed but only take effect

based on additional implicit or explicit architectural state. Essentially conditional execution turns

control flow into data flow; more instructions need to be processed, but a branch instruction is no

longer needed. There are many conditional execution mechanisms including: full predication which

provides many explicit predication registers and any instruction can be conditionally executed; par-

tial predication which provides fewer predication registers (or possibly one implicit predication reg-

ister) and only a subset of the instructions can be conditionally executed; conditional move which

provides an instruction that conditionally copies a source register to a destination register usually

based on the contents of a third general-purpose register; conditional select which provides an in-

struction that copies one of its two sources to a destination register usually based on a separate

predicate register; and conditional store which provides a special store instruction which condition-

ally writes to memory based on an additional predicate register. Several studies have illustrated that

more extensive conditional execution mechanisms have higher implementation cost but can also

result in higher performance [SFS00, MHM+95]. Replacing highly divergent branches with con-

ditional execution can also help energy-efficiency by maintaining microthread coherence. Maven

supports the standard MIPS32 conditional execution instructions: movz conditionally moves a value

from one general-purpose register to another if a third general-purpose register is zero, and movn

does the same if the third general-purpose register is non-zero. Even though more sophisticated con-

ditional execution mechanisms would probably result in higher performance, Maven includes just

these two conditional move instructions because they are part of the standard MIPS32 instruction

set, are straight-forward to implement, and are already supported by standard MIPS32 compilers.

4.3 Vector Configuration Instructions

Maven uses a flexible vector configuration mechanism that enables the same implementation

to support few microthreads each with many registers or many microthreads each with few regis-

ters. Figure 4.3 illustrates the general concept for an implementation similar to the one shown in

Figure 2.12b. This implementation includes a total of 128 physical registers in the vector-thread

unit (VTU). The standard Maven unified scalar instruction set requires 32 registers per microthread

meaning that this implementation can support a minimum of four microthreads (see Figures 4.3a

and 4.3e). If the programmer can statically determine that all 32 registers are not needed for a por-

tion of the code, then the VTU can be configured with less registers per microthread. For example,

the same implementation can support twice as many microthreads (i.e., twice the vector length)

if software only requires 16 registers per microthread (see Figures 4.3b and 4.3f). Maven allows

software to configure between four and 32 registers per microthread meaning that the maximum

number of microthreads for this example is 32 (see Figures 4.3d and 4.3h). The available logical

register numbers always start at zero and increase consecutively. For example, with four registers

77

Figure 4.3: Examples of Various Vector Configurations – The same Maven implementation can support
few microthreads each with many registers (a,e) or many microthreads each with few registers (d,h). Register
number zero is shown as a normal register for simplification, but an actual implementation would exploit the
fact that register number zero always contains the value zero such that there is no need to provide multiple
copies of this register. (µT = microthread)

per microthread the logical registers numbers available for use are 0–4. This implies that register

zero is always available. The results of accessing an unavailable register is undefined. Reconfigur-

ing the VTU clobbers all vector registers, so software must save to memory any values that should

be live across a reconfiguration. Reconfiguration can also require dead-time in the VTU while in-

structions prior to the vcfgivl instruction drain the pipeline. Thus reconfiguration should be seen

as a coarse-grain operation done at most once per loop nest. Reconfigurable vector registers have

some significant implications for the register usage and calling conventions, which are discussed in

Section 4.5.

The example in Figure 4.3 does not exploit the fact that vector register number zero always

78

contains the value zero. An actual implementation only needs 124 physical registers to support

four microthreads with each microthread having all 32 registers that are part of Maven’s unified

scalar instruction set. Since each microthread does not need its own copy of register number zero,

the 124 physical registers can sometimes support more microthreads than pictured. For example,

with four registers per microthread (one of which is register number zero) the implementation can

actually support 41 microthreads (41 = d124/(3−1)e) as opposed to the 32 microthreads shown in

Figures 4.3d and 4.3h.

The example assembly code in Figure 4.2 illustrates how the Maven configuration mechanism is

exposed to software through the vcfgivl instruction on line 1. As shown in Table 4.2, the vcfgivl

instruction has two sources and one destination. The second source is an immediate specifying the

number of registers required per microthread. The regular DLP example in Figure 4.2a requires

five registers per microthread while the irregular DLP example in Figure 4.2b requires seven regis-

ters per microthread. Notice the vector register numbers and microthread scalar registers numbers

do not exceed these bounds. When executing a vcfgivl instruction, the hardware will write the

number of registers per microthread into the vcfg control register and also write the number of

microthreads that are correspondingly available (i.e., the maximum vector length) into the vlmax

control register. The value for vlmax is simply vlmax= dNphysreg/(Nutreg−1)ewhere Nphysreg is the

number of physical registers and Nutreg is the number of registers requested per microthread via the

vcfgivl instruction. Implementations can take advantage of the fact that the regular DLP example

requires less registers per microthread to support longer vector lengths, and this can result in higher

performance and better energy efficiency.

In addition to configuring the number of available microthreads, the vcfgivl instruction also

performs the same operation as a setvl instruction which was briefly described in Section 2.7. As

shown in Table 4.2, the setvl instruction has one source (the application vector length) and one

destination (the resulting number of active microthreads). As a side effect, the setvl and vcfgivl

instructions also write the number of active microthreads into the vl control register. The value

for the number of active microthreads is vl = max(vlmax,Nutapp) where Nutapp is the application

vector length (i.e., the total number of microthreads required by the application). As the examples

in Figure 4.2 illustrate, the setvl instruction is used for stripmining so that the loops can process

vl elements at a time without statically knowing anything about the physical resources available

in the VTU. Integrating the functionality of setvl into the vcfgivl instruction avoids having to

use two instructions for what is an very common operation, and thus should help reduce overhead

especially for loops with short application vector lengths.

The setvl and vcfgivl instructions enable software to flexibly configure the physical VT re-

sources in two dimensions: the number of microthreads and the number of registers per microthread.

This gives a great deal of freedom in the implementation in terms of the number of lanes and phys-

ical registers while still allowing the same compiled binary to efficiently run on all variations.

79

4.4 Vector Memory Instructions

Maven includes vector instructions for handling unit-stride and strided accesses to vectors of

words, halfwords, and bytes (see Table 4.2). These instructions are very similar to those found in

other vector-SIMD instruction sets. Figure 4.2a illustrates using unit-stride vector loads and stores

on lines 11–12,17. Most vector-SIMD instructions sets also include indexed vector loads/stores

which use a control-thread scalar register as a base address and a vector register to indicate an offset

for each accessed element. Maven achieves a similar effect with vector-fetched scalar accesses.

Each microthread computes its own address and then simply uses a standard scalar load/store (e.g.,

lw/sw). Maven could additionally provide dedicated indexed vector loads/stores, but unlike unit-

stride and strided accesses there is little regularity to exploit for performance or energy-efficiency.

Regardless of their encoding, indexed accesses cannot be decoupled effectively, since the addresses

are not known early enough in the pipeline, and they cannot be transferred in efficient blocks. It is

also important to note that vector-fetched scalar loads/stores are more general than indexed vector

accesses, since they can also implement conditional vector loads/stores as illustrated in Figure 4.2b

on line 30.

As discussed in Section 4.1, there are few constraints on the execution interleaving of the control

thread and microthreads, and each Maven core is meant to be used in a full data-parallel accelerator

with many independent cores. Thus it is important for the Maven instruction set to provide various

memory fence instructions to constrain load/store ordering and prevent unwanted race conditions.

Table 4.2 shows the three types of Maven memory fences: sync, sync.v, and sync.cv. Each

memory fence type has a local (.l) and global variant (.g). Local memory fences only enforce

ordering as viewed by the control thread and microthreads on a single core, while global mem-

ory fences enforce ordering as viewed by all control threads and microthreads in the data-parallel

accelerator. Notice that the sync.g instruction is an alias for the standard MIPS32 sync instruction.

Figure 4.4 illustrates the three types of memory fences with an abstract execution diagram.

Unlike the execution diagrams presented earlier, this diagram does not attempt to capture the details

of the implementation but instead tries to express the execution at the semantic level. A sync fence

is the least restrictive and ensures that all scalar loads/stores before the fence are complete before

any scalar loads/stores after the fence. In Figure 4.4a, a sync fence is used to order two consecutive

stores on the control thread, and it is also used to order two consecutive stores on a microthread.

A sync fence on one microthread does not constrain any other microthread. A sync.v fence

ensures that all vector loads/stores and microthread scalar loads/stores before the fence are complete

before any similar operations after the fence. In Figure 4.4a, a sync.v fence is used to order two

consecutive vector stores, and it also ensures that the microthread stores are complete before the

final vector store. These kind of fences are useful when mapping inter-microthread communication

through memory. For example, to permute a vector stored in a vector register we can use vector-

fetched scalar stores to place each element in the proper location in a temporary memory buffer

80

(a) Memory Fence Example for sync & sync.v (b) Memory Fence Example for sync.cv

Figure 4.4: Memory Fence Examples – These are abstract execution diagrams showing how the control
thread and two microthreads execute logically with respect to various memory fences. Memory fences intro-
duce additional dependencies between various load and store; these dependencies are shown with red arrows.
Diagrams apply equally well for both the local and global memory fence variants and if any store is replaced
with a load. (CT = control thread, µT = microthread)

before reloading with a unit-stride vector load. A sync.l.v fence is required in between the vector-

fetched scalar stores and the unit-stride vector load. Otherwise the lack of any inter-microthread

execution guarantees (even with respect to vector memory instructions) might allow the unit-stride

load to read an older value from memory. A sync.v fence does not constrain control-thread scalar

loads/stores in any way. A sync.cv fence constrains all types of memory accesses on a core,

and thus is the most restrictive type of memory fence. In Figure 4.4b, a sync.cv fence is used

to order two control-thread scalar stores, two vector stores, and two sets of vector-fetched scalar

stores. These kind of fences are useful when communicating between the control thread and the

microthreads through memory. For example, using a sync.l.cv fence after initializing a data

structure with the control thread ensures that the following vector memory accesses will read the

correctly initialized data. Figure 4.2 illustrates using this kind of fence at the end of a function to

ensure that the caller sees properly updated results that are stored in memory. Although there are

several other types of fences that constrain various subsets of memory accesses, these three types

cover the most common usage patterns.

In addition to memory fences, Maven also provides atomic memory operations for inter-thread

communication (see Table 4.1). Atomic memory operations can provide more scalable performance

as compared to the standard MIPS32 load-linked and store-conditional instructions. Atomic mem-

81

ory operations do not enforce a particular memory ordering, so a programmer is responsible for

combing an atomic memory operation with a memory fence to implement certain parallel commu-

nication mechanisms (e.g., a mutex).

4.5 Calling Conventions

Both the control thread and the microthreads can have different calling conventions, but in

Maven we exploit the unified instruction set to create a common calling convention for both types of

thread. This calling convention only handles passing scalar values in registers. One can also imagine

a calling convention for when the control thread passes vector registers as function arguments, but

we do not currently support this feature.

Table 4.3 shows the control-thread and microthread scalar register usage convention, which is a

modified version of the standard MIPS32 o32 convention [Swe07]. Maven includes eight instead of

four argument registers, and both floating-point and integer values can be passed in any argument

register (a0-a7) or return register (v0-v1). Stack passing conventions are the same as in o32 except

that register allocated arguments do not need to reserve space on the stack. Since the scalar conven-

tion is identical for both the control thread and the microthreads, the same compiled function can

be called in either context.

The above discussion assumes that Maven is configured with 32 registers per microthread. Al-

though reconfigurable vector registers enable higher performance and better energy efficiency, they

also complicate the calling conventions. For example, assume the control thread configures the VTU

for eight vector registers and then vector-fetches code onto the microthreads. These microthreads

will only have eight scalar registers available and be unable to call a function using the standard

Register Assembly
Number Name Usage

0 zero Always contains zero
1 at Reserved for use by assembler

2,3 v0,v1 Values returned by function
4–11 a0-a7 First few arguments for function

12–15 t4-t7 Functions can use without saving
16–23 s0-s7 Functions must save and then restore
24,25 t8,t9 Functions can use without saving
26,27 k0,k1 Reserved for use by kernel

28 gp Global pointer for small data
29 sp Stack pointer
30 fp Frame pointer
31 ra Function return address

Table 4.3: Scalar Register Usage Convention – This convention is used both by the control-thread and
by the microthreads and is similar to the standard MIPS32 o32 convention except for eight instead of four
argument registers. (Adapted from [Swe07])

82

scalar calling convention. Critical registers, such as the stack pointer and return address register,

will be invalid. Currently, Maven takes a simplistic approach where the microthread calling con-

vention requires all 32 registers.

4.6 Extensions to Support Other Architectural Design Patterns

We would like to compare the energy-efficiency and performance of Maven to the other ar-

chitectural design patterns presented in Chapter 2. This section describes how the basic Maven

instruction set can be extended to emulate the MIMD, vector-SIMD, and SIMT architectural design

patterns for evaluation purposes.

4.6.1 MIMD Extensions to Maven Instruction Set Architecture

When emulating the MIMD pattern, software is limited to just the scalar instructions in Ta-

ble 4.1 and should avoid the vector instructions listed in Table 4.2. All communication between mi-

crothreads occurs through memory, possibly with the help of the standard MIPS32 memory fence

(sync) and Maven specific atomic memory operations. Microthreads can take advantage of the

utidx instruction to identify their thread index.

Most applications have a serial portion where a master thread will perform some work while

the other worker threads are waiting. Usually this waiting takes the form of a tight loop that con-

tinually checks a shared variable in memory. When microthreads are running on different cores,

this waiting loop will impact energy-efficiency but not performance. In the MIMD pattern, multiple

microthreads can be mapped to the same core meaning that this waiting loop steals execution cy-

cles from the master thread significantly degrading performance. To address this issue, the Maven

MIMD extensions include a coprocessor 0 control register named tidmask that indicates which mi-

crothreads are active. Any thread can read or write this control register, and software must establish

a policy to coordinate when threads are made inactive or active. An inactive thread is essentially

halted at the current program counter and executes no instructions until another thread activates it

by setting the appropriate bit in tidmask. The stop instruction can also be used to allow a thread

to inactivate itself. Note that this differs from how the stop instruction is ignored by the control

thread when using the basic VT pattern.

4.6.2 Vector-SIMD Extensions to Maven Instruction Set Architecture

The Maven vector-SIMD extensions are based on the Torrent instruction set used in the T0

vector processor [Asa96]. Differences include support for floating-point instead of fixed-point,

and more extensive vector flag support instead of the vector conditional move instruction used in

the Torrent instruction set. The Maven vector-SIMD extensions includes an explicit eight-entry

vector flag register file. To simplify instruction encoding and some vector flag arithmetic, vector

flag register zero is always defined to contain all ones. When emulating the vector-SIMD pattern,

83

Vector Indexed Memory Instructions

l{w,h,b}x.v Rdst, rbase, Ridx Load vector reg Rdst from mem[rbase] with offset in Ridx
l{hu,bu}x.v Rdst, rbase, Ridx (unsigned and signed variants)
s{w,h,b}x.v Rsrc, rbase, Ridx Store vector reg Rsrc to mem[rbase] with offset in Ridx

Vector Integer Arithmetic Instructions

intop.vv Rdst, Rsrc0, Rsrc1, [F] Vector-vector arithmetic, (Rdst = Rsrc0 intop Rsrc1)
intop.vs Rdst, Rsrc0, rsrc1, [F] Vector-scalar arithmetic, (Rdst = Rsrc0 intop rsrc1)
intop.sv Rdst, rsrc0, Rsrc1, [F] Scalar-vector arithmetic, (Rdst = rsrc0 intop Rsrc1)

addu.{vv,vs}, subu.{vv,vs,sv}, mul.{vv,vs}
div.{vv,vs,sv}, rem.{vv,vs,sv}, divu.{vv,vs,sv}, remu.{vv,vs,sv}
and.{vv,vs}, or.{vv,vs}, xor.{vv,vs}, nor.{vv,vs}
sll.{vv,vs,sv}, srl.{vv,vs,sv}, sra.{vv,vs,sv}

Vector Floating-Point Arithmetic Instructions

fpop.s.v Rdst, Rsrc, [F] Vector arithmetic, Rdst = fpop(Rsrc)
fpop.s.vv Rdst, Rsrc0, Rsrc1, [F] Vector-vector arithmetic, Rdst = (Rsrc0 fpop Rsrc1)
fpop.s.vs Rdst, Rsrc0, rsrc1, [F] Vector-scalar arithmetic, Rdst = (Rsrc0 fpop rsrc1)
fpop.s.sv Rdst, rsrc0, Rsrc1, [F] Scalar-vector arithmetic, Rdst = (rsrc0 fpop Rsrc1)

add.s.{vv,vs,sv}, sub.s.{vv,vs,sv}, mul.s.{vv,vs,sv}, div.s.{vv,vs,sv}
abs.s.v, neg.s.v, sqrt.s.v
round.w.s.v, trunc.w.s.v, ceil.w.s.v, floor.w.s.v, cvt.s.w.v

Table 4.4: Maven Vector-SIMD Extensions – The vector-SIMD extensions add indexed vector load/store
instructions, vector arithmetic instructions, and vector flag support. See Table 4.5 for list of instructions
related to vector flag support. (r = control-thread scalar register specifier, R = vector register specifier, [F] =
optional vector flag register specifier for operations under flag, {w,h,b} = word, halfword, and byte vector
memory variants, {hu,bu} = unsigned halfword and unsigned byte vector memory variants, {vv,vs,sv} =
vector-vector, vector-scalar, scalar-vector variants)

software can use all of the vector instructions in Table 4.2 except for the vector fetch instructions.

Tables 4.4 and 4.5 show the additional vector instructions needed for the vector-SIMD pattern.

There are vector equivalents for most of the scalar MIPS32 operations. Most of the vector-SIMD

instructions are encoded with a MIPS32 coprocessor 2 primary opcode and a secondary opcode

field, although some instructions require unused primary MIPS32 opcodes.

The vector-SIMD extensions include indexed vector loads and stores each of which requires two

sources: a scalar base register and a vector register containing offsets for each microthread. A full

complement of vector integer and arithmetic instructions are available. Some instructions include

three variants: vector-vector (.vv) with two vector registers as sources and vector-scalar/scalar-

vector (.vs/.sv) with a a vector register and a control-thread scalar register as sources. Vector-

scalar and scalar-vector variants are necessary for those operations that are not commutative. For

example, the subu.vs instruction subtracts a scalar value from each element in a vector register

while the subu.sv subtracts each element in a vector register from a scalar value. All vector

84

Vector Flag Integer Compare Instructions

seq.f.vv Fdst, Rsrc0, Rsrc1 Flag reg Fdst = (Rsrc0 == Rsrc1)
slt.f.vv Fdst, Rsrc0, Rsrc1 Flag reg Fdst = (Rsrc0 ¡ Rsrc1)

Vector Flag Floating-Point Compare Instructions

c.fpcmp.s.f.vv Fdst, Rsrc0, Rsrc1 Vector-vector flag compare, Fdst = (Rsrc0 fpcmp Rsrc1)
c.fpcmp.s.f.vs Fdst, Rsrc0, rsrc1 Vector-scalar flag compare, Fdst = (Rsrc0 fpcmp rsrc1)
c.fpcmp.s.f.sv Fdst, rsrc0, Rsrc1 Scalar-vector flag compare, Fdst = (rsrc0 fpcmp Rsrc1)

c.f.s.{vv,vs,sv}, c.un.s.{vv,vs,sv}, c.eq.s.{vv,vs,sv}, c.ueq.s.{vv,vs,sv}
c.olt.s.{vv,vs,sv}, c.ult.s.{vv,vs,sv}, c.ole.s.{vv,vs,sv}, c.ule.s.{vv,vs,sv}
c.sf.s.{vv,vs,sv}, c.nlge.s.{vv,vs,sv}, c.seq.s.{vv,vs,sv}, c.ngl.s.{vv,vs,sv}
c.lt.s.{vv,vs,sv}, c.nge.s.{vv,vs,sv}, c.le.s.{vv,vs,sv}, c.ngt.s.{vv,vs,sv}

Vector Flag Arithmetic Instructions

fop.f Fdst, Fsrc0, Fsrc1 Flag transformation, Fdst = (Fsrc0 fpcmp Fsrc1)

or.f, and.f, xor.f, not.f

Vector Flag Move Instructions

mov.f Fdst, Fsrc Move Fsrc to Fdst
mov.fv Fdst, Rsrc Move Rsrc to Fdst
mov.vf Rdst, Fsrc Move Fsrc to Rdst
popc.f rdst, Fsrc Write number of ones in flag reg Fsrc to CT reg rdst
findfone.f rdst, Fsrc Write position of first one in flag reg Fsrc to CT reg rdst

Table 4.5: Maven Vector-SIMD Extensions (Flag Support) – The vector-SIMD extensions includes sup-
port for writing flag registers based on integer and floating-point comparisons, as well as other flag arithmetic
operations. (CT = control thread, r = control-thread scalar register specifier, R = vector register specifier,
F = vector flag register specifier, {w,h,b} = word, halfword, and byte vector memory variants, {hu,bu} =
unsigned halfword and unsigned byte vector memory variants)

arithmetic operations include an optional source specifying a vector flag register. Each element of

a vector is only written to the vector register if the corresponding bit of the flag register is one. The

Maven vector-SIMD extensions do not include conditional loads and stores, since implementing

them can be quite challenging.

Various vector integer and arithmetic comparison instructions are provided that write a specific

flag register. Flag arithmetic instructions can be used for implementing more complicated data-

dependent conditionals. For example, a simple if/then/else conditional can be mapped with

a comparison operation that writes flag register F, executing the then instructions under flag F,

complementing the flag register with a not.f instruction, and then executing the else instructions.

Flag arithmetic also be used for nested if statements by using the or.f instruction to merge nested

comparison operations.

85

4.6.3 SIMT Extensions to Maven Instruction Set Architecture

To emulate the SIMT pattern, we could simply restrict software in a similar way as for the

Maven MIMD extensions. This would require a completely different implementation from any

of the other patterns. We found it easier to start from the basic Maven VT instruction set and

corresponding Maven implementation, and simply restrict the type of instructions allowed when

emulating the SIMT pattern. For example, SIMT software should avoid using the control thread as

much as possible, since an actual SIMT implementation would not include a programmable control

processor. SIMT software should begin by initializing scalar variables for each microthread with

the mov.sv instruction. Normally this would be done with dedicated hardware in an actual SIMT

implementation. SIMT software should also avoid using the setvl instruction, and instead use a

vector-fetched scalar branch to check if the current microthread is greater than the application vec-

tor length. The SIMT software can take advantage of the reconfigurable vector registers if possible,

since SIMT implementations might have similar reconfiguration facilities implemented with ded-

icated hardware. SIMT microthreads can use all of the scalar instructions in Table 4.1 including

atomic memory operations. SIMT software should use vector-fetched scalar loads/stores instead

of unit-stride or strided vector memory operations. Partitioning a long vector-fetched block into

multiple shorter vector-fetched blocks emulates statically annotated reconvergence points.

4.7 Future Research Directions

This section briefly describes some possible directions for future improvements with respect to

the Maven instruction set.

Calling Conventions with Reconfigurable Vector Registers – As discussed in in Section 4.5,

reconfigurable vector registers significantly complicate the register usage and calling convention.

The current policy avoids any issues by limiting reconfiguration to leaf functions, but it would be

useful to enable more flexible reconfiguration policies. One option might be to provide different

versions of a function, each of which assumes a different number of available vector registers.

The calling convention could standardize a few common configurations to reduce duplicate code. A

bigger issue is the inability for the microthreads to make function calls unless the VTU is configured

with 32 registers. A possible improvement would be to modify the order in which logical registers

are eliminated as the number of registers per microthread is decreased. For example, if the gp,

sp, fp, and ra registers were eliminated only after 16 of the other registers were eliminated the

microthreads could call functions as long as 16 or more registers were available.

Shared Vector Registers – Section 4.3 discussed how a Maven implementation can exploit the

fact that register number zero is shared among all microthreads to increase vector lengths with the

same amount of physical resources. This is a specific example of a more general concept known

as shared vector registers first explored in the Scale VT processor. Currently Maven only provides

86

private vector registers meaning that there is a unique element for each microthread. A shared

vector register has only one element and is shared among all the microthreads, and it can be used

to hold constants or possibly even reduction variables. The vcfgivl instruction would need to be

extended so that the programmer could specify the required number of private and shared registers.

Adding shared registers such that any Maven instruction can access the shared register is challenging

without radical re-encoding. There are no available bits to hold the private register specifier as well

as additional shared register specifiers. One option would be to place the shared registers in a

separate register space and provide a special instruction to move values between the private and

shared registers. Another option would be to allow some of the standard 32 registers currently used

by Maven to be marked as shared. The order in which registers are marked private or shared could

be specified statically as part of the instruction set. For example, some of the temporary registers

might be able to be marked as shared. Of course, an additional challenge would be improving the

programming methodology such that private and shared registers are allocated efficiently.

Vector Unconfiguration – Section 4.3 introduced a method for reconfiguring the vector registers

based on the number of required vector registers. It would also be useful to add a vuncfg instruction

that unconfigures the vector unit. This instruction acts as a hint to the hardware that the VTU is not

being used. An implementation could then implement a policy to power-gate the VTU after a certain

period of time, thereby reducing static power consumption. The VTU would be turned on at the next

vcfgivl instruction. This instruction might also include an implicit sync.l.cv memory fence. A

standard software policy for vectorized functions might be to first configure the VTU, complete the

vectorized computation, and then unconfigure the VTU. Currently, most vectorized Maven functions

already use a sync.l.cv memory fence before returning, so the vuncfg instruction would just be

a more powerful mechanism for ending a vectorized function. Finally, unconfiguring the VTU also

tells the operating system that there is no need to save the vector architectural state on a context

swap.

Vector Segment Memory Accesses – Working with arrays of structures or objects is quite com-

mon, but accessing these objects with multiple strided accesses can be inefficient. Segment mem-

ory accesses, such as those available in the Scale VT processor and stream processors [RDK+98,

KWL+08], can load multiple consecutive elements into consecutive vector registers. For example,

an array of pixels each with a red, blue, and green color component could be loaded with either

three strided accesses or with a single segment access that loads the three color components into

three consecutive registers in each microthread. Segment accesses are straight-forward to add to the

instruction set, but implementing them efficiently can be difficult.

Vector Compress and Expand Instructions – As described in Section 2.1, vector compress and

expand instructions can be used to transform irregular DLP to more regular DLP. Even though VT

architectures can handle most irregular DLP naturally with vector-fetched scalar branches, it might

87

still be useful in some applications to collect just the active elements. For example, a program-

mer might want to break a large vector-fetched block into smaller blocks to facilitate chaining off

vector loads and/or to reduce the required number of vector registers. If the large vector-fetched

block contains control-flow intensive code, the programmer will need to save the control-flow state

so that the microthreads can return to the proper control path in the second vector-fetched block.

An alternative might be to compress active elements, and process similar elements with different

vector-fetched blocks. Unfortunately, vector compress and expand instructions usually leverage a

vector flag register to specify which elements to compress, but this is not possible in the Maven VT

instruction set. Instead, Maven could provide a new microthread scalar instruction which marks that

microthread as participating in a vector compress operation. The next vector compress instruction

would only compress elements from those microthreads which have been marked and then reset this

additional architectural state. It would probably be necessary for the control thread to have access to

the number of microthreads participating in the compress operation for use in counters and pointer

arithmetic.

Vector Reduction Instructions – Currently the Maven instruction set has no special provisions for

reduction operations that can be used when implementing cross-iteration dependencies such as the

one shown in Table 2.1j. These loops can still be mapped to Maven, but the cross-iteration portion

either needs to be executed with vector memory instructions or by the control thread. Because the

VT pattern includes vector instructions in addition to vector-fetched scalar instructions, Maven can

eventually support any of the standard reduction instructions found in vector-SIMD architectures.

For example, a vector element rotate instruction would essentially pass a register value from one

microthread to the next, while a vector extract instruction would copy the lower portion of a source

vector register to the higher portion of a destination vector register. Unfortunately, since these are

vector instructions, they can not be easily interleaved with vector-fetched scalar instructions. The

programming methodology must partition vector-fetched blocks into smaller blocks to enable the

use of these vector reduction instructions. An alternative would be to leverage the shared vector

registers for cross-microthread communication. The instruction set could provide a new vector

fetch atomic instruction for manipulating a shared register for cross-microthread communication,

similar to the atomic instruction blocks used in Scale. A vector fetch atomic instruction requires the

hardware to execute the corresponding vector-fetched atomic block for each microthread in isolation

with respect to the other microthreads and shared registers. A microarchitecture can implement

these atomic blocks by effectively causing maximum divergence where each microthread executes

the atomic region by itself. Although this serializes the computation, it is a flexible mechanism and

keeps the data in vector registers for efficient execution of any surrounding regular DLP.

88

4.8 Related Work

This section highlights selected previous work specifically related to the unified VT instruction

set presented in this chapter.

Scale VT Processor – The Maven instruction set has some similarities and important differences

compared to the Scale instruction set [KBH+04a]. Both have very similar control-thread scalar

instruction sets based on the MIPS32 instruction set with the primary difference being Maven’s

support for floating-point instructions. Both instruction sets support reconfigurable vector registers,

unit-stride and strided vector memory instructions, and vector fetch instructions. Scale includes

dedicated vector segment accesses to efficiently load arrays of structures. The most important dif-

ference between the two instruction sets, is that the Scale microthread instruction set is specialized

for use in a VT architecture, while Maven unifies the control-thread and microthread instruction

sets. Scale’s microthread instruction set has software exposed clustered register spaces compared

to Maven’s monolithic microthread register space; Scale microthread code must be partitioned into

atomic instruction blocks while Maven microthread code simply executes until it reaches a stop

instruction; Scale provides thread-fetch instructions for microthread control flow, while Maven uses

standard scalar branch instructions; Scale has richer support for predication with an implicit pred-

ication register per cluster and the ability to predicate any microthread instruction while Maven is

limited to the standard MIPS32 conditional move instructions; Scale has hardware support for cross-

microthread communication while Maven requires all such communication to be mapped through

memory; Scale includes shared registers in addition to private registers which enables implementa-

tions to better exploit constants or shared values across microthreads. Overall the Maven instruction

set is simpler, while the Scale instruction set is more complicated and specialized for use in a VT

architecture.

Fujitsu Vector Machines Reconfigurable Vector Registers – Most vector-SIMD processors have

fixed hardware vector lengths, but several Fujitsu vector machines include a reconfigurable vector

register mechanism similar to Maven. For example, the Fujitsu VP-200 machine has a total of

8,192 64-bit elements that could be reconfigured from eight vector registers of 1024 elements to

256 registers of 32 elements [Oya99].

Graphics Processor Reconfigurable Number of Microthreads – Graphics processors from both

NVIDIA and ATI include the ability to increase the total number of microthreads if each mi-

crothread requires fewer scalar registers [LNOM08, nvi09, ati09]. This does not change the number

of microthreads per microthread block, but instead it changes the amount of VIU multithreading.

Thus this reconfiguration will improve performance but will unlikely help the energy efficiency.

Maven’s configuration instructions change the actual number of microthreads managed by each

control thread, and thus directly impacts the amount of energy amortization.

89

Microthreaded Pipelines – Jesshope’s work on microthreaded pipelines [Jes01] has some similar-

ities to the Maven VT instruction set. The proposal includes a cre instruction that is similar to

Maven’s vf instruction. The cre instruction causes an array of microthread pipelines to each exe-

cute one iteration of a loop, and a subset of the master thread’s instruction set is supported by the

microthreaded pipelines. An important difference, is that the microthreaded pipelines cannot exe-

cute conditional control flow, while the Maven instruction set is specifically designed to efficiently

handle such control flow. Jesshope’s work also lacks vector memory instructions to efficiently trans-

fer large blocks of data between memory and the microthreaded pipelines. There are also significant

differences in the implementation of the two approaches. The VT pattern attempts to achieve vector-

like efficiencies for microthread instructions which are coherent, while the microthreaded pipeline

approach has a much more dynamic thread execution model that always results in scalar energy ef-

ficiencies. In addition, the microthreaded pipeline technique focuses more on efficiently executing

cross-iteration dependencies, while Maven focuses more on efficiently executing irregular control

flow.

Unified Scalar/Vector – Jouppi et al.’s work on a unified scalar/vector processor leverages the pri-

mary scalar datapath to provide features similar to the vector-SIMD pattern with a purely temporal

implementation [JBW89]. Both scalar and vector instructions operate on the same register file; vec-

tor instructions can start at any offset in the register file and simply perform the same operation for

multiple cycles while incrementing the register specifier. This technique enables an elegant map-

ping of irregular DLP, since mixing scalar arithmetic and control instructions with vector arithmetic

operations is trivial. Unfortunately, control thread decoupling is no longer possible and the energy

efficiency of such an approach is unclear. Since registers are accessed irregularly, implementing

multiple vector lanes or banked vector register files becomes more difficult. Dependency checking

is more complicated and must occur per vector element.

90

Chapter 5

Maven Microarchitecture

The Maven data-parallel accelerator will include an array of tens to hundreds of cores each of

which implements the Maven instruction set introduced in the previous chapter. Section 3.2 has

already motivated our interest in Maven VT cores based on small changes to a single-lane vector-

SIMD unit. Section 5.1 gives an overview of the single-lane Maven VT core microarchitecture

and provides an example program execution that will be carried throughout the rest of the chapter.

Sections 5.2–5.5 introduce four techniques that complement the basic Maven microarchitecture.

Section 5.2 describes control processor embedding which helps mitigate the area overhead of in-

cluding a separate control processor per vector lane. Section 5.3 describes vector fragment merging

which helps microthreads automatically become coherent again after diverging. Section 5.4 de-

scribes vector fragment interleaving which helps hide latencies (particularly the branch resolution

latency) by interleaving the execution of multiple independent vector fragments. Section 5.5 de-

scribes vector fragment compression which is a flexible form of density-time execution suitable for

use in VT architectures. Although this thesis focuses on a single data-parallel core, Section 5.6

provides some insight into how these cores can be combined into a full data-parallel accelerator.

Section 5.7 discusses various extensions that enable the Maven microarchitecture to reasonably em-

ulate the MIMD, vector-SIMD, and SIMT architectural design patterns. The chapter concludes with

future research directions (Section 5.8) and related work (Section 5.9).

5.1 Microarchitecture Overview

Figure 5.1 shows the microarchitecture of a Maven VT core which contains four primary mod-

ules: the control processor executes the control thread and fetches vector instructions which are

then sent to the vector issue unit and vector memory unit; the vector lane includes the vector reg-

ister file and vector functional units; the vector issue unit (VIU) handles issuing vector instructions

and managing vector-fetched instructions, and the vector memory unit (VMU) handles the vector

and microthread memory accesses. The vector lane, VIU, and VMU form the Maven vector-thread

91

unit (VTU) which closely resembles a single-lane vector-SIMD unit. The primary differences be-

tween the two implementations are in the VIU, with some smaller changes in the vector lane and

VMU. This close resemblance helps ensure that Maven will achieve vector-like efficiencies on reg-

ular DLP, while the differences in the VIU allow Maven to more easily execute a wider range of

irregular DLP. Each of these four modules is explained in detail below, and then an example pro-

gram is used to illustrate how all four modules work together to execute both regular and irregular

DLP.

Maven includes a simple five-stage single-issue in-order RISC control processor. The control

processor uses a 31-entry register file with two read ports and two write ports. The first write port is

for short-latency integer operations, while the second write port is for long-latency operations such

as loads, integer multiplies/divides, and floating-point operations. This allows the control processor

to overlap short-latency operations while long-latency operations are still in flight without needing

complex dynamic write-port arbitration. An early commit point in the pipeline allows these short-

latency operations to be directly written to the architectural register file. The figure illustrates how

the control processor is embedded into the vector lane by sharing the lane’s long-latency functional

units and memory ports. Section 5.2 will discuss control processor embedding in more detail.

A Maven vector lane includes a large vector register file with 248× 32-bit elements and five

vector functional units: vector functional unit zero (VFU0) which can execute simple integer oper-

ations, integer multiplies, and floating-point multiplies and square roots; vector functional unit one

(VFU1) which can execute simple integer operations, integer divides, and floating-point additions

and divides; the vector address unit (VAU) which reads addresses from the vector register file and

sends them to the VMU for microthread loads and stores; the vector store-data read unit (VSDRU)

which reads store data from the vector register file and sends it to the VMU for vector and mi-

crothread stores; and the vector load-data writeback unit (VLDWU) which writes load data from

the VMU into the vector register file. The long-latency operations in the VFU0/VFU1 are fully

pipelined and have latencies ranging from four to 12 cycles. Each vector functional unit includes a

small controller that accepts a vector operation and then manages its execution over many cycles.

The controller handles fetching the appropriate sources from the vector register file, performing the

operation, and writing the result back into vector register file for each element of the vector. A

single vector operation can therefore occupy a vector functional unit for a number of cycles equal to

the current hardware vector length. Note that the vector functional unit controllers do not perform

hazard checking nor handle any stall logic; the VIU is responsible for issuing vector operations to

functional units only when there are no hazards and the operation can execute to completion (with

the exception of the vector memory instructions described below). To support parallel execution of

all five functional units, the vector register file requires six read ports and three write ports. The

register file can be configured to support vector lengths of 8–32 with 32–4 registers per microthread

respectively. Note that there is actually enough state to support a vector length of 64 with only

92

Figure 5.1: Maven VT Core Microarchitecture – This microarchitecture corresponds to the high-level
implementation shown in Figure 2.12b with a single-lane VTU. The control processor is embedded mean-
ing it shares long-latency functional units and memory ports with the VTU. Maven includes five vec-
tor functional units: VFU0 executes simple integer arithmetic, integer multiplication, and floating-point
multiplication/square-root; VFU1 executes simple integer arithmetic, integer division, and floating-point ad-
dition/division; the VAU reads addresses and generates requests for microthread loads/stores; the VSDRU
reads store-data from register file for vector and microthread stores; and the VLDWU writes load-data into
register file for vector and microthread loads. The vector issue unit manages vector instructions and vector-
fetched scalar instructions, while the vector memory unit manages vector and microthread loads/stores. (CP =
control processor, VIU = vector issue unit, VMU =vector memory unit, PVFB = pending vector fragment
buffer, PC = program counter, BRMR = branch resolution mask register, VFU = vector functional unit,
VAU = vector address unit, VSDRU = vector store-data read unit, VLDWU = vector load-data writeback
unit, VLAGU = vector load-address generation unit, VSAGU = vector store-address generation unit, VAQ =
vector address queue, VSDQ = vector store-data queue, VLDQ = vector load-data queue, int = simple integer
ALU, imul/idiv = integer multiplier and divider, fmul/fadd/fsqrt/fdiv = floating-point multiplier, adder, square
root unit, and divider.)

93

four registers per microthread. We limit the vector length to 32 to reduce VIU control logic and

microarchitectural state that scales with the maximum number of microthreads.

The VIU acts as the interface between the control processor and the vector lane. The control

processor fetches vector instructions and pushes them into the VIU queue, and the VIU then pro-

cesses them one at a time. If a vector instruction requires access to control-thread scalar data, then

the control processor will push the corresponding values into the VIU queue along with the vector

instruction. The VIU is divided into two decoupled stages: the fetch/decode stage and the issue

stage. When the fetch/decode stage processes a simple vector instruction (e.g., a mov.vv or mtut

instruction) sent from the control processor, it simply decodes the instruction and sends it along to

the issue stage. When the fetch/decode stage processes a vector fetch instruction, it creates a new

vector fragment. Vector fragments, and the various mechanisms used to manipulate them, are the

key to efficiently executing both regular and irregular DLP on Maven. Each vector fragment con-

tains a program counter and a bit mask identifying which microthreads are currently fetching from

that program counter. Vector fragments are stored in the pending vector fragment buffer (PVFB)

located in the fetch/decode stage of the VIU. When processing a vector fetch instruction the newly

created vector fragment contains the target instruction address of the vector fetch instruction and a

bit mask of all ones, since all microthreads start at this address. The fetch/decode stage then starts

to fetch scalar instructions for this fragment and sends the corresponding vector fragment micro-op

(vector operation plus microthread bit mask) to the issue stage. The issue stage is responsible for

checking all structural and dependency hazards before issuing vector fragment micro-ops to the vec-

tor lane. Fragment micro-ops access the vector register file sequentially, one element at a time, and

cannot stall once issued. The regular manner in which vector fragments execute greatly simplifies

the VIU. The issue stage tracks just the first microthread of each vector fragment micro-op, which

effectively amortizes hazard checking over the entire vector length. Even though the VIU issues

vector fragment micro-ops to the vector lane one per cycle, it is still possible to exploit instruction-

level parallelism by overlapping the execution of multiple vector instructions, since each occupies a

vector functional unit for many cycles.

When the VIU processes a vector-fetched scalar branch instruction, it issues the corresponding

branch micro-op to VFU0/VFU1 and then waits for all microthreads to resolve the branch. Each

microthread determines whether the branch should be taken or not taken and writes the result to

the appropriate bit of the branch resolution mask register (BRMR). Once all microthreads have

resolved the branch, the branch resolution mask is sent back to the VIU. If the branch resolution

mask is all zeros, then the VIU continues fetching scalar instructions along the fall-through path,

or if the branch resolution mask is all ones, then the VIU starts fetching scalar instructions along

the taken path. If the microthreads diverge, then the VIU creates a new fragment to track those

microthreads which have taken the branch, removes those microthreads from the old fragment, and

continues to execute the old fragment. Microthreads can continue to diverge and create new frag-

94

ments, but eventually the VIU will reach a stop instruction which indicates that the current fragment

is finished. The VIU then chooses another vector fragment to start processing and again executes

it to completion. Once all vector fragments associated with a specific vector fetch instruction are

complete, the VIU is free to start working on the next vector instruction waiting in the VIU queue.

Vector-fetched unconditional jump instructions are handled exclusively in the fetch/decode stage of

the VIU. Vector-fetched jump register instructions require VFU0/VFU1 to read out each element

of the address register and send it back to the fetch/decode stage of the VIU one address per cy-

cle. The fetch/decode stage either merges the corresponding microthread into an existing fragment

in the PVFB or creates a new fragment in the PVFB if this is the first microthread with the given

target address. This allows the microthreads to remain coherent if they are all jumping to the same

address, which is common when returning from a function.

The VMU manages moving data between memory and the vector register file. For vector mem-

ory instructions, the control processor first fetches and decodes the instruction before sending it to

the VIU. The fetch/decode stage of the VIU then splits it into two parts: the address generation

micro-op which is sent to the VMU, and either the store-data read micro-op or the load-data write-

back micro-op which are sent to the issue stage. The VMU turns a full vector memory micro-op into

multiple memory requests appropriate for the memory system. We currently assume the memory

system naturally handles 256-bit requests, so a 32-element lw.v instruction (total size of 1024 bits)

needs to be broken into four (or five if the vector is unaligned) 256-bit requests. Strided accesses

may need to be broken into many more memory requests. The vector load-address generation unit

(VLAGU) and vector store-address generation unit (VSAGU) are used by the VMU to generate the

correct addresses for each 256-bit request. As shown in Figure 5.1, Maven supports issuing both a

load and a store every cycle. Since read and write datapaths are always required, the performance

improvement is well worth the additional address bandwidth to support issuing loads and stores

in parallel. For a vector load, the memory system will push the load data into the vector load-

data queue (VLDQ). To prevent a core from stalling the memory system, the VMU is responsible

for managing the VLDQ such that the memory system always has a place to write the response

data. Once data arrives in the VLDQ, the VIU can issue the load-data writeback micro-op to the

VLDWU which will write the vector into the register file one element per cycle. For a vector store,

the store-data read micro-op is issued to the VSDRU and one element per cycle is read from the vec-

tor register file and pushed into the vector store data queue (VSDQ). The VMU then takes care of

issuing requests to send this data to the memory system. The issue stage must handle the store-data

read micro-op and the load-data writeback micro-op carefully, since they can stall the vector lane if

the VSDQ or VLDQ are not ready. The issue stage monitors the VSDQ and the VLDQ, and only

issues the store-data read micro-op or load-data writeback micro-op when there is a good chance

a stall will not occur (i.e., there is plenty of space in the VSDQ or plenty of data in the VLDQ).

Conservatively guaranteeing these micro-ops will never stall incurs a significant performance and

95

buffering penalty, so Maven includes a global stall signal to halt the entire vector lane when either

the VSDQ is full or the VLDQ is empty. This simplifies the VIU, VMU, and vector lane design, but

requires careful consideration of the the stall signal’s impact on the critical path. Microthread loads

and stores are handled in a similar way as vector memory instructions, except that the addresses

come from the vector lane via the VAU, and the VIU must inform the VMU of how many elements

to expect. By routing all memory operations through the VIU, we create a serialization point for

implementing vector memory fences. Section 5.6 will illustrate how stream buffers located close

to the L2 cache banks enable reading and writing the cache memories in wide 256-bit blocks. The

blocks are then streamed between these buffers and the cores at 32 bits per cycle, which naturally

matches the VSDRU and VLDWU bandwidth of one element per cycle.

Figure 5.2 shows how a small example executes on the Maven microarchitecture. The pseu-

docode is shown in Figure 5.2a and resulting pseudo-assembly (similar in spirit to what was used

in Section 2.7) is shown in Figure 5.2b. This example contains nested conditionals to help illus-

trate how Maven handles irregular DLP with vector fragments. We assume the hardware vector

length is four, and that the four microthreads have the following data-dependent execution paths:

µT0: opY→ opZ; µT1: opW→ opX→opZ; µT2: opY→ opZ; µT3: opW→ opZ. The unit-stride vec-

tor load at address 0x004 is split into the load-data writeback micro-op which is handled by the

VIU (wr.v) and the address generation micro-op which is sent to the VMU (addr.v not shown,

see Figure 2.13b for an example). Some time later the data comes back from memory, and the VIU

is able to issue the load-data writeback to the VLDWU. Over four cycles, the VLDWU writes the

returned data to the vector register file. The VIU is then able to process the vector fetch instruc-

tion at address 0x008, and the corresponding update to the PVFB is shown in the figure. The VIU

creates a new vector fragment (A) with the target address of the vector fetch instruction (0x100)

and a microthread mask of all ones. The first instruction of fragment A is the branch at address

0x100. It is important to note that this execution diagram, as well as all other execution diagrams

in this thesis, assume a vector lane can execute only a single vector micro-op at a time. This as-

sumption is purely to simplify the discussion. Any practical implementation will support multiple

vector functional units (e.g., Maven has five vector functional units), and allow results to be chained

(bypassed) between these functional units. For example, Maven allows the unit-stride vector load to

chain its result to the first vector-fetched branch instruction such that these two vector instructions

can overlap. Chaining requires more complicated control logic in the VIU but is essential for good

performance.

The figure shows how the VIU waits for all four microthreads to resolve the branch before

determining how to proceed. In this example, the microthreads diverge with µT0 and µT2 taking

the branch and µT1 and µT3 falling through. The VIU creates a new fragment (B) which contains

the branch target address (0x114) and the mask bits for µT0 and µT2 set to one (0101). The VIU

now proceeds to continue executing fragment A but only for µT1 and µT3. Notice how µT0 and

96

for (i = 0; i < n; i++)
if (A[i] >= 0)
opW;
if (A[i] == 0)
opX;

else
opY;

opZ;

(a) Pseudocode

loop:
000: setvl vlen, n
004: load.v VA, a_ptr
008: fetch.v ut_code
00c: add a_ptr, vlen
000: sub n, vlen
014: br.neq n, 0, loop
...

ut_code:
100: br.lt a, 0, else
104: opW
108: br.neq a, 0, done
10c: opX
110: jump done
else:
114: opY
done:
118: opZ
11c: stop

(b) Pseudo-Assembly

(c) Maven Execution Diagram

Figure 5.2: Executing Irregular DLP
on the Maven Microarchitecture –
Example (a) pseudocode, (b)
pseudo-assembly, (c) and execution for a
loop with nested conditionals illustrating
how the PVFB manages divergence
through vector fragments. (Code syntax
similar to that used in Figure 2.14.
Vector memory unit not shown for
simplicity. CP = control processor,
VIU = vector issue unit, PVFB =
pending vector fragment buffer.)

97

µT2 are masked off when the vector lane executes the opW and br.neq instructions. The br.neq

instruction at address 0x108 illustrates a nested conditional and the potential for nested divergence,

since the microthreads have already diverged once at the first branch. The VIU again waits for the

branch to resolve before creating a new vector fragment (C) which records the fact that µT3 has

taken the branch. Vector fragment A now only has a single microthread (µT1). The VIU continues

to execute fragment A until it reaches a stop instruction. Notice how the VIU quickly redirects the

vector-fetched instruction stream when it encounters unconditional control flow (i.e., the jump at

address 0x110).

Now that fragment A has completed, the VIU will switch and start executing one of the two

remaining fragments (B,C). Exactly which fragment to execute next is a hardware policy decision,

but based on the microarchitecture as currently described, there is no real difference. In this exam-

ple, the VIU uses a stack-based approach and switches to fragment C, before it finally switches to

fragment B. It is perfectly valid for these later fragments to continue to diverge. Once all fragments

are complete and the PVFB is empty, the VIU can move onto the next vector instruction. In this

example, the control processor has already run-ahead and pushed the beginning of the next iteration

of the stripmine loop into the VIU queue.

Based on this example, we can make several interesting observations. Note that the PVFB

does not need to track any per-path history, but instead simply tracks the leading control-flow edge

across all microthreads. This means the size of the PVFB is bounded to the maximum number of

microthreads (i.e., 32). An equivalent observation is that the mask bit for each microthread will

be set in one and only one entry of the PVFB. As with all VT architectures, Maven is able to

achieve vector-like efficiencies on regular DLP, but also notice that Maven is able to achieve partial

vector-like efficiencies when executing vector fragments caused by irregular DLP. For example,

the VIU can still amortize instruction fetch, decode, and dependency checking by a factor of two

when executing instruction opW of fragment A. Unfortunately, this example also illustrates a missed

opportunity with respect to instruction opZ. Although this instruction could be executed as part of

just one fragment, it is instead executed as part of three different fragments. Section 5.3 will describe

vector fragment merging which attempts to capture some of this reconvergence dynamically. It

is important to note, though, that the microthreads always reconverge when the VIU moves onto

the next vector instruction (e.g., for the next iteration of the stripmine loop). According to the

Maven execution semantics any microthread interleaving is permissible, which means that executing

fragments in any order is also permissible. Section 5.4 will describe vector fragment interleaving

which hides various execution latencies, such as the branch resolution latency, by switching to a new

fragment before the current fragment is completed. In this example, there are 17 wasted execution

slots due to inactive microthreads, and the amount of wasted time will continue to rise with even

greater divergence. Section 5.5 will describe vector fragment compression which skips inactive

microthreads at the cost of increased control-logic and register-indexing complexity.

98

5.2 Control Processor Embedding

Control processor (CP) embedding allows the CP to share certain microarchitectural units with

the VTU, and it is an important technique to mitigating the area overhead of single-lane VTUs. Fig-

ure 5.1 illustrates the two ways in which the Maven CP is embedded: shared long-latency functional

units and shared memory ports.

An embedded CP still includes its own scalar register file and relatively small short-latency

integer datapath. Instead of including its own long-latency functional units (e.g., integer multi-

plier/divider and floating-point units), the CP reads the source operands from its scalar register file

and pushes them along with the appropriate command information into the CP embedding request

queue (shown at the top of Figure 5.1). This request queue is directly connected to VFU0 and

VFU1. The vector functional unit controllers include a simple arbiter which executes the CP oper-

ation when the vector functional unit would be otherwise unused. Since these CP operations steal

unused cycles and do not read or write the vector register file, the VIU has no need to track or man-

age the CP operations. Although simple, this approach can starve the CP, limiting decoupling. A

more sophisticated option is to send CP operations through the VIU. The results of the long-latency

operations are eventually written back into the CP embedding response queue. The CP is decoupled

allowing it to continue to execute independent instructions until it reaches an instruction which re-

lies on the result of the long-latency operation. The CP then stalls for the corresponding result to

appear in the CP embedding response queue.

Although sharing the long-latency functional units helps reduce the size of the CP, we would still

need the following six memory ports for a Maven VT core with a single vector lane: CP instruction

port, CP load port, CP store port, VIU vector-fetched instruction port, VMU load port, and VMU

store port. Although it is possible to merge the CP load and store port, Maven instead shares the

three CP ports with the three VTU ports (shown at the bottom of Figure 5.1). Three two-input

arbiters use round-robin arbitration to choose between the two types of requests. In addition, both

the CP and the VTU share a small L1 instruction cache.

Note that a unified VT instruction set helps simplify CP embedding. Since both types of threads

execute the same long-latency instructions, they can share the same long-latency functional units

without modification. CP embedding is equally possible in vector-SIMD architectures, and it is

particularly well suited to single-lane implementations. Embedding a control processor in a multi-

lane vector unit or VTU requires one lane to be engineered differently than the rest which might

complicate the design. CP embedding helps reduce CP area, and the only significant disadvantage

is that the CP will experience poor performance on compute or memory-intensive tasks executing in

parallel with the microthreads. However, this is rare, since the CP executes the more control oriented

portions, while the microthreads execute the more compute and memory-intensive portions.

99

5.3 Vector Fragment Merging

Once microthreads diverge there is no way for them to reconverge until the next vector instruc-

tion, e.g., a vector memory instruction or vector fetch instruction. Separately executing multiple

fragments that could be executed as a merged single fragment will result in lower performance and

energy efficiency. Vector fragment merging is a hardware mechanism that can cause microthreads

to reconverge dynamically at run-time. This dynamic hardware approach complements the Maven

programming methodology described in Chapter 6, which allows programmers to statically recon-

verge microthreads by splitting a large vector-fetched block into multiple smaller vector-fetched

blocks.

Vector fragment merging only requires modifications to the fetch/decode stage in the VIU. The

general approach is to merge fragments with the same program counter into a single fragment, with

the corresponding mask values combined using a logic “or” operation. The challenges are determin-

ing when to merge fragments and choosing the fragment execution order so as to maximize merging.

One option is to associatively search the PVFB on every cycle to see if any other fragments have the

same program counter as the currently executing fragment. Unfortunately, this frequent associative

search can be expensive in terms of energy. A cheaper alternative is for the VIU to only search the

PVFB when executing control-flow instructions. This can capture some common cases such as mul-

tiple branches with the same target address often used to implement more complicated conditionals

or the backward branches used to implement loops. It also allows a compiler to encourage recon-

vergence at known good points in the program by inserting extra unconditional jump instructions

that target a common label as hints for the hardware to attempt merging. Vector fragment merging

is equally applicable to both multi-lane and single-lane VTUs.

Figure 5.3 illustrates the vector fragment merging technique for the same example used in Fig-

ure 5.2. When the VIU executes the unconditional jump at address 0x110, it searches the PVFB

and notices that both the current fragment A and the pending fragment C are targeting the same

program counter (0x118). The VIU then merges the microthread active in fragment C (µT3) with

the microthread in the current fragment A (µT1), and continues executing the newly merged frag-

ment A. Unfortunately this technique is not able to uncover all opportunities for reconvergence,

since there is no way for the hardware to know that fragment B will eventually also reach the in-

struction at address 0x118. Note that searching the PVFB every cycle does not increase microthread

reconvergence in this example, but changing the order in which fragments are executed could help.

For example, if the VIU switched to fragment B after merging fragments A and C, and the VIU

also searched the PVFB every cycle, then it would successfully reconverge all four microthreads

at instruction address 118. Developing a simple yet effective heuristic for changing the fragment

execution order to encourage merging is an open research question.

100

for (i = 0; i < n; i++)
if (A[i] >= 0)
opW;
if (A[i] == 0)
opX;

else
opY;

opZ;

(a) Pseudocode

loop:
000: setvl vlen, n
004: load.v VA, a_ptr
008: fetch.v ut_code
00c: add a_ptr, vlen
000: sub n, vlen
014: br.neq n, 0, loop
...

ut_code:
100: br.lt a, 0, else
104: opW
108: br.neq a, 0, done
10c: opX
110: jump done
else:
114: opY
done:
118: opZ
11c: stop

(b) Pseudo-Assembly

(c) Maven Execution Diagram

Figure 5.3: Example of Vector Fragment Merging – Example pseudocode (a) and pseudo-assembly (b) is
the same as in Figure 5.2. Execution diagram (c) illustrates how fragments A and C are able to reconverge
when fragment A executes the uncoditional jump instruction. (Code syntax similar to that used in Figure 2.14.
Vector memory unit not shown for simplicity. CP = control processor, VIU = vector issue unit, PVFB =
pending vector fragment buffer.)

101

5.4 Vector Fragment Interleaving

One of the primary disadvantages of the basic vector-fetched scalar branch mechanism is the

long branch resolution latency. The benefit of waiting is that the VIU is able to maintain partial

vector-like efficiencies for vector fragments after the branch, possibly even keeping all the mi-

crothreads coherent if all branches are taken or not-taken. Unfortunately, the long branch resolution

latency also leads to idle execution resources as shown in Figure 5.2. The performance impact is

actually worse than implied in Figure 5.2, since Maven includes five vector functional units that

will all be idle waiting for the branch to resolve. Vector fragment interleaving is a technique that

hides the branch resolution latency (and possibly other execution latencies) by switching to a new

fragment before the current fragment has completed. Since no two fragments contain the same

microthread, fragments are always independent and their execution can be interleaved arbitrarily.

As with vector fragment merging, vector fragment interleaving only requires modification to the

fetch/decode stage of the VIU. The general approach is for the VIU to choose a different fragment

for execution every cycle. Standard scheduling techniques for multithreaded MIMD architectures

are applicable. The VIU can obliviously rotate around the fragments in the PVFB, or can only select

from those fragments that are not currently stalled due to a branch, data dependency, structural

hazard, or unready memory port. The regular way in which fragments access the vector register

file, even when some number of microthreads are inactive, means that the standard VIU issue stage

will work correctly without modification. A simpler interleaving scheme, called switch-on-branch,

focuses just on hiding the branch resolution latency. When the VIU encounters a vector-fetched

scalar branch it immediately switches to a new fragment. The VIU only returns to the original

fragment when it encounters another branch or the current fragment is completed. Vector fragment

merging is equally applicable to both multi-lane and single-lane VTUs.

Figure 5.4 illustrates the vector fragment interleaving technique for the same example used in

Figure 5.2. When the VIU executes the conditional branch br.lt at address 0x100 as part of

fragment A, it still must wait for the branch to resolve because there are no other pending fragments

in the PVFB. When the VIU executes the conditional branch br.neq at address 0x108, then it can

immediately switch to the pending fragment B. The VIU executes fragment B to completion before

switching back to fragment A, which is the only remaining fragment. The VIU still needs to wait

for the branch to resolve, but the vector lane is kept busy executing the micro-ops for fragment B.

Eventually the branch resolves, and execution proceeds similar to Figure 5.2.

Although it is possible to combine vector fragment merging and interleaving, the fragment inter-

leaving meant to hide execution latencies may not produce the best opportunities for merging. Even

if the PVFB is searched every cycle for fragments that can be merged, the best we can hope for is

serendipitous reconvergence. This reinforces the importance of statically managed reconvergence

by partitioning large vector-fetched blocks into multiple smaller vector-fetched blocks. Each vector

fetch instruction (or any other vector instruction) forces reconvergence across the microthreads.

102

for (i = 0; i < n; i++)
if (A[i] >= 0)
opW;
if (A[i] == 0)
opX;

else
opY;

opZ;

(a) Pseudocode

loop:
000: setvl vlen, n
004: load.v VA, a_ptr
008: fetch.v ut_code
00c: add a_ptr, vlen
000: sub n, vlen
014: br.neq n, 0, loop
...

ut_code:
100: br.lt a, 0, else
104: opW
108: br.neq a, 0, done
10c: opX
110: jump done
else:
114: opY
done:
118: opZ
11c: stop

(b) Pseudo-Assembly

(c) Maven Execution Diagram

Figure 5.4: Example of Vector Fragment Interleaving – Example pseudocode (a) and pseudo-assembly
(b) is the same as in Figure 5.2. Execution diagram (c) illustrates how the VIU can switch to fragment B
while waiting for fragment A’s branch to resolve. (Code syntax similar to that used in Figure 2.14. Vector
memory unit not shown for simplicity. CP = control processor, VIU = vector issue unit, PVFB = pending
vector fragment buffer.)

103

5.5 Vector Fragment Compression

As microthreads diverge, more of the execution resources for each fragment are spent on in-

active microthreads. The implementation described so far has the nice property that fragments are

always executed regularly regardless of the number of active microthreads. The dependency and

structural hazard logic in the issue stage of the VIU can ignore the number of active microthreads,

since the vector register file and vector functional units are always accessed in the exact same way.

Unfortunately, codes with large amounts of divergence will experience poor performance and en-

ergy overheads associated with processing the inactive microthreads. Vector fragment compression

is a hardware technique that skips inactive microthreads so that the fragment micro-ops execute in

density-time as opposed to vlen-time.

Vector fragment compression requires more modifications to the VTU than the previous tech-

niques. The VIU fetch/decode stage remains essentially the same, but the issue stage is slightly

more complicated. The changes to the issue stage will be discussed later in this section. In ad-

dition to modifications in the VIU, the vector functional unit controllers in the vector lane need

to handle compressed fragments. In a vlen-time implementation, the controllers simply increment

the register read/write address by a fixed offset every cycle, but with vector fragment compression

the controllers need more complicated register indexing logic that steps through sparse microthread

mask to generate the appropriate offset. The VMU does not require any modifications, since it

already needed to handle a variable number of microthread loads and stores which occur after the

microthreads diverge.

Figure 5.5 illustrates the vector fragment compression technique for the same example used in

Figure 5.2. Notice that after the VIU resolves the first vector-fetched scalar branch, fragment A only

contains two microthreads. In Figure 5.2, micro-ops for fragment A still take four execution slots

(vlen-time execution), but with vector fragment compression they now take only two execution slots

(density-time execution). This figure illustrates, that with vector fragment compression, VIU fetch

bandwidth is more likely to become a bottleneck. Divergence effectively requires fetch bandwidth

proportional to the number of pending vector fragments, but this only becomes significant once

we use vector fragment compression to reduce functional unit pressure. Although it is possible

to implement a multi-issue VIU to improve performance on highly irregular DLP, Maven uses the

simpler single-issue VIU design.

Figure 5.5 highlights that an extra scheduling constraint is required after a branch. In reality, this

extra constraint is only required when the vector unit supports multiple vector functional units. Fig-

ure 5.6 shows two example executions for a vector unit similar to Maven with two vector functional

units. In these figures, the read and write ports for each vector functional unit are shown as separate

columns. Arrows connect the time when the read port reads the sources for a given micro-op and

the time when the write port writes the corresponding result. We assume these are long-latency

micro-ops. Arrows also connect dependent microthreads across micro-ops. Figure 5.6a illustrates

104

for (i = 0; i < n; i++)
if (A[i] >= 0)
opW;
if (A[i] == 0)
opX;

else
opY;

opZ;

(a) Pseudocode

loop:
000: setvl vlen, n
004: load.v VA, a_ptr
008: fetch.v ut_code
00c: add a_ptr, vlen
000: sub n, vlen
014: br.neq n, 0, loop
...

ut_code:
100: br.lt a, 0, else
104: opW
108: br.neq a, 0, done
10c: opX
110: jump done
else:
114: opY
done:
118: opZ
11c: stop

(b) Pseudo-Assembly

(c) Maven Execution Diagram

Figure 5.5: Example of Vector Fragment Compression – Example pseudocode (a) and pseudo-assembly
(b) is the same as in Figure 5.2. Execution diagram (c) illustrates how the vector lane can skip inactive
microthreads for each fragment, but there is an additional scheduling constraint between fragments that are
not independent and are compressed differently. (Code syntax similar to that used in Figure 2.14. Vector
memory unit not shown for simplicity. CP = control processor, VIU = vector issue unit, PVFB = pending
vector fragment buffer.)

105

(a) Scheduling Multiple Independent Compressed Micro-Ops

(b) Scheduling Compressed Micro-Ops After a Branch

Figure 5.6: Extra Scheduling Constraints with Vector Fragment Compression – (a) micro-ops from the
same fragment and from multiple independent fragments can go down the pipeline back-to-back; (b) micro-
ops which are compressed differently after a branch as compared to before the branch must be delayed until
all micro-ops before the branch have drained the pipeline. (VIU = vector issue unit, VFU = vector functional
unit)

106

the common case. Micro-ops from the same compressed fragment (opR and opS) can go down the

pipeline back-to-back, and the result from the first micro-op can be chained to the second micro-

op. Micro-ops from fragment D and fragment E can also go down the pipeline back-to-back, even

though they are compressed differently because they are independent. Because these two fragments

contain completely different microthreads, there can be no data-dependency hazards between them.

Figure 5.6b illustrates the subtle case where we must carefully schedule a compressed fragment.

This occurs when a fragment is compressed differently before and after a branch. In this exam-

ple, the VIU might issue micro-op opS because the dependency on the first microthread for opR

is resolved. Remember, that the VIU only tracks the first microthread in a fragment to amortize

interlocking and dependency tracking logic. Unfortunately, because the fragment is compressed

differently after the branch, µT3 of micro-op opS can read its sources before µT3 of micro-op opR

has finished writing them. To prevent this hazard and also avoid per-element dependency logic, the

VIU must wait for micro-ops before a branch to drain the pipeline before issuing any micro-ops

after the branch. This is simple but overly conservative, since the VIU really only needs to wait for

dependent micro-ops. The VIU does not need to wait if the fragment does not diverge, since the

same compression will be used both before and after the branch.

Vector fragment compression can be easily combined with fragment merging. This might also

reduce fetch pressure, since fragment merging reduces the number of fragments that need to be ex-

ecuted. Combining fragment compression with arbitrary fragment interleaving is also possible, and

can help hide the extra scheduling constraint. Vector fragment compression is difficult to imple-

ment in multi-lane VTUs, because the lanes need to be decoupled to enable independent execution.

Decoupling the lanes is already a significant step towards single-lane VTUs, but fully separate

single-lane VTUs are more flexibly and easier to implement. The simplicity of implementing vector

fragment compression is one reason Maven uses these kind of VTUs.

5.6 Leveraging Maven VT Cores in a Full Data-Parallel Accelerator

Figure 5.7 illustrates how Maven VT cores can be combined to create a full data-parallel ac-

celerator. Each core includes a small private L1 instruction cache for instructions executed by both

the control thread and the microthreads, while data accesses for both types of threads go straight

to a banked L2 cache. To help amortize the network interface and exploit inter-core locality, four

cores are clustered together to form a quad-core tile. Each tile contains an on-chip network router

and four cache banks that together form the L2 cache shared by the four cores (but private with

respect to the other quad-core tiles). The four cores are connected to the four L2 cache banks via

the memory crossbar, while the L2 cache banks are connected to the on-chip network router via the

network interface crossbar. To balance the core arithmetic and memory bandwidth, the channels

between the cores and the L2 cache banks are all scalar width (32 b/cycle), while the channels in the

network interface and in the on-chip network itself are much wider (256 b/cycle).

107

Figure 5.7: Maven Data-Parallel Accelerator with Array of VT Cores – A Maven VT core includes a
control processor, single-lane VTU, and small L1 instruction cache. Four cores are combined into a quad-
core tile along with four shared L2 cache banks and a shared network interface. (C = Maven GT core, $ =
L2 cache bank, R = on-chip network router, CP = control processor, VTU = vector-thread unit, = narrow
32-bit channel, = wide 256-bit channel)

Figure 5.8: Microarchitecture for Quad-Core Tile – Four maven VT cores (each with its own control
processor, single-lane VTU, and L1 instruction cache as shown in Figure 5.1) are combined into a quad-core
tile with a four-bank L2 cache shared among the four lanes. Each tile shares a single wide (256 b) network
interface. (Control signals shown with dashed lines. Xbar = crossbar, val = valid signal, rdy = ready signal,
md = metadata, addr = address, ack = acknowledgement, NxM crossbar = N inputs and M outputs)

108

Figure 5.8 shows a possible microarchitecture for the quad-core tile. Each core has separate

instruction, load, and store ports resulting in 12 requesters arbitrating for the four L2 cache banks.

There are dedicated load/store stream buffers for each core next to each L2 cache bank to enable

wide bank accesses that are then streamed to or from the cores. The memory crossbar is similar

to the intra-VMU crossbar found in multi-lane vector units, but is a little simpler. The memory

crossbar in Figure 5.8 requires less muxing, since the element rotation is implemented temporally

in the single-lane’s VMU and associated stream buffers. The design sketched in Figures 5.7 and 5.8

is just one way single-lane VT cores can be combined into a data-parallel accelerator. The on-chip

cache hierarchy, on-chip interconnection network, and off-chip memory system are all important

parts of data-parallel accelerators, but a full investigation of this design space is beyond the scope of

this thesis. Instead, this thesis focuses on just the specialized data-parallel cores that are the primary

distinguishing characteristic of such accelerators.

5.7 Extensions to Support Other Architectural Design Patterns

We would like to compare the energy-efficiency and performance of Maven to the other ar-

chitectural design patterns presented in Chapter 2, but we do not necessarily want to build several

completely different implementations. This section describes how the Maven microarchitecture can

be extended to emulate the MIMD, vector-SIMD, and SIMT architectural design patterns for eval-

uation purposes. These extensions leverage the instruction set extensions described in Section 4.6.

5.7.1 MIMD Extensions to Maven Microarchitecture

Our multithreaded MIMD core is based on the Maven control processor with a larger architec-

tural register file to handle additional microthread contexts. The larger register file always requires

only two read ports and two write ports. Although the MIMD core does not include the VTU,

it does include the long-latency functional units as a separate decoupled module directly attached

to the same control processor embedding queues used in Maven. This allows the exact same is-

sue logic to be used in both the Maven control processor and the MIMD core. The MIMD core

is similar to the control processor in its ability to overlap short-latency instructions with decou-

pled loads and long-latency operations. Obviously all of the vector instruction decode logic is not

present in the MIMD core, and there is no need to share the memory ports. The MIMD core also

include additional thread scheduling logic to choose between the active microthreads using a simple

round-robin arbiter. The ability to mark microthreads as active or inactive and thus remove them

from the scheduling pool improves performance on serial codes. This also means that instructions

from the same thread can flow down the pipeline back-to-back, so our implementation provides full

bypassing and interlocking logic.

109

5.7.2 Vector-SIMD Extensions to Maven Microarchitecture

Our vector-SIMD core use a very similar microarchitecture to the one shown in Figure 5.1 with

additional support for executing the vector-SIMD instruction set shown in Tables 4.4 and 4.5. The

vector lane for the vector-SIMD core removes the BRMRs but adds a separate vector flag register

file and a new vector flag functional unit (VFFU). The vector flag register file includes eight 32-bit

entries, four read ports, and three write ports. VFU0 and VFU1 can both read an entry in the

vector flag register file (to support vector arithmetic operations executed under a flag) and also

write an entry in the vector flag register file to support the flag integer and floating-point compare

instructions. The single-cycle VFFU requires two read ports and one write port to execute the simple

vector flag arithmetic instructions (e.g., or.f and not.f).

The VIU issue stage is the same in both the Maven VT core and the vector-SIMD core. The

vector-SIMD fetch/decode stage does not include the PVFB nor the extra vector-fetched instruction

port. This means the control processor has a dedicated instruction port and L1 instruction cache in

the vector-SIMD core. The vector-SIMD instruction set extensions were specifically designed to

mirror their scalar counterparts. For example, the vector-SIMD add.s.vv instruction is executed

in a similar way as a vector-fetched scalar add.s instruction. The fetch/decode stage takes vector

instructions from the VIU queue and converts them into the same internal micro-op format used by

the Maven VT core except without the microthread mask. The vector flag registers are read at the

end of the VFU0 and VFU1 pipelines to conditionally write the results back to the vector register

file as opposed to the PVFB which is at the front of the vector pipeline. This allows chaining

flag values between vector instructions. The VIU queue needs to handle an extra scalar operand for

vector-scalar instructions, but this space is also required in the Maven VT core for some instructions

(i.e., the base address for vector memory instructions). This scalar value is propagated along with

the vector instruction to the vector lane similar to Maven’s vector-scale move instruction (mov.sv).

Unit-stride and strided vector memory instructions are executed almost identically in the vector-

SIMD core as in the Maven VT core. Indexed vector memory instructions are similar to microthread

loads/stores, except that a base address is included from the control-thread’s scalar register file. The

VMU then requires an additional address generation unit for adding the indexed base register to the

offsets being streamed from the vector register file by the VAU.

In addition to a single-lane vector-SIMD core, we also want to compare our single-lane Maven

VT core to multi-lane vector-SIMD cores. For these configurations, we simply instantiate multiple

vector lane modules and broadcast the VIU control information to all lanes. The VIU needs to be

aware of the longer hardware vector lengths, but is otherwise identical to the single-lane configura-

tion. Unfortunately, the multi-lane VMU is different enough from the single-lane implementation

to require a completely different module. The multi-lane VMU must manage a single set of address

generators and multiple VAQs, VSDQs, and VLDQs such that they can be used in both unit-stride,

strided, and indexed accesses. The control processor is embedded in the single-lane configuration,

110

and currently it is also embedded in the multi-lane configurations to simplify our evaluation. A

different design might use a completely separate control processor in wide multi-lane vector-SIMD

cores, to avoid wasting many execution slots across the lanes for each long-latency control processor

operation.

5.7.3 SIMT Extensions to Maven Microarchitecture

The SIMT pattern is emulated by running software using a subset of the Maven VT instruction

set on an unmodified Maven VT core. Although this provides a reasonable emulation, there are

some important caveats. First, our SIMT core includes a control processor, yet one of the key

aspects of the SIMT pattern is that is specifically lacks such a control processor. We address this

discrepancy by limiting the code which executes on the control processor. Code which still runs on

the control processor resembles some of the fixed hardware logic that would be found in a SIMT

core’s VIU but is probably less efficient than an actual SIMT core. In addition, the Maven VT

core does not include any special memory coalescing hardware so the microthread accesses in our

SIMT emulation are always executed as scalar loads and stores. The VT execution mechanisms do,

however, reasonably capture the control-flow characteristics of a SIMT core including vector-like

execution of coherent microthreads and efficient divergence management.

5.8 Future Research Directions

This section briefly describes some possible directions for future improvements with respect to

the Maven microarchitecture.

Support for New Instructions – Section 4.6 discussed several new instructions that would affect

the microarchitecture in non-trivial ways. Some of these extensions, such as vector compress and

expand instructions and vector shared registers, are more straight-forward to implement in a single-

lane implementation, since they would otherwise require cross-lane communication in a multi-lane

implementation. Integrating vector segment accesses into the current Maven pipeline is an open

research question, since these operations write to the register file in a non-standard way. The Scale

technique leverages atomic instruction block interleaving which is not possible in the Maven VT

core. Vector fetch atomic instructions could be implemented specially in the VIU. When a VIU

encounters this instruction it then executes the first microthread in the current fragment by itself

until it reaches a stop instruction. The VIU continues serializing the execution of all microthreads.

When finished with the vector fetch atomic instruction, the VIU can start executing the next vector

instruction as normal. A small instruction buffer in the VIU can help amplify the instruction fetch

bandwidth needed for executing these atomic blocks. Combining atomic blocks with vector frag-

ment compression might provide an efficient mechanism for handling cross-iteration dependencies

via shared registers, similar to the atomic instruction blocks used in Scale.

111

Compiler Assistance for Vector Fragment Merging – As discussed in Section 5.3, effective hard-

ware policies for choosing the microthread execution order to promote vector fragment merging is

a difficult problem. Static compiler analysis could definitely help the hardware determine when

to switch fragments. For example, the compiler could generate a reconvergence wait instruc-

tion at points in the instruction stream where it can statically determine that most or all of the

microthreads should reconverge. When the VIU encounters a wait instruction it marks the corre-

sponding fragment in the PVFB as waiting and switches to another non-waiting fragment. When the

VIU encounters another wait instruction it merges the corresponding microthreads into the waiting

fragment and switches to another non-waiting fragment. Eventually the VIU will have executed all

microthreads such that they have completed or they are part of the waiting fragment. The VIU can

then go ahead and proceed to execute the microthreads that have reconverged as part of the waiting

fragment. A wait instruction that supports multiple waiting tokens enables the compiler to generate

multiple independent wait points. Since this instruction is only a hint, the compiler can be optimistic

without concern for dead-lock. The VIU is always allowed to simply ignore the wait instruction,

or start executing a waiting fragment prematurely.

Vector-Fetched Scalar Branch Chaining – Although vector fragment interleaving helps hide the

vector-fetched scalar branch resolution latency, it does not help when there are no pending frag-

ments. For example, the VIU still needs to wait for the first branch to fully resolve in Figure 5.3c. A

complementary technique can predict that at least one microthread will not take the branch. Since

the branches for each microthread are resolved incrementally, the VIU can go ahead and issue the

first fall-through instruction before the BRMR is completely written. We can essentially chain the

BRMR to the instruction on the fall-through path. If the first microthread does not take the branch

the result is written back into the vector register file as normal, but if the first microthread does

take the branch then the writeback is disabled. The same process occurs for all microthreads in this

first fall-through instruction and for later instructions on the fall-through path. When the original

vector-fetched scalar branch is completely resolved the VIU will take one of three actions. If the

BRMR is all zeros (no microthreads take the branch) then the VIU simply continues executing the

fall-through path. If the BRMR is all ones (all microthreads take the branch) then the VIU has ex-

ecuted several cycles of wasted work and switches to executing the taken path. If the microthreads

diverged, then the VIU creates a new pending fragment to capture the taken path and continues

along the fall-through path. This technique closely resembles how vector flags are chained in the

vector-SIMD core, but it also has the advantages of being a vector-fetched scalar branch. The disad-

vantage is wasted work when all microthreads take the branch. This technique can be combined with

vector fragment merging and interleaving, but might be difficult to combine with vector fragment

compression. One option is just to avoid compressing the speculative fall-through path.

Vector Register File Banking – he current Maven vector register file is quite large due to the six

read and three write ports required to support the five vector functional units. We could reduce the

112

number of vector functional units but this would significantly impact performance. An alternative

is to exploit the structured way in which vector fragment micro-ops access to the vector register

file. Since a vector fragment micro-op can only access a given element on a specific cycle, we

element-partition the vector register file into multiple banks each with fewer ports. This technique

is common in some kinds of traditional vector-SIMD machines [Asa98]. For example, assume we

implement the Maven vector register file with four banks each with two read and two write ports.

Vector elements are striped across the banks such that each bank contains one-fourth of the total

number of vector elements. A vector fragment micro-op would cycle around the banks as it stepped

through the vector elements. Successive vector instructions follow each other as they cycle around

the banks in lock-step resulting in no bank conflicts. Two read ports and one write port would be

for general use by VFU0, VFU1, VAU, and VSDRU. The second write port would be dedicated for

use by the VLDWU. This allows all five vector functional units to be accessing the vector register

file at the same time, but with many fewer read and write ports per register bitcell. Ultimately, this

results in a smaller, faster, and more energy-efficient vector register file. Vector fragment merging

and interleaving can use a banked vector register file without issue. Banking does complicate vector

fragment compression, since compressed fragments access the vector register file in a less structured

way. The solution is to limit the amount of compression which is supported. For example, with four

banks a fragment could not be compressed to less than four microthreads even if less than four

microthreads were active.

5.9 Related Work
This section highlights selected previous work specifically related to the Maven VT core mi-

croarchitecture presented in this chapter.

Scale VT Processor – Scale uses a multi-lane VTU with a very different microarchitecture than the

one presented in this chapter [KBH+04a]. The four Scale lanes and the four functional units within

each lane are all highly decoupled. As a result, the Scale microarchitecture is more complicated

but also supports a more dynamic style of execution, while the Maven microarchitecture is simpler

and supports a style of execution closer to the vector-SIMD pattern. The Scale microthread control-

flow mechanism uses a significantly different implementation than Maven. Upon a thread-fetch, the

Scale VIU immediately begins fetching new scalar instructions for just that microthread. The Scale

VIU does not wait in an effort to exploit partial vector-like efficiencies as in the Maven VIU. This is

analogous to only supporting vector fragments that either contain a single active microthread (after a

thread-fetch) or all active microthreads (after a vector fetch). Scale provides small instruction caches

in each lane in an attempt to dynamically capture some of the locality inherent when microthreads

have coherent control flow. The vector fragment mechanisms attempt to preserve as much vector-

like efficiencies as possible even after the microthreads have diverged. Scale’s thread-fetch mech-

anisms naturally produce a density-time implementation, while Maven can eventually use vector

113

fragment compression to eliminate inactive microthreads. Maven executes a vector-fetched scalar

instruction for all microthreads before moving to the next vector-fetched scalar instruction, while

Scale executes several instructions for one microthread before switching to execute those same

instructions for the next microthread. This is called atomic instruction-block interleaving, and it

allows more efficient use of temporary architectural state (such as functional unit bypass latches)

but requires more complicated vector functional unit controllers. The Scale controllers continually

toggle control lines as they step through the instructions for each microthread; in Maven, the control

lines stay fixed while executing each instruction completely. Scale uses software-exposed clusters

to avoid a large multi-ported vector register file, while in the future a Maven VT core will likely use

a banked vector register file for the same purpose.

Cray-1 Single-Lane Vector-SIMD Unit and Embedded Control Processor – The Cray-1 vector

supercomputer uses a single-lane vector unit with six functional units and eight vector registers

each containing 64× 64-bit elements [Rus78]. The control processor is partially embedded, since it

shares the long-latency floating-point functional units with the vector lane but has its own data port

to memory. In some sense, Maven’s focus on single-lane VTUs is reminiscent of the earliest vector

processor designs except with increased flexibility through VT mechanisms.

Cray X1 Multi-Streaming Processors – The more recent Cray-X1 can have hundreds of vector-

SIMD cores single-streaming processors (SSPs), where each SSP is a separate discrete chip con-

taining a control processor and a two-lane vector unit [DVWW05]. Four SSPs are packaged with

2MB of cache to create a multi-streaming processor (MSP) module. For irregular DLP, the SSPs

can operate as independent vector-SIMD cores each supporting 32 vector registers with 64 ele-

ments each. For regular DLP, the four SSPs in a MSP can be ganged together to emulate a larger

vector-SIMD core with eight lanes and a hardware vector length of 256. For efficient emulation, the

Cray X1 includes fast hardware barriers across the four SSPs and customized compiler support for

generating redundant code across the four control processors.

Partitioned Vector-SIMD Units – Rivoire et al. also observe that data-parallel application perfor-

mance varies widely for a given number of lanes per vector unit [RSOK06]. Some applications with

regular DLP see great benefit from increasing the number of lanes, while other applications with

irregular DLP see little benefit. In Maven, this observation has led us to pursue single-lane VTUs,

while Rivoire et al. propose a different technique that can dynamically partition a wide vector unit

into multiple narrow vector units. With an eight-lane vector unit, a single control-thread can man-

age all eight-lanes, two control-threads can manage four lanes each, or eight control-threads can

each manage a single lane. This final configuration resembles our approach, except that multiple

control-threads are mapped to a single control processor instead of the embedded control processor

per lane used in Maven. There are significant overheads and implementation issues associated with

dynamically partitioning a wide vector unit including increased instruction fetch pressure. Maven

114

takes the simpler approach of only providing single-lane VTUs with embedded control processors.

Temporal vector execution provides competitive energy-efficiency, while independent single-lane

cores provide good flexibility. The partitioned vector-SIMD approach, where a wide vector unit is

partitioned into multiple smaller vector units, can be seen as the dual of the Cray X1 MSPs, where

multiple smaller vector units are ganged together to create a larger vector unit [DVWW05].

Larrabee’s Multithreaded Control Processor – The Larrabee accelerator uses a multithreaded

control processor with four control threads and a single 16-lane vector unit with a hardware vector

length of 16 [SCS+09]. The Larrabee vector register file is large enough to support four inde-

pendent sets of architectural vector registers, so effectively each control thread’s logical array of

microthreads are time multiplexed onto a single vector unit. An alternative design could use a sin-

gle control thread and simply increase the hardware vector length to 64. Both designs require the

same number of physical registers, and both designs time multiplex the microthreads. The dif-

ference is whether this time multiplexing is supported through a longer hardware vector length or

through multiple control threads. Four control threads that share the same vector unit can offer more

flexibility, but less energy amortization, as compared to a single control thread with a much longer

hardware vector length. In addition, the extra control threads require a more aggressive control

processor to keep the vector unit highly utilized, especially if each Larrabee vector instruction only

keeps the vector unit busy for a single cycle. Extra control threads can help tolerate memory and

functional-unit latencies, but Maven achieves a similar effect through control processor decoupling

(for memory latencies) and exploiting DLP temporally (for functional unit latencies).

Single-Lane Density-Time Vector-SIMD Units – Others have proposed single-lane density-time

vector units. For example, Smith et al. describe a single-lane implementation that allows the VIU

to skip inactive microthreads in power-of-two increments [SFS00]. Unfortunately, such schemes

significantly complicate chaining. The VIU must wait for flags to be computed first before com-

pressing the vector instruction leading to a VIU stall similar to the vector-fetched scalar branch

resolution latency. Once the VIU compresses a vector instruction there is no guarantee the next

instruction can also be compressed in the same fashion meaning that the VIU may not be able to

chain operations executing under a flag register. Out-of-order issue complicates the VIU but might

help find an instruction with the same flag register for chaining, or an instruction with a flag register

containing an independent set of microthreads for interleaving. Future Maven VT cores will be able

to provide density-time execution and fragment interleaving with a much simpler implementation

due to the way in which conditionals are expressed in a VT instruction set.

NVIDIA SIMT Units – The NVIDIA G80 [LNOM08] and Fermi [nvi09] families of graphics pro-

cessors implement the SIMT architectural design pattern but also include microthread control-flow

mechanisms similar in spirit to the vector fragment technique presented in this chapter. Although

the NVIDIA SIMT units can handle microthread divergence, the exact microarchitectural mecha-

115

nism has not been discussed publicly. It is clear, however, that the NVIDIA SIMT units use multiple

lanes without support for density-time execution. To compensate for the lack of control processor

decoupling in the SIMT pattern, each SIMT unit contains architectural state for many microthread

blocks. Effectively, graphics processors use highly multithreaded VIUs, and this allows the SIMT

unit to hide memory and execution latencies by switching to a different microthread block. This has

some similarities to providing multiple control threads. SIMT units require hundreds of microthread

blocks to hide long memory latencies, while Maven control processor decoupling can achieve a sim-

ilar effect with much less architectural state. NVIDIA SIMT units also support a technique similar

to vector fragment interleaving, and appear to support static hints in the instruction stream for vector

fragment merging.

Dynamic Fragment Formation – Vector fragment compression is difficult to implement in multi-

lane implementations usually resulting in low utilization for highly divergent code. Fung et al. pro-

pose a new SIMT core design that dynamically composes microthreads from different microthread

blocks to fill unused execution slots [FSYA09]. A similar technique is possible in vector-SIMD

or VT cores that support multiple control threads by composing vector fragments from different

control threads. Both approaches effectively generate new fragments at run-time that are not in the

original program. This of course relies on the fact that the different microthread blocks or control

threads are executing the same code. Constraints on the types of allowed composition prevents the

need for a full crossbar between lanes. Unfortunately, dynamic fragment formation can interfere

with memory coalescing and requires good fragment interleaving heuristics to enable opportunities

for using this technique. An associative structure similar to the PVFB, but much larger to support

multiple microthread blocks or control threads, is required to discover fragments that are execut-

ing the same instruction. In discussing dynamic fragment formation, Fung et al. also investigate

reconvergence techniques and note the importance of good heuristics to promote vector fragment

merging.

116

Chapter 6

Maven Programming Methodology

This chapter describes the Maven programming methodology, which combines a slightly modified

C++ scalar compiler with a carefully written application programming interface to enable an explic-

itly data-parallel programming model suitable for future VT accelerators. Section 3.3 has already

discussed how this approach can raise the level of abstraction yet still allow efficient mappings to

the VT pattern. Section 6.1 gives an overview of the methodology including the VT C++ application

programmer’s interface and two example programs that will be referenced throughout the rest of the

chapter. Section 6.2 discusses the required compiler modifications, and Section 6.3 discusses the

implementation details of the VT application programmer’s interface. Section 6.4 briefly outlines

the system-level interface for Maven. Section 6.5 discusses how the Maven programming methodol-

ogy can be leveraged to emulate the MIMD, vector-SIMD, and SIMT architectural design patterns.

The chapter concludes with future research directions (Section 6.6) and related work (Section 6.7).

6.1 Programming Methodology Overview

The Maven programming methodology supports applications written in the C++ programming

language. C++ is low-level enough to enable efficient compilation, yet high-level enough to enable

various modern programming patterns such as object-oriented and generic programming. Maven ap-

plications can use the vector-thread application programmer’s interface (VTAPI) to access Maven’s

VT capabilities. Table 6.1 lists the classes, functions, and macros that form the VTAPI. The VTAPI

relies on the use of a special low-level HardwareVector<T> class. This class represents vector

types that can be stored in vector registers or in memory (but never in control-thread scalar regis-

ters). A hardware vector contains a number of elements equal to the current hardware vector length.

This class is templated based on the type of the elements contained with the hardware vector, al-

though currently the HardwareVector<T> class is not fully generic. It is instead specialized for

the following types: unsigned int, unsigned short, unsigned char, signed int, signed

short, signed char, char, float, T* (any pointer type). The HardwareVector<T> class in-

117

Hardware Vector Class

void HardwareVector<T>::load(const T* in ptr); Unit-stride load
void HardwareVector<T>::load(const T* in ptr, int stride); Strided load
void HardwareVector<T>::store(const T* out ptr); Unit-stride store
void HardwareVector<T>::store(const T* out ptr, int stride); Strided store
void HardwareVector<T>::set all elements(const T& value); mov.sv instruction
void HardwareVector<T>::set element(int idx, const T& value); mtut instruction
T HardwareVector<T>::get element(int idx); mfut instruction

Vector Configuration Functions

int config(int nvregs, int app vlen); Compiles into vcfgivl instruction
int set vlen(int app vlen); Compiles into setvl instruction

Memory Fence Functions

void sync l(); void sync g(); Compiles into sync.{l,g} instruction
void sync l v(); void sync g v(); Compiles into sync.{l,g}.v instruction
void sync l cv(); void sync g cv(); Compiles into sync.{l,g}.cv instruction

Atomic Memory Operations Functions

int fetch add(int* ptr, int value); Compiles into amo.add instruction
int fetch and(int* ptr, int value); Compiles into amo.and instruction
int fetch or (int* ptr, int value); Compiles into amo.or instruction

Miscellaneous Functions

int get utidx(); Compiles into utidx instruction

Vector-Fetch Preprocessor Macro

VT VFETCH((outputs), (inouts), (inputs), (passthrus),
({
body;

}));

Table 6.1: Maven VT Application Programming Interface (VTAPI) – Classes, functions, and prepro-
cessor macros which form the Maven VTAPI. All classes and functions are encapsulated in the vt:: C++
namespace. The templated HardwareVector<T> class is currently not fully generic and is instead special-
ized for the following types: unsigned int, unsigned short, unsigned char, signed int, signed
short, signed char, char, float, T* (any pointer type).

cludes member functions for loading and storing elements from standard C++ arrays and for ac-

cessing the elements in the hardware vector. Additional free functions are provided for configuring

the vector unit, memory fences, atomic memory operations, and accessing the current microthread’s

index. The key to the VTAPI is a sophisticated macro called VT VFETCH that vector fetches code

onto the microthreads. When using the macro, a programmer specifies the input and output hard-

ware vectors for the vector-fetched block, and the VTAPI handles connecting the vector view of

these registers with the scalar view seen by the microthreads. The VTAPI will be discussed in more

detail in Section 6.3.

118

Figure 6.1: Maven Software Toolchain – Maven C++ applications can be compiled into either native ex-
ecutable or a Maven executable. Native executables emulate the VT application programming interface to
enable rapid testing and development. A preprocessing step is required when compiling Maven executables
to connect the control-thread’s vector register allocation with the microthread’s scalar register allocation.

Figure 6.1 illustrates the Maven software toolchain. A C++ application which uses the Maven

VTAPI is first preprocessed and then compiled to generate a Maven executable (see Section 6.2 for

more details on the compiler, and Section 6.3 for more details on the Maven preprocessor). The

Maven executable can then be run on a functional simulator, detailed RTL simulator, or eventu-

ally a Maven prototype. A key feature of the Maven programming methodology is that all Maven

applications can also be compiled with a native C++ compiler. Currently only the GNU C++ com-

piler is supported, since the methodology makes extensive use of non-standard extensions specific

to the GNU C++ toolchain [gnu10]. Native compilation does not attempt to generate an optimized

executable suitable for benchmarking, but instead generates an executable that faithfully emulates

the Maven VTAPI. Native emulation of Maven applications has several benefits. Programs can be

quickly developed and tested without a Maven simulator (which can be slow) or prototype (which

may not be available for some time). Once a developer is satisfied that the application is functionally

correct using native compilation, the developer can then start using the Maven compiler. Problems

that arise when compiling for Maven can be quickly isolated to a small set of Maven-specific issues

as opposed to general problems with the application functionality. In addition to faster development

and testing, native executables can also be augmented with run-time instrumentation to gather vari-

ous statistics about the program. For example, it is possible to quickly capture average application

vector lengths and the number and types of vector memory accesses.

Figure 6.2 illustrates using the VTAPI to implement the regular DLP loop in Table 2.1c. This

example compiles to the assembly code shown in Figure 4.2a. The set vlen function on line 3

takes two arguments: the application vector length and the required number of vector registers.

Currently, the programmer must iterate through the software toolchain multiple times to determine

how many registers are needed to compile the microthread code, but it should be possible to improve

the methodology such that this is optimized automatically. The set vlen function returns the actual

number of microthreads supported by the hardware, and then this variable is used to stripmine

across the input and output arrays via the for loop on line 5. The additional call to set vlen on

line 6 allows the stripmine loop to naturally handle cases where size is not evenly divisible by the

119

1 void rdlp_vt(int c[], int a[], int b[], int size, int x)
2 {
3 int vlen = vt::config(5, size);
4 vt::HardwareVector<int> vx(x);
5 for (int i = 0; i < size; i += vlen) {
6 vlen = vt::set_vlen(size - i);
7

8 vt::HardwareVector<int> vc, va, vb;
9 va.load(&a[i]);

10 vb.load(&b[i]);
11

12 VT_VFETCH((vc), (), (va,vb), (vx),
13 ({
14 vc = vx * va + vb;
15 }));
16

17 vc.store(&c[i]);
18 }
19 vt::sync_l_cv();
20 }

Figure 6.2: Regular DLP Example Using Maven Programming Methodology – Code corresponds to the
regular DLP loop in Table 2.1c and compiles to the assembly shown in Figure 4.2a. (C++ code line (3,5–
6) handles stripmining, (4) copies scalar x into all elements of hardware vector vx, (9–10) unit-stride vector
loads, (12) specifies input and output hardware vectors for vector-fetched block, (13–15) vector-fetched block
which executes on microthreads, (17) unit-stride store, (19) vector memory fence.)

hardware vector length. Line 4 instantiates a hardware vector containing elements of type int and

initializes all elements in the vector with the scalar value x. This shared variable will be kept in the

same hardware vector across all iterations of the stripmine loop. Line 8 instantiates the input and

output hardware vectors also containing elements of type int. Lines 9–10 are effectively unit-stride

loads; vlen consecutive elements of arrays a and b are moved into the appropriate hardware vector

with the load member function. Lines 12–15 contain the vector-fetched code for the microthreads.

Line 17 stores vlen elements from the output hardware vector to the array c, and line 19 performs

a memory fence to ensure that all results are visible in memory before returning from the function.

The VT VFETCH macro on lines 12–15 is a key aspect of the VTAPI. The macro takes five

arguments: a list of output hardware vectors, a list of hardware vectors that are both inputs and

outputs, a list of input hardware vectors, a list of hardware vectors that should be preserved across

the vector-fetched block, and finally the actual code which should be executed on each microthread.

The programming methodology requires that the input and output hardware vectors be explicitly

specified so that the compiler can properly manage register allocation and data-flow dependencies.

With more sophisticated compiler analysis it should be possible to determine the input and output

hardware vectors automatically. The code within the vector-fetched block specifies what operations

to perform on each element of the input and output hardware vectors. This means that the C++

120

1 void idlp_vt(int c[], int a[], int b[], int size, int x)
2 {
3 int vlen = vt::config(7, size);
4 vt::HardwareVector<int> vx(x);
5 for (int i = 0; i < size; i += vlen) {
6 vlen = vt::set_vlen(size - i);
7

8 vt::HardwareVector<int*> vcptr(&c[i]);
9 vt::HardwareVector<int> va, vb;

10 va.load(&a[i]);
11 vb.load(&b[i]);
12

13 VT_VFETCH((), (), (va,vb), (vcptr,vx),
14 ({
15 if (va > 0)
16 vcptr[vt::get_utidx()] = vx * va + vb;
17 }));
18

19 }
20 vt::sync_l_cv();
21 }

Figure 6.3: Irregular DLP Example Using Maven Programming Methodology – Code corresponds to
the irregular DLP loop in Table 2.1f and compiles to the assembly shown in Figure 4.2b. Notice the vector-
fetched block includes an conditional statement that compiles to a scalar branch. (C++ code line (3,5–6)
handles stripmining, (4) copies scalar x into all elements of hardware vector vx, (8) copies c array base pointer
to all elements of hardware vector vcptr, (10–11) unit-stride vector loads, (13) specifies input and output
hardware vectors for vector-fetched block, (13–15) vector-fetched block which executes on microthreads,
(16) uses vt::get utidx() to write into the proper element of output array, (20) vector memory fence.)

type of a hardware vector is very different inside versus outside the vector-fetched block. Outside

the block, a hardware vector represents a vector of elements and has type HardwareVector<T>

(e.g., va on line 9 has type HardwareVector<int>), but inside the block, a hardware “vector”

now actually represents a single element and has type T (e.g., va on line 14 has type int). This

also means the microthread code is type-safe in the sense that only operations that are valid for the

element type are allowed within a vector-fetched block. Code within a vector-fetched block can

include almost any C++ language feature including stack allocated variables (the VTAPI ensures

that all microthreads have their own unique stack), object instantiation, templates, function and

method calls, conditionals (if, switch), and loops (for, while). The primary restrictions are that

a vector-fetched block cannot use C++ exceptions nor make any system calls, thus microthreads

cannot currently perform dynamic memory allocation. Note that these restrictions do not apply

when compiling a Maven application natively, so it is possible to insert debugging output into a

vector-fetched block during early development through native emulation.

Figure 6.3 illustrates using the VTAPI to implement the irregular DLP loop in Table 2.1f. This

example compiles to the assembly code shown in Figure 4.2b. The primary difference from the

121

previous example is the conditional if statement on line 15. Also notice that this example no

longer uses a unit-stride store for the output, but each microthread instead uses its own scalar store

if the condition is true. The base pointer for the array c is copied into all elements of the hardware

vector vcptr on line 8 and then passed into the vector-fetched block. This allows each microthread

to independently calculate the proper location for their output. After compiling this example, it was

observed that more registers were needed in the vector-fetched block which is why the vector-thread

unit (VTU) is configured with seven registers per microthread on line 3 (instead of the five registers

in Figure 6.2). The Maven functional simulator checks to verify that an application is not accessing

registers that are unavailable.

6.2 VT Compiler
The Maven programming methodology attempts to leverage a standard scalar compiler as much

as possible. We started with the most recent GNU assembler, linker, and C++ compiler (version

4.4.1) which all contain support for the basic MIPS32 instruction set. We then modified the as-

sembler to support the new Maven scalar and vector instructions; modified the compiler back-end

to support vector registers and intrinsics; modified the compiler instruction scheduler to help vec-

tor functional unit performance tuning; and modified the compiler front-end to support long vector

types and new function attributes. Each of these is described in more detail below.

• Modified Assembler – The assembler was modified as follows: added support for a unified

integer and floating-point register space; updated floating-point instruction encodings appro-

priately; added support for new Maven instructions; removed unsupported instructions and the

branch delay slot.

• Modified Compiler Back-End – The compiler back-end needed significant changes to unify

the integer and floating-point registers. Instruction templates were added for the new divide

and remainder instructions to allow the compiler to correctly generate these instructions. A new

vector register space and the corresponding instruction templates required for register allocation

were added. Some of these modifications were able to leverage the GNU C++ compiler’s built-

in support for fixed-length subword-SIMD instructions. Compiler intrinsics for some of the

vector instructions were added to enable software to explicitly generate these instructions and

for the compiler to understand their semantics.

• Modified Compiler Instruction Scheduler – The compiler instruction scheduling framework

was used to create two new pipeline models for Maven: one for the control thread and one

for the microthreads. The two types of threads have different performance characteristics. For

example, a control-thread floating-point instruction occupies one floating-point functional unit

for a single cycle and has a latency of four cycles, while a microthread floating-point instruc-

tion occupies one floating-point functional unit for a number of cycles equal to the either the

122

1 void intcopy_vt(int out[], int in[], int size)
2 {
3 int vlen;
4 asm volatile ("setvl %0, %1" : "=r"(vlen), "r"(size));
5 for (int i = 0; i < size; i += vlen) {
6 asm volatile ("setvl %0, %1" : "=r"(vlen), "r"(size-i));
7

8 int vtemp __attribute__ ((vector_size(128)));
9 vtemp = __builtin_mips_maven_vload_vsi(&in[i]);

10 __builtin_mips_maven_vstore_vsi(vtemp, &out[i]);
11 }
12 asm volatile ("sync.l.cv" ::: "memory");
13 }

Figure 6.4: Low-Level Example Using the Maven Compiler – Simple function which copies an array
of integers. Modifications to a standard GNU C++ compiler enable vector types to be allocated to vector
registers and provide vector intrinsics for common vector memory operations. (C++ code line (4,6) GNU
C++ inline assembly extensions for setting hardware vector length, (8) instantiate a vector type with 32× int
using GNU C++ subword-SIMD extensions, (9–10) use compiler intrinsics for unit-stride vector loads and
stores, (12) GNU C++ inline assembly extensions for memory fence.)

vector length or the active vector length (depending on whether we have a density-time imple-

mentation) but still has a latency of four cycles (through chaining). Since pipeline descriptions

must use static occupancy and latency values, we use a reasonable fixed occupancy of eight

for microthread arithmetic operations. In addition, the instruction cost functions were modified

to separately account for the longer branch latency in microthreads as compared to the control

thread. This allows the compiler to more aggressively use conditional move instructions when

compiling for the microthreads.

• Modified Compiler Front-End – There were relatively few modifications necessary to the

compiler front-end. We used the GNU C++ compiler’s function attribute framework to add

new attributes denoting functions meant to run on the microthreads for performance tuning.

We were able to leverage the GNU C++ compiler’s built-in support for fixed-length subword-

SIMD instructions to create true C++ vector types. Unlike subword-SIMD types which usu-

ally vary the number of elements with the element type (e.g, 4× int or 8× short), Maven

fixes the number of elements to the largest possible hardware vector length (e.g., 32× int or

32× short). Programs can still use setvl to change the active vector length, but the compiler

always assumes that vector types contain 32 elements. This can potentially waste stack space

during register spilling but greatly simplifies the compiler modifications.

Figure 6.4 illustrates how some of these modifications are exposed at the lowest-level to the

programmer. This is a simple example that copies an array of integers using vector memory opera-

tions. The example uses the GNU C++ compiler’s inline assembly extensions to explicitly generate

setvl and sync.l.cv instructions (lines 4,6,12). The vtemp variable on line 8 uses the GNU C++

123

compiler’s subword-SIMD extensions to tell the compiler that this is a vector of 32 integers. We

have modified the compiler such that variables with these kind of vector types are automatically

allocated to vector registers. Note that the actual number of elements in the vector register might

be less that 32 due to available hardware resources or simply because size is less than 32. The

compiler, however, will always treat these types as having 32 elements which should be the ab-

solute maximum hardware vector length as specified by the Maven instruction set. The intrinsic

functions on lines 9–10 generate unit-stride vector loads and stores. Using intrinsics instead of in-

line assembly allows the compiler to understand the semantics of these operations and thus perform

better memory aliasing analysis. Eventually, more Maven operations could be moved from inline

assembly into compiler intrinsics.

Overall, the changes required to a standard C++ compiler to support the Maven programming

methodology are relatively straight-forward. However, as the low-level example in Figure 6.4

shows, the result is far from elegant. This example is tightly coupled to the Maven architecture

and obviously cannot be compiled natively. In addition, the compiler modifications do little to

simplify vector fetching code onto the microthreads. The VTAPI provides an additional layer on

top of these compiler modifications to enable native emulation and greatly simplify writing Maven

applications.

6.3 VT Application Programming Interface

The VT application programming interface (VTAPI) is shown in Table 6.1 and was briefly

discussed in Section 6.1. This section provides more details on the VTAPI implementation.

The Maven implementation of the HardwareVector<T> class contains a single vector type data

member using the GNU C++ compiler subword-SIMD extensions, and each member function uses

either inline assembly or compiler intrinsics as discussed in the previous section. A templated class

is much more efficient than virtual functions and dynamic dispatch, yet at the same time it cleanly

enables adding more element data types in the future. The rest of the free functions in Table 6.1 also

use a combination of inline assembly and compiler intrinsics. Notice how the raw subword-SIMD

vector types and intrinsics are never exposed to users of the VTAPI; this enables the native imple-

mentation to be completely library-based. The native implementation of the HardwareVector<T>

class contains a standard C array. The hardware vector length is always set to be the minimum

vector length specified in the Maven instruction set (i.e., four), and global state is used to track the

active vector length.

Vector fetches are handled in the Maven VTAPI implementation by generating a separate C++

function containing the microthread code, and then using a function pointer as the target for the

vector fetch instruction. This keeps the microthread code separate from the control-thread code,

which avoids the control thread from having to jump around microthread code. The challenge then

becomes connecting the vector registers seen by the control-thread with the scalar registers seen

124

within the microthread code. Although it is possible to establish a standard calling convention for

the inputs and outputs of the vector-fetched microthread function, this can result in suboptimal vec-

tor register allocation. There is a tight coupling between the control-thread and the vector-fetched

microthread code, so we would rather the compilation process more closely resemble function inlin-

ing. Unfortunately, this creates a contradiction: we need to keep the microthread code separate from

the control-thread code, but at the same time we want the effect of inlined register allocation. Our

solution is to use the two-phase compilation process shown in Figure 6.1. A C++ source file that

uses the VTAPI is denoted with the special .vtcc file name extension. These files are first compiled

by the Maven preprocessor. The preprocessor uses the Maven compiler to generate the assembly

for the source file, scans the assembly for the vector register allocation used in the control-thread,

and then generates a new C++ source file with this register allocation information embedded in the

microthread functions. The new C++ source file is then compiled as normal. Implementing this

process completely in the compiler itself would require significant effort. The two-phase process is

simple to implement although it does increase compilation time for files which use the VTAPI.

The Maven implementation of the VT VFETCHmacro uses sophisticated C preprocessor metapro-

gramming to generate the microthread function and all associated register allocation information.

Figure 6.5 shows the result of running the vector-fetched block from Figure 6.2 (lines 12–15)

through the C preprocessor. Notice that the microthread code is contained in a static member func-

tion of a local class (lines 9–30). The address of this function (&vp ::func) is then used in the inline

assembly for the actual vector fetch instruction on lines 33–35. The microthread function includes

Maven specific function attributes (utfunc and target("tune=maven ut") on line 9) to enable

microthread specific optimizations for this function. GNU C++ compiler extensions are used to en-

sure that the various microthread variables are in the correct registers (lines 12,15,18). This example

shows the result after we have run the Maven preprocessor, so the explicit register allocation in the

microthread function also corresponds to the vector register allocation in the control-thread. The

inline assembly for the vector fetch instruction includes information on which hardware vectors this

vector-fetched block uses as inputs and outputs (lines 34–35). This dependency information allows

the compiler to schedule vector fetch instructions effectively, and also allows us to compactly cap-

ture the control-thread’s vector register allocation in the generated assembly file using an assembly

comment.

The VT VFETCH macro shown as part of the VTAPI in Table 6.1 takes four lists of hardware

vectors as arguments. The first is a list of hardware vectors used only as outputs, the second is a

list of hardware vectors used as both inputs and outputs, and the third is a list of hardware vectors

used only as inputs. The final list is for hardware vectors which must be allocated to the same

register both before and after the vector-fetched block is executed. This list is needed because

the compiler is otherwise unaware of vector register allocation done in the control-thread when

it is compiling the microthread function. It is perfectly valid for the compiler to use extra scalar

125

1 {
2 struct vp_
3 {
4 typedef __typeof__ (vc) vc_t_;
5 typedef __typeof__ (va) va_t_;
6 typedef __typeof__ (vb) vb_t_;
7 typedef __typeof__ (vx) vx_t_;
8

9 __attribute__ ((flatten,utfunc,target("tune=maven_ut")))
10 static void func()
11 {
12 register va_t_::ireg_type va_in_ __asm__ ("2");
13 va_t_::ielm_type va = va_t_::cast_input(va_in_);
14

15 register vb_t_::ireg_type vb_in_ __asm__ ("3");
16 vb_t_::ielm_type vb = vb_t_::cast_input(vb_in_);
17

18 register vx_t_::ireg_type vx_in_ __asm__ ("4");
19 vx_t_::ielm_type vx = vx_t_::cast_input(vx_in_);
20

21 vc_t_::elm_type vc;
22

23 vc = vx * va + vb;
24

25 goto stop;
26 stop:
27 register vx_t_::elm_type vx_out_ __asm__ ("4") = vx;
28 register vc_t_::elm_type vc_out_ __asm__ ("2") = vc;
29 __asm__ ("" :: "r"(vc_out_), "r"(vx_out_));
30 }
31 };
32

33 __asm__ volatile
34 ("vf %4 # VT_VFETCH line: 18 ovregs: %0 ivregs: %1 %2 pvregs: %3"
35 : "=Z"(vc) : "Z"(va), "Z"(vb), "Z"(vx), "i"(&vp_::func));
36 };

Figure 6.5: Example of Vector-Fetched Block After Preprocessing – Code corresponds to the vector-
fetched block in Figure 6.2. The VTAPI uses a combination of a local class with a static member function,
function attributes, explicit casts, and inline assembly to implement the VT VFETCH preprocessor macro.
(C++ code line (2–30) local class, (4–7) capture types of input and output hardware vectors, (9) function
attributes, (10–30) static member function of local class, (12–19) specify register allocation and cast scalar
elements to proper type, (21) declare output variable, (23) actual vector-fetched work, (25–26) stop label
to allow user code to exit early, (27–28) ensure outputs are allocated to correct registers, (29) empty inline
assembly to prevent compiler from optimizing away outputs, (33–35) inline assembly for actual vector-fetch
instruction with input and output hardware vector dependencies properly captured.)

126

registers for temporaries when compiling the microthread function, but since these scalar registers

correspond to vector registers, they may clobber values that are live across the vector-fetched block

in the control-thread. By fully specifying which hardware vectors are live into, live out of, and

live across a vector-fetched block, the compiler can efficiently allocate vector registers both in the

control-thread and in the microthread.

The native implementation of the VT VFETCH macro also generates a separate function for the

microthread code. This function is called in a for loop for each element of the hardware vectors

using standard C++. Input and output values are simply passed as function arguments.

The complexity of the VT VFETCH macro is hidden from the programmer as illustrated by the ex-

amples in Figures 6.2 and 6.3. The resulting assembly shown in Figure 4.2 shows how the compiler

is able to generate efficient code with an optimized vector register allocation.

6.4 System-Level Interface

In addition to efficiently managing its array of microthreads, the Maven control thread also

needs some form of system-level support for interacting with the host thread. Figure 6.6 shows

the approach used in the Maven programming methodology. To run a Maven application, a user

accesses the general-purpose processor running the host-thread and then starts the Maven appli-

cation server. The application server is responsible for loading the program into the data-parallel

accelerator’s memory and then starting the control-thread’s execution.

A Maven application is linked with the GNU Standard C++ Library which in turn is linked with

the Redhat Newlib Standard C Library. Newlib is a lightweight implementation of the ANSI C stan-

dard library well suited to embedded platforms. It includes a narrow operating system interface to

simplify porting to new architectures. We have written a small proxy kernel that runs on the control

thread and handles the Newlib system calls. The proxy kernel marshals system call arguments and

passes them to the application server for servicing. Once finished, the application server places the

results back in the data-parallel accelerator’s memory and then notifies the proxy kernel to continue

execution. This simple scheme gives the Maven application the illusion that it is running on a full

Figure 6.6: Maven System-Level Software Stack – A portion of the Maven application runs on the control
thread and a different portion runs on the microthreads, with the VTAPI as the connection between the two.
Maven uses the GNU standard C++ library which in turn uses the Redhat Newlib standard C library. System
calls are handled through a lightweight proxy kernel that communicates with an application server running
on the host thread to actually service the system call. (PK = proxy kernel)

127

operating system. For example, Maven applications can easily read and write files that reside as

part of the native operating system running on the host-thread.

6.5 Extensions to Support Other Architectural Design Patterns

When comparing Maven to other architectural design patterns, we would like to leverage the

Maven programming methodology as much as possible. This simplifies programming multiple im-

plementations of the same application. It also enables a fairer comparison, since all software will be

using a very similar programming methodology. This section describes how the Maven program-

ming methodology can be extended to emulate the MIMD, vector-SIMD, and SIMT architectural

design patterns. These extensions leverage the instruction set extensions discussed in Section 4.6

and the microarchitectural extensions discussed in Section 5.7. Unless otherwise specified, all ex-

tensions include both native and Maven implementations to enable rapid development and testing

of applications through native execution regardless of the architectural design pattern being used.

6.5.1 MIMD Extensions to Maven Programming Methodology

In the MIMD pattern, the host thread is usually responsible for spawning work onto the mi-

crothreads. Unfortunately, this can have high overheads especially when the amount of work to be

done per microthread is relatively small. So the Maven multithreaded MIMD extension takes a dif-

ferent approach where a “master” microthread on the multithreaded core is responsible for spawning

the work on the other remaining “worker” microthreads. We can think of this as emulating a mul-

tithreaded MIMD accelerator where the host thread manages coarse-grain work distribution, while

each master microthread manages fine-grain work distribution.

The general concept of a master microthread distributing work to the worker microthreads has

some similarities to the vector-fetched blocks described earlier in this chapter with respect to want-

ing to cleanly express work “inline” along with the necessary inputs and outputs that need to be

1 void rdlp_mt(int c[], int a[], int b[], int size, int x)
2 {
3 BTHREAD_PARALLEL_RANGE(size, (c,a,b,x),
4 ({
5 for (int i = 0; i < range.begin(); i < range.end(); i++)
6 c[i] = x * a[i] + b[i];
7 }));
8 }

Figure 6.7: Regular DLP Example Using Maven MIMD Extension – Code corresponds to the regular
DLP loop in Table 2.1c. (C++ code line (3) BTHREAD PARALLEL RANGE preprocessor macro automatically
partitions input dataset’s linear index range, creates separate function, spawns the function onto each mi-
crothread, passes in arguments through memory, and waits for the threads to finish, (5–6) each thread does
the work from range.begin() to range.end() where range is defined by the preprocessor macro to be
different for each thread.)

128

marshalled (of course the implementations of the VT and MIMD patterns are radically different).

To this end, we first modify the Maven proxy kernel to support multiple threads of execution and

then build a lightweight user-level threading library called bthreads on top of the proxy-kernel

threads. Bthreads stands for “bare threads” because it has absolutely no virtualization. There is one

bthread for each underlying hardware microthread context. The application is responsible for man-

aging scheduling and virtualization, although the Maven MIMD extension currently maintains this

one-to-one correspondence. Bthreads includes standard MIMD constructs such as mutex classes

and access to the Maven atomic memory operations.

Spawning work is done with a BTHREAD PARALLEL RANGEmacro as shown in Figure 6.7. Line 3

specifies the total number of elements to be distributed to the worker microthreads and a list of C++

variables that should be marshalled for each worker microthread. The final argument to the macro is

the work to be done by each microthread (lines 4–7). The macro automatically partitions the input

range (0 to size-1), and each microthread accesses their respective range through the implicitly

defined range object. This macro is just one part of the bthreads library. Several other classes,

functions, and macros enable other ways to partition and distribute work across the microthreads.

As with the VT VFETCH macro, the BTHREAD PARALLEL RANGE macro’s implementation gen-

erates a separate function containing the actual work to be done in parallel. The generated func-

tion takes one argument which is a pointer to an argument structure. This structure is automat-

ically created to hold the arguments (i.e., c, a, b, and x). When the master thread executes the

BTHREAD PARALLEL RANGE macro, it goes through the following four steps: (1) partition input lin-

ear index range and marshal arguments, (2) spawn work function onto each worker thread passing

the argument pointer to each, (3) execute the work function itself, (4) wait for the worker mi-

crothreads to finish. The Maven implementation of bthreads also includes support for activating and

inactivating microthreads to improve performance on serial code (see 4.6.1 for more information on

this mechanism). Bthreads are initially inactive until work is spawned onto them. The native imple-

mentation of bthreads is built on top of the standard pthreads threading library for truly parallel

execution.

The bthreads library can be combined with any of the other architectural design pattern pro-

gramming methodologies to enable mapping an application to multiple cores. For example, by

using a VT VFETCH macro inside the body of a BTHREAD PARALLEL RANGE macro we can use the

bthreads library to distribute work amongst multiple control processors and the VTAPI to vectorize

each core’s work.

6.5.2 Vector-SIMD Extensions to Maven Programming Methodology

When emulating the vector-SIMD pattern, software can use any of the classes and functions

in Table 6.1 except for get utidx and the VT VFETCH macro. This means that the vector-SIMD

pattern uses the hardware vector class just as in the VT pattern for specifying vector values that can

129

1 void rdlp_tvec(int c[], int a[], int b[], int size)
2 {
3 int vlen = vt::config(4, size);
4 for (int i = 0; i < size; i += vlen) {
5 vlen = vt::set_vlen(size - i);
6

7 vt::HardwareVector<int> vc, va, vb;
8 va.load(&a[i]);
9 vb.load(&b[i]);

10

11 vc = va + vb;
12

13 vc.store(&c[i]);
14 }
15 vt::sync_l_cv();
16 }

Figure 6.8: Regular DLP Example Using Maven Traditional-Vector Extensions – Code corresponds to
the regular DLP loop in Table 2.1a. (C++ code line (3–5) handles stripmining, (8–9) unit-stride vector loads,
(11) vector-vector add, (13) unit-stride store, (19) vector memory fence.)

be allocated to vector registers. We have modified the compiler back-end to recognize arithmetic

operations on vector types, and we provide appropriate operator overloading for these operations in

the HardwareVector<T> class.

Figure 6.8 illustrates using the vector-SIMD extensions for the simple regular DLP loop in

Table 2.1a. This loop performs a vector-vector addition by first loading two hardware vectors from

memory (line 8–9), adding the two hardware vectors together and writing the result into a third

hardware vector (line 11), and then storing the third hardware vector back to memory (line 13).

The vector-SIMD programming methodology uses the exact same stripmining process as the VT

pattern.

Unfortunately, the vector-SIMD programming methodology currently has some significant lim-

itations. Vector-scalar operations are not supported so it is not possible to map the regular DLP loop

in Table 2.1c, and vector flag operations are also not supported so it is not possible to map the ir-

regular DLP loop in Table 2.1f. For these kind of loops, the programmer must resort to hand-coded

assembly. This actually illustrate some of the challenges when working with the vector-SIMD pat-

tern. Mapping regular DLP to a vector-SIMD pattern is relatively straight-forward whether using

a vectorizing compiler or the explicit data-parallel methodology described above, but mapping ir-

regular DLP to a vector-SIMD pattern can be very challenging for assembly-level programmers,

compilers, and programming frameworks.

6.5.3 SIMT Extensions to Maven Programming Methodology

The SIMT extensions are essentially just a subset of the full VT programming methodology.

When emulating the SIMT pattern, software should use the control thread as little as possible,

130

1 void rdlp_simt(int c[], int a[], int b[], int size, int x)
2 {
3 int blocksz = vt::config(5, size);
4 int nblocks = (size + blocksz - 1) / blocksz;
5

6 vt::HardwareVector<int*> vcptr(c), vbptr(b), vaptr(a);
7 vt::HardwareVector<int> vsize(size);
8 vt::HardwareVector<int> vblocksz(blocksz);
9

10 for (int block_idx = 0; block_idx < nblocks; block_idx++) {
11 vt::HardwareVector<int> vblock_idx(block_idx);
12

13 VT_VFETCH((), (), (vblock_idx), (vcptr,vaptr,vbptr,vsize,vblocksz),
14 ({
15 int idx = vblock_idx * vblocksz + vt::get_utidx();
16 if (idx < vsize)
17 vcptr[idx] = vx * vaptr[idx] + vbptr[idx];
18 }));
19 }
20 vt::sync_l_cv();
21 }

Figure 6.9: Regular DLP Example Using Maven SIMT Extensions – Code corresponds to the regular
DLP loop in Table 2.1c. (C++ code line (3–4) calculate hardware vector length and number of microthread
blocks, (6) copy array base pointers into all elements of hardware vectors, (7–8) copy size and block size into
all elements of hardware vectors, (10–20) for loop emulating multiple microthread blocks mapped to the
same core, (13) specifies input and output hardware vectors for vector-fetched block, (14–18) vector-fetched
block, (15) each microthread calculates own index, (16) check to make sure index is not greater than array
size, (17) actual work, (20) vector memory fence.)

since the SIMT pattern does not include a control thread. The code which does run on the control

thread should be thought of as emulating some of the dedicated hardware in a SIMT vector issue

unit. SIMT programs should not use vector memory instructions, and instead all memory accesses

should be implemented with microthread loads and stores. SIMT programs should also not use the

setvl instruction, and instead use a microthread branch to handle situations where the application

vector length is not evenly divisible by the hardware vector length. Hardware vectors should be

limited to initializing each microthread with appropriate scalar values.

Figure 6.9 illustrates using the SIMT extensions for the regular DLP loop in Table 2.1c. Instead

of using vector loads for the input arrays, the SIMT pattern initializes the array base pointers once

outside the stripmine loop (line 6) and then uses microthread loads inside the vector-fetched block

(line 17). Each microthread must calculate its own offset into the input and output arrays (line 15),

and also check to see if the current index is less than the application vector length (line 16). It is

important to note that this additional address calculation and conditional branch closely follows the

practices recommended by the CUDA programming methodology [NBGS08].

131

6.6 Future Research Directions

This section briefly describes some possible directions for future improvements with respect to

the Maven programming methodology.

Support for New Instructions – Section 4.6 discussed several new instructions that would affect

the programming methodology. Some of these extensions, such as a vector unconfiguration instruc-

tion, vector compress and expand instructions, and vector reduction instructions, would be exposed

as additional free functions. Adding segments to the VTAPI would be difficult, since segments im-

pose additional constraints on vector register allocation. One option is simply to allow the program-

mer to more explicitly allocate segments to vector registers, but this significantly lowers the level of

abstraction. A better solution is to add a compiler optimization pass that can merge multiple strided

accesses into a single segment access. To support shared hardware vectors, the VTAPI would need

a way to explicitly denote this kind of vector. The compiler register allocation framework would

need to be modified to efficiently allocate both private and shared hardware vectors.

Hardware Vectors of C++ Objects – Hardware vectors are limited to containing primitive types,

but programs often work with arrays of objects. It would be useful to be able to easily transfer

arrays of objects into vector-fetched microthread code. Currently, the programmer must “unpack”

the fields of the objects using strided accesses into multiple hardware vectors, pass these hardware

vectors into the vector-fetched block, and then “repack” these fields into the corresponding object

in the microthread code. In addition to being cumbersome, this process also violates the object’s

data encapsulation by requiring data members to be publicly accessible (the vector load operations

need access to the underlying addresses of these fields). Hardware vectors containing objects would

greatly simplify this process, and possibly even allow the use of efficient segment accesses.

Automatically Determine Vector-Fetched Block Inputs and Outputs – Improperly specified in-

puts and outputs for a vector-fetched block are a common source of errors when using the Maven

programming methodology. More sophisticated static analysis might allow the compiler to auto-

matically determine these inputs and outputs. This analysis would need to be cross-procedural (i.e.,

from control thread function to microthread function) and possibly rely on variable naming to relate

microthread scalar variables to the control-thread’s hardware vector variables. Integrating the vector

fetch construct into the language would probably be required to support this kind of analysis.

Optimize Number of Registers per Microthread – The number of registers per microthread is

currently set manually by the programmer. The compiler could include an optimization pass that

attempts to statically determine an appropriate number of registers per microthread. More registers

allows the compiler more scheduling freedom at the cost of reduced hardware vector length, while

less registers increases the hardware vector length at the cost of constrained scheduling and possible

register spilling.

132

6.7 Related Work
This section highlights selected previous work specifically related to the Maven programming

methodology presented in this chapter.

Scale VT Processor – Scale provides two programming methodologies. The first approach uses a

standard scalar compiler for most of the control-thread code, and then manually written assembly

for the critical control-thread loops and microthread code [KBH+04a]. The second approach uses a

research prototype VT compiler [HA08]. Hand-coded assembly provides the highest performance,

but requires the most effort. The research prototype VT compiler automatically exploits DLP for

a VT architecture, but can not handle all kinds of loops and results in lower performance than

hand-coded assembly. Porting the research prototype VT compiler to Maven would have required

significant effort. The Maven programming methodology takes a very different approach where the

programmer must explicitly specify the data-level parallelism but at a high-level of abstraction.

Automatically Vectorizing Compilers – There has been a great deal of research on compilers that

can automatically extract DLP from standard sequential programming languages [BGS94, DL95,

HA08]. The success of such compilation varies widely and depends on how the original program

was written, the presence of true data dependencies, and the sophistication of the compiler opti-

mization passes. Effective vectorizing compilers must manage memory aliasing, nested loops, and

complex data-dependent control flow. An explicitly data-parallel programming methodology sim-

plifies the compiler implementation by shifting more of the burden on the programmer, but can

result in very efficient code generation. The Maven methodology uses a relatively high-level frame-

work to help the programmer naturally express the data-level parallelism that is available in the

application.

Data-Parallel Programming Languages – Programming languages such as Paralation Lisp, APL,

and Fortran 90 include explicit support in the language for data-parallel operators (see [SB91] for

a survey of early data-parallel languages). More recent examples include ZPL [CCL+98] and the

Scout language for graphics processors [MIA+07]. Although all of these languages can elegantly

express regular DLP and could produce efficient code on vector-SIMD architectures, they quickly

become cumbersome to use when working with irregular DLP. The NESL language specifically

attempts to better capture irregular DLP by providing nested data-parallel constructs [Ble96]. The

explicit data-parallel programming methodology introduced in this chapter provides a much more

general framework for expressing both regular and irregular DLP, although because it is mostly

library-based it lacks some of the static guarantees available in true data-parallel languages.

Programming Frameworks for Graphics Processors – Programming frameworks that follow the

SIMT pattern are probably the most similar to the Maven programming methodology. NVIDIA’s

CUDA [NBGS08], OpenCL [ope08a], and Stanford’s Brook language [BFH+04] provide the abil-

ity to write microthread code as a specially annotated function, which is then spawned on the ac-

133

celerator from the host thread. Both the SIMT and VT patterns include a two-level hierarchy of

microthreads, and this hierarchy is reflected in both programming methodologies. The SIMT pat-

tern uses microthread blocks, while the VT pattern uses software-exposed control threads. Maven

extends these earlier SIMT frameworks to include efficient compilation for the control thread.

134

Chapter 7

Maven Evaluation

This chapter evaluates the Maven VT core in terms of area, performance, and energy as compared

to the MIMD, vector-SIMD, and SIMT architectural design patterns. Section 7.1 describes the 20

different data-parallel core configurations that we have implemented using a semi-custom ASIC

methodology in a TSMC 65 nm process, and Section 7.2 describes the four microbenchmarks for

studying how these cores execute both regular and irregular DLP. Section 7.3 reviews the method-

ology used to measure the area, performance, and energy of each core running the various mi-

crobenchmarks. Section 7.4 compares the cores based on their cycle times and area breakdown, and

Sections 7.5–7.6 compares the core’s energy-efficiency and performance. Section 7.7 concludes this

chapter with a brief case study of how a much larger computer graphics application can be mapped

to the Maven VT core.

7.1 Evaluated Core Configurations

Table 7.1 lists the 20 core configurations used to evaluate a simplified VT architecture for use

in future data-parallel accelerators. There are three broad classes of configurations that correspond

to three of the architectural design patterns: MIMD, vector-SIMD, and VT. There is no SIMT core

configuration, since the SIMT pattern is evaluated by using the VT cores to run code written in

the SIMT style. Table 7.1 also lists the number of lanes, number of physical registers, the number

of supported microthreads with the default 32 registers per microthread, minimum and maximum

hardware vector lengths, sustainable arithmetic throughput, and sustainable memory throughput.

The mimd-1x* configurations adhere to the MIMD pattern with mimd-1x1 representing a single-

threaded MIMD core, and mimd-1x2, mimd-1x4, and mimd-1x8 representing multithreaded MIMD

cores with two, four, and eight microthreads per lane respectively. These MIMD cores include

the instruction set and microarchitectural extensions described in Sections 4.6.1 and 5.7.1. Most

notably, the multithreaded MIMD cores include support for activating and deactivating microthreads

to avoid overheads on the serial portions of the microbenchmarks. Although the MIMD cores have

135

Throughput

Num Num Num Min Max Arith Mem
Pattern Variant Lanes Regs µTs Vlen Vlen (ops/cyc) (elm/cyc)

mimd 1x1 n/a 31 1 n/a n/a 1 1
mimd 1x2 n/a 62 2 n/a n/a 1 1
mimd 1x4 n/a 124 4 n/a n/a 1 1
mimd 1x8 n/a 248 8 n/a n/a 1 1

vsimd 1x1 1 31 1 1† 10 1c + 2v 1l + 1s
vsimd 1x2 1 62 2 2† 20 1c + 2v 1l + 1s
vsimd 1x4 1 124 4 4 32 1c + 2v 1l + 1s
vsimd 1x8 1 248 8 4 32 1c + 2v 1l + 1s

vsimd 2x1 2 62 2 2† 20 1c + 4v 2l + 2s
vsimd 2x2 2 124 4 4 41 1c + 4v 2l + 2s
vsimd 2x4 2 248 8 4 64 1c + 4v 2l + 2s
vsimd 2x8 2 496 16 4 64 1c + 4v 2l + 2s

vsimd 4x1 4 124 4 4 41 1c + 8v 4l + 4s
vsimd 4x2 4 248 8 4 82 1c + 8v 4l + 4s
vsimd 4x4 4 496 16 4 128 1c + 8v 4l + 4s
vsimd 4x8 4 992 32 4 128 1c + 8v 4l + 4s

vt 1x1 1 31 1 1† 10 1c + 2v 1l + 2s
vt 1x2 1 62 2 2† 20 1c + 2v 1l + 2s
vt 1x4 1 124 4 4 32 1c + 2v 1l + 2s
vt 1x8 1 248 8 4 32 1c + 2v 1l + 2s

Table 7.1: Evaluated Core Configurations – Twenty data-parallel core configurations are used to evaluate
three architectural design patterns: MIMD, vector-SIMD, and VT. In addition, the SIMT pattern is evaluated
by using the VT cores to run code written in the SIMT style. MIMD core configuration include support
for 1–8 microthreads. Vector-SIMD core configurations include 1–4 lanes with 31–248 physical registers
per lane. VT core configurations all use a single lane with 31–248 physical registers. (num regs column
excludes special register zero, num µTs column is the number of microthreads supported with the default
32 registers per microthread, † = these are exceptions since technically the Maven instruction set requires
a minimum vector length of four, xc + yv = x control processor operations and y vector unit operations per
cycle, xl + ys = x load elements and y store elements per cycle)

a decoupled load/store unit and long-latency functional units, they are fundamentally single-issue

resulting in a sustainable arithmetic throughput of one operation per cycle and a sustainable memory

throughput of one element per cycle.

The vsimd-* configurations adhere to the vector-SIMD pattern with one-lane (vsimd-1x*), two-

lane (vsimd-2x*), and four-lane (vsimd-4x*) variants. These vector-SIMD cores include the instruc-

tion set and microarchitectural extensions described in Sections 4.6.2 and 5.7.2. They support a full

complement of vector instructions including vector flag operations for data-dependent conditional

control flow. The control processor is embedded in all configurations. The vsimd-*x1, vsimd-*x2,

vsimd-*x4, and vsimd-*x8 configurations are sized to have enough physical registers to support one,

two, four, and eight microthreads respectively. This assumes each microthread requires the full 32

136

MIPS32 registers, although longer vector lengths are possible with reconfigurable vector registers.

The special register zero is not included as a physical register, since it can be easily shared across

all microthreads. The twelve vector-SIMD cores allows us to evaluate mapping microthreads in

two dimensions: spatially across 1–4 lanes and temporally with 31–248 physical registers per lane.

Some cores have a minimum vector length less than four, which is the minimum vector length spec-

ified by the Maven instruction set. We included these configurations for evaluation purposes, even

though they are unlikely to be used in a real implementation. Also notice that the maximum vector

length is limited to 32 per lane, which is sometimes less than what the number of physical registers

will theoretically support (e.g., vsimd-1x8 can theoretically support a maximum vector length of

82). This helps limit the amount of state that scales with the number of microthreads (e.g., size

of each vector flag register) and enables a fair comparison against the VT cores that have similar

constraints. The arithmetic throughput includes both the control processor functional unit and vec-

tor functional units, although the control processor functional unit is only used for simple control

operations. Increasing the number of lanes increases the arithmetic throughput, and the memory

throughput is also increased to maintain a similar balance across all configurations. For example,

the vsimd-4x* configurations’ vector unit can execute eight arithmetic ops per cycle owing to two

vector functional units (VFU0/VFU1) per lane and four lanes. The vsimd-4x* configurations also

include a wide VMU that supports up to four load elements and four store elements per cycle. In

addition to increased data bandwidth, the multi-lane configurations also include increased address

bandwidth so that the vsimd-4x* configurations can issue four independent indexed or strided re-

quests to the memory system per cycle. It is important to note, that this increased arithmetic and

memory throughput does not require increased fetch or issue bandwidth. The vector-SIMD cores

can only sustain a single instruction fetch per cycle, but the VIU can still keep many vector fetch

units busy with multi-cycle vector operations.

The vt-1x* configurations adhere to the VT pattern with a single lane and a physical register

file that ranges in size from 31–248 elements. The vt-1x* configurations are very similar to the

vsimd-1x* configurations with respect to the number of physical registers, number of supported mi-

crothreads, minimum and maximum vector lengths, and sustained arithmetic and memory through-

puts. Of course the vt-1x* configurations differ from the vsimd-1x* configurations in their ability to

support vector-fetched scalar instructions. The evaluation in this thesis is limited to just the basic

Maven microarchitecture without support for vector fragment merging, interleaving, or compres-

sion. As with the vector-SIMD configurations, VT configurations with few physical registers (i.e.,

vt-1x1 and vt-1x2) do not support very long hardware vector lengths. These configurations are useful

for studying trends, but are less practical for an actual prototype.

Each configuration is implemented in Verilog RTL. There is a great deal of common function-

ality across configurations, so many configurations are generated simply by enabling or disabling

certain design-time options. For example, the MIMD cores are similar to the control processor

137

used in the vector-SIMD and VT cores. The primary differences are that the MIMD cores use a

dedicated decoupled floating-point functional unit instead of sharing with a vector unit, and the

multithreaded MIMD cores include microthread scheduling control logic. The vector-SIMD and

VT configurations are also very similar with design time options to enable or disable the vector flag

register, PVFB, and other small modules that are specific to one configuration or the other. For this

evaluation, all configurations include a relatively idealized memory system represented by a fixed

two-cycle latency magic memory module. The L1 instruction cache is not modeled and instead the

instruction ports connect directly to the magic memory module.

7.2 Evaluated Microbenchmarks

Eventually, we will experiment with large-scale data-parallel applications running on the var-

ious core configurations, but my initial evaluation focuses on four carefully crafted microbench-

marks. These microbenchmarks capture some of the characteristics of both regular and irregular

DLP programs, and they are easy to analyze and understand. In addition, although the evaluation

methodology used in this thesis produces detailed results, it also requires lengthy simulation times

that are a better suited to shorter microbenchmarks. In the future, we can use the insight gained

through working with these microbenchmarks to build higher-level models that should reduce the

simulation times required for large-scale applications.

Figure 7.1 illustrates the four microbenchmarks: vvadd which performs a 1000-element vector-

vector addition with integer elements, cmult which performs a 1000-element vector-vector complex

multiply with floating-point imaginary and real components, mfilt which performs a masked con-

volution with a five-element kernel across a gray-scale image that is 100× 100 pixels and a cor-

responding mask image that is also 100× 100 pixels, and bsearch which performs 1000 look-ups

(a) vvadd (b) cmult (c) mfilt (d) bsearch

Figure 7.1: Microbenchmarks – Four microbenchmarks are used to evaluate the various architectural design
patterns: (a) the vvadd microbenchmark performs element-wise integer addition across two input arrays and
writes a third output array; (b) the cmult microbenchmark performs element-wise complex multiplication
across two input arrays of structures with the imaginary/real components and writes a third output array; (c)
the mfilt microbenchmark performs a masked convolution with a five element kernel on a gray-scale input
image; (d) the bsearch microbenchmark uses a binary search to look-up search keys in a sorted array of
key/value pairs.

138

using a binary search into a sorted array of 1000 key/value pairs. Each microbenchmark has at

least four implementations that correspond to the four patterns we wish to evaluate: a multithreaded

MIMD implementation that runs on the mimd-* cores, a vector-SIMD implementation that runs on

the vsimd-* cores, a SIMT implementation that runs on the vt-* cores, and a VT implementation

that also runs on the vt-* cores. Table 7.2 lists the number of instructions for each microbenchmark

by type. Only the instructions in the inner loop are included in this table, which ignores the fact that

the MIMD pattern requires significantly more start-up overhead as compared to the other patterns.

The programming methodology described in Chapter 6 is used to compile all of the microbench-

marks, with the specific extensions discussed in Section 6.5 for the MIMD, vector-SIMD, and SIMT

patterns. Due to the difficulty of compiling irregular DLP for the vector-SIMD pattern, the vector-

SIMD implementation of the mfilt and bsearch microbenchmarks required hand-coded assembly.

The bsearch microbenchmark also has implementations that use explicit conditional moves to re-

duce the number of conditional branches.

The vvadd and cmult microbenchmarks illustrate regular DLP. The vvadd microbenchmark uses

integer arithmetic and unit-stride accesses, while the cmult microbenchmark uses floating-point

arithmetic and strided accesses. The strided accesses are necessary, since the input and output are

stored as an array of structures where each structure contains the imaginary and real part for one

complex number. Neither microbenchmark includes any data-dependent control flow beyond the

standard loop over the input elements. As expected, Table 7.2 shows that the MIMD implemen-

tations only use microthread scalar instructions, and the vector-SIMD implementations only use

control-thread scalar and vector instructions. The SIMT and VT implementations use a combina-

tion of control-thread and microthread instructions. To capture the fact that a real SIMT core would

not include a control processor, the SIMT implementations uses fewer control-thread instructions

and more microthread instructions as compared to the VT implementations. The microthread branch

instruction in the SIMT implementations is for checking if the current microthread index is less than

the input array size. The control-thread scalar and vector memory instructions for the vector-SIMD

and VT implementations are identical because both use essentially the same stripmining and unit-

stride/strided vector memory accesses. Because more code runs on the microthreads in the SIMT

implementations, these implementations require more registers per microthread. This in turn will

result in shorter hardware vector lengths as compared to the vector-SIMD and VT implementations.

The mfilt microbenchmark illustrates regular data access with irregular control flow. The input

pixels are loaded with multiple unit-stride accesses and different base offsets, and the output pixels

are also stored with a unit-stride access. The convolution kernel’s coefficients use shared accesses,

and there is also some shared computation to calculate an appropriate normalization divisor. Each

iteration of the loop checks to see if the corresponding boolean in a mask image is false, and if so,

skips computing the convolution for that pixel. The mask image used in this evaluation includes

several randomly placed squares covering 67% of the image. Each microthread in the MIMD im-

139

CT CT µT
Scalar Vector Scalar Totals

Name Pattern int br int fp ld st misc int fp ld st br j cmv misc nregs CT µT

vvadd mimd 6 2 2 1 10
vvadd vsimd 7 1 1 2u 2u 1 4 12
vvadd simt 1 1 2 8 2 2 1 2 10 4 14
vvadd vt 7 1 2u 2u 2 1 1 4 12 2

cmult mimd 5 6 6 2 1 20
cmult vsimd 10 1 6 4s 2s 1 4 24
cmult simt 1 1 2 7 6 6 2 1 2 10 4 24
cmult vt 10 1 4s 2s 2 1 6 1 4 19 8

mfilt mimd 34 7 2 5 1 49
mfilt vsimd 24 2 1,9f 6u 1u 2 13 45
mfilt simt 4 3 3 27 7 2 2 3 26 10 41
mfilt vt 24 2 6u 1u 3 10 1 1 13 35 12

bsearch mimd 19 4 2 5 30
bsearch vsimd 9 3 2,17f 1u,2x 1u 5 10 40
bsearch simt 1 1 2 26 4 2 5 1 1 2 16 4 41
bsearch simt-cmv 1 1 2 28 3 2 2 4 2 26 4 41
bsearch vt 6 1 1u 1u 5 15 3 4 1 1 2 10 13 26
bsearch vt-cmv 6 1 1u 1u 5 17 2 1 4 1 13 14 25

Table 7.2: Instruction Mix for Microbenchmarks – Number of instructions for each microbenchmark are
listed by type. The vvadd and cmult microbenchmarks have regular data access and control flow. The mfilt
microbenchmark has regular data access but irregular control flow, and the bsearch microbenchmark has
irregular data access and control flow. (CT = control thread, µT = microthread, int = simple short-latency
integer, fp = floating-point, ld = load, st = store, br = conditional branch, j = unconditional jump, cmv =
conditional move, CT vector misc = {setvl, vf, mov.sv}, µT scalar misc = {utidx, stop}, nregs = number
of scalar registers required per µT, u suffix = unit-stride, s suffix = strided, x suffix = indexed, f suffix = vector
operation writing or reading vector flag register)

plementation requires five conditional branches to iterate over a portion of the input image and to

check the mask image. The vector-SIMD implementation of this data-dependent conditional con-

trol flow uses nine vector instructions that either manipulate or operate under a vector flag register.

Even though there is some irregular control flow, both the vector-SIMD and VT implementations

can refactor 26 scalar instructions onto the control thread and use seven unit-stride memory ac-

cesses (five to load the five pixels in the input image, one to load the mask image, and one to store

the result). The SIMT and VT implementations use vector-fetched scalar branches to implement

the data-dependent control flow and the hardware manages divergence as necessary. Again notice

the difference between the SIMT and VT implementations: the SIMT implementation uses 41 mi-

crothread instructions and only 10 control-thread instructions, while the VT implementation uses 12

microthread instructions and 35 control-thread instructions. VT is able to better amortize overheads

onto the control processor, which should improve performance and energy-efficiency.

140

The bsearch microbenchmark illustrates irregular DLP. The microbenchmark begins with an

array of structures where each structure contains a key/value pair. The input is an array of search

keys, and the output is the corresponding value for each search key found by searching the sorted

key/value array. The dataset used in this evaluation requires less than the full number of look-

ups (10) for 52% of the search keys. The microbenchmark is essentially two nested loops with

an outer for loop over the search keys, and an inner while loop implementing a binary search

for finding the key in the key/value array. The MIMD implementation requires five branches to

implement these nested loops. The vector-SIMD implementation uses outer-loop vectorization such

that the microthreads perform binary searches in parallel. The outer-loop control runs on the control

thread and always executes O(log(N)) (the worst case) number of times. Vectorizing the outer

loop requires 17 vector instructions that either manipulate or operate under vector flag registers.

Although it is possible for the control thread to check if the flag register is all zeros every iteration

of the inner while loop, this prevents control processor decoupling and decreases performance. The

vector-SIMD implementation must use indexed vector memory instructions to load the keys in the

key/value array, since each microthread is potentially checking a different element in the key/value

array. In the SIMT and VT implementations, each microthread directly executes the inner while

loop, and the hardware manages divergence as necessary. The microthreads can use scalar loads to

access the key/value array. The VT implementation can still amortize some instructions onto the

control thread including the unit-stride load to read the search keys and the unit-stride store to write

the result. Although the compiler is able to automatically replace one conditional branch with a

conditional move, both the SIMT and VT implementations include many conditional branches that

can potentially limit performance and energy efficiency. We also examine implementations where

some of these conditional branches are replaced with explicit conditional moves inserted by the

programmer.

7.3 Evaluation Methodology

Figure 7.2 illustrates the evaluation methodology used to collect area, performance, and energy

results from the 20 core configurations and four microbenchmarks. The software toolflow follows

the programming methodology described in Chapter 6. A C++ application can be compiled either

natively for rapid development and testing, or for Maven with the Maven preprocessor and compiler.

The resulting Maven binary can then be run on the instruction set simulator for functional verifica-

tion. The instruction set simulator produces preliminary statistics about dynamic instruction counts

and microthread branch divergence. We augment each microbenchmark with special instructions to

tell the various simulators when the critical timing loop begins and ends so that our statistics only

correspond to the important portion of the microbenchmark.

The hardware toolflow starts with the Verilog RTL for each of the 20 core configurations. Syn-

opsys VCS is used to generate a fast simulator from this RTL model that can be linked to the

141

Figure 7.2: Evaluation Software and Hardware Toolflow – The software toolflow allows C++ applications
to be compiled either natively or for Maven, while the hardware toolflow transforms the Verilog RTL for
a data-parallel core into actual layout. From this toolflow we can accurately measure area, performance
(1/cycle count× cycle time), and energy (average power× cycle count× cycle time).

application server described in Section 6.4. We use an extensive self-checking assembly-level test

suite that can run on both the instruction set and RTL simulators to verify the functionality of the

RTL model. Since this model is cycle accurate, we can also use the RTL simulator to determine the

number of cycles required to execute a specific microbenchmark.

Synopsys Design Compiler is used to synthesize a gate-level model from the higher-level RTL

model. We used a 1.5 ns target cycle time (666 MHz clock frequency) for all configurations in hopes

that most designs would ultimately be able to achieve a cycle time between 1.5–2 ns (666-500 MHz).

All core configurations explicitly instantiate Synopsys DesignWare Verilog components to imple-

ment the larger and more complex functional units including the integer multiplier/divider and

floating-point units. Automatic register retiming is used to generate fully pipelined instruction set

units that meet our timing requirements. This resulted in the following functional unit latencies:

four-cycle integer multiplier, 12-cycle integer divider, four-cycle floating-point adder, four-cycle

floating-point multipler, eight-cycle floating-point divider, and eight-cycle floating-point square

root. The RTL is crafted such that the synthesis tool can automatically generate clock-gating logic

throughout the datapaths and control logic. Unfortunately, we do not currently have access to a

custom register-file generator. Instead, we have written a Python script that generates gate-level

142

models of register files with different numbers of elements, bits per element, read ports, and write

ports. Our generator uses standard-cell latches for the bitcells, hierarchical tri-state buses for the

read ports, and efficient muxing for the write ports. In addition to generating the Verilog gate-level

model, our generator pre-places the standard-cells in regular arrays. Our generator can also build

larger register files out of multiple smaller subbanks. These pre-placed blocks are included as part

of the input to the synthesis tool, but they are specially marked to prevent the tool from modifying

them. This allows the synthesis tool to generate appropriately sized decode logic.

The synthesized gate-level model is then passed to Synopsys IC Compiler which handles placing

and routing the standard-cells. We also use IC Compiler for floorplanning the location of the pre-

placed blocks, synthesizing the clock tree, and routing the power distribution grid. The place-&-

route tool will automatically insert extra buffering into the gate-level model to drive heavily loaded

nets. The output of the place-&-route tool is an updated gate-level model and the final layout. We

use the place-&-route tool to generate reports summarizing the area of each module in the hierarchy

and the most critical timing paths using static timing analysis. From the cycle time and the cycle

counts generated through RTL simulation, we can calculate each microbenchmark’s performance in

iterations per second for each core configuration.

We use Synopsys VCS to generate a simulator from the post-place-&-route gate-level model.

This gate-level simulator is more accurate but slower than the higher-level RTL simulator. The

gate-level simulator is linked to the application server allowing us to run the exact same binaries as

used with the instruction set and RTL simulators. The gate-level simulator also allows us to perform

additional verification. Certain types of design errors will simulate correctly in the RTL simulator

but produce incorrect results in the gate-level simulator (and in a fabricated prototype). In addition,

the gate-level simulator generates detailed activity statistics for every net in the design. Synop-

sys PrimeTime is used to combine each net’s switching activity with the corresponding parasitic

capacitance values from the layout. This generates average power for each module in the design.

From the average power, cycle time, and cycle counts, we can calculate each microbenchmark’s

energy-efficiency in Joules per iteration for each core configuration.

As an example of our evaluation methodology, Figure 7.3 shows the post-place-&-route chip

plot for the vt-1x8 core configuration. The modules are labeled according to the microarchitectural

diagram in Figure 5.1. Using our pre-placed register-file generator results in regularly structured

vector and control-processor register files. Although this produces much better results than purely

synthesizing these large register files, the pre-placed register files are still significantly larger than

what would be possible with a custom register-file generator. We avoid any serious floorplanning

of the vector functional units, even though there is the possibility to better exploit the structure

inherent in these kinds of vector units. The benefit of these limitations is that they enable much faster

development of a wide range of core configurations, and the results should still provide reasonable

preliminary comparisons. Future work will iteratively refine a smaller set of core configurations to

143

Figure 7.3: Chip Floorplan for vt-1x8 Core – Chip floorplan showing position of each gate in the post-
place-&-route gate-level model. Modules are labeled according to the microarchitectural diagram in Fig-
ure 5.1. Register files use pre-placed standard-cell latches. Total area is 690 µm× 825 µm. (CP = control
processor, VIU = vector issue unit, VMU =vector memory unit, VFU = vector functional unit, VAU = vector
address unit, VSDRU = vector store-data read unit, VLDWU = vector load-data writeback unit, VAQ = vec-
tor address queue, VSDQ = vector store-data queue, VLDQ = vector load-data queue, INT = simple integer
ALU, IMUL/IDIV = integer multiplier and divider, FMUL/FADD/FSQRT/FDIV = floating-point multiplier,
adder, square root unit, and divider.)

144

improve the quality of results, and eventually the designs will be suitable for fabricating a prototype.

The software and hardware toolflow is completely scripted, which allows us to quickly push

new designs through the toolflow. Using a small cluster of eight-core servers, the entire set of 20

core configurations and 18 microbenchmark implementations can be pushed through the toolflow to

generate a complete set of results overnight.

7.4 Cycle-Time and Area Comparison

Table 7.3 shows the cycle time for each of the 20 core configurations. The tools worked hard

to meet the 1.5 ns cycle time constraint, but ultimately the cycle times range from 1.57–2.08 ns

(637–481 MHz). Generally, the cycle times increase as configurations include larger physical regis-

ter files, which require longer read and write global-bitlines. Analysis of the critical paths in these

configurations verify that the cycle time is usually limited by accessing the register file. Although

it might be possible to pipeline the register file access, a more promising direction is to move to a

Cycle
Time
(ns)

Area (Thousands µm2)

Reg Int FP Mem Ctrl
Pattern Variant File Dpath Dpath Dpath Logic CP Total

mimd 1x1 1.57 22.2 60.8 53.4 4.4 7.4 148
mimd 1x2 1.78 44.5 59.3 51.9 4.4 8.9 169
mimd 1x4 1.83 89.0 63.8 51.9 4.4 8.9 218
mimd 1x8 2.08 179.4 69.7 51.9 4.4 8.9 314

vsimd 1x1 1.64 59.3 56.3 44.5 29.7 32.6 50.4 273
vsimd 1x2 1.79 105.3 54.9 44.5 28.2 34.1 48.9 316
vsimd 1x4 1.73 197.2 54.9 44.5 28.2 35.6 48.9 409
vsimd 1x8 1.84 390.0 54.9 43.0 28.2 38.6 47.5 602

vsimd 2x1 1.75 115.7 105.3 89.0 54.9 40.0 48.9 454
vsimd 2x2 1.68 209.1 108.2 89.0 54.9 41.5 50.4 553
vsimd 2x4 1.67 397.4 108.2 89.0 54.9 43.0 53.4 746
vsimd 2x8 1.97 784.4 112.7 87.5 54.9 47.5 53.4 1140

vsimd 4x1 1.73 229.8 215.0 176.5 109.7 53.4 51.9 836
vsimd 4x2 1.72 413.7 212.0 172.0 108.2 54.9 51.9 1013
vsimd 4x4 1.92 784.4 210.6 172.0 111.2 56.3 50.4 1385
vsimd 4x8 2.07 1546.6 212.0 170.5 114.2 68.2 53.4 2165

vt 1x1 1.67 46.0 54.9 47.5 28.2 51.9 48.9 277
vt 1x2 1.67 91.9 56.3 46.0 29.7 51.9 48.9 325
vt 1x4 1.68 183.9 57.8 46.0 29.7 54.9 50.4 423
vt 1x8 1.81 379.6 60.8 46.0 29.7 54.9 50.4 621

Table 7.3: Absolute Area and Cycle Time for Core Configurations – Cycle time as measured by static
timing analysis after place-&-route. Area breakdown as reported by place-&-route tool. Area breakdown
for vector-SIMD and VT cores are for the vector unit with the entire control processor grouped into a single
column. See Figure 7.4 for plot of normalized area for each configuration.

145

x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8
0

2

4

6

8

10

12

14
N

or
m

al
iz

ed
 A

re
a

 Control Processor
 General Control Logic
 Memory Unit Datapaths
 Floating−Point Datapaths
 Integer Datapaths
 Register Files

mimd-1 vsimd-1 vsimd-2 vsimd-4 vt-1

Figure 7.4: Normalized Area for Core Configurations – Area for each of the 20 core configurations listed
in Table 7.1 are shown normalized to the mimd-1x1 core. Note that the embedded control processor helps
mitigate the area overhead of single-lane vector units, and the VT cores have very similar area as the single-
lane vector-SIMD cores. (See Table 7.3 for absolute area numbers. Area breakdown for vector-SIMD and
VT cores are for the vector unit with all parts of the control processor grouped together on top.)

banked design as described in Section 5.7. Increasing the number of lanes has less of an impact

on the cycle time, since the larger vector register file in multi-lane vector units is naturally banked

by lane. The cycle times vary from 6–13% for configurations with the same number of physical

registers per lane, and vary 25% across all configurations.

Table 7.3 also shows the area breakdown for each of the 20 core configurations, and Figure 7.4

plots the area normalized to the mimd-1x1 configuration. As expected the register file dominates the

area particularly in *-*x8 configurations. These results can help us better understand the area impact

of moving to multi-lane vector units, embedding the control processor, and adding VT mechanisms.

Increasing the number of lanes in the vsimd-1x*, vsimd-2x*, and vsimd-4x* configurations obvi-

ously also increases the total area. Notice that the relative increase in the control logic area is much

less than the relative increase in the register file and datapaths. For example, from the vsimd-1x8

configuration to the vsimd-4x8 configuration the register-file and datapath area increases by 395%,

but the control logic only increases by 76%. This is because, in a multi-lane vector unit, most of the

control logic is amortized across the lanes.

To evaluate control processor embedding, we can compare the area of the four-lane configura-

tions (vsimd-4x4, vsimd-4x8) with four times the area of the single-lane configurations (vsimd-1x4,

vsimd-1x8). The vsimd-*x1 and vsimd-*x2 configurations are less practical, since they support

much shorter hardware vector lengths. The four single-lane configurations consume approximately

146

11–18% more area than the corresponding four-lane configurations. This comparison favors the

multi-lane configurations, since we are assuming control-processor embedding is possible in all

configurations. The embedded control processor area as a fraction of the total area for the vt-1x4

and vt-1x8 configurations ranges from 8–11%. If the control processor required its own long-latency

functional units and memory ports, the area overhead would range from ≈22–30%. Even if more

optimization decreases the size of the register file by a factor of 2–3×, the embedded control pro-

cessor area would still be limited to 11–16%. This is a conservative estimate, because optimized

register files would also decrease the area of the control processor. These results imply that control

processor embedding is a useful technique, and enables single-lane vector units without tremendous

area overhead.

One of the design goals for the Maven VT core was to add VT capabilities with minimal changes

to a vector-SIMD core. The hope is that this would allow the Maven VT core to maintain the area-

and energy-efficiency advantages of the vector-SIMD core while adding increased flexibility. We

can see the area impact of these changes in Table 7.3 by comparing the vt-1x8 configuration to

the vsimd-1x8 configuration. The total area is within 3%, but this area is allocated across design

differently. The largest discrepancies are in the register file and control logic. The vector-SIMD

core has a larger register file, since it includes the vector flag register file. The VT core has more

control logic, since it includes the PVFB. These two structures (vector flag register file and the

PVFB) both help the corresponding cores manage irregular DLP, but they do so in very different

ways. Ultimately, the VT cores are able to provide more flexible handling of irregular DLP with a

similar total area as the single-lane vector-SIMD cores.

7.5 Energy and Performance Comparison for Regular DLP

Figures 7.5a–b show the energy and performance for the vvadd microbenchmark running on the

20 core configurations. Figure 7.5a shows the energy and performance normalized to the mimd-1x1

configuration, and Figure 7.5b shows the absolute energy breakdown for each configuration. The

vvadd microbenchmark running on the MIMD configurations has few critical execution latencies.

There is a two-cycle memory latency, one-cycle branch resolution latency, and no functional unit

latencies, since vvadd only performs single-cycle integer additions. As a consequence, there are

few execution latencies to hide, and increasing the number of MIMD microthreads results in no

performance improvement. Moving to eight threads (mimd-1x8) actually degrades performance

due to the non-trivial start-up overhead required to spawn and join the microthreads. The energy

increases significantly for larger MIMD cores, and Figure 7.5b shows that this is mostly due to

increased register file energy. Analysis of the energy per cycle results, reveal that the increase in

register energy is partially due to the larger register file required to support microthread contexts

but also due to the increased number of start-up instructions required to manage more microthreads.

These extra instructions also slightly increase the control and integer datapath energy per task.

147

For the vvadd microbenchmark, the vector-SIMD cores are able to achieve higher performance

at lower energy per task than the MIMD cores. Figure 7.5a shows that the vsimd-1x4 configuration

is 3× faster than the mimd-1x1 configuration, and consumes just 60% of the energy to execute the

same task. The vsimd-1x4 configuration is almost 3× larger, but area normalizing these results to

larger multithreaded MIMD cores results in an even larger margin of improvement. Instantiating

three mimd-1x1 cores would help improve throughput but would not reduce the energy per task.

Notice that the speedup is greater than what is implied by the vsimd-1x4 configuration’s ability

to execute two integer additions per cycle using the two vector functional units. This is because

the vsimd-1x4 configuration not only executes the fundamental addition operations faster but also

does less work by amortizing various overheads onto the control processor. Figure 7.5b shows the

effect of increasing the number of microthreads temporally. Moving from vsimd-1x1 (10 µTs) to

vsimd-1x8 (32 µTs) decreases the control processor energy because longer hardware vector lengths

enable greater amortization. At the same time the register file energy increases because the global

bitlines in the register file grow longer. In the larger configurations, the larger register file energy

outweighs the smaller control processor energy. Figure 7.5b also shows the effect of increasing

the number of microthreads spatially with multiple lanes. Moving from vsimd-1x1 (10 µTs) to

vsimd-4x1 (40 µTs) decreases the control processor energy via longer hardware vector lengths. In

addition, the multi-lane configuration is able to achieve better energy efficiency as compared to a

single-lane configuration with a similar number of microthreads, since structures such as the con-

trol logic and register file are banked across the lanes. Ultimately, increasing the number of lanes

improves performance and slightly reduces the energy per task. Multiple single-lane vector units

could potentially achieve similar throughput but without the slight reduction in energy per task. Fi-

nally, note that all of the vector-SIMD results show decreased performance when moving from few

microthreads per lane to many microthreads per lane (e.g., vsimd-2x1 to vsimd-2x8). This is due

to the longer cycle times in these larger designs. Figure 7.6a shows the energy and performance

assuming all configurations run at the same cycle time. Notice that the performance is then always

monotonically increasing with an increasing number of microthreads.

The SIMT results are for the SIMT implementation of the vvadd microbenchmark running on

the vt-1x* core configurations. Because the SIMT implementation does not use the control processor

to amortize control overheads nor to execute vector memory commands, the only energy-efficiency

gains are from the vector-like execution of the arithmetic operations. The results in Figure 7.5a

show that this is not enough to produce any significant energy-efficiency improvement. In fact,

the SIMT configurations perform much worse than the MIMD configurations due to the additional

work each microthread has to perform. Each microthread must check to see if its index is less than

the array size and also calculate its array index using an integer multiply operation. Although these

overheads make the SIMT pattern much less attractive, more realistic SIMT implementations would

include a multithreaded VIU to hide the branch resolution latency and dynamic memory coalescing

148

1 3 5 7 9 11

0.5

1

1.5

2

2.5

⊕

⊕
⊕ ⊕

⊕

⊕

Normalized Tasks / Second

(a) Energy vs Performance for vvadd

N
or

m
al

iz
ed

 E
ne

rg
y

/ T
as

k

 mimd−1x*
 vsimd−1x*
 vsimd−2x*
 vsimd−4x*
 simt−1x*
 vt−1x*

1 4 7 10 13 16

0.5

0.75

1

1.25

1.5

1.75

⊕

⊕
⊕ ⊕

⊕

⊕

Normalized Tasks / Second

(c) Energy vs Performance for cmult

N
or

m
al

iz
ed

 E
ne

rg
y

/ T
as

k

mimd vsimd vsimd vsimd vt
0

0.1

0.2

0.3

0.4

0.5

0.6

E
ne

rg
y

/ T
as

k
(n

J)

−1x* −1x* −2x* −4x* −1x*

(b) Energy Breakdown for vvadd

 CP
 Ctrl
 Mem Dpath
 FP Dpath
 Int Dpath
 Regfile
 Static

mimd vsimd vsimd vsimd vt
0

0.25

0.5

0.75

1

1.25

1.5

E
ne

rg
y

/ T
as

k
(n

J)

−1x* −1x* −2x* −4x* −1x*

(d) Energy Breakdown for cmult

Figure 7.5: Results Regular DLP Microbenchmarks – Results for the 20 configurations listed in Table 7.1
running the four implementations of the vvadd and cmult microbenchmarks listed in Table 7.2. The VT cores
are able to achieve similar energy-efficiency and performance as the vector-SIMD cores on regular DLP.
(Energy and performance calculated using the methodology described in Section 7.3. Results in (a) and (c)
normalized to the mimd-1x1 configuration. For each type of core, the *-*x1 configuration is circled in plots
(a) and (c), and the remaining three data-points correspond to the *-*x2, *-*x4, and *-*x8 configurations.
Each group of four bars in plots (b) and (d) correspond to the *-*x1, *-*x2, *-*x4, and *-*x8 configurations.
Energy breakdown for vector-SIMD and VT cores are for vector unit with all parts of the control processor
grouped together on top.)

149

1 3 5 7 9 11 13

0.5

1

1.5

2

2.5

⊕

⊕
⊕ ⊕

⊕

⊕

Normalized Tasks / Cycle

(a) vvadd

N
or

m
al

iz
ed

 E
ne

rg
y

/ T
as

k
 mimd−1x*
 vsimd−1x*
 vsimd−2x*
 vsimd−4x*
 simt−1x*
 vt−1x*

1 4 7 10 13 16 19

0.5

0.75

1

1.25

1.5

1.75

⊕

⊕
⊕ ⊕

⊕

⊕

Normalized Tasks / Cycle

(b) cmult
N

or
m

al
iz

ed
 E

ne
rg

y
/ T

as
k

Figure 7.6: Results for Regular DLP Microbenchmarks with Uniform Cycle Time – These plots are
similar to Figures 7.5a and 7.5c, except that the performance and energy assume all core configurations can
operate at the same cycle time. Notice that the performance almost always improves or stays constant with
increased physical register size.

to try and recoup some of the vector-like efficiencies from microthread loads and stores.

For regular DLP such as the vvadd microbenchmark, we expect the VT core to have similar

energy-efficiency and performance as compared to the single-lane vector-SIMD core. Figure 7.5a

confirms these expectations even though the VT core has to perform some additional work com-

pared to the vector-SIMD core. For example, the VT core must execute an extra vector fetch and

microthread stop instruction. Ultimately these overheads are outweighed by the vector-like efficien-

cies from executing vector memory instructions and vector-fetched scalar instructions. Figure 7.5b

shows a similar energy breakdown for both the vt-1x* and vsimd-1x* configurations. Note that the

SIMT and VT results are running on the exact same hardware, but the VT configurations achieve

much higher performance and lower energy per task. The only difference is that the VT imple-

mentation makes extensive use of the control thread to amortize various overheads, while the SIMT

configuration requires each microthread to redundantly execute many of these control operations.

Figures 7.5c–d show the energy and performance for the cmult microbenchmark. These results

are similar to those for the vvadd microbenchmark except for the floating-point arithmetic causing

increased floating-point-datapath energy and decreased integer-datapath energy. The MIMD con-

figurations are able to achieve some performance improvement as the multiple threads help hide the

floating-point execution latencies. The non-monotonic energy profile of the MIMD configurations

is caused by performance issues with how the microthreads are scheduled and the sharing of the

second register-file write port between the floating-point units and the load writeback. The vector-

150

SIMD and VT cores are able to once again achieve higher performance (3–16×) at reduced energy

per task (50–75%) compared to the mimd-1x1 configuration.

Overall, the results for both regular DLP microbenchmarks are very encouraging. The VT cores

are able to achieve vector-like energy-efficiencies on regular DLP even though the VT core uses a

very different VIU implementation. The multithreaded MIMD cores make less sense unless there

are significant execution latencies that can be hidden by interleaving multiple threads. The SIMT

configurations would require significantly more hardware support before they can be competitive

with the vector-SIMD and VT cores.

7.6 Energy and Performance Comparison for Irregular DLP

Figures 7.7a–b show the energy and performance for the mfilt microbenchmark running on the

20 core configurations. Figure 7.7a shows that additional microthreads improve the performance

of the MIMD cores slightly, mainly due to hiding the integer-division execution latency. Since the

MIMD pattern executes regular and irregular DLP identically, the energy breakdown results for the

MIMD configurations in Figure 7.7a are similar to those for the regular DLP microbenchmarks in

Figure 7.5. More microthreads require larger register files and increase start-up overheads, which

together increase the energy per task.

The vector-SIMD cores are less effective at executing irregular DLP. The very small vsimd-1x1

configuration actually has lower performance and 2.5× worse energy per task as compared to the

mimd-1x1 configuration. The vsimd-1x1 configuration only supports a hardware vector length of

two, and this is too short to achieve reasonable control amortization or to effectively hide the

integer-division execution latency. Larger vector-SIMD configurations are better able to improve

performance resulting in a 2× speedup for the vsimd-1x8 configuration and a 6× speedup for the

vsimd-4x8 configuration. Increasing the size of the physical register file per lane improves the en-

ergy efficiency through longer hardware vector lengths, which better amortizes the control processor

and vector control overheads. Eventually this is outweighed by a larger vector register file and more

wasted work due to a greater faction of inactive microthreads. Also notice that while increasing

the number of lanes does reduce the energy per task (vsimd-1x4 to vsimd-2x4 decreases energy by

≈20%), the marginal reduction from two to four lanes is much less. There is only so much control

overhead that can be amortized, and Figure 7.7b shows static energy starting to play a more signifi-

cant role in the larger designs. Ultimately, the vector-SIMD cores are able to improve performance

but not improve the energy efficiency as compared to the mimd-1x1 configuration. It should also be

reiterated that the vector-SIMD implementation of the mfilt microbenchmark required hand-coded

assembly.

As with the regular DLP microbenchmarks, the SIMT configurations are unable to improve

much beyond the MIMD cores. Again, this is caused by the increased number of scalar instructions

that each microthread must execute even in comparison to the MIMD implementations. The mfilt

151

1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

3.5

4

⊕

⊕

⊕
⊕⊕

Normalized Tasks / Second

(a) Energy vs Performance for mfilt

N
or

m
al

iz
ed

 E
ne

rg
y

/ T
as

k
 mimd−1x*
 vsimd−1x*
 vsimd−2x*
 vsimd−4x*
 simt−1x*
 vt−1x*

1 2 3 4 5 6 7

1

1.5

2

2.5

3

⊕

⊕

⊕
⊕

⊕

Normalized Tasks / Second

(c) Energy vs Performance for bsearch

N
or

m
al

iz
ed

 E
ne

rg
y

/ T
as

k

mimd vsimd vsimd vsimd vt
0

0.2

0.4

0.6

0.8

1

E
ne

rg
y

/ T
as

k
(n

J)

−1x* −1x* −2x* −4x* −1x*

(b) Energy Breakdown for mfilt

mimd vsimd vsimd vsimd vt
0

1

2

3

4

5

6

7

8
E

ne
rg

y
/ T

as
k

(n
J)

−1x* −1x* −2x* −4x* −1x*

(d) Energy Breakdown for bsearch

Figure 7.7: Results for Irregular DLP Microbenchmarks – Results for the 20 configurations listed in
Table 7.1 running the four implementations of the mfilt and bsearch microbenchmarks listed in Table 7.2.
The VT core is sometimes better and sometimes worse than the vector-SIMD core on irregular DLP. Future
enhancements include vector fragment merging, interleaving, and compression are likely to improve both the
performance and energy efficient of the VT core on irregular DLP. (Energy and performance calculated using
the methodology described in Section 7.3. The bsearch benchmark for the SIMT and VT cores uses explicit
conditional moves and corresponds to the simt-cmv and vt-cmv entries in Table 7.2. Results in (a) and (c)
normalized to the mimd-1x1 configuration. For each type of core, the *-*x1 configuration is circled in plots
(a) and (c), and the remaining three data-points correspond to the *-*x2, *-*x4, and *-*x8 configurations.
See Figure 7.5b for the legend associated with plots (b) and (d). Each group of four bars in plots (b) and (d)
correspond to the *-*x1, *-*x2, *-*x4, and *-*x8 configurations. Energy breakdown for vector-SIMD and
VT cores are for vector unit with all parts of the control processor grouped together on top.)

152

microbenchmark is, however, straight-forward to implement using the SIMT pattern owing to the

flexible programmer’s model, especially when compared to the hand-coded assembly required for

the vector-SIMD implementation.

The VT configurations are able to do much better than the SIMT configurations, yet they main-

tain the MIMD pattern’s simple programming model. The primary energy-efficiency advantage

of the VT versus SIMT configurations comes from using the control thread to read the kernel co-

efficients with shared loads, amortize the shared computation when calculating the normalization

divisor, read the image pixels with unit-stride vector loads, and manage the pointer updates. To help

better understand the mfilt microbenchmark’s execution on the VT core, Figure 7.8a shows what

fraction of the vector fragment micro-ops are active for all four VT configurations. More physi-

cal registers enable longer hardware vector lengths, but this also gives greater opportunity for the

longer fragments to diverge. For example, approximately 8% of all fragment micro-ops have less

than the maximum number of active microthreads in the vt-1x1 configuration, but in the vt-1x8 con-

figuration this increases to 70%. A critical feature of the Maven VT microarchitecture is that the

energy efficiency for these diverged fragments is still roughly proportional to the number of active

microthreads. As Figure 7.7a shows, this allows the energy per task to decrease with increasing

hardware vector lengths even though the amount of divergence increases. The VT core is actually

able to do better than the vector-SIMD cores because of a key feature of the VT pattern. Since

data-dependent control flow is expressed as vector-fetched scalar branches, the VT core’s VIU can

completely skip the convolution computation when all microthreads determine that their respective

pixels are under mask. This happens 50% of the time in the vt-1x8 configuration for the dataset

used in this evaluation. This is in contrast to the vector-SIMD implementation, which must pro-

cess vector instructions executing under a flag register even if all bits in the flag register are zero.

Vector-SIMD cores can skip doing any work when the flag register is all zeros, but they must at

least process these instructions. Thus, the VT configurations are able to execute at slightly higher

performance and up to 30% less energy than their single-lane vector-SIMD counterparts. This also

allows the Maven VT core to achieve a 2× speedup at equivalent energy per task as compared to

the mimd-1x1 configuration.

The current Maven VT core does not include support for vector fragment merging, interleaving,

or compression. In the mfilt microbenchmark, there is only a single microthread branch, so vector

fragment interleaving is unlikely to provide much benefit. The microthreads naturally reconverge

after each iteration of the stripmine loop. Vector fragment merging can provide a very slight benefit

as there are two common microthread instructions at the target of the microthread branch. Vec-

tor fragment compression could improve performance and energy efficiency, especially on those

fragment micro-ops with few active microthreads per fragment.

The bsearch microbenchmark is the most irregular of the four microbenchmarks studied in

this thesis. Figures 7.7c–d show that the MIMD configurations perform similar as in the other

153

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Max Number of
Microthreads per
Fragment

vt
−

1x
1

F
ra

ct
io

n
of

 F
ra

gm
en

ts

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

vt
−

1x
2

F
ra

ct
io

n
of

 F
ra

gm
en

ts

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

vt
−

1x
4

F
ra

ct
io

n
of

 F
ra

gm
en

ts

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

vt
−

1x
8

F
ra

ct
io

n
of

 F
ra

gm
en

ts

Number of Active
Microthreads in Fragment

1 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Number of Active
Microthreads in Fragment

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of Active
Microthreads in Fragment

(a) mfilt (b) bsearch-cmv (c) bsearch

Figure 7.8: Divergence in Irregular DLP Microbenchmarks – Normalized histograms showing what frac-
tion of vector fragment micro-ops have the given number of active microthreads. Increasing the hardware vec-
tor length leads to more possibilities for divergence in both the mfilt and bsearch microbenchmarks. Without
explicit conditional moves, most of the fragment micro-ops in the bsearch microbenchmark are completely
diverged with a single active microthread in each fragment. (Maximum number of microthreads per fragment
(i.e., the hardware vector length) shown with vertical line.)

154

microbenchmarks. This is to be expected since the MIMD cores execute both regular and irregular

DLP in the same way. As in the mfilt microbenchmark, the vector-SIMD configurations are able to

improve performance, but there is not enough regularity in the microbenchmark to reduce the energy

per task below the mimd-1x1 configuration. As in the other microbenchmarks, the microthreads in

the SIMT configurations must execute too many additional instructions to achieve any improvement

in performance or energy-efficiency.

The results for the VT core in Figures 7.7c–d correspond to the vt-cmv row in Table 7.2. This

implementation includes explicitly inserted conditional move operations to force the compiler to

generate vector-fetched conditional move instructions as opposed to vector-fetched scalar branches.

There is one remaining backward branch that implements the inner while loop. Given this opti-

mization. the VT core has slightly worse performance and requires ≈15% more energy per task as

compared to the single-lane vector-SIMD cores. Unlike the mfilt microbenchmark, there are less

opportunities to skip over large amounts of computation. The fragment can finish early if all mi-

crothreads in the fragment find their search key before reaching the maximum number of look-ups.

Unfortunately, this happens rarely, especially in the larger configurations with the longer hardware

vector lengths. The energy overhead then, is somewhat due to the VIU’s management of diver-

gent fragments as microthreads gradually find their search key and drop out of the computation.

Figure 7.7d clearly shows a significant increase in the control energy for the VT configurations as

compared to the vector-SIMD configurations. Some of this energy is also due to the VIU’s need

to fetch and decode vector-fetched scalar instructions, which is handled by the control-processor

in the vector-SIMD configurations. The VT configurations are limited to the MIPS32 conditional

move instruction for expressing conditional execution, while the vector-SIMD configurations use

a more sophisticated vector flag mechanism. These vector flags allow the vector-SIMD configu-

rations to more compactly express the conditional execution, which also accounts for some of the

performance discrepancy. Even though this is an irregular DLP microbenchmark, comparing vt-1x1

to vt-1x8 in Figure 7.7d shows that the VT cores are still able to amortize control processor and

control overheads with increasing hardware vector lengths. In the largest configuration, the energy

overhead of the larger vector register file outweighs the decrease due to better amortization.

Figure 7.8b shows the divergence for all four VT configurations. As with the mfilt microbench-

mark, increasing the number of physical registers leads to longer hardware vector lengths, but also

causes additional divergence. In the vt-1x8 configuration, about 50% of the fragment micro-ops stay

coherent before microthreads begin to find their respective keys and exit their while loops. Contrast

these results to those shown in Figure 7.8c, which correspond to the bsearch microbenchmark with-

out the explicit conditional moves. In this implementation the compiler generates many conditional

branches (and only one conditional move), and as a result the fragment micro-ops quickly diverge.

For this implementation running on the vt-1x8 configuration, over 70% of the fragment micro-ops

contain only a single microthread. Figure 7.9 shows how this additional divergence impacts the

155

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

2

4

6

8

10

12

14

16

⊕
⊕

⊕
⊕

N
or

m
al

iz
ed

 E
ne

rg
y

/ T
as

k

Normalized Tasks / Second

simt−1x* w/ cmv
simt−1x* w/o cmv
vt−1x* w/ cmv
vt−1x* w/o cmv

Figure 7.9: Results for bsearch Microbenchmark without Explicit Conditional Moves – Without explic-
itly inserted conditional moves, the compiler generates many data-dependent conditional branches. Unfor-
tunately, the current Maven microarchitecture is unable to efficiently handle this number of branches with
so few instructions on either side of the branch. Future Maven implementations can use vector fragment
merging, interleaving, and compression to improve the efficiency of such highly-irregular DLP. (Energy and
performance calculated using the methodology described in Section 7.3. The w/ cmv implementations cor-
respond to the bsearch/simt-cmv and bsearch/vt-cmv rows in Table 7.2, while the w/o cmv implementations
correspond to the bsearch/simt and bsearch/vt rows in Table 7.2. Results normalized to the mimd-1x1 con-
figuration. For each type of core, the *-*x1 configuration is circled and the remaining three data-points
correspond to the *-*x2, *-*x4, and *-*x8 configurations.)

performance and energy on the SIMT and VT configurations. Increasing the number of physi-

cal registers actually causes the performance and energy to worsen considerably. In this example,

longer hardware lengths simply lead to more inactive microthreads per fragment.

Overall, the results for irregular DLP are a promising first step towards a Maven VT core that

can efficiently handle all kinds of irregular DLP. The results for the mfilt microbenchmark illustrate

the advantage of completely skipping large amounts of computation through vector-fetched scalar

branches. The results for the bsearch microbenchmark are not as compelling, but do raise some

interesting opportunities for improvement. Conditional move instructions can help mitigate some

of the overheads associated with vector-fetched scalar branches, and it should be possible to modify

the compiler to more aggressively use this type of conditional execution. It should also be possible

to use the microarchitectural techniques introduced in Chapter 5, such as vector fragment merging,

interleaving, and compression, to improve the performance and energy efficiency of the bsearch

microbenchmark specifically and irregular DLP more generally. One of the strengths, however, is

the simple programming methodology that allows mapping irregular DLP to the Maven VT core

without resorting to hand-coded assembly.

156

7.7 Computer Graphics Case Study

As a first step towards evaluating larger applications running on a Maven VT core, we have

started mapping a computer graphics application using the Maven programming methodology. Fig-

ure 7.10 illustrates the four kernels that together form this application: the cg-physics kernel per-

forms a simple Newtonian physics simulation with object collision detection; the cg-vertex kernel

handles vertex transformation and lighting; the cg-sort kernel sorts the triangles based on where

they appear in the frame buffer; and the cg-raster kernel rasterizes the triangles to the final frame

buffer. The rendering pipeline is an example of a sort-middle parallel rendering algorithm where

both the cg-vertex and cg-raster kernels are completely data-parallel, and the global communica-

tion during the cg-sort kernel reorganizes the triangles [MCEF94]. Table 7.4 shows the instruction

mix for each kernel. The kernels include a diverse set of data-dependent application vector lengths

ranging from ten to hundreds. Although some tuning is still possible, all kernels currently use the

full complement of 32 registers per microthread. All four kernels were written from scratch and

include a scalar, multithreaded MIMD, and VT implementation. The application requires a total of

approximately 5,000 lines of C++ code.

The cg-physics kernel includes four phases per time step. In the first phase, the control thread

creates an octree to efficiently group objects into cells that are close in space. Octree creation

accounts for only a small portion of the kernel’s run-time, but it may be possible to parallelize

this phase in the future. The second phase determines which objects intersect. Each microthread

is responsible for comparing one object to all other objects in the same octree cell. The objects

are read using microthread loads, since the octree only stores pointers to objects as opposed to

the objects themselves (making octree formation much faster). The microthreads perform several

data-dependent conditionals to determine if the two objects under consideration collide. The second

(a) cg-physics (b) cg-vertex (c) cg-sort (d) cg-raster

Figure 7.10: Computer Graphics Case Study – The case study is comprised of four application kernels:
(a) the cg-physics kernel performs a simple Newtonian physics simulation with collisions on a scene of rigid
bodies each made up of many triangles, (b) the cg-vertex kernel transforms the resulting triangles into camera
coordinates, projects the triangles into the 2D screen coordinates, and updates each vertex with lighting
information, (c) the cg-sort kernel uses a radix sort to organize the triangles based on which rows in the
frame buffer they cover, and (d) the cg-raster kernel rasterizes the triangles into the final frame buffer. Final
image is an example of the actual output from the computer graphics application.

157

Control Thread Microthread

Name lw.v sw.v lwst.v swst.v mov.sv vf int fp ld st amo br j cmv tot

cg-physics 6 1 12 9 15 4 5 56 24 4 0 16 0 0 132
cg-vertex 0 16 42 25 76 12 0 206 0 0 0 0 0 7 255
cg-sort 5 4 2 0 7 3 16 0 2 3 1 0 0 0 27
cg-raster 2 0 13 0 4 4 155 3 37 26 6 69 14 24 482

Table 7.4: Instruction Mix for Computer Graphics Kernels – Number of instructions for each application
kernel are listed by type. The cg-vertex and cg-sort kernels have mostly regular data access and control
flow, although cg-vertex includes conditional move instructions and cg-sort includes microthread load/stores
and atomic memory operations. The cg-physics and cg-raster kernels have much more irregular data access
and control flow. Note that the instruction counts for the cg-raster kernel reflect compiler loop unrolling by
a factor of six. (lw.v/sw.v = unit-stride load/store, lwst.v/swst.v = strided load/store, mov.sv = copy scalar
to all elements of vector register, vf = vector fetch, int = simple short-latency integer, fp = floating-point,
ld/st = load/store, amo = atomic-memory operation, br = conditional branch, j = unconditional jump, cmv =
conditional move)

phase is actually split into two vector-fetched blocks to allow vector memory accesses to interleave

and better block the computation into vector registers. A conditional control-flow state variable is

required to link the control flow in the vector-fetched blocks together. This phase can potentially

experience significant divergence, since different microthreads will exit the vector-fetched blocks at

different times based on different collision conditions. The third phase iterates over just the colliding

objects and computes the new motion variables. Each microthread is responsible for one object and

iterates over the list of objects it collides with using an inner for loop. The microthreads must

again access the objects through microthread loads, since the collision lists are stored as pointers

to objects. This phase will probably experience little divergence, since the number of objects that

collide together in the same time step is usually just two or three. The final phase iterates over all

objects in the scene and updates the location of each object based on that object’s current motion

variables. The cg-physics is a good example of irregular DLP. Table 7.4 shows that it includes a

large number of microthread loads/stores (28) and conditional branches (16). Figure 7.11a shows

the amount of divergence in this kernel when simulating a scene with 1000 small pyramids moving

in random directions. Approximately 75% of the fragment micro-ops experience some amount of

divergence, and 22% of the instructions are executed with only one microthread active per fragment.

Although this kernel exhibits irregular DLP, it would still be simple to extend this implementation

to multiple cores. Multiple cores might, however, increase the need to parallelize octree creation in

the first phase. For the remaining phases, each core would work on a subset of the objects.

The cg-vertex kernel iterates over all triangles in the scene applying coordinate transformations

and updating lighting parameters. Each microthread works on a specific triangle by first transform-

ing the three vertices into camera coordinates, then applying light sources to each vertex via flat

shading, and finally projecting the vertices into quantized screen coordinates. This kernel includes

a few small data-dependent conditionals that are mapped to conditional move instructions by the

158

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30
Pe

rc
en

t D
yn

am
ic

 I
ns

tr
uc

tio
ns

Number of Active Microthreads
1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

Pe
rc

en
t D

yn
am

ic
 I

ns
tr

uc
tio

ns

Number of Active Microthreads

(a) cg-physics (b) cg-raster

Figure 7.11: Divergence in Computer Graphics Kernels – Normalized histograms showing what fraction
of vector fragment micro-ops have the given number of active microthreads. Both irregular DLP kernels
have a significant amount of divergence. Statistics for the cg-physics kernel processing a scene with 1000
small pyramids moving in random directions, and for the cg-raster kernel processing a scene of the space
shuttle with 393 triangles and an image size of 1000×1000 pixels. Measurements assume a vt-1x8 core
configuration.

compiler. Otherwise, this kernel is a good example of regular DLP. Table 7.4 shows that it includes

a large number of vector load/store instructions (83) and shared loads via the mov.sv instruction

(76). Notice that this kernel uses 12 vector fetch instructions, even though it is parallelized by sim-

ply stripmining over all triangles. The large number of vector-fetched blocks are used to interleave

vector load/store instructions amongst the microthread computation. This enables better use of the

vector registers and prevents unnecessary microthread register spilling. It would be straight-forward

to extend this kernel to multiple cores by simply having each core work on a subset of the triangle

array.

The cg-sort kernel takes as input an array of triangles and a key for sorting. In this application,

the key is the maximum y-coordinate across all vertices in a triangle. The maximum y-coordinate

is computed in the previous kernel using the conditional move instructions. The kernel uses a radix

sort to organize the triangles based on this key (i.e., from top to bottom in the frame buffer). The

radix sort has three phases each with a different vector-fetched block. In the first phase, the kernel

creates a histogram of the frequency of each digit in the key using atomic memory operations. In

the second phase, the kernel calculates offsets into the final output array based on these histograms.

In the final phase, the kernel writes the input data into the appropriate location based on these

offsets. Vector memory fences are required between each phase to properly coordinate the cross-

microthread communication. This algorithm is similar in spirit to previous approaches for vector-

SIMD processors [ZB91]. One difference is the use of atomic memory operations to update the

radix histograms. Table 7.4 shows that this is a mostly regular DLP kernel with a small number

159

of microthread loads and stores. Mapping this kernel to multiple cores is still possible, but more

challenging, owing to the cross-microthread communication.

The cg-raster kernel takes as input the sorted array of triangles and rasterizes them to the frame

buffer. The kernel includes two phases. In the first phase, the kernel stripmines over the sorted

array of triangles, and each microthread creates a set of scanline chunks for its triangle. The chunk

corresponds to the portion of a triangle that overlaps with a given scanline. The chunk contains a

start and stop x-coordinate, as well as metadata for each coordinate interpolated from the metadata

associated with each triangle vertex. The chunks are stored per scanline using atomic memory

operations. In the second phase, the kernel stripmines over the scanlines, and each microthread

processes all chunks related to its scanline. The corresponding vector-fetched block has a for loop

that allows each microthread to iterate across all pixels in its respective chunk. This can cause

divergence when chunks are not the same length. Microthreads manage a z-buffer for overlapping

triangles. Since microthreads are always working on different scanlines, they never modify the same

region of the frame buffer at the same time. This kernel is another good example of irregular DLP.

Table 7.4 shows that it requires many microthread load/stores, conditional/unconditional branches,

and conditional moves. Note that these instruction counts reflect compiler loop unrolling in the

microthread code by a factor of six. Figure 7.11b shows the amount of divergence in this kernel

when rasterizing a space shuttle scene with 393 triangles and an image size of 1000×1000 pixels.

Over 80% of the fragment micro-ops experience some amount of divergence. This is mostly due to

the backward branch implementing the for loop in the second phase. Chunk lengths vary widely

and the corresponding fragments often diverge as some microthreads continue to work on longer

chunks. Mapping this kernel to multiple cores involves giving each core a set of triangles that map

to a region of consecutive scanlines. This is straight-forward, since the triangles have been sorted in

the previous kernel. Triangles that overlap more than one region will be redundantly processed by

multiple cores.

Overall, this study demonstrates that larger applications will exhibit a diverse mix of regular

and irregular DLP, and those loops with irregular DLP will experience a range of microthread di-

vergence. This helps motivate our interest in data-parallel accelerators that can efficiently execute

many different types of DLP.

160

Chapter 8

Conclusion

Architects are turning to data-parallel accelerators to improve the performance of emerging data-

parallel applications. These accelerators must be flexible enough to handle a diverse range of both

regular and irregular data-level parallelism, but they must also be area- and energy-efficient to meet

increasingly strict design constraints. Power and energy are particularly important as data-parallel

accelerators are now deployed across the computing spectrum, from the smallest handheld to the

largest data-center. This thesis has explored a new approach to building data-parallel accelerators

that is based on simplifying the instruction set, microarchitecture, and programming methodology

for a vector-thread architecture.

8.1 Thesis Summary and Contributions
This thesis began by categorizing regular and irregular data-level parallelism (DLP), before in-

troducing the following five architectural design patterns for data-parallel accelerators: the multiple-

instruction multiple-data (MIMD) pattern, the vector single-instruction multiple-data (vector-SIMD)

pattern, the subword single-instruction multiple-data (subword-SIMD) pattern, the single-instruction

multiple-thread (SIMT) pattern, and the vector-thread (VT) pattern. I provided a qualitative argu-

ment for why our recently proposed VT pattern can combine the energy efficiency of SIMD accel-

erators with the flexibility of MIMD accelerators.

The rest of this thesis introduced several general techniques for building simplified instances of

the VT pattern suitable for use in future data-parallel accelerators. We have begun implementing

these ideas in the Maven accelerator, which uses a malleable array of vector-thread engines to

flexibly and efficiently execute data-parallel applications. These ideas form the key contribution

of the thesis. I have outlined them and our experiences using them in the Maven accelerator below.

• Unified VT Instruction Set Architecture – This thesis discussed the advantages and disad-

vantages of unifying the VT control-thread and microthread scalar instruction sets. The hope

was that a unified VT instruction set would simplify the microarchitecture and programming

161

methodology, and we found this to be particularly true with respect to rapidly implementing a

high-quality Maven compiler for both types of thread. In addition, a unified VT instruction set

offers interesting opportunities for sharing between the control thread and microthread both in

terms of implementation (e.g., refactored control logic and control processor embedding) and

software (e.g., common functions called from either type of thread). I suggest that future VT

accelerators begin with such a unified VT instruction set and only specialize when absolutely

necessary.

• Single-Lane VT Microarchitecture Based on the Vector-SIMD Pattern – This thesis de-

scribed a new single-lane VT microarchitecture based on minimal changes to a traditional

vector-SIMD implementation. Our experiences building the Maven VT core have anecdotally

shown that implementing a single-lane VTU is indeed simpler than a multi-lane VTU, and that

basing our design on a vector-SIMD implementation helped crystallize the exact changes that

enable VT capabilities. This thesis introduced vector fragments as a way to more flexibly ex-

ecute regular and irregular DLP in a vector-SIMD based VT microarchitecture. I explained

how control processor embedding can mitigate the area overhead of single-lane cores, and I

introduced three new techniques that manipulate vector fragments to more efficiently execute

irregular DLP. Vector fragment merging can automatically force microthreads to reconverge.

Vector fragment interleaving can hide execution latencies (especially the vector-fetched scalar

branch resolution latency) by switching between independent fragments. Vector fragment com-

pression can avoid the overhead associated with a fragment’s inactive microthreads. I suggest

that future VT accelerators take a similar approach, although there is still significant work to be

done fully evaluating the proposed vector fragment mechanisms.

• Explicitly Data-Parallel VT Programming Methodology – This thesis presented a new VT

programming methodology that combines a slightly modified C++ scalar compiler with a care-

fully written support library. Our experiences writing applications for Maven, particularly the

computer graphics case study discussed in this thesis, have convinced us that an explicitly data-

parallel framework is a compelling approach for programming future VT accelerators. Our

experiences actually implementing the Maven programming methodology have also verified

that, while not trivial, this approach is far simpler to develop than a similarly featured auto-

matic vectorizing compiler. There is, of course, still room for improvement. I suggest that the

methodology discussed in this thesis be used as a interim solution, possibly being replaced by

a modified version of a more standard data-parallel framework such as OpenCL.

To evaluate these ideas we implemented a simplified Maven VT core using a semi-custom ASIC

methodology in a TSMC 65 nm process. We have been able extend the Maven instruction set, mi-

croarchitecture, and programming methodology to reasonably emulate the MIMD, vector-SIMD,

and SIMT design patterns. I evaluated these various core designs in terms of their area, perfor-

162

mance, and energy. The Maven VT core has similar area as compared to a single-lane vector-SIMD

core, and uses control processor embedding to limit the area overhead of including a control pro-

cessor per lane. To evaluate the performance and energy of a Maven VT core, I used four compiled

microbenchmarks that capture some of the key features of regular and irregular DLP. My results

illustrated that a Maven VT core is able to achieve similar performance and energy efficiency as a

vector-SIMD core on regular DLP. I also explained how for some forms of irregular DLP, a Maven

VT core is able to achieve lower energy per task compared to a vector-SIMD core by completely

skipping large portions of work. My results for more irregular DLP with many conditional branches

were less compelling, but the vector fragment mechanisms presented in this thesis offer one possible

way to improve the performance and energy efficiency on such codes. It is important to note, that

although the vector-SIMD core performed better than the Maven VT core on the highly irregular

DLP, this required careful work writing hand-coded assembly for the vector-SIMD core. Maven’s

explicitly data-parallel programming methodology made writing software with both regular and ir-

regular DLP relatively straight-forward. Both the VT and vector-SIMD cores perform better than

the MIMD and SIMT design, with a few small exceptions. This work is the first detailed quantitative

comparison of the VT pattern to other design patterns for data-parallel accelerators. These results

provide promising evidence that future data-parallel accelerators based on simplified VT architec-

tures will be able to combine the energy efficiency of vector-SIMD accelerators with the flexibility

of MIMD accelerators.

8.2 Future Work

This thesis serves as a good starting point for future work on VT-based data-parallel accelerators.

Sections 4.7, 5.8, and 6.6 discussed specific directions for future work with respect to the instruction

set, microarchitecture, and programming methodology. More general thoughts on future work are

briefly outlined below.

• Improving Execution of Irregular DLP – One of the key observations of this thesis is that

the vector fragment mechanism alone is not sufficient for efficient execution of highly irregu-

lar DLP. This thesis has introduced vector fragment merging, interleaving, and compression as

techniques that can potentially improve the performance and energy efficiency on such codes.

The next step would be to implement these techniques and measure their impact for our mi-

crobenchmarks using our evaluation methodology. In addition, small slices of the computer

graphics case study could be used to help further evaluate the effectiveness of these techniques.

Eventually, a higher-level and faster model will be required to work with even larger Maven

applications.

• Maven Quad-Core Tile – This thesis has focused on a single data-parallel core, but there

are many interesting design issues with respect to how these cores are integrated together. In

163

Section 5.6, I briefly described how four Maven VT cores could be combined into a quad-core

tile. The next step would be to implement area-normalized tiles for each of the design patterns.

This would probably include a MIMD tile with eight cores, a vector-SIMD tile with one four-

lane core, a vector-SIMD tile with four single-lane cores, and a VT tile with four single-lane

cores. This would also enable more realistic modeling of the intra-tile memory system, without

needing a detailed model for the inter-tile memory system. A tile might also make a reasonably

sized module for including in a fabricated test chip.

• Full Maven Data-Parallel Accelerator – Finally, these quad-core tiles can be integrated into

a model of a full data-parallel accelerator. Detailed RTL design of such an accelerator will be

difficult, but higher-level models of each tile might enable reasonable research into the acceler-

ator’s full memory system and on-chip network.

164

Bibliography

[ABC+06] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Patterson,
W. Plishker, J. Shalf, S. Williams, and K. Yelick. The Landscape of Parallel Computing Re-
search: A View from Berkeley. Technical report, EECS Department, University of California,
Berkeley, Dec 2006.

[amd08] Fusion: Industry-Changing Impact of Accelerated Computing. AMD White Paper, 2008.
http://sites.amd.com/us/documents/amd_fusion_whitepaper.pdf

[arm09] The ARM Cortex-A9 Processors. ARM White Paper, 2009.
http://www.arm.com/pdfs/armcortexa-9processors.pdf

[Asa96] K. Asanović. Torrent Architecture Manual. Technical report, EECS Department, University of
California, Berkeley, Dec 1996.

[Asa98] K. Asanović. Vector Microprocessors. Ph.D. Thesis, EECS Department, University of Califor-
nia, Berkeley, 1998.

[ati06] ATI CTM Guide. AMD/ATI Techincal Reference Manual, 2006.
http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf

[ati09] R700-Family Instruction Set Architecture. AMD/ATI Techincal Reference Manual, 2009.
http://developer.amd.com/gpu_assets/R700-family_instruction_set_
architecture.pdf

[BAA08] C. Batten, H. Aoki, and K. Asanović. The Case for Malleable Stream Architectures. Workshop
on Streaming Systems (WSS), Nov 2008.

[BEA+08] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L. Bao,
J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fair-
banks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. TILE64 Processor: A 64-Core SoC
with Mesh Interconnect. Int’l Solid-State Circuits Conf. (ISSCC), Feb 2008.

[BFH+04] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. Brook
for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on Graphics (TOG),
23(3):777–786, Aug 2004.

[BGS94] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler Transformations for High-Performance
Computing. ACM Computing Surveys, 26(4):345–420, Dec 1994.

[BKGA04] C. Batten, R. Krashinsky, S. Gerding, and K. Asanović. Cache Refill/Access Decoupling for
Vector Machines. Int’l Symp. on Microarchitecture (MICRO), Dec 2004.

[Ble96] G. E. Blelloch. Programming Parallel Algorithms. Communications of the ACM (CACM),
39(3):85–97, Mar 1996.

165

http://sites.amd.com/us/documents/amd_fusion_whitepaper.pdf
http://www.arm.com/pdfs/armcortexa-9processors.pdf
http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf
http://developer.amd.com/gpu_assets/R700-family_instruction_set_architecture.pdf
http://developer.amd.com/gpu_assets/R700-family_instruction_set_architecture.pdf

[CC06] B. H. Calhoun and A. Chandrakasan. Ultra-Dynamic Voltage Scaling Using Sub-Threshold Op-
eration and Local Voltage Dithering. IEEE Journal of Solid-State Circuits (JSSC), 41(1):238–
245, Jan 2006.

[CCE+09] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer, and M. Trem-
blay. Rock: A High-Performance Sparc CMT Processor. IEEE Micro, 29(2):6–16, Mar/Apr
2009.

[CCL+98] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, , and W. D. Weathersby. The
Case for High-Level Parallel Programming in ZPL. IEEE Computational Science and Engi-
neering, 5(3):76–86, Jul 1998.

[cle06] CSX Processor Architecture. ClearSpeed White Paper, 2006.
http://www.clearspeed.com/docs/resources/ClearSpeed_CSX_White_Paper.pdf

[DL95] D. DeVries and C. G. Lee. A Vectorizing SUIF Compiler. SUIF Compiler Workshop, Jan 1995.

[dLJ06] P. de Langen and B. Juurlink. Leakage-Aware Multiprocessor Scheduling for Low Power. Int’l
Parallel and Distributed Processing Symp. (IPDPS), Apr 2006.

[DM06] J. Donald and M. Martonosi. Techniques for Multicore Thermal Management: Classification
and New Exploration. Int’l Symp. on Computer Architecture (ISCA), Jun 2006.

[DPT03] A. Duller, G. Panesar, and D. Towner. Parallel Processing - The PicoChip Way! Communicating
Process Architectures, pages 125–138, Sep 2003.

[DSC+07] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza, S. Meyers,
E. Fang, and R. Kumar. An Integrated Quad-Core Opteron Processor. Int’l Solid-State Circuits
Conf. (ISSCC), Feb 2007.

[DVWW05] T. Dunigan, J. Vetter, J. White, and P. Worley. Performance Evaluation of the Cray X1 Dis-
tributed Shared-Memory Architecture. IEEE Micro, 25(1):30–40, Jan/Feb 2005.

[EAE+02] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Hernandez, T. Juan,
G. Lowney, M. Mattina, and A. Seznec. Tarantula: A Vector Extension to the Alpha Archi-
tecture. Int’l Symp. on Computer Architecture (ISCA), Jun 2002.

[Eat05] W. Eatherton. Keynote Address: The Push of Network Processing to the Top of the Pyramid.
Symp. on Architectures for Networking and Communications Systems (ANCS), Oct 2005.

[ERPR95] J. Edmondson, P. Rubinfeld, R. Preston, and V. Rajagopalan. Superscalar Instruction Execution
in the 21164 Alpha Microprocessor. IEEE Micro, 15:33–43, Apr 1995.

[EV96] R. Espasa and M. Valero. Decoupled Vector Architectures. Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb 1996.

[EV97] R. Espasa and M. Valero. Multithreaded Vector Architectures. Int’l Symp. on Supercomputing
(ICS), Jul 1997.

[EVS97] R. Espasa, M. Valero, and J. E. Smith. Out-of-Order Vector Architectures. Int’l Symp. on
Microarchitecture (MICRO), Dec 1997.

[EVS98] R. Espasa, M. Valero, and J. E. Smith. Vector Architectures: Past, Present, and Future. Int’l
Symp. on Supercomputing (ICS), Jul 1998.

[FS00] A. Forestier and M. R. Stan. Limits to Voltage Scaling from the Low-Power Perspective. Symp.
on Integrated Circuits and Systems Design (ICSD), Sep 2000.

[FSYA09] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic Warp Formation: Efficient MIMD
Control Flow on SIMD Graphics Hardware. ACM Transactions on Architecture and Code
Optimization (TACO), 6(2):1–35, Jun 2009.

166

http://www.clearspeed.com/docs/resources/ClearSpeed_CSX_White_Paper.pdf

[GC97] V. Gutnik and A. P. Chandrakasan. Embedded Power Supply for Low-Power DSP. IEEE Trans.
on Very Large scale Integration Systems (TVLSI), 5(4):425–435, Dec 1997.

[GGH97] R. Gonzalez, B. M. Gordon, and M. A. Horowitz. Supply and Threshold Voltage Scaling for
Low-Power CMOS. IEEE Journal of Solid-State Circuits (JSSC), 32(8):1210–1216, Aug 1997.

[GHF+06] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Yamazaki. Synergistic
Processing in Cell’s Multicore Architecture. IEEE Micro, 26(2):10–24, Mar 2006.

[gnu10] GCC, The GNU Compiler Collection. Online Webpage, 2010 (accessed January 10, 2010).
http://gcc.gnu.org

[GTA06] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting Coarse-Grained Task, Data, and
Pipeline Parallelism in Stream Programs. Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Oct 2006.

[HA08] M. Hampton and K. Asanović. Compiling for Vector-Thread Architectures. Int’l Symp. on
Code Generation and Optimization (CGO), Apr 2008.

[HBK06] J. Held, J. Bautista, and S. Koehl. From a Few Cores to Many: A Tera-scale Computing
Research Overview. Intel White Paper, 2006.
http://download.intel.com/research/platform/terascale/terascale_
overview_paper.pdf

[HP07] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, 4th edition, 2007.

[HSU+01] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The Microar-
chitecture of the Pentium 4 Processor. Intel Technology Journal, 5(1), Feb 2001.

[int04] Intel IXP2800 Network Processor. Intel Product Brief, 2004.
http://download.intel.com/design/network/prodbrf/27905403.pdf

[int09] Intel Single-chip Cloud Computer. Online Webpage, 2009 (accessed Dec 4, 2009).
http://techresearch.intel.com/articles/tera-scale/1826.htm

[JBW89] N. P. Jouppi, J. Bertoni, and D. W. Wall. A Unified Vector/Scalar Floating-Point Architec-
ture. Int’l Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Apr 1989.

[Jes01] C. Jesshope. Implementing an Efficient Vector Instruction Set in a Chip Multiprocessor Using
Micro-Threaded Pipelines. Australia Computer Science Communications, 23(4):80–88, 2001.

[Kal09] R. Kalla. POWER7: IBM’s Next Generation POWER Microprocessor. Symp. on High Perfor-
mance Chips (Hot Chips), Aug 2009.

[Kan87] G. Kane. MIPS R2000 RISC Architecture. Prentice Hall, 1987.

[KAO05] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Multithreaded Sparc Proces-
sor. IEEE Micro, 25:21–29, Mar/Apr 2005.

[KBA08] R. Krashinsky, C. Batten, and K. Asanović. Implementing the Scale Vector-Thread Processor.
ACM Trans. on Design Automation of Electronic Systems (TODAES), 13(3), Jul 2008.

[KBH+04a] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and K. Asanović. The
Vector-Thread Architecture. Int’l Symp. on Computer Architecture (ISCA), Jun 2004.

[KBH+04b] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and K. Asanović. The
Vector-Thread Architecture. IEEE Micro, 24(6):84–90, Nov/Dec 2004.

167

http://gcc.gnu.org
http://download.intel.com/research/platform/terascale/terascale_overview_paper.pdf
http://download.intel.com/research/platform/terascale/terascale_overview_paper.pdf
http://download.intel.com/design/network/prodbrf/27905403.pdf
http://techresearch.intel.com/articles/tera-scale/1826.htm

[KJJ+09] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Mahesri, S. S. Lumetta,
M. I. Frank, and S. J. Patel. Rigel: An Architecture and Scalable Programming Interface for a
1000-core Accelerator. Int’l Symp. on Computer Architecture (ISCA), Jun 2009.

[KJL+09] J. H. Kelm, D. R. Johnson, S. S. Lumetta, M. I. Frank, , and S. J. Patel. A Task-Centric
Memory Model for Scalable Accelerator Architectures. Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT), Sep 2009.

[Koz02] C. Kozyrakis. Overcoming the Limitations of Conventional Vector Processors. Ph.D. Thesis,
EECS Department, University of California, Berkeley, 2002.

[KP03] C. Kozyrakis and D. Patterson. Scalable Vector Processors for Embedded Systems. IEEE
Micro, 23(6):36–45, Nov 2003.

[Kre05] K. Krewell. A New MIPS Powerhouse Arrives. Microprocessor Report, May 2005.

[KWL+08] B. K. Khailany, T. Williams, J. Lin, M. Rygh, D. W. Tovey, and W. J. Dally. A Programmable
512 GOPS Stream Processor for Signal, Image, and Video Processing. IEEE Journal of Solid-
State Circuits (JSSC), 43(1):202–213, Jan 2008.

[LK09] J. Lee and N. S. Kim. Optimizing Throughput of Power- and Thermal-Constrained Multicore
Processors using DVFS and Per-Core Power-Gating. Design Automation Conference (DAC),
Jul 2009.

[LNOM08] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A Unified Graphics
and Computer Architecture. IEEE Micro, 28(2):39–55, Mar/Apr 2008.

[LSFJ06] C. Lemuet, J. Sampson, J. Francios, and N. Jouppi. The Potential Energy Efficiency of Vector
Acceleration. Int’l Conf. on High Performance Networking and Computing (Supercomputing),
Nov 2006.

[Mar09] T. Maruyama. SPARC64 VIIIfx: Fujitsu’s New Generation Octo-Core Processor for PETA
Scale Computing. Symp. on High Performance Chips (Hot Chips), Aug 2009.

[MCEF94] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting Classification of Parallel Rendering,
Jul 1994.

[MHM+95] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W.-M. W. Hwu. A Comparison
of Full and Partial Predicated Execution Support for ILP Processors. Int’l Symp. on Computer
Architecture (ISCA), Jun 1995.

[MIA+07] P. McCormicka, J. Inmana, J. Ahrensa, J. Mohd-Yusofa, G. Rothb, and S. Cumminsa. Scout:
A Data-Parallel Programming Language for Graphics Processors. Parallel Computing, 33(10–
11):648–662, Mar 2007.

[Mic09] Graphics Guide for Windows 7: A Guide for Hardware and System Manufacturers. Microsoft
White Paper, 2009.
http://www.microsoft.com/whdc/device/display/graphicsguidewin7.mspx

[mip09] MIPS32 Architecture for Programmers, Volume II: The MIPS32 Instruction Set. MIPS Tech-
nical Reference Manual, 2009.
http://www.mips.com/products/architectures/mips32

[MJCP08] A. Mahesri, D. Johnson, N. Crago, and S. J. Patel. Tradeoffs in Designing Accelerator Archi-
tectures for Visual Computing. Int’l Symp. on Microarchitecture (MICRO), Nov 2008.

[MSM05] T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming. Addison-
Wesley, 2005.

168

http://www.microsoft.com/whdc/device/display/graphicsguidewin7.mspx
http://www.mips.com/products/architectures/mips32

[NBGS08] J. Nickolls, I. Buck, M. Garland, and K. Skadron. OpenMP Application Program Interface.
ACM Queue, 6(2):40–53, Mar/Apr 2008.

[NHW+07] U. G. Nawathe, M. Hassan, L. Warriner, K. Yen, B. Upputuri, D. Greenhill, and A. Kumar. An
8-Core 64-Thread 64 b Power-Efficient SPARC SoC. Int’l Solid-State Circuits Conf. (ISSCC),
Feb 2007.

[nvi09] NVIDIA’s Next Gen CUDA Compute Architecture: Fermi. NVIDIA White Paper, 2009.
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_
compute_architecture_whitepaper.pdf

[OH05] K. Olukotun and L. Hammond. The Future of Microprocessors. ACM Queue, 3(7):26–29, Sep
2005.

[ope08a] The OpenCL Specification. Khronos OpenCL Working Group, 2008.
http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf

[ope08b] OpenMP Application Program Interface. OpenMP Architecture Review Board, 2008.
http://www.openmp.org/mp-documents/spec30.pdf

[Oya99] Y. Oyanagi. Development of Supercomputers in Japan: Hardware and Software. Parallel
Computing, 25(13–14):1545–1567, Dec 1999.

[QCEV99] F. Quintana, J. Corbal, R. Espasa, and M. Valero. Adding a Vector Unit to a Superscalar
Processor. Int’l Symp. on Supercomputing (ICS), Jun 1999.

[RDK+98] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. López-Lagunas, P. R. Mattson, and J. D.
Owens. A Bandwidth-Efficient Architecture for Media Processing. Int’l Symp. on Microarchi-
tecture (MICRO), Nov 1998.

[Rei07] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Paral-
lelism. O’Reilly, 2007.

[RSOK06] S. Rivoire, R. Schultz, T. Okuda, and C. Kozyrakis. Vector Lane Threading. Int’l Conf. on
Parallel Processing (ICPP), Aug 2006.

[RTM+09] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada, M. Ratta, and S. Kotta-
palli. A 45 nm 8-Core Enterprise Xeon Processor. Int’l Solid-State Circuits Conf. (ISSCC), Feb
2009.

[Rus78] R. M. Russel. The Cray-1 Computer System. Communications of the ACM, 21(1):63–72, Jan
1978.

[SB91] J. M. Sipelstein and G. E. Blelloch. Collection-Oriented Languages. Proc. of the IEEE,
79(4):504–523, Apr 1991.

[SCS+09] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins, A. Lake, R. Cavin, R. Es-
pasa, E. Grochowski, T. Juan, M. Abrash, J. Sugerman, and P. Hanrahan. Larrabee: A Many-
Core x86 Architecture for Visual Computing. IEEE Micro, 29(1):10–21, Jan/Feb 2009.

[SFS00] J. E. Smith, G. Faanes, and R. Sugumar. Vector Instruction Set Support for Conditional Opera-
tions. Int’l Symp. on Computer Architecture (ISCA), Jun 2000.

[SKMB03] K. Sankaralingam, S. W. Keckler, W. R. Mark, and D. Burger. Universal Mechanisms for Data-
Parallel Architectures. Int’l Symp. on Microarchitecture (MICRO), Dec 2003.

[SNL+03] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. R.
Moore. Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture. Int’l Symp.
on Computer Architecture (ISCA), Jun 2003.

169

http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf
http://www.openmp.org/mp-documents/spec30.pdf

[SS00] N. Slingerland and A. J. Smith. Multimedia Instruction Sets for General Purpose Microproces-
sors: A Survey. Technical report, EECS Department, University of California, Berkeley, Dec
2000.

[Swe07] D. Sweetman. See MIPS Run Linux. Morgan Kaufmann, 2007.

[TKM+03] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffmann, P. John-
son, W. Lee, A. Saraf, N. Shnidman, V. Strumpen, S. Amarasinghe, , and A. Agarwal. A 16-
Issue Multiple-Program-Counter Microprocessor with Point-to-Point Scalar Operand Network.
Int’l Solid-State Circuits Conf. (ISSCC), Feb 2003.

[TLM+04] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann, P. Johnson,
J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agar-
wal. Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Architecture for ILP and
Streams. Int’l Symp. on Computer Architecture (ISCA), Jun 2004.

[URv03] T. Ungerer, B. Robič, and J. Šilc. A Survey of Processors with Explicit Multithreading. ACM
Computing Surveys, 35(1):29–63, Mar 2003.

[VHR+07] S. Vangali, J. Howard, G. Ruhi, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyerl, A. Singh,
T. Jacob, S. Jain, S. Venkataraman, Y. Hoskotel, and N. Borkarl. 80-Tile 1.28 TFlops Network-
on-Chip in 65 nm CMOS. Int’l Solid-State Circuits Conf. (ISSCC), Feb 2007.

[WAK+96] J. Wawrzynek, K. Asanović, B. Kingsbury, D. Johnson, J. Beck, and N. Morgan. Spert-II: A
Vector Microprocessor System. IEEE Computer, 29(3):79–86, Mar 1996.

[Wil08] S. Williams. Auto-tuning Performance on Multicore Computers. Ph.D. Thesis, EECS Depart-
ment, University of California, Berkeley, 2008.

[WL08] D. H. Woo and H.-H. S. Lee. Extending Amdahl’s Law for Energy-Efficient Computing in the
Many-Core Era. IEEE Computer, 41(12):24–31, Dec 2008.

[YBC+06] V. Yalala, D. Brasili, D. Carlson, A. Hughes, A. Jain, T. Kiszely, K. Kodandapani, A. Varad-
harajan, and T. Xanthopoulos. A 16-Core RISC Microprocessor with Network Extensions. Int’l
Solid-State Circuits Conf. (ISSCC), Feb 2006.

[ZB91] M. Zagha and G. E. Blelloch. Radix Sort for Vector Multiprocessors. Int’l Conf. on High
Performance Networking and Computing (Supercomputing), 1991.

170

	1 Introduction
	1.1 Transition to Multicore & Manycore General-Purpose Processors
	1.2 Emergence of Programmable Data-Parallel Accelerators
	1.3 Leveraging Vector-Threading in Data-Parallel Accelerators
	1.4 Collaboration, Previous Publications, and Funding

	2 Architectural Design Patterns for Data-Parallel Accelerators
	2.1 Regular and Irregular Data-Level Parallelism
	2.2 Overall Structure of Data-Parallel Accelerators
	2.3 MIMD Architectural Design Pattern
	2.4 Vector-SIMD Architectural Design Pattern
	2.5 Subword-SIMD Architectural Design Pattern
	2.6 SIMT Architectural Design Pattern
	2.7 VT Architectural Design Pattern
	2.8 Comparison of Architectural Design Patterns
	2.9 Example Data-Parallel Accelerators

	3 Maven: A Flexible and Efficient Data-Parallel Accelerator
	3.1 Unified VT Instruction Set Architecture
	3.2 Single-Lane VT Microarchitecture Based on Vector-SIMD Pattern
	3.3 Explicitly Data-Parallel VT Programming Methodology

	4 Maven Instruction Set Architecture
	4.1 Instruction Set Overview
	4.2 Challenges in a Unified VT Instruction Set
	4.3 Vector Configuration Instructions
	4.4 Vector Memory Instructions
	4.5 Calling Conventions
	4.6 Extensions to Support Other Architectural Design Patterns
	4.7 Future Research Directions
	4.8 Related Work

	5 Maven Microarchitecture
	5.1 Microarchitecture Overview
	5.2 Control Processor Embedding
	5.3 Vector Fragment Merging
	5.4 Vector Fragment Interleaving
	5.5 Vector Fragment Compression
	5.6 Leveraging Maven VT Cores in a Full Data-Parallel Accelerator
	5.7 Extensions to Support Other Architectural Design Patterns
	5.8 Future Research Directions
	5.9 Related Work

	6 Maven Programming Methodology
	6.1 Programming Methodology Overview
	6.2 VT Compiler
	6.3 VT Application Programming Interface
	6.4 System-Level Interface
	6.5 Extensions to Support Other Architectural Design Patterns
	6.6 Future Research Directions
	6.7 Related Work

	7 Maven Evaluation
	7.1 Evaluated Core Configurations
	7.2 Evaluated Microbenchmarks
	7.3 Evaluation Methodology
	7.4 Cycle-Time and Area Comparison
	7.5 Energy and Performance Comparison for Regular DLP
	7.6 Energy and Performance Comparison for Irregular DLP
	7.7 Computer Graphics Case Study

	8 Conclusion
	8.1 Thesis Summary and Contributions
	8.2 Future Work

	Bibliography

