PyMTL and Pydgin: Python Frameworks for Highly Productive Computer Architecture Research

Christopher Batten

Computer Systems Laboratory
School of Electrical and Computer Engineering
Cornell University

Spring 2016
Motivating Trends in Computer Architecture

- Data-Parallelism via GPGPUs and Vector
- Fine-Grain Task-Level Parallelism
- Instruction Set Specialization
- Subgraph Specialization
- Application-Specific Accelerators
- Domain-Specific Accelerators
- Coarse-Grain Reconfig Arrays
- Field-Programmable Gate Arrays

Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten
Vertically Integrated Research Methodology

Our research involves reconsidering all aspects of the computing stack including applications, programming frameworks, compiler optimizations, runtime systems, instruction set design, microarchitecture design, VLSI implementation, and hardware design methodologies.

![Diagram of research methodology]

Experimenting with full-chip layout, FPGA prototypes, and test chips is a key part of our research methodology.
Projects Within the Batten Research Group

- **GPGPU Architecture**
 - [ISCA'13]
 - [MICRO'14a] (AFOSR)
- **Integrated Voltage Regulation**
 - [MICRO'14b]
 - [ISCA'16]
- **XLOOPS Explicit Loop Specialization**
 - [MICRO'14c]
 - (DARPA, NSF)
- **Polymorphic Hardware Specialization**
 - [DAC'16]
 - (NSF)
- **Accelerating Dynamic Prog Langs**
 - (NSF)

PyMTL/Pydgin Frameworks

- [MICRO'14d]
- [ISPASS'15]
- [ISPASS'16] (NSF)

Derek Lockhart, Gary Zibrat, Christopher Batten

47th ACM/IEEE Int’l Symp. on Microarchitecture (MICRO)

Pydgin: Generating Fast Instruction Set Simulators from Simple Architecture Descriptions with Meta-Tracing JIT Compilers

Derek Lockhart, Berkin Ilbeyi, Christopher Batten

IEEE Int’l Symp. on Perf Analysis of Systems and Software (ISPASS)
Philadelphia, PA, Mar. 2015
Computer Architecture Research Methodologies

- Applications
- Algorithms
- Compilers
- Instruction Set Architecture
- Microarchitecture
- VLSI
- Transistors

Functional-Level Modeling
- Behavior

Cycle-Level Modeling
- Behavior
- Cycle-Approximate
- Analytical Area, Energy, Timing

Register-Transfer-Level Modeling
- Behavior
- Cycle-Accurate Timing
- Gate-Level Area, Energy, Timing
Computer Architecture Research Methodologies

Computer Architecture Research Methodology Gap

- FL, CL, RTL modeling use very different languages, patterns, tools, and methodologies

Our Approach: Modeling Towards Layout

- Unified Python-based framework for FL, CL, and RTL modeling

Functional-Level Modeling
- Algorithm/ISA Development
- MATLAB/Python, C++ ISA Sim

Cycle-Level Modeling
- Design-Space Exploration
- C++ Simulation Framework
- SW-Focused Object-Oriented
- gem5, SESC, McPAT

Register-Transfer-Level Modeling
- Prototyping & AET Validation
- Verilog, VHDL Languages
- HW-Focused Concurrent Structural
- EDA Toolflow
Why Python?

- Python is well regarded as a highly productive language with lightweight, pseudocode-like syntax
- Python supports modern language features to enable rapid, agile development (dynamic typing, reflection, metaprogramming)
- Python has a large and active developer and support community
- Python includes extensive standard and third-party libraries
- Python enables embedded domain-specific languages
- Python facilitates engaging application-level researchers
- Python includes built-in support for integrating with C/C++
- Python performance is improving with advanced JIT compilation
Great Ideas From Prior Work

- **Concurrent-Structural Modeling** (Liberty, Cascade, SystemC)
 - Consistent interfaces across abstractions

- **Unified Modeling Languages** (SystemC)
 - Unified design environment for FL, CL, RTL

- **Hardware Generation Languages** (Chisel, Genesis2, BlueSpec, MyHDL)
 - Productive RTL design space exploration

- **HDL-Integrated Simulation Frameworks** (Cascade)
 - Productive RTL validation and cosimulation

- **Latency-Insensitive Interfaces** (Liberty, BlueSpec)
 - Component and test bench reuse
What is PyMTL?

- A Python DSEL for concurrent-structural hardware modeling
- A Python API for analyzing models described in the PyMTL DSEL
- A Python tool for simulating PyMTL FL, CL, and RTL models
- A Python tool for translating PyMTL RTL models into Verilog
- A Python testing framework for model validation

Testing Framework
What Does PyMTL Enable?

- Incremental refinement from algorithm to accelerator implementation
- Automated testing and integration of PyMTL-generated Verilog
What Does PyMTL Enable?

- Incremental refinement from algorithm to accelerator implementation
- Automated testing and integration of PyMTL-generated Verilog
- Multi-level co-simulation of FL, CL, and RTL models
What Does PyMTL Enable?

- Incremental refinement from algorithm to accelerator implementation
- Automated testing and integration of PyMTL-generated Verilog
- Multi-level co-simulation of FL, CL, and RTL models
- Construction of highly-parameterized RTL chip generators
The PyMTL Framework

Specification
- Test & Sim Harness
- Model
- Config

Elaborator

Tools
- Simulation Tool
- Translation Tool
- User Tool

Output
- Traces & VCD
- Verilog
- User Tool Output

EDA Toolflow

Visualization
Static Analysis
Dynamic Checking
FPGA Simulation
High Level Synthesis

Cornell University
Christopher Batten
The PyMTL DSEL: FL Models

```python
def sorter_network( input ):  
    return sorted( input )

class SorterNetworkFL( Model ):
    def __init__( s, nbits, nports ):
        s.in_ = InPort[nports](nbits)
        s.out = OutPort[nports](nbits)

    @s.tick_fl
    def logic():
        for i, v in enumerate( sorted( s.in_ ) ):
            s.out[i].next = v
```

$\begin{align*}
[3, 1, 2, 0] \quad \Rightarrow \quad f(x) \quad \Rightarrow \quad [0, 1, 2, 3]
\end{align*}$
The PyMTL DSEL: CL Models

```python
def sorter_network( input ):  
    return sorted( input )  

class SorterNetworkCL( Model ):  
    def __init__( s, nbits, nports, delay=3 ):  
        s.in_  = InPort [nports](nbits)  
        s.out = OutPort[nports](nbits)  
        s.pipe = Pipeline( delay )  

    @s.tick_cl  
    def logic():  
        s.pipe.xtick()  
        s.pipe.push( sorted( s.in_ ) )  

        if s.pipe.ready():  
            for i, v in enumerate( s.pipe.pop() ):  
                s.out[i].next = v
```

\[[3, 1, 2, 0] \rightarrow f(x) \rightarrow [0, 1, 2, 3] \]
The PyMTL DSEL: RTL Models

def sorter_network(input):
 return sorted(input)

class SorterNetworkRTL(Model)
 def __init__(s, nbits):
 s.in_ = InPort [4](nbits)
 s.out = OutPort[4](nbits)
 s.m = m = MinMaxRTL[5](nbits)

 s.connect(s.in_[0], m[0].in_[0])
 s.connect(s.in_[1], m[0].in_[1])
 s.connect(s.in_[2], m[1].in_[0])
 s.connect(s.in_[3], m[2].in_[1])

 ...
The PyMTL DSEL: RTL Models

class MinMaxRTL(Model)
 def __init__(s, nbits):
 s.in_ = InPort [2](nbits)
 s.out = OutPort[2](nbits)
 @s.combinational
 def logic():
 swap = s.in_[0] > s.in_[1]
 s.out[0].value = s.in[1] if swap else s.in[0]
 s.out[1].value = s.in[0] if swap else s.in[1]

class RegRTL(Model)
 def __init__(s, nbits):
 s.in_ = InPort (nbits)
 s.out = OutPort(nbits)
 @s.tick_rtl
 def logic():
 s.out.next = s.in_
Performance/Productivity Gap

Python is growing in popularity in many domains of scientific and high-performance computing. How do they close this gap?

- Python-Wrapped C/C++ Libraries (NumPy, CVXOPT, NLPy, pythonoCC, gem5)
- Numerical Just-In-Time Compilers (Numba, Parakeet)
- Just-In-Time Compiled Interpreters (PyPy, Pyston)
- Selective Embedded Just-In-Time Specialization (SEJITS)
PyMTL SimJIT-RTL Architecture

- **SimJIT-RTL**: Robust and actively used in research/teaching
- **SimJIT-CL**: Proof-of-concept implementation
PyMTL Accelerator Case Study

- Experimented with FL, CL, and RTL models of a pipelined processor, blocking cache, and dot-product accelerator
- 27 different compositions that trade-off simulator performance vs. accuracy

![Graph showing relative simulator performance vs. level of detail (FL = 1, CL = 2, RTL = 3)]

Research Overview

- **PyMTL Framework**
- **Pydgin Framework**
- **PyMTL/Pydgin in Practice**
PyMTL Results: 64-Node Mesh Network

Simulation Time
Including Compile Time

Simulation Time
Excluding Compile Time

RTL model of 64-node mesh network with single-cycle routers, elastic buffer flow control, uniform random traffic, with an injection rate just before saturation.

Derek Lockhart, Gary Zibrat, Christopher Batten

47th ACM/IEEE Int’l Symp. on Microarchitecture (MICRO)

Pydgin: Generating Fast Instruction Set Simulators from Simple Architecture Descriptions with Meta-Tracing JIT Compilers

Derek Lockhart, Berkin Ilbeyi, Christopher Batten

IEEE Int’l Symp. on Perf Analysis of Systems and Software (ISPASS)
Philadelphia, PA, Mar. 2015
While it is certainly possible to create stand-alone instruction set simulators in PyMTL, their performance is quite slow (~100 KIPS)

Can we achieve high-performance while maintaining productivity for instruction set simulators?

Computer Architecture Research Methodologies

Functional-Level Modeling
- Algorithm/ISA Development
- MATLAB/Python/C++ ISA Sim

Cycle-Level Modeling
- Design-Space Exploration
- C++ Simulation Framework
- SW-Focused Object-Oriented
- gem5, SESC, McPAT

Register-Transfer-Level Modeling
- Prototyping & AET Validation
- Verilog, VHDL Languages
- HW-Focused Concurrent Structural
- EDA Toolflow
PyMTL Framework

- Pydgin Framework

PyMTL/Pydgin in Practice

Research Overview

Productivity ➔ **Performance**

Architectural Description Language ➔ **[SimIt-ARM2006] [Wagstaff2013]** ➔ **Instruction Set Interpreter in C with DBT**

[Simit-ARM2006]

- Page-based JIT
- Ad-hoc ADL with custom parser
- Unmaintained

[Wagstaff2013]

- Region-based JIT
- Industry-supported ADL (ArchC)
- C++-based ADL is verbose
- Not Public

References

Key Insight:

Similar productivity-performance challenges for building high-performance interpreters of dynamic languages.
(e.g. JavaScript, Python)
Productivity \hspace{1cm} \text{Performance}

\begin{itemize}
 \item Architectural Description Language
 \item [SimIt-ARM2006] [Wagstaff2013]
 \item Instruction Set Interpreter in C with DBT
 \item Dynamic-Language Interpreter in RPython
 \item RPython Translation Toolchain
 \item Dynamic Language Interpreter in C with JIT Compiler
\end{itemize}

\textbf{Meta-Tracing JIT:}
makes JIT generation generic across languages
Productivity ↔ Performance

Architectural Description Language

Just-in-Time Compilation ≈ Dynamic Binary Translation

Instruction Set Interpreter in C with DBT

RPython Translation Toolchain
Architectural State

class State(object):

 def __init__(self, memory, reset_addr=0x400):

 self.pc = reset_addr
 self.rf = RiscVRegisterFile()
 self.mem = memory

 # optional state if floating point is enabled
 if ENABLE_FP:
 self.fp = RiscVFPRegisterFile()
 self.fcsr = 0
Pydgin Architecture Description Language

Instruction Encoding

encodings = [
 # ...
 ['xori', 'xxxxxxxxxxxxxxxxxxxx100xxxxx0010011'],
 ['ori', 'xxxxxxxxxxxxxxxxxxxx110xxxxx0010011'],
 ['andi', 'xxxxxxxxxxxxxxxxxxxx111xxxxx0010011'],
 ['slli', '000000xxxxxxxxxx001xxxxx0010011'],
 ['srli', '000000xxxxxxxxxx101xxxxx0010011'],
 ['srai', '010000xxxxxxxxxx101xxxxx0010011'],
 ['add', '0000000xxxxxxxxxx000xxxxx0110011'],
 ['sub', '0100000xxxxxxxxxx000xxxxx0110011'],
 ['sll', '0000000xxxxxxxxxx001xxxxx0110011'],
 # ...
]
Instruction Semantics

def execute_addi(s, inst):
 s.rf[inst.rd] = s.rf[inst.rs1] + inst.i_imm
 s.pc += 4

def execute_sw(s, inst):
 addr = trim_xlen(s.rf[inst.rs1] + inst.s_imm)
 s.mem.write(addr, 4, trim_32(s.rf[inst.rs2]))
 s.pc += 4

def execute_beq(s, inst):
 if s.rf[inst.rs1] == s.rf[inst.rs2]:
 s.pc = trim_xlen(s.pc + inst.sb_imm)
 else:
 s.pc += 4
Pydgin Framework

Interpreter Loop

```python
def instruction_set_interpreter(memory):
    state = State(memory)

    while True:
        pc = state.fetch_pc()
        inst = memory[pc]  # fetch
        execute = decode(inst)  # decode
        execute(state, inst)  # execute
```

100 KIPS
The RPython Translation Toolchain

- **RPython Source**
 - Type Inference
 - Optimization
 - Code Generation
 - Compilation
 - JIT Generator

- **State**
 - Pydgin Framework

- **Encoding**
 - Debug on Python Interpreter
 - Pydgin Interpretive Simulator
 - 100 KIPS
 - Pydgin DBT Simulator
 - 10 MIPS
 - <10 MIPS

- **Semantics**
 - RPython Translation Toolchain
 - Compiled Interpreter with JIT

- **Inference**
 - Op
 - miza on

- **Code Generation**
 - JIT Generator
 - Compiled Interpreter with JIT

- **Compilation**

- **Type Inference**

- **Optimization**

- **Code Generation**

- **Compilation**

- **JIT Generator**

- **Compiled Interpreter with JIT**
JIT Annotations and Optimizations

Additional RPython JIT hints:

- Elidable Instruction Fetch
- Elidable Decode
- Constant Promotion of PC and Memory
- Word-Based Target Memory
- Loop Unrolling in Instruction Semantics
- Virtualizable PC and Statistics
- Increased Trace Limit

Please see our ISPASS paper for more details!

SPECINT2006 on ARM

23X improvement over no annotations
Pydgin Results: ARMv5 Instruction Set

Porting Pydgin to a new user-level ISA takes just a few weeks

Derek Lockhart, Gary Zibrat, Christopher Batten

47th ACM/IEEE Int’l Symp. on Microarchitecture (MICRO)

Pydgin: Generating Fast Instruction Set Simulators from Simple Architecture Descriptions with Meta-Tracing JIT Compilers

Derek Lockhart, Berkin Ilbeyi, Christopher Batten

IEEE Int’l Symp. on Perf Analysis of Systems and Software (ISPASS)
Philadelphia, PA, Mar. 2015
PyMTL In Practice: Explicit Loop Specialization

- Our MICRO’14 paper explored a new loop accelerator architecture
- gem5 provided access to complex out-of-order processor and memory system models (red).
- PyMTL was used to quickly build and iterate on a CL model for the loop acceleration unit (blue).

PyMTL In Practice: HLS for Data Structures

- Our DAC’16 paper explored new high-level synthesis (HLS) techniques for decoupling algorithm units from data-structure units.

- PyMTL was used to create highly parameterized RTL templates for composing the various modules within the data-structure unit.

PyMTL In Practice: ASIC Test Chip

Tapeout-ready layout for RISC processor, 16KB SRAM, and HLS-generated accelerators

2x2mm 1.3M-trans in IBM 130nm

Xilinx ZC706 FPGA development board for FPGA prototyping

Custom designed FMC mezzanine card for ASIC test chips
Pydgin In Practice: Hardware Specialization for Dynamic Programming Languages

- We are using Pydgin to run large Python programs to study the time spent in various parts of the Python JIT compilation framework.
- Pydgin enables instrumentation of application phase behavior and collection of per-phase architectural statistics.

Diagram showing time distribution across different phases:
- JIT
- Blackhole
- Tracing
- GC
- Other

Time
PyMTL/Pydgin Take-Away Points

- PyMTL is a productive Python framework for FL, CL, and RTL modeling and hardware design
- Pydgin is a framework for rapidly developing very fast instruction-set simulators from a Python-based architecture description language
- PyMTL and Pydgin leverage novel application of JIT compilation to help close the performance/productivity gap
- Alpha versions of PyMTL and Pydgin are available for researchers to experiment with at
 https://github.com/cornell-brg/pymtl
 https://github.com/cornell-brg/pydgin
Derek Lockhart, Ji Kim, Shreesha Srinath, Christopher Torng, Berkin Ilbeyi, Moyang Wang, Shunning Jiang, Khalid Al-Hawaj, and many M.S./B.S. students

Equipment and Tool Donations
Intel, NVIDIA, Synopsys, Xilinx