
A New Era of
Open-Source Hardware

Christopher Batten

Computer Systems Laboratory
Electrical and Computer Engineering
Cornell University

On Sabbatical as a Visiting Scholar
SLICE Laboratory
University of California, Berkeley

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Transistors
(Thousands)

C. Batten, M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, K. Rupp & [Y. Shao, IEEE Micro'15] & [C. Leiserson, Science'20]

1975 1980 1985 1990 1995 2000 2005 2010 2015

100

101

102

103

104

105

106

107

2020 2025

108

Pipelining
& Caches

Superscalar
Execution

Superscalar Out-of-Order
Execution

Aggressive Superscalar
Out-of-Order Execution

Single-Core

Power (W)
Frequency (MHz)

SPECint (singe-core)

Number of
Cores

Multi-Core

SPECrate
(4-7 cores)

Parallelization
&

Specialization

Number of
Accelerators

Accelerator

Cornell University Christopher Batten 2 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Top-five software companies are all
building custom accelerators

I Facebook: MTIA for DLRM
I Amazon: Echo, Oculus, Inferentia/Trainium
I Microsoft: In-house AI chips
I Google: TPU, Pixel, convergence
I Apple: SoCs for phones and laptops

Chip startup ecosystem for machine
learning accelerators
is thriving!

How can we accelerate innovation in
accelerator-centric hardware design?

I Graphcore
I Nervana
I Cerebras
I Wave Computing
I Horizon Robotics
I Cambricon
I DeePhi
I Esperanto
I SambaNova
I Eyeriss
I Tenstorrent
I Mythic
I ThinkForce
I Groq
I Lightmatter

Cornell University Christopher Batten 3 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Software Innovation Today

Your proprietary code
 • Instagram
 • $500K seed with 13 people → $1B

Open-source software
 • Python
 • Django
 • Memcached
 • Postgres/SQL
 • Redis
 • nginx
 • Apache, Gnuicorn
 • Linux
 • GCC

"What Powers Instagram:
Hundreds of Instances,

Dozens of Technologies"
https://goo.gl/76fWrM

Like climbing an iceberg – much is hidden!

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16

Cornell University Christopher Batten 4 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Hardware Innovation Today

Closed source
 • ARM A57, A7, M4, M0
 • ARM on-chip interconnect
 • Standard cells, I/O pads, DDR Phy
 • SRAM memory compilers
 • VCS, Modelsim
 • DC, ICC, Formality, Primetime
 • Stratus, Innovus, Voltus
 • Calibre DRC/RCX/LVS, SPICE

What you have to build
 • New machine learning accelerator
 • Other unrelated components,
 anything you cannot afford to buy
 or for which COTS IP does not do

Like climbing a mountain – nothing is hidden!

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16

Cornell University Christopher Batten 5 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Chip Costs Are Skyrocketing

$120M

$500K

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16; original: International Business Strategies & T. Austin.

Cornell University Christopher Batten 6 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Minimum Viable Product/Prototype

$120M$5M per
mask iteration

$500K for
4x Performance Penalty

(post-Dennard scaling)

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16; original: International Business Strategies & T. Austin.

Cornell University Christopher Batten 7 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Minimum Viable Product/Prototype

$120M

Can we use open-source
software/hardware to

address remaining costs?

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16; original: International Business Strategies & T. Austin.

Cornell University Christopher Batten 7 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

How can HW design be more like SW design?

Open-Source Software Hardware

high-level
languages

Python, Ruby, R,
Javascript, Julia

Chisel, PyMTL, PyRTL, MyHDL,
JHDL, C�ash, Calyx, DFiant

libraries C++ STL,
Python std libs

BaseJump

systems Linux, Apache, MySQL,
memcached

Rocket, Pulp/Ariane, OpenPiton,
Boom, FabScalar, MIAOW, Nyuzi

standards POSIX RISC-V ISA, RoCC, TileLink

tools GCC, LLVM, CPython,
MRI, PyPy, V8

Icarus Verilog, Verilator, qflow,
Yosys, TimberWolf, qrouter,
magic, klayout, ngspice

methodologies agile software design agile hardware design

cloud IaaS, elastic computing IaaS, elastic CAD

Cornell University Christopher Batten 8 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Ubuntu Server 16.04 LTS (ami-43a15f3e)
% sudo apt-get update

% sudo apt-get -y install build-essential qflow

% mkdir qflow && cd qflow

% wget http://opencircuitdesign.com/qflow/example/map9v3.v

% qflow synthesize place route map9v3 # yosys, graywolf, qrouter
% wget http://opencircuitdesign.com/qflow/example/osu035_stdcells.gds2

% magic # design def/lef -> magic format
>>> lef read /usr/share/qflow/tech/osu035/osu035_stdcells.lef

>>> def read map9v3.def

>>> writeall force map9v3

% magic # stdcell gds -> magic format
>>> gds read osu035_stdcells.gds2

>>> writeall force

% magic map9v3

>>> gds write map9v3 # design + stdcells magic format -> gds
% sudo apt-get -y install libqt4-dev-bin libqt4-dev libz-dev

% wget http://www.klayout.org/downloads/source/klayout-0.24.9.tar.gz

% tar -xzvf klayout-0.24.9.tar.gz && cd klayout-0.24.9

% ./build.sh -noruby -nopython

% wget http://www.csl.cornell.edu/~cbatten/scmos.lyp

% ./bin.linux-64-gcc-release/klayout -l scmos.lyp ../map9v3.gds

c. 2018

Cornell University Christopher Batten 9 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

“I’m doing a (free) operating system
(just a hobby, won’t be big and professional like gnu)

for 386(486) AT clones.”
— Linus Torvalds, 1991

Cornell University Christopher Batten 10 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Cornell University Christopher Batten 11 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Industry Interest in RISC-V is Growing

Cornell University Christopher Batten 12 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

RISC-V Hardware and Software Ecosystem

Cornell University Christopher Batten 13 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

OpenROAD: The Future of Open-Source EDA

The OpenROAD Project:
Unleashing Hardware Innovation

Andrew B. Kahng�,† and Tom Spyrou�,‡

(*) CSE and (†) ECE Depts., UC San Diego
(‡) Precision Innovations, Inc.

abk@eng.ucsd.edu aspyrou@eng.ucsd.edu https://theopenroadproject.org/

Abstract—The OpenROAD project develops an open-source
RTL-to-GDS tool that generates manufacturable layout from a
given hardware description – in 24 hours, with no human in
the loop. The project is part of the IDEA program within the
DARPA ERI. By reducing today’s cost, expertise and schedule
barriers to hardware design, OpenROAD enables access to
ASIC implementation, thus unleashing hardware innovation. This
paper describes the status and outlook for OpenROAD as of
its v1.0 release. The OpenROAD tool is integrated around an
open-source, commercial-quality database and timing engine. A
SkyWater 130nm tapeout was made by efabless.com in May
2020. DRC-clean layout generation in GLOBALFOUNDRIES
12nm was achieved in July 2020. OpenROAD’s futures include
(i) serving as a foundation for academic research and teaching;
(ii) seeding the transition of open-source EDA into government
and commercial usage; and (iii) driving new machine learning
research that further accelerates EDA and hardware innovation.
With permissively open-sourced code, and no restrictions on
sharing of scripts, OpenROAD enables transparency and repro-
ducibility of hardware and EDA research, thus accelerating the
pace of discovery.

I. INTRODUCTION

The OpenROAD project tackles a crisis which has been
decades in the making: Hardware design, and system in-
novation in hardware, are simply too difficult. Commercial
electronic design automation (EDA) tools have become ex-
tremely complex as they evolve to meet the demands of design
organizations who create products in leading-edge technology
nodes and whose goal is to hyper optimize their designs with
significant manual effort. Today, EDA tool and design process
outcomes are difficult to predict, and expert tool users are
needed. This raises barriers of cost, expertise, and risk to
hardware innovation.

One path forward is to automation, with “self-driving”
design tools and flows. The OpenROAD project https://
theopenroadproject.org is part of the DARPA IDEA program,
which was launched in June 2018 within the U.S. DARPA
Electronics Resurgence Initiative. The IDEA program broadly
aims for Hardware Compilers 2.0 – automated generation of
manufacturable layout in 24 hours, with no human in the
loop, and eventually with no loss of quality of results in
Power, Performance or Area. IDEA shifts the focus from tools
that squeeze out every last picosecond or microwatt from the

DISTRIBUTION STATEMENT A. Approved for public release: distribu-
tion is unlimited. Award number: DARPA HR0011-18-2-0032. The views,
opinions and/or findings expressed are those of the authors and should not be
interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

manufacturing technology, to “self-driving” tools that require
neither expertise nor complex manually derived tool settings
to tape out a working chip.

OpenROAD’s scope is digital IC design: the tool takes Ver-
ilog hardware description in, and delivers a merged tapeout-
ready GDSII layout database. As described in [1], achieving
24-hour automation requires our project to advance three
foundational base technologies: extreme partitioning to de-
compose the design problem into bite-sized chunks; intelligent
orchestration of distributed and parallel optimization using
cloud resources; and machine learning to model and predict
what will happen when a given tool is run on a given design
input with a given target. Freedoms from choice are also
expected in a no-humans tool, just as a self-driving car will
eventually have no steering wheel.

II. OPENROAD TODAY

Routing

Finishing

CTS

Placement

Floorplanning

Logic Synthesis

Flow Setup

OpenROAD v1.0

S
h

a
re

d
 D

a
ta

 M
o

d
e

l
(O

p
e

n
D

B
)

design.v + .lib + .lef + .sdc + parameters.cfg

result.def + ppa.rpt + drc.rpt + results.gds

Flow parameters
Library, techfile preparation
Macro wrappers
Dont_use list

Logic optimization
Technology mapping
Buffering, sizing

IO placement
Mixed-size + macro placement
Tapcell insertion
PDN generation

Global placement
Placement-based optimization
Detailed placement

Clock tree synthesis
CTS, hold, ERC repair
Placement legalization

Global routing
Antenna check + repair
Detailed routing

Filler cell + BEOL fill insertion
Merge wrapped macros
Merge GDS

S
ta

tic T
im

in
g
 A

n
a
lysis (O

p
e
n
S

T
A

)
P

a
ra

sitic
E

xtra
ctio

n
 (O

p
e
n
R

C
X

)

Fig. 1. OpenROAD flow, built around the integrated OpenROAD tool.

Figure 1 depicts OpenROAD’s flow, which is wrapped
around our v1.0 integrated tool (aka the “OpenROAD app”).
The tool has a modern integrated architecture, industry-
strength database and timing analysis, and Tcl and Python
scripting interfaces for users. In Spring 2020, a commercial
user, Efabless, used OpenROAD for tapeouts of the “striVe”
family of SOC designs in the SkyWater 130nm [7] technology.
In Summer 2020, OpenROAD achieved a set of “proof points”,
including a 12nm SOC tape-in, for automated generation of
manufacturable layout (i.e., passing all physical verification
checks, and electrical and timing correctness checks) in TSMC
65LP and GLOBALFOUNDRIES 12LP technologies. Figure

OpenTitan SoC
GF12LP

Cornell University Christopher Batten 14 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

SkyWater 130nm

SkyWater 90mn
GF 180nm

Cornell University Christopher Batten 15 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Cornell University Christopher Batten 16 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

O
pe

nM
P

W
 S

ub
m

is
si

on
s

0

25

50

75

100

125

3/1
/21

5/1
/21

7/1
/21

9/1
/21

11
/1/

21
1/1

/22
3/1

/22
5/1

/22
7/1

/22
9/1

/22

Run Capacity

Cornell University Christopher Batten 17 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

C2S2: Cornell Custom Silicon Systems Project Team

Three-year student-led project team
focused on designing, fabricating, and
testing chips in SkyWater 130nm to
implement a proof-of-concept system for a
campus partner

I Open-Source VexRISCV microcontroller
I Open-Source OpenROAD chip flow
I Open PDK for SkyWater 130nm
I ChipIgnite w/ efabless

100+ applications ! 30 team members

I Digital Subteam (2022/2023: FFT Xcel)
I Analog Subteam (2022/2023: OpAmp)
I Software Subteam
I System Architecture Subteam
I Project Management Subteam

C2S2 Digital and Analog Tapeouts
Spring 2023

Cornell University Christopher Batten 18 / 56

• Trends in Open-Source HW • PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research A Call to Action

Cornell University Christopher Batten 19 / 56

Trends in Open-Source HW • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 in Research A Call to ActionOpen-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH Batten Research Group

1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

Cornell University Christopher Batten 2 / 47

A New Era of
Open-Source Hardware

Trends in Open-Source HW

PyMTL3 Framework

PyMTL3 in Practice

PyMTL3 in Research
JIT-Compiled Simulation [DAC’18]

Property-Based Testing [D&T’21]

Gradual Typing [MEMOCODE’23]

Future Research

A Call to Action

Cornell University Christopher Batten 20 / 56

Trends in Open-Source HW • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 in Research A Call to ActionOpen-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH Batten Research Group

1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

Cornell University Christopher Batten 2 / 47

A New Era of
Open-Source Hardware

Trends in Open-Source HW

PyMTL3 Framework

PyMTL3 in Practice

PyMTL3 in Research
JIT-Compiled Simulation [DAC’18]

Property-Based Testing [D&T’21]

Gradual Typing [MEMOCODE’23]

Future Research

A Call to Action

Cornell University Christopher Batten 21 / 56

Trends in Open-Source HW • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 in Research A Call to Action

Traditional Hardware Design Methodologies

RTL

Sim

TB

 HDL
(Verilog)

FPGA/
 ASIC

synth

Fast edit-sim-debug loop

Difficult to create highly
parameterized generators

Single language for
structural, behavioral, + TB

HDL
Hardware Description

Language

RTL

Sim

TB

 HDL
(Verilog)

RTL

 Mixed
(Verilog+Perl)

TB

gen

gen
FPGA/
 ASIC

synth

Slower edit-sim-debug loop

Easier to create highly
parameterized generators

Multiple languages create
"semantic gap"

Example: Genesis2

HPF
Hardware Preprocessing

Framework

RTL

Sim

 HDL
(Verilog)

RTL

Host Language
 (Scala)

TB TB

FPGA/
 ASIC

gen

gen

synth

Slower edit-sim-debug loop

Easier to create highly
parameterized generators
Cannot use power of host
language for verification

Example: Chisel

HGF
Hardware Generation

Framework

Single language for
structural + behavioral

Are HGFs the best we can do in terms of a
productive hardware design methodology?

Cornell University Christopher Batten 22 / 56

Trends in Open-Source HW • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 in Research A Call to Action

PyMTL Python-based hardware generation,
simulation, and verification framework

which enables productive
RTL design and multi-level modeling

Python

RTL
Cycle-Level

Functional-Level

Test Bench

Multi-Level
Simulation

SystemVerilog

RTLgenerate

co-simulate synthesize

FPGA
ASICprototype

bring-up

Cornell University Christopher Batten 23 / 56

Trends in Open-Source HW • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 in Research A Call to Action

PyMTL
I PyMTL2: https://github.com/cornell-brg/pymtl

. released in 2014

. extensive experience using framework in research & teaching

I PyMTL3: https://github.com/pymtl/pymtl3
. official release in May 2020
. adoption of new Python3 features
. significant rewrite to improve productivity & performance
. cleaner syntax for FL, CL, and RTL modeling
. completely new Verilog translation support
. first-class support for method-based interfaces

Cornell University Christopher Batten 24 / 56

Trends in Open-Source HW • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 in Research A Call to Action

The PyMTL3 Framework

Model

PyMTL3
DSL

(Python)

Config

Elaboration Model
Instance

PyMTL3 In-Memory
Intermediate

Representation
(Python) Simulatable

Model
Test & Sim
Harnesses

PyMTL3
Passes
(Python)

Simulation
Pass

Translation
Pass Verilog

Analysis
Pass

Analysis
Output

Transform
Pass

New
Model

Cornell University Christopher Batten 25 / 56

Trends in Open-Source HW • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 in Research A Call to Action

PyMTL3 High-Level Modeling
1 class QueueFL(Component):

2 def construct(s, maxsize):

3 s.q = deque(maxlen=maxsize)

4
5 @non_blocking(

6 lambda s: len(s.q) < s.q.maxlen)

7 def enq(s, value):

8 s.q.appendleft(value)

9
10 @non_blocking(

11 lambda s: len(s.q) > 0)

12 def deq(s):

13 return s.q.pop()

I FL/CL components can use
method-based interfaces

I Structural composition via
connecting methods

upA

q1 q2
enq

deq enq
deqenq deq

14 class DoubleQueueFL(Component):

15 def construct(s):

16 s.enq = CalleeIfcCL()

17 s.deq = CalleeIfcCL()

18
19 s.q1 = QueueFL(2)

20 s.q2 = QueueFL(2)

21
22 connect(s.enq, s.q1.enq)

23 connect(s.q2.deq, s.deq)

24
25 @update

26 def upA():

27 if s.q1.deq.rdy() and s.q2.enq.rdy():

28 s.q2.enq(s.q1.deq())

Cornell University Christopher Batten 26 / 56

Trends in Open-Source HW • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 in Research A Call to Action

PyMTL3 Low-Level Modeling
1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

in_ out
+1

tmp

I Hardware modules are Python
classes derived from Component

I construct method for constructing
(elaborating) hardware

I ports and wires for signals

I update blocks for modeling
combinational and sequential logic

Cornell University Christopher Batten 27 / 56

Trends in Open-Source HW • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 in Research A Call to Action

SystemVerilog Translation and Import

Pure
PyMTL
Model

Instance

Translation
Pass

System
Verilog

Import
Pass

C Wrapper
Source

PyMTL
Wrapper

Verilator RTL C++
Source

LLVM
GCC

C Shared
Library

PyMTL
Wrapped
SV Model
Instance

CFFI

I Translation+import enables easily testing translated SystemVerilog
I Also acts like a JIT compiler for improved RTL simulation speed
I Can also import external SystemVerilog IP for co-simulation

Cornell University Christopher Batten 28 / 56

Trends in Open-Source HW • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 in Research A Call to Action

What is PyMTL3 for and not (currently) for?

I PyMTL3 is for ...
. Taking an accelerator design from concept to implementation
. Construction of highly-parameterizable CL models
. Construction of highly-parameterizable RTL design generators
. Rapid design, testing, and exploration of hardware mechanisms
. Interfacing models with other C++ or Verilog frameworks

I PyMTL3 is not (currently) for ...
. Python high-level synthesis
. Many-core simulations with hundreds of cores
. Full-system simulation with real OS support
. Users needing a complex OOO processor model “out of the box”

Cornell University Christopher Batten 29 / 56

Trends in Open-Source HW PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 in Research A Call to ActionOpen-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH Batten Research Group

1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

Cornell University Christopher Batten 2 / 47

A New Era of
Open-Source Hardware

Trends in Open-Source HW

PyMTL3 Framework

PyMTL3 in Practice

PyMTL3 in Research
JIT-Compiled Simulation [DAC’18]

Property-Based Testing [D&T’21]

Gradual Typing [MEMOCODE’23]

Future Research

A Call to Action

Cornell University Christopher Batten 30 / 56

Trends in Open-Source HW PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 in Research A Call to Action

PyMTL has be used in many chip tapeouts

2015 2016 2017 2018 2019 2020 2022 2023

Chip Tapeouts Being Tested

HammerBlade OC-FPGA

BRGTC1
IBM 130nm

2x2mm

Celerity
TSMC 16nm

5x5mm

BRGTC2
TSMC 28nm
1x1.25mm

BRGTC3&4
TSMC 180nm

2x2.5mm

BRGTC5
TSMC 180nm

2x2.5mm

CIFER
GF 12nm
4x4.5mm

2021

TSMC 180nm, 28nm, 16nm; Sky 130nm
GF 130nm, 12nm; Intel 22FFL

I RISC-V microcontrollers
I Coarse-grain reconfigurable arrays
I Clustered manycore architectures

I Mesh on-chip networks
I Crossbar interconnects

Cornell University Christopher Batten 31 / 56

Trends in Open-Source HW PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 in Research A Call to Action

BRG Test Chip #2 (2018)

Memory

Instruction Memory Arbiter

L1 Data $
(32KB)

LLFU Arbiter

Int Mul/Div
FPU

L1 Instruction $
(32KB)

H
os

t I
nt

er
fa

ce
Sy

nt
he

si
za

bl
e

PL
L

ArbiterData

Four RISC-V RV32IMAF cores with “smart” sharing of L1$/LLFU
1x1.2mm, 6.7M-trans, TSMC 28nm

95% done using PyMTL2

Cornell University Christopher Batten 32 / 56

Trends in Open-Source HW PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 in Research A Call to Action

BRG Test Chip #5 (2022)

I RISC-V RV32IM micro-controller
I 2⇥2.5mm in TSMC 180nm
I 16KB of instruction SRAM, 16KB of data SRAM
I SPI interface for config, SPI master, GP I/O
I 100% done using PyMTL3
I PyMTL3-based post-silicon test enviroment

Cornell University Christopher Batten 33 / 56

Trends in Open-Source HW PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 in Research A Call to Action

Celerity System-on-Chip (2016–2018)

Collaboration with UC San Diego & University of Michigan
I 5 ⇥ 5mm in TSMC 16 nm FFC
I 385 million transistors
I 511 RISC-V cores

. 5 Linux-capable Rocket cores

. 496-core tiled manycore

. 10-core low-voltage array
I 1 BNN accelerator
I 1 synthesizable PLL
I 1 synthesizable LDO Vreg
I PyMTL2 used for testing and

integration of BNN accelerator

[HOTCHIPS’17, IEEE Micro’18, SCCL’18]

Cornell University Christopher Batten 34 / 56

Trends in Open-Source HW PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 in Research A Call to Action

CIFER System-on-Chip (2021–2023)

Collaboration with Princeton University
I 4 ⇥ 4mm in GF 12 nm FinFET
I 456 million transistors
I 22 RISC-V cores

. 4 RV64GC Ariane cores

. 3 Tiny Core clusters each with
6 RV32IM cores

I Embedded FPGA
I Heterogeneous cache

coherent memory system
I PyMTL3 used for tiny cores

and on-chip mesh network

[CICC’23, SCCL’23]

Cornell University Christopher Batten 35 / 56

Trends in Open-Source HW PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 in Research A Call to Action

PyMTL3 for Undergraduate and Graduate Courses

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

Computer Arch Course
Labs use PyMTL for verification,
PyMTL or Verilog for RTL design

Chip Design Course
Labs use PyMTL for
verification, PyMTL or
Verilog for RTL design,
standard ASIC flow

First Teaching Tapeout
in 10+ years!

Four student projects
All use PyMTL for testing

Two use PyMTL for design

Cornell University Christopher Batten 36 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to ActionOpen-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH Batten Research Group

1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

Cornell University Christopher Batten 2 / 47

A New Era of
Open-Source Hardware

Trends in Open-Source HW

PyMTL3 Framework

PyMTL3 in Practice

PyMTL3 in Research
JIT-Compiled Simulation [DAC’18]

Property-Based Testing [D&T’21]

Gradual Typing [MEMOCODE’23]

Future Research

A Call to Action

Cornell University Christopher Batten 37 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Evaluating HDLs, HGFs, and HGSFs

I Apple-to-apple comparison of simulator performance

I 64-bit radix-four integer iterative divider

I All implementations use same control/datapath split
with the same level of detail

I Modeling and simulation frameworks:
. Verilog: Commercial verilog simulator, Icarus, Verilator
. HGF: Chisel
. HGSFs: PyMTL, MyHDL, PyRTL, Migen

Cornell University Christopher Batten 38 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Productivity/Performance Gap

I Higher is better

I Log scale (gap is larger than it seems)

I Commercial Verilog simulator is
20⇥ faster than Icarus

I Verilator requires C++ testbench,
only works with synthesizable code,
takes significant time to compile,
but is 200⇥ faster than Icarus

Cornell University Christopher Batten 39 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Productivity/Performance Gap

I Chisel (HGF) generates Verilog and uses Verilog simulator

Cornell University Christopher Batten 39 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Productivity/Performance Gap

I Using CPython interpreter, Python-based HGSFs are much slower
than commercial Verilog simulators; even slower than Icarus!

Cornell University Christopher Batten 39 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Productivity/Performance Gap

I Using PyPy JIT compiler, Python-based HGSFs achieve ⇡10⇥
speedup, but still significantly slower than commercial Verilog
simulator

Cornell University Christopher Batten 39 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Productivity/Performance Gap

I Hybrid C/C++ co-simulation improves performance but:
. only works for a synthesizable subset
. may require designer to simultaneously work with C/C++ and Python

Cornell University Christopher Batten 39 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Productivity/Performance Gap

I PyMTL3 achieves impressive simulation performance by co-optimizing
the framework and JIT

Cornell University Christopher Batten 39 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

PyMTL3 Performance

Technique Divider 1-Core 16-core 32-core

Event-Driven 24K CPS 6.6K CPS 155 CPS 66 CPS

JIT-Aware HGSF
+ Static Scheduling 13⇥ 2.6⇥ 1⇥ 1.1⇥
+ Schedule Unrolling 16⇥ 24⇥ 0.4⇥ 0.2⇥
+ Heuristic Toposort 18⇥ 26⇥ 0.5⇥ 0.3⇥
+ Trace Breaking 19⇥ 34⇥ 2⇥ 1.5⇥
+ Consolidation 27⇥ 34⇥ 47⇥ 42⇥

HGSF-Aware JIT
+ RPython Constructs 96⇥ 48⇥ 62⇥ 61⇥
+ Huge Loop Support 96⇥ 49⇥ 65⇥ 67⇥

I RISC-V RV32IM five-stage pipelined cores
I Only models cores, no interconnect nor caches

Cornell University Christopher Batten 40 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to ActionOpen-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH Batten Research Group

1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

Cornell University Christopher Batten 2 / 47

A New Era of
Open-Source Hardware

Trends in Open-Source HW

PyMTL3 Framework

PyMTL3 in Practice

PyMTL3 in Research
JIT-Compiled Simulation [DAC’18]

Property-Based Testing [D&T’21]

Gradual Typing [MEMOCODE’23]

Future Research

A Call to Action

Cornell University Christopher Batten 41 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Testing HW Design Generators is Challenging

DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government agencies only 47

Testing RTL Design Generators is Challenging

Testing a specific ring network instance
requires a number of different test cases

test_ring_1pkt_2x2_0_chnl
test_ring_2pkt_2x2_0_chnl
test_ring_2pkt_2x2_0_chnl
test_ring_self_2x2_0_chnl
test_ring_clockwise_2x2_0_chnl
test_ring_aclockwise_2x2_0_chnl
test_ring_neighbor_2x2_0_chnl
test_ring_tornado_2x2_0_chnl
test_ring_backpressure_2x2_0_chnl
…

A design generator can have many parameters:
topology, routing algorithm, flow control, size,
dimension, channel latency …

pkt(src=0, dst=1, payload=0xdeadbeef)
pkt(src=0, dst=3, payload=0x00000003)
pkt(src=1, dst=0, payload=0x00010000)
pkt(src=1, dst=2, payload=0x00010002)
pkt(src=2, dst=1, payload=0x00020001)
pkt(src=2, dst=3, payload=0x00020003)
pkt(src=3, dst=2, payload=0x00030002)
pkt(src=3, dst=0, payload=0x00030000)
pkt(src=0, dst=1, payload=0x00001000)
pkt(src=1, dst=2, payload=0x10002000)
pkt(src=2, dst=3, payload=0x20003000)
pkt(src=3, dst=0, payload=0x30000000)
pkt(src=0, dst=3, payload=0x00003000)
pkt(src=1, dst=0, payload=0x10000000)
pkt(src=2, dst=1, payload=0x20001000)
pkt(src=3, dst=2, payload=0x30002000)
…

A test case may
have a long
sequence of
transactions

Ideal testing technique:
1.Detect error quickly with small number of

test cases
2.The failing test case has minimal number of

transactions
3.The bug trace has simplest transactions
4.The failing test case has the simplest design

A design generator can have
many parameters: topology, routing,

flow control, channel latency

Cornell University Christopher Batten 42 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Software Testing Techniques

I Complete Random Testing (CRT)
. Randomly generate input data
. Detects error quickly
. Debug complicated test case

I Iterative Deepened Testing (IDT)
. Gradually increase input complexity
. Finds bug with simple input
. Takes many test cases to find bug

I Property-Based Testing (PBT)
. Search strategies, auto shrinking
. Detects error quickly
. Produces minimal failing test case
. Increasingly state-of-the-art in

software testing
DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government agencies only 48

• Complete Random Testing (CRT)
– Randomly generates input data

– Detects error quickly

– Needs to debug a complicated test case

• Iterative Deepened Testing (IDT)
– Gradually increases the complexity input data

– Finds bug with simple input

– Takes many test cases to find the bug

• Property-Based Testing (PBT)
– Search strategies and auto shrinking

– Detects error quickly

– Produces minimized failing test case

– Increasingly becoming a state-of-the-art

testing methodology for software (e.g.,

Hypothesis)

Software Testing Techniques

Cornell University Christopher Batten 43 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

PyH2 Creatively Adopts PBT for SW to Test HW

I PyH2 combines PyMTL3, a unified hardware modeling framework,
with Hypothesis, a PBT framework for Python software and creates a
property-based testing framework for hardware

I PyH2 leverages PBT to explore not just the input values for an HW
design but to also explore the parameter values used to configure
an HW design generator

Complete
Random
Testing

Iterative
Deepened

Testing PyH2

Small number of test cases to find bug X X X
Small number transactions in bug trace X X X
Simple transactions in bug trace X X X
Simple design instance for bug trace X X X

Cornell University Christopher Batten 44 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to ActionOpen-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH Batten Research Group

1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

Cornell University Christopher Batten 2 / 47

A New Era of
Open-Source Hardware

Trends in Open-Source HW

PyMTL3 Framework

PyMTL3 in Practice

PyMTL3 in Research
JIT-Compiled Simulation [DAC’18]

Property-Based Testing [D&T’21]

Gradual Typing [MEMOCODE’23]

Future Research

A Call to Action

Cornell University Christopher Batten 45 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Statically vs. Dynamically Typed HDLs
MOTIVATION

Page 22 of 63

Design
Productivity

Testing
Productivity

Simulation
Performance

Static Correctness
Guarantees

Verilog/SystemVerilog
Low Low High Low

Bluespec
Medium Low Medium High

Clash/Chisel/SpinalHDL
Medium Low Medium Medium

PyRTL/MyHDL/Migen/
PyMTL/PyMTL3 High High Low None

HLE
High High Medium Low

Goal
High High ~High HighGet the best of statically and dynamically typed HDLs

in one HDL?

PyMTL3

Can we achieve the best of both statically and dynamically typed
HDLs in a single unified framework?

Cornell University Christopher Batten 46 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Gradually Typed HDLsGRADUAL TYPING: INTEGRATING STATIC AND DYNAMIC TYPING

Page 23 of 63

• Gradually typed programming languages
• Sound composition of statically and dynamically

typed code
• Static: early error detection, better documentation,

execution efficiency
• Dynamic: rapid prototyping, adapting to changes

• Gradually typed HDLs
• Safe composition of statically and dynamically typed

components
• Static: static correctness guarantees, better

simulation performance
• Dynamic: productive testing

Code in Reticulated Python,
a Gradually Typed Dialect of Python

IDiv

Te
st

 B
en

ch
: T

es
t S

ou
rc

e

Te
st

 B
en

ch
: T

es
t S

in
k

IDivCtrl

IDivDpath

-

>>1 -

+

>>1

Q
M

U
X

R
M

U
X

D
M

U
X

Q
uo

R
em

D
iv

0

[n:n*2]

[0:n]

[n:n*2]

[0:n]

resp_msg

req_msg �

en �

rdy

en

rdy �

<<2

Dyn. Typed Static. Typed Dyn. Checks��~ �Boundary

is<0?

is<0?

diff

diff

sum

T
M

U
X

Component Hierarchy in GT-HDL

Dynamic

Static

1 T_W = TypeVar("T_W", bound=Bits)

2
3 class RegIncrRTL(Component,

4 Generic[T_W]):

5
6 def construct(s, W: Type[T_W]):

7 s.in_ = InPort (W)

8 s.out = OutPort(W)

9 s.tmp = Wire (W)

10
11 @update_ff

12 def seq_logic():

13 s.tmp <<= s.in_

14
15 @update

16 def comb_logic():

17 s.out @= s.tmp + 1

Cornell University Christopher Batten 47 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Symbolic Elaboration
1 T_W = TypeVar("T_W", bound=Bits)

2 class Adder(Component, Generic[T_W]):

3 def construct(s, W: Type[T_W]) -> None:

4 n = get_nbits(W)

5

6 s.a = InPort (W)

7 s.b = InPort (W)

8 s.out = OutPort(mk_bits(n+1))

9 s.carry = Wire (mk_bits(n+1))

10 s.sum = Wire (W)

11

12 s.fa = [FullAdder() for _ in range(n)]

13

14 for i in range(n):

15 if i >= 0:

16 connect(s.carry[i+1], s.fa[i].cout)

17 ...

18 @update

19 def upblk() -> None:

20 s.out @= concat(s.carry[n], s.sum)

I How can we prove
matching bitwidths for the
assignment in upblock in
all possible instances?

I Instead of using concrete
bitwiths at elaboration
time, we symbollically
determine the bitwdiths
ahead of time

I We can translate
geneartor properties into
integer constraints
suitable for use with an
SMT solver

Cornell University Christopher Batten 48 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to ActionOpen-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH Batten Research Group

1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

Cornell University Christopher Batten 2 / 47

A New Era of
Open-Source Hardware

Trends in Open-Source HW

PyMTL3 Framework

PyMTL3 in Practice

PyMTL3 in Research
JIT-Compiled Simulation [DAC’18]

Property-Based Testing [D&T’21]

Gradual Typing [MEMOCODE’23]

Future Research

A Call to Action

Cornell University Christopher Batten 49 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

PyMTL3 Design and Verification using LLMs

Python

Functional-Level
Cycle-Level

RTL

Multi-Level
Simulation

Test Bench

SystemVerilog

RTL

synth

generate

prototype
bring-up

FPGA
ASIC

co-simulate
LLM

Cornell University Christopher Batten 50 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

Cornell University Christopher Batten 51 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice • PyMTL3 in Research • A Call to Action

PyMTL3 Publications
I Shunning Jiang, et al. “Mamba: Closing the Performance Gap in

Productive Hardware Development Frameworks.” 55th ACM/IEEE
Design Automation Conf. (DAC), June 2018.

I Shunning Jiang, Peitian Pan, Yanghui Ou, et al. “PyMTL3: A Python
Framework for Open-Source Hardware Modeling, Generation,
Simulation, and Verification.” IEEE Micro, 40(4):58–66, July 2020.

I Shunning Jiang*, Yanghui Ou*, Peitian Pan, et al. “PyH2: Using
PyMTL3 to Create Productive and Open-Source Hardware Testing
Methodologies.” IEEE Design & Test, 38(2):53–61, Apr. 2021.

I Shunning Jiang, Yanghui Ou, Peitian Pan, et al. “UMOC: Unified
Modular Ordering Constraints to Unify Cycle- and
Register-Transfer-Level Modeling.” 58th ACM/IEEE Design
Automation Conf. (DAC), Dec. 2021.

PyMTL3: A Python
Framework for Open-Source
HardwareModeling,
Generation, Simulation,
and Verification

Shunning Jiang, Peitian Pan, Yanghui Ou,
and Christopher Batten
Cornell University

Abstract—In thisarticle,wepresentPyMTL3, aPython framework for open-sourcehardware

modeling, generation, simulation, andverification. Inaddition tocompelling benefits from

using thePython language,PyMTL3 isdesigned toprovideflexible,modular, andextensible

workflows for bothhardwaredesignersandcomputer architects. PyMTL3supports a

seamlessmultilevelmodelingenvironment andcarefully designedmodular software

architectureusing asophisticated in-memory intermediate representationandacollection

of passes that analyze, instrument, and transformPyMTL3hardwaremodels.Webelieve

PyMTL3canplay an important role in jump-starting theopen-sourcehardwareecosystem.

& DUE TO THE breakdown of transistor scaling

and the slowdown of Moore’s law, there has

been an increasing trend toward energy-efficient

system-on-chip (SoC) design using heteroge-

neous architectures with a mix of general-

purpose and specialized computing engines. Het-

erogeneous SoCs emphasize both flexible param-

eterization of a single design block and versatile

composition of numerous different design

blocks, which have imposed significant chal-

lenges to state-of-the-art hardware modeling and

Digital Object Identifier 10.1109/MM.2020.2997638

Date of publication 25 May 2020; date of current version

30 June 2020.

Theme Article: Agile and Open-Source HardwareTheme Article: Agile and Open-Source Hardware

58
0272-1732 ! 2020 IEEE Published by the IEEE Computer Society IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

I Peitan Pan, Shunning Jiang, Yanghui Ou, et al. “Symbolic Elaboration: Checking Generator
Properties in Dynamic Hardware Description Languages.” 21st ACM/IEEE Int’l Symp. on Formal
Methods and Models for System Design (MEMOCODE), Sep. 2023.

I Peitan Pan, Christopher Batten. “Formal Verification of the Stall Invariant Property for
Latency-Insensitive RTL Modules.” 21st ACM/IEEE Int’l Symp. on Formal Methods and Models
for System Design (MEMOCODE), Sep. 2023.

Cornell University Christopher Batten 52 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research • A Call to Action •Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH Batten Research Group

1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

Cornell University Christopher Batten 2 / 47

A New Era of
Open-Source Hardware

Trends in Open-Source HW

PyMTL3 Framework

PyMTL3 in Practice

PyMTL3 in Research
JIT-Compiled Simulation [DAC’18]

Property-Based Testing [D&T’21]

Gradual Typing [MEMOCODE’23]

Future Research

A Call to Action

Cornell University Christopher Batten 53 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research • A Call to Action •

A Call to Action

I Open-source hardware needs developers who
. ... are idealistic
. ... have lots of free time
. ... will work for free

I Who might that be?

Students!

I Academics have a practical and ethical
motivation for using, developing, and
promoting open-source EDA tools and
open-source hardware designs

I Two key trends make this a particularly exciting time to contribute
. Open-source verification methodologies and tools are a key challenge
. Large-language models offer a new opportunity to address this challenge

Cornell University Christopher Batten 54 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research • A Call to Action •

Cornell University Christopher Batten 55 / 56

Trends in Open-Source HW PyMTL3 Framework PyMTL3 in Practice PyMTL3 in Research • A Call to Action •

This work was supported in part by NSF XPS Award #1337240, NSF CRI Award
#1512937, NSF SHF Award #1527065, AFOSR YIP Award #FA9550-15-1-0194,

DARPA Young Faculty Award #N66001-12-1-4239, DARPA POSH Award
#FA8650-18-2-7852, DARPA SDH Award #FA8650-18-2-7863, a Xinux University

Program industry gift, and the the Center for Applications Driving Architectures
(ADA), one of six centers of JUMP, a Semiconductor Research Corporation program

co-sponsored by DARPA, and equipment, tool, and/or physical IP donations from
Intel, NVIDIA, Synopsys, and ARM.

Thanks to the core PyMTL developers, Derek Lockhart, Shunning Jiang, Peitian
Pan, Yanghui Ou, along with Khalid Al-Hawaj, Moyang Wang, Tuan Ta, Ji Kim,
Shreesha Srinath, Berkin Ilbeyi, Dilan Lakhani, Jack Brzozowski, Kyle Infantino,

Yixiao Zhang, Jacob Glueck, Aaron Wisner, Gary Zibrat, Christopher Torng, Cheng
Tan, Raymond Yang, Kaishuo Cheng, Carl Friedrich Bolz, David MacIver, and Zac

Hatfield-Dodds for their help designing, developing, testing, and using PyMTL

The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation theron. Any opinions,

findings, and conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of any funding agency.

Cornell University Christopher Batten 56 / 56

